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Backstepping Stabilization of 2X2 Linear Hyperbolic PDEs Coupled with
Potentially Unstable Actuator and Load Dynamics

David Bou Saba', Federico Bribiesca-Argomedo', Michael Di Loreto! and Damien Eberard!

Abstract— We consider the problem of full-state feedback
stabilization of a (possibly unstable) system of hyperbolic partial
differential equations (PDEs). Unlike previous works, boundary
couplings to linear ordinary differential equations (ODEs) at
both boundaries are considered and actuation is available
through one of these ODE dynamics. This structure can arise
when considering linear (or linearized) systems of balance
laws with finite-dimensional actuator and load dynamics. The
feedback law proposed in this paper is constructed using
an invertible transform based on the (infinite-dimensional)
backstepping method.

I. INTRODUCTION

Control of systems modeled by partial differential equa-
tions (PDEs), and in particular, of hyperbolic PDEs is a
very active research topic, and therefore many different ap-
proaches to tackle the stabilization and observation problems
exist, see for instance the book [1].

One of these approaches, infinite-dimensional backstep-
ping, has proven since its introduction in [2], a very suc-
cessful method to construct full-state feedback gains for
boundary stabilization of large classes of PDEs. It can be
applied to single PDE, as illustrated by the many examples
given in [3], or to systems of PDEs, such as [4] in the case
of 2 x 2 first order linear hyperbolic systems (extended in
[5] to the quasilinear case). Other relevant results concerning
systems of hyperbolic PDEs are the trajectory generation and
tracking problem considered in [6], and the construction of
a minimum-time control provided in [7].

Many recent results in the backstepping literature have
been focused on systems of PDEs coupled in some way to
ODE dynamics. One may cite for example [8], where a cas-
cade interconnection is considered between a parabolic PDE
and an ODE, and [9], where a fully interconnected structure
is considered instead. In the hyperbolic case, [10] considered
the problem of disturbance rejection for a hyperbolic PDE-
ODE system (with a cascade structure) and the associated ob-
servation problem in [11]. For fully interconnected structures
in the hyperbolic case, [12] recently tackled the stabilization
problem for heterodirectional hyperbolic PDEs coupled to an
ODE.

The originality of this paper is that we apply the backstep-
ping method to the stabilization of a first order 2 x 2 linear
hyperbolic PDE, coupled to two linear ODEs (at both ends)
but with actuation available only through one of these ODEs.
For this class of systems, the results in [12] fail because the
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actuation is not directly available at the PDE boundary. This
structure could arise, for instance, when considering a power
transmission line with a dynamic load at one boundary and
actuator dynamics at the other. Other applications can be
found in oil well drilling [10] and incompressible flows [13],
if actuator dynamics need to be considered.

The paper is structured as follows: in Section II we present
the stabilization problem under consideration. In Section III
we present the backstepping design and the main stabilization
result. Simulation results are shown in Section IV. At last,
conclusions and perspectives are discussed in Section V.

Throughout this paper we will use the following notation
for two triangular domains in R?

Ti ={(x,y) €[0,1] x
T2 ={(z,y) €

(1a)
(1b)

0,1],y <z}
[0,1] x [0,1],y > =}.

Furthermore, given a set 2 C R2, its characteristic
function is denoted

L1 if(zy)eQ
Ly (@,y) _{ 0 otherwise.
The euclidean norm of a vector ¢ € R", r € N\ {0}
is denoted by ||¢||gr= ((pTgo)l/z. For a function in ¢ €
L?([0,1]; R), its norm is defined in the usual sense

1 1/2
9l 2 (j0,1:r) = </O ¢2(s)ds> .

The notation I, will represent the r x r identity matrix.
Finally, for a symmetric matrix A € R™", A > 0 (A < 0)
will indicate that A is positive definite (negative definite,
respectively), while Apin(A) and Apax(A) will stand for the
smallest and the largest eigenvalues of A.

II. PROBLEM STATEMENT

We are concerned with the stabilization of the zero equilib-
rium of a class of systems described by coupled ODE-PDE-
ODE systems. A schematic representation of such systems
is depicted in Fig. 1. The thick arrows represent in-domain
couplings of the PDE states, while the thin arrows represent
couplings at the boundaries of the PDEs. It is worth noticing
that the couplings between the PDEs and the ODEs at both
ends are bidirectional, which is why existing backstepping
designs for related systems (such as [10], [4], or [12]) cannot
be applied.



— ODE-PDE coupling
— PDE-PDE coupling
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ODE ult o) ODE
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Fig. 1: Schematic representation of the coupled ODE-PDE-ODE system (2)

More precisely, we consider systems of the form:

u(t,z) = )\uw(t x)+ O‘++ (t,z)+ o v(t,x) (2a)
ve(t, ) = Mg (t,z) + o Tu(t,z) + o~ w(t, x) (2b)
X(t) = AOX(t) + Eou(t,0) + BoU(¢) (2¢)

Y (t) = ALY (t) + Equ(t, 1) (2d)
u(t,0) = Rov(t,0) + Co X (¢) (2e)
v(t,1) = Ryu(t, 1) + C1Y (t) (2f)

for all t € [0,T], x € [0,1], where A\ > 0 is the
transport speed associated to the two transport equations
and 0 € R (i,j € {+,—}) represent constant in-domain
couplings between the PDEs. The matrices appearing in (2c)-
(2f) are real-valued with appropriate size and U(t) € R"
is the control input. The associated initial conditions are
X(0) € R", Y(0) € R™ and u(0,-), v(0,-) belonging to
suitable functional spaces (cf. subsection III-D) and poten-
tially satisfying adequate compatibility conditions (according
to the required regularity of solutions).

The following assumptions are made in this paper:

Assumption 1: By is invertible (this implies in particular
that the pair (Ag, By) is controllable).

Assumption 2: rank(Cp) > 1.

Assumption 3: Ry # 0.

Assumption 4: The pair (A1, E1) is stabilizable (i.e. there
exists F; € R ™ such that the matrix A, + E1F) is
Hurwitz).

Notice that the precise sense given to equation (2) depends
on the type of solutions considered (weak vs. classical), the
choice of functional spaces for the states of the system, and
the initial conditions. In order to keep this paper concise
and easily readable, we will impose strong conditions to
the system (and its initial conditions) in order to deal only
with classical solutions. Extensions to more general cases
are outside the scope of the present work.

III. BACKSTEPPING CONTROL DESIGN

A. Transform and Target System

In order to construct a stabilizing control law, we will em-
ploy the backstepping procedure. Therefore, we will look for

— ODE-PDE coupling
— PDE-PDE coupling
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Fig. 2: Schematic representation of the target system (4)

a linear (bounded and boundedly invertible) transformation

altr) = ulta)~ [ PUagult )y
1

- [ PRaat oy - gy o) Go

Sltr) = oita)~ [ Payutt)dy
- [ PRty - @Y Go)

£t) = X(t) - DY(t) — qu(t,0)

— /O p1(y)u(t,y)dy — /O p2(y)v(t,y)dy
(3¢0)
e = Y (3d)

that transforms system (2) into the (stable) target system

ai(t,r) = —dag(t,z)+o"Ta(t,z) (4a)
Bi(t,x) = MBu(t,z)+ o~ "Bt x) (4b)
£(t) = (Ao+ BoFo)é(t) (40)
n(t) = (Ar+ EF)n(t) + Era(t, 1) (4d)
a(t,0) = Co(t) (4e)
Bt,1) = Ria(t,1)+ Cin(t) (4f)

where Fy € R™ ™ and F; € R ™ are chosen such
that the matrices (A9 + BoFp) and (A; + E1Fy) are
Hurwitz. §, = £(0) and 1y = n(0) are respectively
the initial conditions for ODE states £(¢) and n(t), and
ap(z) = a(0,2), Bo(z) = (0, x) are the initial conditions
for the PDE states «(t,x) and [(t,x) respectively. A
schematic representation of the target system (4) is given
in Fig. 2. This structure was chosen since it eliminates all
couplings that can be a source of instability.

B. Properties of the Target System

Before finding transform (3) we will state some properties
of the target system that will be required throughout the

paper.



In order to define a precise sense of solutions to the
systems considered in this paper we will introduce a suitable
space.

Definition 1: We define the space = = C'([0,1];R) x
C([0,1];R) x R™ x R™ equipped with the norm

9]z = max {[|¥1]|c1(jo,13-), W2l e (j0,1):R) )
[WsllRn, [WallRm }

for ¥ = (‘111,\112,\113,‘114) € =, where ||'||Cl([0’1];R) is the
usual norm in C*([0, 1]; R)

[éllcroamy = sup [¢(x)|+ sup [¢'(z)].  (6)
z€[0,1] z€[0,1]
Remark that (Z, ||-||z) is a Banach space.
Lemma 1: Given an initial condition

((0,-), 8(0,),£(0),1n(0)) € E verifying the compatibility
conditions

a(0,0) = Coé(0) (7a)

B(0,1) = R1v(0, 1) + C17(0) (7b)
4+

0 (0,0) = Ta(0,0) - %CO(AO + BoFo)e(0) (7¢)

3,(0,1) = _%5(0, 1)+§ (0++ Ry +C1Ey) (0, 1)
— Ry (0,1) + %Cl(Al + E1Fy)n(0) (7D

system (4) has a unique (classical)  solution
(alt, ), B(t,),&(t),n(t)) € E for all t € [0,T] satisfying
() € C®([0,TLR™), n() € C*([0,T;R™), a(,),
ﬁ('7 ) € Cl([O, T] x [0, 1]7R)

Due to space constraints, the proof of this result is not
included here. However, one should note that the compat-
ibility conditions required for a C!-solution are not at all
surprising, see for instance the analogous conditions in [5]
(for an H? solution). In this paper we will only consider
these solutions and will not seek to remove the (strong)
compatibility condition.

In order to define a sense for the stability of system (4)
we will introduce a space containing all the components of
the system and define a suitable norm in this space.

Definition 2: We define the space x = L2([0,1];R) x
L?([0,1];R) x R™ x R™ equipped with the norm

190 = (12201320 132 + 1221320,
)1/2

@®)
HI@slln + [[Pallfm

for ¥ = (\Dl, WUy, Uy, \114) € X.

Remark that (, [|-||y) is a Banach space.

Lemma 2: The zero equilibrium (origin) of system (4)
is exponentially stable in the x-norm. There exist real
constants M, w > 0 such that, for all initial conditions
((0,-), 8(0,-),£(0),1n(0)) € x satisfying the conditions of
Lemma 1 the solution ¥(t) = (aft,-),B(¢,-),&(¢),n(t)) of
system (4) satisfies

@)y < Me™“"[TO)], Yte[0,T]. (9
The proof of this result is given in Appendix A.

C. Properties of the Backstepping Transform

Now we state some properties of the transform defined in
3).

Lemma 3: Given P € C'(T3;R), 0,5 € {1,2}, g, v €
C*([0,1];R™) and p1, p2 € C*([0,1];R™) the backstepping
transform defined in (3) is a bounded linear operator from
x to x (alternatively from = to Z). Furthermore, it has a
bounded inverse in x (in = respectively).

The boundedness is clear from equation (3). Invertibility
follows in turn from the structure of the proposed transform
together with the invertibility of Volterra integral equations
of the second kind (or the zero spectral radius property of
Volterra integral operators) [14, Theorem 3.10].

Lemma 4: A sufficient condition for the backstepping
transform (3) to (invertibly) map a classical solution of
system (2) into a corresponding one of system (4) is that
the kernels P, i,j € {1,2}, p1, p2, the coefficients g, 7,
D and ¢, and the control input U(t) satisfy the regularity
conditions of Lemma 3 as well as the following equations

-+
PM(x,y) + Pyn(ac,y) = —UTP12(33,y) (10a)
++ _ o
P2(zy) — PR(x,y) = 7T P2 (a,y)
(z,y) = P, (z,y) R ( (10b)
- TP @)
++ _ o
Pa?l x,y _P21 r,y)= i 2t z,y
(z,y) = P, (z,y) B ( )(10c)
+ I PP(ay)
A
ot
PP(@,y) + Py (x,y) = —— P (2,y) (10d)
1
g (z) = Xg(gc) [O’++Hm — Al] — P2(2,1)C; (10e)
1
v(z) = 1@ [—o™ "L, + Ay + P*(2,1)C; (10f)
with boundary (final) conditions
1
P (z,1) = P*(z,1)R; + 9@ B (11a)
+- —+
12 _ ¢ 21 _
P (z,z) = TR P (z,x) ) (11b)
1 1
P%(z,1) = R—lpzl(x, 1) — )\—ley(x)El (11c)
g(1) = Fi, v(1) = R Fy (11d)
and algebraic conditions
CoD = g(0) (12a)
Cog = —Ro (12b)
Cop1(y) = P''(0,y) (12¢)
Cop2(y) = P**(0,y) (12d)

with the control given by

U(t) = kl’U(t, 0) + kQ’Ut(t, 0) + kgu(t, 1) + k4X(t)
LY (1) + / Fo(y)u(t, y)dy + / b ()o(t, y)dy

13)



where
k1 = Byt (ARop1(0) — Ap2(0) — (Ao + BoFo)g —Ep)
(14a)
ko = Bylq (14b)
ks = Byt (DE; — Ap1(1) + AR1pa(1)) (14c)
k4 = Fo + ABy 'p1(0)Co (14d)

ks = By ' (DA; — (Ao + BoFo)D + A\pa(1)Cy)  (14e)
ke(y) = By (i (y) + (071, — Ao — BoFo)p1(y)

(14f)
+ 0 tpa(y))
kr(y) = By ' (=Aph(y) + (0~ "L, — Ao — BoFo)p2(y)
+opi(y)). (149

Let us remark that we can always find a solution to the
algebraic equations (12) by using the right-inverse COJf =
CJ(CoCT)~1, which is well defined by Assumption 2.

The proof of this Lemma follows the standard backstep-
ping procedure (see for instance [3]) of differentiating the
transformed solution w.r.t. time and space and substituting it
in the target dynamics (plus some integration by parts where
necessary). A detailed derivation of the kernel equations is
omitted in this paper. We will instead focus on the existence,
uniqueness and regularity of solutions to the kernel PDEs and
accompanying equations.

Lemma 5: Equations (10), (11) have a unique solution
verifying the conditions of Lemma 3.

Proof: First, we will define a change of variables: ¥ =
1—2, §=1-y and the kernels S¥(z,y) = P¥(z,y),
1,7 €4{1,2}.

Furthermore, the ODE verified by ¢ in (10e) can be rewritten
in a PDE form as in [12], by defining

§($,y) = ]l{yzl}(wvy)g(x)v (15)
where g verifies
)‘gz(xvy) = ]l{y:l}(xvy) [g(l’, y) [U++Hm - Al] (16)
— AP"2(z,y)C1]
for (x,y) € T2, with boundary condition
gz, x) = Ly—1y(x, 2) F1. (17

We also define the corresponding PDE in the new variables
hz, §) = g(z,y). (18)

In these variables, the kernel equations are of the class
considered in [12, Theorem 3.2]. Therefore we can conclude
that equations (10), (11) have a unique solution P ¢
L®(TaiR), irj € {1,2}, g, 7 € CI([0,1;R™) and p,
p2 € C([0,1];R™). After the change of variables, the
resulting characteristic lines corresponding to S*!, S12 and
h are shown in Fig. 3, as well as the line required by [12,
Theorem 3.2]. The rest of the kernels are decoupled from
these three kernels but behave in the same way.

Following the proof of [12, Theorem 3.2] and minor
adaptation using sup norm, we obtain that the kernels are
continuous in their domains. Finally, the boundary conditions
in (11) and (12) ensure that the kernels are C'-functions.

|
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Fig. 3: Characteristic lines verified by the kernels S'1(z, §), S*2(%, §) and

D. Properties of the Closed-Loop System

Lemma 6: Given an initial condition
(u(0,-),v(0,-), X(0),Y(0)) € = verifying the compatibility
conditions

u(0,0) = Rov(0,0) + Cy X (0) (19a)
v(0,1) = Ryu(0,1) + C1Y (0) (19b)
++ _ -+
wmm:fm%@m+5——§g—mam
+ %(OA__ - R()O'__ — C()E())'U(O, 0) (19C)

1 1
v.(0,1) = —Ryu,(0,1)
1
+ X(RlO.JrJr —_ ot + C’lEl)u(O, 1) (19d)

RiocT™ —0™ " 1
+ 272 0(0,1) + - C1 ALY (0)
A A
and U(t) satisfying the conditions of Lemma
4, system (2) has a unique (classical) solution

(u(t,-),v(t,-), X (t),Y(t)) € E for all ¢ € [0,T] satisfying
u(-, ), v(-,-) € CH([0,T]x[0,1; R), X(-) € CH([0, T]; R™),
Y() € CX(j0, T); R™).

Proof: Any initial condition of (2) in = is mapped, by
Lemma 3 together with Lemma 5 to a bounded condition in
= for (4). By the definition of the backstepping transform
(3) and with kernels and control signal satisfying Lemma 4
(which always exist by virtue of Lemma 5), the compati-
bility conditions in this Lemma imply that the compatibility
conditions of Lemma 1 are verified. This in turn implies
that the target system (4) has a unique classical solution
with adequate regularity. Using Lemma 4 and the bounded
invertibility of the transform (in Z), from Lemma 3 and
Lemma 5, we conclude that the original system (2) has a
unique classical solution with the desired regularity. [ ]

We are now able to state the main result of this paper:

Theorem 7: The origin of system (2), verifying the con-
ditions of Lemma 6 is exponentially stable in the y-norm
(8). Furthermore the control law (13) verifies U(-) €
([0, T): R™).



Proof: The proof follows from the fact that Lemma
6 guarantees the existence of a unique (adequately regular)
classical solution to the closed-loop system with the control
law defined by Lemma 4, which is linked by a bounded and
boundedly invertible operator to the corresponding classical
solution of Lemma 1 which satisfies the requirements for
exponential stability in the sense of Lemma 2 (since = C
x)- Boundedness of the inverse transform in x space, from
Lemma 3 together with Lemma 5, gives the conclusion of
the theorem. [ ]

IV. SIMULATION RESULTS

The effectiveness of the control approach is illustrated
in a simulation example, with A\ = 1, o7 = 0.2,

ot =03, oo =1, 00~ = —-01, Ry = 1.5,
Ry = 11, C = [1 -1 2 3], 1 = 1f2,41,
E, = [2 -5 1 =3, By = [1 -2 1],
1 4
2 —4 2 (7) 21—
Ay = 1/7 A =1/7(1 0 2|,
4 9 -5 5 5 7 8
-8 7 4 3
20 0 0
01 0 0
and By = 00 -3 0
00 0 1

The parameters were chosen in order to have an unstable
response of system (2). The evolution of the PDE states
u(t,z) and wv(t,z) is presented in Fig. 4(a) and (b)
respectively. As expected, the controller renders the closed-
loop system asymptotically stable.

u(t,z) Closed-Loop

o

-100

v(t, ) Closed-Loop

-200
0

(b)

Fig. 4: Simulated evolution of the closed-loop PDE states and x-norm
behaviour of the in terconnected ODE-PDE-ODE system. (a) u(t, z), (b)

v(t, x).

V. CONCLUSIONS AND PERSPECTIVES

In this article, the problem of stabilization of a 2 X2 system
of linear first-order hyperbolic PDEs coupled to linear ODEs
at both ends is solved under the assumption of an invertible
input matrix to one of the ODEs. The design is based on a
backstepping transform and a suitable (exponentially stable)
target system. The resulting control is a full-state feedback
and requires knowledge of the PDE and ODE states in the
whole domain, as well as the derivative with respect to time
of a point in the PDE state.

Future work will be focused on designing the observer for
the ODE-PDE-ODE system and avoiding the use of the time-
derivatives in the control. Also, the extension of these results
to systems where the input matrix (By) is not invertible will
be explored.

APPENDIX
A. Proof of Lemma 2

Proof: [Lemma 2] We consider an extended version of
the Lyapunov functional used in [12]

V(t) =Vi(t) + Va(t) + Vs(t) + Val(t) (20)
where
= f\/l e~ a2(t, 2)da 1a)
/\/ B2 (t, x)d (21b)
Va(t) = £() o8 (2) (2lc)
Va(t) = n(t)TIin(t). (21d)

The design parameters ¢ > 0, § > 0 and the symmetric
positive definite matrices IIy € R™*" and II; € R™*™ are
yet to be determined. Let

1
K1 = min{/\e_‘s, Y )\mm(Ho) Amin(Hl)} (22a)

5
Ky = max { S 5 Ama (o), Amax(nl)} . ()
V(t) can be bounded as follows
rPOISVE) < m PO, VE€[0,T).  (23)

We proceed by differentiating each term of V' (¢) along the
(classical) solution of (4)

1
Vi(t) = 2%/0 e %%t x) [—Xag(t,z) + ot Fa(t, z)] de

(24a)
. 9 L
Va(t) = X/ Bt z) [MBu(t, ) + o~ B(t,x)] dx
0
(24b)
Va(t) = &(t)T [AJTIo + T Ao | £(t) (240)

()" [ATIL + T Ay ] (t) + 2a(t, 1) BT (t)
(24d)



where we have defined Ay = Ay + BoFp and A; = A; +
FE1Fy (Hurwitz). Integrating (24a) by parts and using (4a)
and (4e), we have that

z=1

1
Vi(t) = —e [e_‘haz(t,x)]xzo —56/ e %%a?(t, x)dx
0

eott !
A Jo
= —ee %a?(t,1) + e£(t)TCICo(t)

ot 1
. (52A>/ e %02 (t, x)dx. (25)
0

Similarly, integrating (24b) by parts and using (4b) and
(4f), we have that

+2 e %0 (t, x)dx

Va(t) < 2e°R3I02(t,1) 4 2°n(t)TCTCin(t)

- 1
<520A)/ T B2(t, x)dz.  (26)
0

Applying Young’s inequality for the term 2a(t, 1) ETII1n(t)
in (24d) yields
Vi(t) < n(t)T [ATIL + I Ay ] n(t)
+ETTEE Q% (t, 1) +n(t)Tn(t).  (27)

Differentiating (20) and using (24c¢), (25)-(27) yield
. o+t 1
Vit)<—e (5 - 2)\> / e 9% (t, x)dx
0

— <5 — 20)\> /01 e B2 (t, x)dx

— [ee™® —2¢°R} — E[IITE, | o(t, 1)
+E()T [ATT + Mo Ag + CT Co] (1)

+ ()T [ATIL + T Ay +26°CTCy + L] (t).
(28)

The design parameters 9§, I1;, € and I1y can always be chosen
such that the following inequalities are verified:

o> %max{a*ﬂ o~ "} (29a)
AT + 11 Ay 4 2¢°CTCy +1,,, < 0 (29b)
€ > 22 R? 4 L ETIZE, (29¢)
Al + TpAg 4 eCICy < 0. (29d)

Taking

1
w= 3 mind Ad — 20T A§ — 207,

)\max (ASHO + Hozzlo + GC(.)I-C())

Amax(l_IO) ’
)\max (A.{Hl + Hlf_h + H1 + 2660301)
)\max(Hl)
(30)
we have that )
V(t) < —2wV(t). 31
Finally, integrating (31), we have
V(t) < e 2'V(0), (32)
and using (23), we get
Ko 1/2
[rolhs (2) e ol web. 6
|
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