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Abstract: We report a simple, versatile, and rapid method for the fabrication of optically-transparent
large-area carbon nanotube (CNT) films via flotation assembly. After solvent-induced assembly,
floating films were transferred to a flat supporting substrate to form conductive and transparent
CNT film electrodes. The resulting electrodes, with uniform 40 ± 20 nm multi-walled CNT
(MWCNT) layers, were characterized by electrochemical and microscopy methods. The flotation
method does not require specialized thin-film instrumentation and avoids the need for surfactants
and pre-oxidized CNTs which can hamper electrochemical performance. A proof-of-concept
nanostructured bioelectrode demonstrating high sensitivity for glucose was developed with
an electropolymerized poly(pyrene-adamantane) layer for host–guest immobilization of active
β-cyclodextrin tagged GOx enzymes. The polymer provides pyrene groups for cross-linking to
CNTs and pendant adamantane groups for binding the β-cyclodextrin groups of the tagged enzyme.
This demonstration offers a new approach for the preparation of stable and transparent CNT film
electrodes with attractive electrochemical properties towards future photobio- and bio-electrochemical
fuel cells, electrochemical sensors, and electroanalysis.

Keywords: multi-walled carbon nanotubes; optically-transparent electrode; photobioelectrode;
electropolymerization; flotation assembly; nanostructured electrode; biosensor; biofuel cell

1. Introduction

The use of carbon nanotubes (CNTs) has garnered plenty of interest within the nanoscience
community for interfacing soft biological systems due to their chemical stability, high electrical/thermal
conductivity [1], appealing mechanical properties [2] and biocompatibility [3]. The high specific
surface area (up to 850 m2·g−1) [4] and unique geometry make multi-walled CNTs (MWCNTs) an
ideal candidate for the construction of highly-porous three-dimensional electrodes, especially given
the ability to attach a plethora of functionalities [5–7]. CNT electrodes can provide a powerful platform
for the immobilization of enzymes with high biomolecular activities [8,9] and have consistently
demonstrated excellent performance for the electrical wiring of enzymes via direct and mediated
electron transfer processes [10,11]. Three-dimensional electrodes with film thicknesses on the
millimeter scale are commonly employed for enzymatic bioelectrocatalysis, but are known to have slow
mass transport and ohmic resistances [12]. Use of nanoscale thin films can enhance mass transport
of substrates/products and facilitate fast electron transfer with immobilized enzymes, opening up
the possibility to improve bioelectrode performance for biofuel cell and biosensor devices [10,13,14].
Furthermore, CNT films with sub-100 nm thicknesses can exhibit high optical transparency which
could be exploited for light-driven photoelectrochemical devices [15,16].
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At present there exist several methods for producing CNT structures, such as arc discharge [17],
chemical vapor deposition (CVD) growth [18], and laser ablation [19]. Whilst CVD growth offers
high-quality and large-area processing, the method can yield contaminants that can adversely affect their
properties, and require further processing such as thermal annealing and/or chemical treatment for their
removal [20]. Furthermore, film transfer onto target substrates is impaired by hard metal catalyst etching
and polymer adhesive residues [21]. With film transfer acting as the bridge between production and
application, it currently presents a major challenge for successful commercialization of CNTs [22].

Solution processing of CNT-based films, therefore, offers great potential for the cost-effective
preparation of devices such as flexible electrodes, supercapacitors, biosensors, and biofuel cells [23–26].
For the construction of bioelectrodes, the simple drop-casting of CNTs from aqueous and non-aqueous
suspensions represents the most commonly employed method [7,27]. However, such methods are
not suitable for controlling film thickness at the nanoscale. Harsh acid treatments and surfactants
are also typically employed, which can hamper electrical conductivity and introduce undesired
contaminants [28,29]. Here we demonstrate a new method for the preparation of stable nanoscale-thin
multi-walled carbon nanotube film electrodes via rapid surfactant-free flotation assembly. As a
proof-of-concept we use a Pt-MWCNT electrode to construct a biointerface for glucose detection
via electro-oxidative attachment of pyrene-adamantane (pyAd) and host–guest immobilization of
β-cyclodextrin (β-CD) modified glucose oxidase (GOx).

2. Results

2.1. Flotation Assembly of Thin and Thick MWCNT Films

Thin and thick large-area MWCNT nanofilms were formed by flotation assembly before
transferring to the target substrate, as illustrated in Figure 1a. Two methods of film assembly are
reported, Method A, where ethyl acetate (EA) was added to MWCNTs in aqueous solution, and Method
B, where CNTs were added to EA in aqueous solution (see Section 4.2.1). For flotation assembly, the
spontaneous migration of MWCNTs toward the liquid surface is attributed to Rayleigh–Bénard
convection caused by evaporative cooling of the EA layer [30]. The inhomogeneous EA distribution at
the liquid surface causes surface tension gradient-induced instability and results in lateral assembly of
the MWCNTs through Marangoni forces parallel to the interface. The primary factors for controlling
film thickness are the rate of assembly, governed by the evaporation of the solvent (ethyl acetate), and
the uniformity and concentration of the CNT dispersion at the surface. To the best of our knowledge,
this is the first time that a flotation assembly method has been used for the construction of carbon
nanotube electrodes and bioelectrodes.
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Figure 1. Diagrams showing: (a) method of flotation assembly followed by transfer onto an electrode
substrate; and (b) constructed enzymatic interface consisting of Pt-MWCNTs/pyAd/β-CD-GOx.

2.2. Surface Microscopy of Thin and Thick MWCNT Films

Atomic force microscopy (AFM) was used to characterize the thin and thick film assemblies
prepared by Method A (solvent to CNTs–water) or Method B (CNTs to solvent–water), respectively.
Characterization was performed on film assemblies transferred onto silicon substrates due to its atomic
flatness. Figure 2 shows the topographic and depth profiling plots for the (a,c) thin and (b,d) thick
film assemblies. The topographic images show the formation of homogeneous networks of randomly
inter-connected carbon nanotubes. The thin film shows evidence for a looser and more porous network
but, overall, the two types of film are very similar. The average line plots also reveal evidence for
a gradient in film thickness over a distance of a few microns at the fringes of the electrode surface.
However, this represents only a minor proportion of the final electrode surface. Average film thickness
values obtained from 1 µm × 9.5 µm cross-sections were calculated as 40 ± 20 nm and 285 ± 50 nm for
the thin and thick films, respectively (see Figure S1 for topographic depth-profiling images). Average
surface roughness values calculated from 1 µm × 1 µm regions were Ra = 18 ± 3 nm and Ra = 22 ± 5 nm
for the thin and thick film assemblies, respectively. The roughness measurements clearly reveal similarly
smooth nanostructured surfaces for the films with different thicknesses. Considering that the average
diameter of the utilized nanotubes is 9.5 nm, the thin films, therefore, remarkably represent only a few
layers of entangled nanotubes. Scanning electron microscopy and confocal laser microscopy images
were also recorded and reveal similar topographic features (see Figures S2 and S3). These microscopy
experiments confirmed the ability to assemble the CNT films and transfer them to various flat substrates
(silicon, platinum, and gold) according to the methodology presented in Section 4.2.1.
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2.3. Electrochemical Properties of Thin MWCNT Film Electrode

To probe the electrochemical performance of MWCNT film modified electrodes, initial
experiments were carried out with the benchmark ferri-/ferrocyanide (Fe(CN)6

3−/4−) redox probe.
This redox probe was chosen as it is well known to have quasi-reversible, surface-sensitive
electrochemistry. A cyclic voltammogram (CV) (Figure 3a, black) recorded in 1 mM Fe(CN)6

3−

in pH 7 phosphate buffer (PB) solution at a Pt electrode before MWCNT film deposition shows
well-defined and chemically-reversible behavior with a peak-to-peak separation (∆Ep) of 128 mV
and an anodic peak current of 1.1 µA. After transfer and drying of the floating film to Pt, the CV
obtained in Fe(CN)6

3− solution (Figure 3a, blue) showed a larger ∆Ep of 313 mV and an increase in
anodic peak current to 10.2 µA, consistent with successful film deposition. The resultant change in
peak separation indicates that the apparent electron transfer kinetics for the redox couple are slower
at the MWCNT film. However, the increase in peak currents suggests an approximate increase in
the electroactive surface area by a factor of 10 simply by deposition of only a few multilayers of
nanotubes. The increase in peak currents and a slightly sigmoidal peak shape is also indicative of
an increased rate of diffusive mass transport. Due to the superior properties and expected thin-layer
mass transport effects, it was unexpected that the MWCNT film would exhibit a larger peak separation
characteristic of sluggish kinetics. Nevertheless, large ∆Ep values for the Fe(CN)6

3−/4− couple at the
CNT-modified electrodes compared with traditional electrodes has previously been observed when
N-Methyl-2-pyrrolidone (NMP) has been used as the dispersion solvent [31]. This effect is attributed
to the presence of physisorbed organic NMP residues with a low dielectric constant which can inhibit
electron transfer.

The stability to repeat potential cycling was also tested for the thin MWCNT film on Pt, as shown
in Figure S4. Essentially, no change in the voltammetry was observed after 20 cycles in Fe(CN)6

3−

solution, consistent with the stable attachment of a CNT film to the supporting Pt substrate. Anodic
and cathodic peak currents were subsequently measured from CVs recorded in Fe(CN)6

3− solution
(Figure 3b) and varied linearly with the square root of the scan rate (see Figure S5) according to
the Randles-Sevcik equation, consistent with the quasi-reversible diffusional behavior expected at a
standard electrode.
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in 0.1 M PB at pH 7 with 0.5 M KCl; and (b) log-log plot of the capacitance versus scan rate for the Pt 
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Towards the development of a nanostructured biointerface, we investigated the possibility to 
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enzyme attachment. To this purpose, we electropolymerized a pyrene-adamantane derivative that 

we developed previously for functionalization of drop-casted single-walled carbon nanotube film 

Figure 3. Cyclic voltammograms recorded in 1 mM K3Fe(CN)6
3− in 0.1 M PB pH 7 with 0.1 M KCl

showing (a) the first two cycles at 100 m·Vs−1 of the (i) Pt electrode (black) and (ii) Pt-MWCNT
electrode (blue); and (b) the first cycle at (i) 20 m·Vs−1, (ii) 40 m·Vs−1, (iii) 60 m·Vs−1, (iv) 80 m·Vs−1,
and (v) 100 m·Vs−1.

The voltammetric response of both the Pt and Pt-MWCNT electrodes was also recorded in 0.1 M
PB at pH 7 with 0.1 M KCl as supporting electrolyte to provide an insight on the capacitance of the thin
film MWCNT electrodes versus that of the Pt electrode (Figure 4a). Capacitance values were estimated
based on geometric area for a range of scan rates between 10 and 400 mV·s−1 and are presented in
Figure 4b. The larger capacitances at the CNT film electrode further demonstrate an increase in surface
area following modification, while the relatively low values of capacitance per area further indicate the
formation of a MWCNT nanofilm consisting of just a few entangled nanotubes [32]. These values are,
nevertheless, comparable with previously-reported values for CNTs [33]. For electroanalysis and many
sensors, this low capacitance mitigates masking of the analyte signal from non-Faradaic charging of
the electric double layer.
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Figure 4. Electrochemical characterization of a planar Pt electrode (solid, black) and a Pt-MWCNT
electrode (dash, blue) fabricated using Method A: (a) cyclic voltammograms recorded at 100 mV·s−1

in 0.1 M PB at pH 7 with 0.5 M KCl; and (b) log-log plot of the capacitance versus scan rate for the Pt
electrode (black) and Pt-MWCNT electrode (blue).

2.4. Surface Modification of Thin MWCNT Film Electrode with Pyrene-Adamantane

Towards the development of a nanostructured biointerface, we investigated the possibility to
modify the CNT film electrode by electropolymerization to introduce chemical functionalities for
enzyme attachment. To this purpose, we electropolymerized a pyrene-adamantane derivative that
we developed previously for functionalization of drop-casted single-walled carbon nanotube film
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electrodes [34]. Here, the fabricated MWCNT electrode is first immersed in acetonitrile (CH3CN)
containing 2 mM pyrene-adamantane for 30 min to adsorb the modifier to the nanotubes by π–π
stacking of pyrene groups with nanotube sidewalls. The electrode is then rinsed in CH3CN and
modified via oxidative electropolymerization by recording two consecutive cyclic voltammograms in
CH3CN containing 0.1 M LiCLO4. It is noted that no evidence for film delamination was observed
after immersion and rinsing of the electrode in organic solvent, providing further support for the stable
attachment of the CNT films to the surface. Films previously reported by drop-casting of CNTs on
electrode surfaces show similar resistance [34] with the stability, depending on the CNT dispersion and
sufficient drying of the CNT layer. Figure 5a shows a representative example of the first and second
cycles recorded between 0.0 and 1.1 V vs. Ag/Ag+ in the monomer-free solution.
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showing (a) first (solid, black) and second (dash, blue) cycles of Pt-MWCNT after immersion in
pyrene-adamantane solution; (b) 1st, 2nd, 10th, and 20th (solid, dash, dash-dot, and dot, respectively)
cycles of immobilized poly(pyrene) redox groups after electropolymerization of pyrene-adamantane.

On the first CV cycle, an irreversible peak at 0.95 V is observed, attributed to the electro-oxidation
of the pyrene monomer to its cationic radical [35]. On the second scan, the disappearance of the large
oxidative peak at 0.95 V and the appearance of a very well-defined symmetric redox couple centered at
E1/2 = 0.0 V vs. Ag/Ag+ is observed, characteristic of the formation of an electrogenerated poly(pyrene)
film on the surface. Potential cycling was subsequently performed for 20 cycles at 20 mV·s−1 between
−0.25 and 0.2 V vs. Ag/Ag+ and revealed excellent stability of the electroactive polymer backbone
(Figure 5b). This redox couple with a ∆Ep of 96 mV is much better resolved and more stable than that
observed in our previous work on drop-coated SWCNT film electrodes [34], highlighting the excellent
properties of the ultrathin film MWCNT electrodes. Next, the surface concentration of immobilized
electroactive pyrene groups was estimated from the anodic wave of the second cycle and estimated to
be (8.4 ± 1.2) × 10−10 mol·cm−2 (n = 5), according to Equation (1), where Q is the integrated charge, n is
number of moles, F is the Faraday constant, and A is the geometric surface area. The estimated surface
concentration is comparable to that observed previously at the Pt-SWCNT electrodes despite the use
in this work of fewer electropolymerization cycles and the ultrathin CNT network [34]. The ability
to achieve high electroactive surface coverage with only two polymerization cycles is attractive for
mitigating the generation of a thick, hydrophobic, and poorly conducting polymer which can hinder
electrolyte and product/reactant diffusion, as well as electrical conductivity.

Γ = Q·n−1·F−1·A−1 (1)

2.5. GOx-Modified Thin MWCNT Film Electrode

To demonstrate the utility of the MWCNT nanofilms for construction of a biointerface, we
prepared bioelectrodes functionalized with β-cyclodextrin-tagged glucose oxidase (β-CD-GOx) and
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explored the amperometric detection of glucose. The modified glucose oxidase was immobilized
on poly(pyrene-adamantane) modified electrodes via drop-casting for 30 min. The specific enzyme
immobilization is based on the affinity system between adamantane and β-cyclodextrin, which forms a
1:1 inclusion complex with a high binding constant typically between 1 × 104 M−1 and 1 × 105 M−1 [36].
After modification with enzyme and thoroughly rinsing with phosphate buffer, the bioelectrode was
examined for glucose detection via chronoamperometry.

The biosensor system is based on the enzymatic oxidation of glucose with the
concomitant production of hydrogen peroxide in the presence of dissolved oxygen [13].
The enzymatically-generated hydrogen peroxide is then detected by electrochemical oxidation at
a fixed potential of 0.6 V vs. saturated calomel electrode (SCE). Performance of the biosensor was
examined for successive injections of glucose for the concentration range of 1 µM to 110 mM in stirred
0.1 M phosphate buffer at pH 7 at room temperature. Figure 6 shows the anodic current response of the
bioelectrode as a function of glucose concentration corroborating the expected anchoring of β-CD-GOx
onto the functionalized MWCNT nanofilm. The average response time of the biosensor (determined as
the time required to reach a new current value indistinguishable from the final steady-state current,
after a glucose injection) was 24 s for the concentration range of 1 µM to 5 mM. An example of the
steady-state current response obtained at 5 mM glucose concentration is presented in the left inset of
Figure 6. The calibration curve shows the development of a hyperbolic plot which reaches a current
plateau at a saturating glucose concentration of 90 mM. The glucose sensitivity (1.41 mA·M−1·cm−2)
was determined from the slope of the initial linear part of the calibration curve. It should be noted
that this sensitivity value is 44% higher than those previously reported for a bioelectrode based on
a poly(pyrrole-biotin) film modified by the same enzyme type, β-CD-GOx [37]. This illustrates the
higher permeability of the modified MWCNT nanofilm compared to an electrogenerated organic
polymer. The apparent Michaelis–Menten constant (KM) is calculated using Imax = 16.7 µA·cm−2

as 6 mM for the linear region in Figure 6. This value is attractively smaller than those previously
reported for GOx-modified CNT electrodes [34,38], reflecting the absence of steric constraints towards
the permeation of glucose, with the enzymatic reaction being limited by the oxygen concentration.
This can be ascribed to the highly permeable structure of the ultrathin 3D-structured MWCNT/pyAd
matrix which facilitates fast transport of oxygen and hydrogen peroxide at the electrode. The low
KM may also be a result of the high degree of freedom of enzymes immobilized by a single point of
attachment and their proximity to the electrode sensing surface.
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Figure 6. Response for amperometric glucose detection in 0.1 M PB at pH 7 for the range 5 to 110 mM.
Inset, left: typical amperometric response obtained at 5 mM. Inset, right: linear calibration plot for
the range 1 µM to 5 mM in 0.1 M PB at pH 7. Data recorded at 0.6 V vs. SCE at room temperature
without stirring.
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3. Discussion

In summary, we report a simple and rapid flotation method for the assembly of as-prepared
non-functionalized carbon nanotubes into nanoscale films with different nanoscale thicknesses.
The assembly is performed only in solvents and does not require surfactants, physical deposition,
or templating. Significantly, very thin sub-50 nm films equivalent to only a few layers of carbon
nanotubes can be prepared and easily transferred to flat surfaces, potentially including flexible and
convex structures. Optical and electrochemical performance reveals the formation of homogeneous
3D-structured nanofilms with enhanced surface area, stability, low capacitance, and excellent
electrochemical behavior. Finally, we demonstrate how these very thin films can be used for
electropolymerization and host-guest immobilization of an enzyme for a proof-of-concept glucose
biosensor with satisfactory performance. The fabrication method developed here introduces flotation
assembly as a new method for construction of nanoscale-thin transparent CNT film electrodes
and bioelectrodes with great potential in bioelectrocatalysis and potentially exciting possibilities
for photobioelectrocatalysis. The formation of transparent conducting CNT electrodes also holds
promise in the development of optoelectronic and photovoltaic devices. Future investigations
are now required to optimize film assembly, such as: (i) controlling the ambient temperature to
change the solvent-aqueous interface temperature differential; (ii) adjusting the solvent volume;
(iii) changing container dimensions; (iv) using different types and concentrations of CNT dispersions;
and (v) changing the solvent (such as using diethyl ether). In this way, highly reproducible films with
tunable properties, including fast electron transfer kinetics and optical transmittance, can be prepared
for the target application.

4. Materials and Methods

4.1. Materials

Monosodium phosphate monohydrate (NaH2PO4, ≥98%), disodium hydrogen phosphate
heptahydrate (Na2HPO4, 98–102%), acetonitrile (CH3CN, ≥99.5%), ethyl acetate (EA, ≥99.5%),
N-Methyl-2-pyrrolidone (NMP, ≥99%), D-(+)-glucose (≥99.5%), potassium chloride (KCl, ≥99%),
potassium ferricyanide (K3Fe(CN)6, ≥97%), and glucose oxidase (GOx from Aspergillus niger,
179 U·mg−1) were all purchased from Sigma-Aldrich (Sigma-Aldrich Co., St. Louis, MO, USA)
and used as received. Lithium perchlorate (LiClO4, ≥99%) was obtained from Acros Organics
(Acros Organics BVBA, Geel, Belgium) and used as received. Commercial-grade multi-walled
carbon nanotubes (MWCNTs, Ø = 9.5 mm, 1.9 µm length, ≥95% purity) were obtained from
Nanocyl (Nanocyl SA, Sambreville, Belgium) and used as received without further purification.
Synthesis of pyrene-adamantane and β-cyclodextrin tagged glucose oxidase is described in the group’s
previous work [34]. Aqueous solutions were prepared using ≥15 MΩ·cm distilled water from a
Millipore (Millipore Co., Burlington, MA, USA) Ultrapure system. Enzymes were stored at −20 ◦C.
Glucose solutions were left to mutarotate overnight to β-D-glucose prior to use.

4.2. Methods

4.2.1. Preparation of MWCNT Films by Flotation Assembly

Two methods of electrode fabrication by flotation assembly were developed to create either
thin or thick films. In Method A, a suspension consisting of 1 mL of MWCNTs (1 mg·mL−1) in
N-methyl-2-pyrrolidone (NMP) is first added to the surface of a 20 mL H2O solution in a Petri dish,
then 0.5 mL of ethyl acetate (EA) is added to the solution surface, followed by a further dropwise
addition of 0.5 mL to the solution surface to complete the assembly. In comparison, for Method B,
1 mL of MWCNTs suspended in NMP (1 mg·mL−1) is added to a solution in a petri dish containing
20 mL of H2O and 0.5 mL EA, then a further 0.5 mL of EA is added dropwise to the solution surface.
In both cases, after the solution is settled, the floating film is then transferred onto the target substrate
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simply by submerging the substrate under the film and lifting out of the solution. The electrode is
then dried overnight under vacuum. The floating films are prepared in large (Ø = 8 cm) Petri dishes at
room temperature in air permitting the fabrication of CNT film electrodes with lateral dimensions on
the centimeter scale.

4.2.2. GOx-β-CD Immobilization

The enzymatic bioelectrodes were fabricated from poly(pyrene-adamantane) modified electrodes
by drop-casting 5 µL of 0.5 mg·mL−1 GOx-β-cyclodextrin onto the surface and allowing the enzyme
to immobilize for 30 min. After thoroughly rinsing with 0.1 M phosphate buffer (PB) pH 7, then
carefully drying with a stream of nitrogen, the analytical performance of the bioelectrode was tested
for glucose determination.

4.2.3. Electrochemistry

Cyclic voltammetry experiments were performed at room temperature with an Eco Chemie
Autolab potentiostat with GPES 4.9 software (Metrohm AG, Herisau, Switzerland). A saturated
calomel electrode (SCE) or Ag/AgCl (sat. KCl) was used as the reference electrodes for aqueous
electrochemistry, together with a Pt wire counter electrode and the working electrode (Pt or Pt-MWCNT
with Ø = 0.7 mm) in the classical three-electrode cell configuration. For non-aqueous electrochemistry
an Ag/Ag+ (AgNO3, 10 mM in CH3CN + 0.1 M LiClO4) reference was used. Amperometric
experiments were carried out with mild stirring (<250 rpm) at room temperature with a Tacussel
PRG-DL potentiostat (OrigaLys Electrochem SAS, Rillieux-la-Pape, France) with an E-recorder interface
and E-chart software (eDAQ Pty Ltd., Sydney, NSW, Australia).

4.2.4. Microscopy and Spectroscopy Imaging

Scanning electron microscopy (SEM) images were recorded using a FEI/Quanta FEG 250 scanning
electron microscopy (Thermo Fisher Scientific Co., Waltham, MA, USA) operating with an accelerating
voltage of 2 kV without metal coating. Laser microscopy images were recorded using a Keyence
VK-X200 laser scanning confocal microscope (Keyence Co., Osaka, Japan). Atomic force microscopy
(AFM) measurements were performed on a Si(100) substrate using a Dimension Icon (Bruker, Billerica,
MA, USA) with SCANASIST-Air probes in peak-force mode and processed using Gwyddion 2.41
software (Czech Metrology Institue, Brno, Czech Republic).

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/7/10/342/s1,
Figure S1. AFM images; Figure S2. SEM images; Figure S3. Laser microscopy images; Figure S4 and Figure S5.
Electrochemical data.
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