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STUDY OF AN ASYMPTOTIC PRESERVING SCHEME FOR THE QUASI
NEUTRAL EULER–BOLTZMANN MODEL IN THE DRIFT REGIME

Mehdi Badsi1,∗

Abstract. We deal with the numerical approximation of a simplified quasi neutral plasma model in
the drift regime. Specifically, we analyze a finite volume scheme for the quasi neutral Euler–Boltzmann
equations. We prove the unconditional stability of the scheme and give some bounds on the numerical
approximation that are uniform in the asymptotic parameter. The proof relies on the control of the
positivity and the decay of a discrete energy. The severe non linearity of the scheme being the price to
pay to get the unconditional stability, to solve it, we propose an iterative linear implicit scheme that
reduces to an elliptic system. The elliptic system enjoys a maximum principle that enables to prove the
conservation of the positivity under a CFL condition that does not involve the asymptotic parameter.
The linear L2 stability analysis of the iterative scheme shows that it does not request the mesh size and
time step to be smaller than the asymptotic parameter. Numerical illustrations are given to illustrate
the stability and consistency of the scheme in the drift regime as well as its ability to compute correct
shock speeds.
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1. Introduction

This work is devoted to the construction of a numerical scheme for the simulation of the quasi-neutral Euler–
Boltzmann system: such a model represents the evolution of an unmagnetized quasi-neutral plasma where
electrons are adiabatic and their density obeys the Boltzmann relation [14, 24] and ions are submitted to the
self-generated electrostatic field. In this model, we assume that the ions internal energy and the electric energy
are of the same order as ε−1 where ε > 0 is a possibly small parameter. When ε → 0, we reach an asymptotic
regime which is called the drift regime: in this regime the pressure force is balanced by the electrostatic-field.
In return, the momentum equation for the ions degenerates into an equation where the velocity can be seen as
the Lagrange multiplier of the zero total force equation [6,7,25,28]. In many practical applications however, the
value of ε is not uniform and can vary with respect to the spatial localization of the plasma. Typically, bounded
plasmas are usually such that in the core plasma the regime is ε� 1 while near the boundaries, boundary effects
such as the Debye sheath may yield a regime where ε = O(1) [2, 4, 30]. It is therefore of interest to develop
numerical scheme that are able to simulate both regimes. A standard approach to adress this diffuculty consists
in a domain decomposition with respect to the local value of ε: with the use of either the ε-dependent model
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in region where ε = O(1) or a limit model in regions where ε → 0. The coupling of these models is however
not straightforward and brings many other technical difficulties related to the interfaces reconnection. To avoid
such difficulties, we employ the so called asymptotic preserving approach introduced by Jin [16,17] so as to be
able to simulate both regimes ε = O(1) and ε→ 0 with a single model. The efficiency of this approach has led
to significant development both in plasma physics and fluid mechanics [7, 8, 10, 26, 28, 31]. However efficient in
practice, rigorous stability analysis and proof of convergence in the limit ε → 0 for complete physical models
is often a difficult task. In this respect, the present work is devoted to analyse some properties of a scheme
for the quasi-neutral Euler–Boltzmann system. The motivation of this work comes from some of the questions
raised in a previous work of Deluzet et al. [7] on the Euler–Lorentz model. Notably, besides the ability of the
scheme to be numerically asymptotic preserving, some questions around the ability of the scheme to preserve
the invariants (physical energy, positivity) and computing the correct shock speed in a non conservative form
of the Euler–Lorentz equations was formulated.

This work is organized as follows. In Section 2, we introduce the quasi-neutral Euler–Boltzmann system and
describe its mathematical properties. In Section 3, we discuss numerical issues related to the Euler–Boltzmann
system. In Section 4, we introduce the discretization and define the non linear implicit scheme. Section 4.1 is
devoted to prove the existence of a solution to the scheme, its unconditional stability and give some uniform
(with respect to the small parameter) bounds. In Section 5, we introduce an iterative linear scheme to solve the
non linear scheme. It is proven to be positivity preserving and linear L2 stable under a CFL condition that does
not involve the small parameter ε. In Section 6, we illustrate the ability of the scheme to capture the correct
shock speeds and test its stability properties in the drift regime.

2. A fluid model for a quasi-neutral plasma dynamic: the scaled
Euler–Boltzmann system

We consider a confined plasma that is made of one species of ions. To model this plasma, we use a fluid
approach where the plasma position is denoted x and belongs to the unit periodic segment [0, 1]per = R/Z. In
our fluid description, the unknowns of the model are the ions density n : (t, x) ∈ [0, T ) × [0, 1]per → R+, the
macroscopic ions velocity u : (t, x) ∈ [0, T ) × [0, 1]per → R, the ions pressure p : (t, x) ∈ [0, T ) × [0, 1]per →
R+, and the ions fluid energy density w : (t, x) ∈ [0, T ) × [0, 1]per → R+ and the electrostatic potential
φ : [0, T ) × [0, 1]per → R. They are assumed to be solutions to the following Euler–Lorentz equations posed in
(0, T )× [0, 1]per:

∂tn+ ∂x (nu) = 0, (2.1)

∂t (nu) + ∂x
(
nu2

)
+

1
ε
∂xp =

1
ε
nE, (2.2)

∂tw + ∂x (u (w + p)) = nuE, (2.3)
E = −∂xφ, (2.4)

w =
εnu2

2
+

1
γ − 1

p. (2.5)

Here, the constant parameters ε > 0 and γ > 1 denote respectively the thermal energy relatively to the ions
kinetic energy and the adiabatic constant. As it is, the system (2.1)–(2.5) is not a closed set of equations, we
therefore use the physical hypothesis of quasi-neutrality with adiabatic electrons [24]. Namely, it mathematically
writes

∀ (t, x) ∈ [0, T )× [0, 1], n (t, x) = e
φ(t,x)
Te with Te > 0 a fixed parameter. (2.6)

The set of equations (2.1)–(2.6) now provides a closed system for (n, u,w, p, φ). The hypothesis of quasi-
neutrality with adiabatic electrons enables to reduce the number of unknowns of the system and to re-write it
into a set of conservation laws. Indeed, the algebraic relation (2.6) enables to eliminate the electrostatic potential
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thanks to the following formal computations: from (2.6) we get, φ (t, x) = Te ln (n (t, x)) and from (2.4) we have
E (t, x) = −Te ∂xn(t,x)

n(t,x) . Therefore the momentum equation writes in the conservative form:

∂t (nu) + ∂x
(
nu2

)
+

1
ε
∂x (p+ Ten) = 0. (2.7)

Some algebra also enables to write the energy equation (2.3) into the conservative form:

∂t (w + Ten (ln (n)− 1)) + ∂x (u (w + p+ Ten ln (n))) = 0. (2.8)

It stems from writing the right hand side of (2.3) into the sum of a temporal and spatial derivate:

nuE = −Tenu
∂xn

n
= −Tenu∂x ln (n) = −Te∂x (nu ln (n)) + Te∂x (nu) ln (n) ,

then using the equation (2.1) we obtain:

nuE = −Te∂x (nu ln (n))− Te∂t (n) ln (n) = −∂t (Ten (ln (n)− 1))− Te∂x (nu ln (n))

which is enough to get the conservative energy equation (2.8). Finally, (2.1)–(2.6) is formally equivalent to the
following system of conservation laws of unknown (n, u,w, p, φ):

(Pε) :



∂tn+ ∂x (nu) = 0,
∂t (nu) + ∂x

(
nu2

)
+ 1

ε∂x (p+ Ten) = 0,
∂t (w + Ten (ln (n)− 1)) + ∂x (u (w + p+ Ten ln (n))) = 0,
w = εnu2

2 + 1
γ−1p,

φ = Te ln (n) .

The three first equations of (Pε) stands for the local conservation of mass, momentum and energy while the
two last algebraic equations are constitutive relations relating pressure and electrostatic potential to energy and
density. The system (Pε) is supplemented with a periodic initial data

(
n0, u0, w0, p0, φ0

)
where p0 and φ0 obey

the constitutive relations.

2.1. Conservation properties and admissible set

Smooth periodic solutions to (Pε) system conserve mass, momentum and energy as stated precisely in the
following proposition.

Proposition 2.1. Let ε > 0 and (nε, uε, wε, pε, φε) a smooth periodic solution to (Pε) on [0, T ]. Then one has
for all t ∈ [0, T ):

d
dt

∫ 1

0

nε (t, x) dx = 0,

d
dt

∫ 1

0

(nεuε) (t, x) dx = 0,

d
dt

∫ 1

0

(wε + Tenε (ln (nε)− 1)) (t, x) dx = 0.

It is also mandatory that solutions to (Pε) belong to the admissible set Ω = {(n, u,w, p, φ) ∈ R5 : n >

0, w− εnu2

2 ≥ 0}. When designing a numerical scheme, it is important to check that the numerical approximation
shares the same conservation properties as solutions to the continuous problem. It is a necessary step to assess
the robustness of the numerical scheme and often a necessary step towards theoretical convergence result.
Significant efforts have been made in this direction in the context of fluid dynamics, for example with the work
of Herbin [12,27].
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2.2. Existence theory for (Pε)

The system (Pε) can be re-cast into a system of conservation laws for the variables
(n, nu,w + Ten (ln (n)− 1)). It has the form:

∂tW + ∂xfε (W ) = 0, (t, x) ∈ (0, T )× [0, 1]per,

W = (n, q, e)t where q := nu, e := w + Ten (ln (n)− 1) ,

p = (γ − 1)
(
e− εq2

2n − Ten (ln (n)− 1)
)
, φ = Te ln (n)

where the flux is defined by

fε (W ) :=


q

q2

n + (γ−1)
ε

(
e− εq2

2n − Ten ln (n)
)

+ γTen
ε

q

n

(
e+ (γ − 1)

(
e− εq2

2n
− Ten ln (n)

)
+ γTen

)
 .

Therefore (Pε) is strictly hyperbolic since the Jacobian of the flux fε has three real distincts eigen values:
λ− = u− cε < λ0 = u < λ+ = u+ cε where

cε =

√
γp/n+ γTe

ε
(2.9)

is the acoustic speed. In the case Te = 0, the system is nothing but the compressible Euler equations for which
existence theory is available [9,22,29]. The case Te > 0 should not rise specific difficulties since considering the
specific entropy S (n, q, e) = ln

(
p
nγ

)
the system (Pε) admits the additional conservation laws for any h ∈ C1 (R)

and smooth solutions:
∂t (nh (S)) + ∂x (nuh (S)) = 0. (2.10)

Particularly, if h ∈ C2 (R) satisfies the inequality h′′(S)
h′(S) <

1
γ the couple (−nh (S (n, q, e)) ,−nuh (S (n, q, e))) is

an entropy-flux pair and therefore the system (Pε) is symmetrizable which enables to apply the Kato-Friedrichs
theory [18].

2.3. The drift limit ε→ 0+

The asymptotic ε→ 0+ is called the drift limit. In this limit, the pressure force balances the electric-field. To
be more precise, let us assume that smooth solutions to (Pε) admits the formal asymptotic Hilbert expansion:

nε = n0 + εn1 +O
(
ε2
)
,

uε = u0 + εu1 +O
(
ε2
)
,

wε = w0 + εw1 +O
(
ε2
)
.

with wε = εnεu
2
ε

2 + 1
γ−1pε. Plugging this expansion into (2.1)–(2.7) and balancing the equal order terms in ε, we

get the following system:

∂tn0 + ∂x (n0u0) = 0,
∂t (n0u0) + ∂x

(
n0u

2
0

)
+ ∂x (p1 + Ten1) = 0,

∂x (p0 + Ten0) = 0,
∂t (w0 + Ten0 (ln (n0)− 1)) + ∂x (u0 (w0 + p0 + Ten0 ln (n0))) = 0,
w0 = 1

γ−1p0,

φ0 = Te ln (n0) ,
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Substituting w0 in the in the fourth equation and expanding the computation leads to an equation for the
pressure that writes:

∂tp0 + ∂x (u0p0) + (γ − 1) p0∂xu0 = 0.

Therefore the formal limit system reads:

(P0) :


∂tn0 + ∂x (n0u0) = 0,
∂t (n0u0) + ∂x

(
n0u

2
0

)
+ ∂xπ1 = 0,

∂x (p0 + Ten0) = 0,
∂tp0 + ∂x (u0p0) + (γ − 1) p0∂xu0 = 0,

where π1 = p1+Ten1 is the first order correction of the total pressure. The system (P0) of unknown (n0, u0, p0, π)
is closed. The study of the convergence of the solutions to (Pε) toward the solutions of (P0) when ε→ 0+ is a
classical problem arising in fluid mechanics and more generally in the framework of the so called singular limits
of hyperbolic systems [1, 19,23].

2.4. Non conservative formulation
(
P ′ε
)

It is sometimes easier to work with a non conservative formulation, that is with a set of variables that is not
conserved. As far as the system (Pε) is concerned, the energy equation (2.3) can be replaced by an equation on
the pressure. Indeed, if we assume a smooth solution (n, u,w, p, φ) and then multiply the momentum equation
(2.2) by u, we get:(

∂t (nu) + ∂x
(
nu2

)
+

1
ε
∂x (p+ Ten)

)
u = 0⇒ ∂t

(
nu2

)
+ ∂x

(
nu3

)
+

1
ε
∂x (p+ Ten)u = nu∂tu+ nu2∂xu.

Then thanks to the momentum equation (2.7) and the continuity equation (2.1) one has for the right hand
side of the second equation:

nu∂tu+ nu2∂xu = u (n∂tu+ nu∂xu) = u
(
∂t (nu) + ∂x

(
nu2

)
− u (∂tn+ ∂x (nu))

)
= −u

ε
∂x (p+ Ten) .

We therefore deduce:
∂t

(ε
2
nu2

)
+ ∂x

(ε
2
nu3

)
+ ∂x (p+ Ten)u = 0.

Substracting the last equation to the conservative form of the energy equation (2.8) gives the following
equation for the pressure:

∂tp+ ∂x (up) + (γ − 1) p∂xu = − (γ − 1)Te (∂t (n ln (n)− n) + ∂x (un (ln (n)− 1)) + n∂xu) = 0 (2.11)

where the right hand side of the last equality vanishes thanks to the continuity equation (2.1). Under the
smoothness hypothesis, the system (Pε) is equivalent to the following non conservative system:

(P ′ε):



∂tn+ ∂x (nu) = 0,
∂t (nu) + ∂x

(
nu2

)
+ 1

ε∂x (p+ Ten) = 0,
∂tp+ ∂x (up) + (γ − 1) p∂xu = 0,
w = εnu2

2 + 1
γ−1p,

φ = Te ln (n) .

with a periodic initial data
(
n0, u0, w0, p0, φ0

)
where w0 and φ0 obey the constitutive relations.

3. Numerical issues related to the use of either (Pε) or (P ′ε)

In this section, we briefly discuss the motivation and the numerical issues we care about in this work concerning
the numerical simulation of (Pε).
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3.1. The three dimension Euler–Lorentz model as a motivation

First and foremost, we mention though it is one dimensional in space, our model contains the essential of the
numerical difficulties encountered in the numerical simulation of the three dimensional Euler–Lorentz model for
strongly magnetized plasmas. Specifically, in the strong magnetic field regime, the parallel (to the magnetic-
field) momentum equation degenerates into a balance of force between the parallel gradient of pressure and the
parallel electric field. In [7, 28] asymptotic preserving schemes are proposed for the three dimensional Euler–
Lorentz model. A special care is dedicated to the reformulation of the model so as to ensure that the spatial
discretization would yield formally an estimate of the parallel gradient of total pressure that should scale like
the ion Larmor radius. This estimate would ensure the asymptotic consistency of the scheme. One can make
an analogy with our one dimensional model, to this effect if one assumes the spatial variable x as being the
coordinate aligned to the magnetic field. The essential of the discussion in [7,28] is to ensure an estimate of the
form ∂x (p+ Ten) = O (ε) in some norm. Linear L2 stability issues in the asymptotic ε→ 0 are also discussed.

3.2. Positivity and asymptotic consistency: use of
(
P ′ε
)

To derive a numerical scheme that is asymptotically consistent, one has to ensure two things at the discrete
level:

(a) The positivity of the total pressure p+ Ten so as to avoid unphysical gradient.
(b) The estimate ∂x (p+ Ten) = O (ε) for some norm.

The use of an equation on the pressure at the continuous level has the advantage to verify a maximum
principle, it then gives a hope to ensure the positivity of at the discrete level. As far as the second point
is concerned, we mention that it is not mandatory to employ a non conservative form to ensure the formal
asymptotic estimate ∂x (p+ Ten) = O (ε), it is also possible to ensure it with the conservative system (Pε) (see
[15] for a proof). Here the non conservative formulation enables to derive an equation on the total pressure
p+ Ten that is uniformly elliptic in ε [5].

3.3. Asymptotic stability: on the necessity to implicit the gradient of total pressure
and the divergence of velocity

It is known that the numerical discretization of hyperbolic systems involving a small parameter may suffer
from severe stiffness on the numerical discretization parameter [13, 26]. A classical approach to overcome this
difficulty is to use the so called IMEX splitting schemes [3, 31] that is the discrete counterpart of splitting
operator techniques: stiff operators are implicit while the a priori non stiff operators are explicit. Here we
propose to explain what is the minimal level of implicitness our numerical scheme shall implement to avoid
stability problem in the drift regime ε� 1. Let us consider a constant solution

(
n0, u0, w0, p0, φ0

)
to (P ′ε). Let

us consider a solution (n, u,w, p, φ) to (P ′ε) associated with an initial data that is a small perturbation of the
constant state. Let then write the solution as:

n = n0 + ñ, u = u0 + ũ, p = p0 + p̃, w = w0 + w̃, φ = φ0 + φ̃.

Neglecting the second order terms in (P ′ε), it yields the following linearized equations:

∂tñ+ u0∂xñ+ n0∂xũ = 0,

n0∂tũ+ u0
(
∂tñ+ u0∂xñ+ n0∂xũ

)
+ n0u0∂xũ+

1
ε
∂x (p̃+ Teñ) = 0,

∂tp̃+ u0∂xp̃+ γp0∂xũ = 0.
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where the second term of the momentum equation vanishes thanks to the continuity equation, we therefore
obtain the linearized equations for

(
ñ, ũ, p̃, w̃, φ̃

)
:

∂tñ+ u0∂xñ+ n0∂xũ = 0,
∂tũ+ u0∂xũ+ 1

εn0 ∂x (p̃+ Teñ) = 0,
∂tp̃+ u0∂xp̃+ γp0∂xũ = 0,

w̃ = εn0ũ+
εñ(u0)2

2 + 1
γ−1 p̃

φ̃ = Te
ñ
n0 .

To now identify which terms are needed to be implicit, we consider a semi-discretization in time of the form:
∀k ∈ {0, . . . , b T∆tc},
ñk+1−ñk

∆t + u0∂xñ
k + n0∂xũ

k∗ = 0,
ũk+1−ũk

∆t + u0∂xũ
k + 1

εn0 ∂x
(
p̃k+1 + Teñ

k+1
)

= 0,
p̃k+1−p̃k

∆t + u0∂xp̃
k + γp0∂xũ

k∗ = 0,

where ∆t > 0 and ñk, ũk, p̃k stand for an approximation at time tk = k∆t > 0 of ñ
(
tk, .
)
, ũ
(
tk, .
)
, p̃
(
tk, .
)
.

If we take k∗ = k, and use the linearized momentum equation to express ũk∗ as a function of ∂x
(
p̃k + Teñ

k
)
,

therefore we obtain by inserting uk∗ in both the linearized density and pressure equations, an elliptic equation
for the total pressure that takes the form:

p̃k+1 + Teñ
k+1 − ∆t2

ε
∂xx

(
p̃k + Teñ

k
)

= r̃k

where r̃k is a residual term.
Such an explicit discretization would yield a stability constrain that is dependent on ε. From a computational

point of view, it is unacceptable. However, if we chose k∗ = k + 1 the stiff term becomes implicit and the
discretization would yield a stability constrain that is dependent on u0 but not on ε. In this scope, the minimal
level of implicitness is:

(a) To treat the gradient of total pressure in the momentum equation implicitly.
(b) To treat the divergence of velocity in the mass flux and in the pressure equation implicitly.

Let us mention however that the implicitness of the gradient of total pressure is not the only way to ensure sta-
bility independently on ε. Another way to do it [15,26], is to split the gradient of pressure 1

ε∂x
(
p̃k+1 + Teñ

k+1
)
,

and to substitute it by α∂x
(
p̃k + Teñ

k
)

+
(

1
ε − α

)
∂x
(
p̃k+1 + Teñ

k+1
)

where α > 0 is a numerical parameter
that must be correctly chosen so as to ensure the stability of the scheme.

3.4. Shock speed computation for the non conservative formulation
(
P ′ε
)

and energy
conservation

Though it is convenient to work with (P ′ε) to ensure the positivity of the pressure (because it is not in this
case the difference of two non negative terms) and the formal AP consistency, it brings another difficulty related
to the hyperbolic structure of the Euler–Boltzmann model. It is well-known that for hyperbolic systems [20],
solutions are rarely classical even if the initial data and the boundary conditions are smooth. Solutions develop
discontinuities owing to the fact that characteristics cross in finite time. In this case the pressure equation
and the energy equation are not equivalent. Therefore (P ′ε) and (Pε) are no longer equivalent. To palliate this
eventuality, we use the strategy developed in [27]. We shall add a corrective source term in the discretization
of (2.11) that accounts for the numerical representation of measures appearing when the solution is no longer
smooth. It is proven in [27] that under suitable a priori estimates, such an approach allows to recover the
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Rankine–Hugoniot relations when the mesh size and time step tend to zero. To clarify the discussion, let us
briefly sketch what information is lost in the computation of Section 2.4 when solutions are no longer smooth.
Consider the simple inviscid Burgers equation posed in (0,+∞)× R:

∂ts+ ∂x

(
s2

2

)
= 0. (3.1)

In the case s is smooth, we can multiply by s (3.1) and perform differentiation in time and space to obtain:

∂t

(
s2

2

)
+ ∂x

(
s3

3

)
= 0 (3.2)

Assuming now a solution of the form s (t, x) = sl1x≤σt (t, x) + sr1x>σt (t, x) yields the Rankine–Hugoniot
relation for the first equation σ = sl+sr

2 while for the second σ = 2
3 (sl + sr). It therefore gives different shock

speeds. One may ask what is missing in (3.2) and why do we obtain different shock speeds. To understand, let
us write the weak formulation of the Burgers equation (3.1). We shall say that s ∈ L∞ ((0,+∞)× R) satisfies
the Burgers equation (3.1) in the weak sense if∫

R

∫ +∞

0

s∂tϕ+ f (s) ∂xϕdtdx = 0 ∀ϕ ∈ C1
c ((0,+∞)× R) ,

where f (s) = s2

2 . To mimick the formal computation of Section 2.4, or simply to try to obtain (3.2), we
are tempted to take ϕ = sψ for some ψ ∈ C1

c ((0,+∞)× R). However it is not possible since a priori
s /∈ C1 ((0,+∞)× R). Let us proceed by regularization: there is sn ∈ D ((0,+∞)× R) such that sn → s in
Lploc ((0,+∞)× R) for 1 ≤ p <∞.
Now take ϕ = snψ with ψ ∈ C1

c ((0,+∞)× R) we obtain:∫
R

∫ +∞

0

ssn∂tψ + f (s) sn∂xψdtdx = −
∫

R

∫ +∞

0

(s∂tsn + f (s) ∂xsn)ψdtdx. (3.3)

It is easy to see that the left hand side tends to
∫

R
∫ +∞

0
s2∂tψ+ f (s) s∂xψdtdx as n→ +∞. As for the right

hand side, if s∂tsn+f (s) ∂xsn is only bounded in L1
loc ((0,+∞)× R) then up to a subsequence, s∂tsn+f (s) ∂xsn

tends to a measure. Thus in the case solutions are discontinuous, weak solutions to (3.1) are different from weak
solutions to (3.2), they have both different weak formulations. To ensure the consistency between the two
formulations at the discrete level, one has to take into account this measure. Our last numerical concern in
this work, is the conservation of a discrete analogue of the energy equation (2.3). To obtain the conservation of
the energy, one shall perform the formal computation of Section 2.4 in the opposite sense. To do so one has to
ensure the discrete analogue of the following properties:

• The cancellation at the discrete level:∫
[0,1]per

∂x (p+ Ten)u+ (p+ Ten) ∂xudx = 0.

• Make a crucial use of the the continuity equation (2.1): ∂tn+ ∂x (nu) = 0.

A convenient tool to ensure these two properties is to use a staggered discretization where density and pressure
are discretized on a primal mesh, while the velocity is discretized on a dual mesh. It enables to build discrete
differential operator such that the duality between the “divergence” of the velocity and the gradient of total
pressure holds. Another important property is that the continuity equation needs to be valid both on the primal
and the dual mesh.
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4. An unconditionally stable non linear implicit scheme for (P ′ε)

In this section, we introduce the discretization and propose a non linear implicit scheme to approximate solu-
tions to (P ′ε) . Let us begin with the mesh notation. Let a time step ∆t > 0 and define for all k ∈ {0, 1, . . . , b T∆tc}
the discrete times tk := k∆t. Let N ∈ N∗ and ∆x := 1

N+1 be the mesh size. The the periodic unit segment
line [0, 1]per is discretized with the points defined for all i ∈ Z by xi := i∆x where for all (i, j) ∈ Z2, the two
points xi and xj denote the same grid point and we note it xi ≡ xj if and only if xi − xj ∈ Z. In particular,
we have for all i ∈ Z, xi+(N+1) ≡ xi. In the spirit of finite volume framework, we introduce the control cell
Ci := [xi− 1

2
, xi+ 1

2
) where xi− 1

2
:= xi − ∆x

2 , xi+ 1
2

:= xi + ∆x
2 . We also define the cell centered on xi− 1

2
by

Ci− 1
2

:= [xi−1, xi). We use a staggered discretization, namely the density and pressure are discretized on the
primal mesh Th := ∪

i∈Z
Ci while the velocity is discretized on the dual mesh T ∗h := ∪

i∈Z
Ci− 1

2
. In all the sequel, we

shall omit to precise the dependence on Te > 0 and γ > 1 of the solutions to (P ′ε) for any ε > 0. For any ε > 0,
the discretization of (P ′ε) consists in approaching for each k ∈ {0, 1, . . . , b T∆tc}, the unknown functions nε

(
tk, .
)
,

pε
(
tk, .
)
, uε

(
tk, .
)

by:

nε
(
tk, x

)
≈ nkε,h (x) :=

∑
i∈Z

nkε,i1Ci (x) , (4.1)

pε
(
tk, x

)
≈ pkε,h (x) :=

∑
i∈Z

pkε,i1Ci (x) , (4.2)

uε
(
tk, x

)
≈ ukε,h (x) :=

∑
i∈Z

ukε,i− 1
2
1C

i− 1
2

(x) , (4.3)

where the three sequences
(
nkε,i
)
i∈Z ⊂ R,

(
pkε,i
)
i∈Z ⊂ R,

(
uk
ε,i− 1

2

)
i∈Z
⊂ R are assumed to be a solution to the

following non linear scheme
(
P ′ε,∆t,∆x

)
:

∀i ∈ {0, . . . , N}, (4.4)
∆x
∆t

(
nk+1
ε,i − n

k
ε,i

)
+ F k+1

ε,i+ 1
2
− F k+1

ε,i− 1
2

= 0, (4.5)

∆x
∆t

(
nk+1
ε,i− 1

2
uk+1
ε,i− 1

2
− nkε,i− 1

2
ukε,i− 1

2

)
+ F k+1

ε,i uk+1
ε,i − F

k+1
ε,i−1u

k+1
ε,i−1 +

1
ε
δi− 1

2

(
pk+1
ε + Ten

k+1
ε

)
= 0, (4.6)

∆x
∆t

(
pk+1
ε,i − p

k
ε,i

)
+ (up)k+1

ε,i+ 1
2
− (up)k+1

ε,i− 1
2

+ (γ − 1)
(
pk+1
ε,i

)+
δi
(
uk+1
ε

)
= Sk+1

ε,i , (4.7)

with the periodic boundary conditions:
∀i ∈ Z, (4.8)
nk+1
ε,i = nk+1

ε,i+(N+1), (4.9)

uk+1
ε,i− 1

2
= uk+1

ε,i+N+ 1
2
, (4.10)

pk+1
ε,i = pk+1

ε,i+(N+1). (4.11)

where all terms will be defined here under. The non linear scheme is supplemented with a periodic initial data(
n0
ε,i

)
i∈Z ⊂ R+

∗ ,
(
u0
ε,i− 1

2

)
i∈Z
⊂ R,

(
p0
ε,i

)
i∈Z ⊂ R+ where for all i ∈ Z:

n0
ε,i =

1
∆x

∫
Ci

n0
ε (x) dx, u0

ε,i− 1
2

=
1

∆x

∫
C
i− 1

2

u0
ε (x) dx, p0

ε,i =
1

∆x

∫
Ci

p0
ε (x) dx.

For consiceness, we shall use the notation
(
nkε , p

k
ε , u

k
ε

)
∈ RZ × RZ × RZ to denote the sequences

(
nkε,i
)
i∈Z ⊂

R,
(
pkε,i
)
i∈Z ⊂ R,

(
uk
ε,i− 1

2

)
i∈Z
⊂ R at an iteration k ∈ N. The staggered discretization (4.1)–(4.11) features two

important properties:
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(a) For all k ∈ {0, . . . , b T∆tc}, the duality formula∫
[0,1]per

ukε,h (x) ∂xpkε,h (x) dx = −
∫

[0,1]per

pkε,h (x) ∂xukε,h (x) dx (4.12)

holds, where ∂xpkε,h :=
∑
i∈Z

(
pkε,i+1 − pkε,i

)
∆x

1C
i+ 1

2
and ∂xu

k
ε,h :=

∑
i∈Z

(
uk
ε,i+ 1

2
− uk

ε,i− 1
2

)
∆x

1Ci .

(b) The validity of the discrete continuity equation on the dual mesh T ∗h :

∀i ∈ {0, . . . , N}, ∆x
∆t

(
nk+1
ε,i − n

k
ε,i

)
+ F k+1

ε,i+ 1
2
− F k+1

ε,i− 1
2

= 0⇒ ∆x
∆t

(
nk+1
ε,i− 1

2
− nkε,i− 1

2

)
+ F k+1

ε,i − F
k+1
ε,i−1 = 0.

(4.13)
where nk

ε,i− 1
2

and F kε,i are defined here under by (4.15) and (4.16).

Now we shall defined precisely, the flux and the density at the interfaces. Our scheme follows the standard
finite volumes approach, the discrete continuity (4.5) equation is obtained by integrating the continuity equation
(2.1) on Ci and considering the discrete values nkε as an approximation of the mean values of the density at
times tk in the cell Ci. The flux of mass at the interface is upwind on the density with respect to the sign of
the velocity:

F k+1
ε,i+ 1

2
=
(
uk+1
ε,i+ 1

2

)+

nk+1
ε,i −

(
uk+1
ε,i+ 1

2

)−
nk+1
ε,i+1. (4.14)

where (.)+ := max (., 0) and (.)− := max (−., 0) denote respectively the positive and the negative part functions.
The discrete momentum equation (4.6) is obtained by integrating momentum equation (2.7) on Ci− 1

2
. The

density is here defined in the cell Ci− 1
2

as the mean value over the two neighbouring cells:

nkε,i− 1
2

:=
nkε,i−1 + nkε,i

2
· (4.15)

The flux of mass and the velocity at the interfaces of the cell Ci− 1
2

are defined by:

F kε,i :=
F k
ε,i− 1

2
+ F k

ε,i+ 1
2

2
· (4.16)

The velocity is here upwind with respect to the sign of the flux of mass:

ukε,i :=

{
uk
ε,i− 1

2
if F kε,i ≥ 0,

uk
ε,i+ 1

2
otherwise.

(4.17)

In (4.6), δi− 1
2

denotes the two points finite difference operator centered at xi− 1
2
, namely,

δi− 1
2

(
pk+1
ε + Ten

k+1
ε

)
:=
(
pk+1
ε,i − p

k+1
ε,i−1

)
+ Te

(
nk+1
ε,i − n

k+1
ε,i−1

)
. (4.18)

Finally, the discrete pressure equation is obtained by integrating the pressure equation (2.11) in Ci. The flux
of pressure at the interface is upwind on the pressure with respect to the sign of the velocity:

(up)k+1
ε,i+ 1

2
:=
(
uk+1
ε,i+ 1

2

)+

pk+1
ε,i −

(
uk+1
ε,i+ 1

2

)−
pk+1
ε,i+1. (4.19)

In the discrete pressure equation (4.7), δi denotes the two point finite difference operator centered at xi,
namely

δi
(
uk+1
ε

)
:= uk+1

ε,i+ 1
2
− uk+1

ε,i− 1
2
. (4.20)
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Lastly, the corrective source term is non negative and here defined for all i ∈ {0, . . . , N} by:

2
ε (γ − 1)

Sk+1
ε,i :=

∆x
2∆t

nkε,i

(
uk+1
ε,i+ 1

2
− ukε,i+ 1

2

)2

+
∆x
2∆t

nkε,i

(
uk+1
ε,i− 1

2
− ukε,i− 1

2

)2

+ |F k+1
ε,i |

(
uk+1
ε,i+ 1

2
− uk+1

ε,i− 1
2

)2

. (4.21)

The source term Sk+1
ε,i is a numerical representation of measures appearing when solutions develop discon-

tinuities. It is designed to compensate in the cell Ci the contribution of the residual terms Rk+1
ε,i− 1

2
and Rk+1

ε,i+ 1
2

that originate from the kinetic energy balance (4.23).
Let us now make some comments on different aspects of the scheme:

• The two properties (4.12) and (4.13) together with the presence of the source term (4.21) are crucial to
solve the problem of having a conservative scheme that computes the correct shock speeds (see Sect. 3.4).
Specifically, the purpose of the duality formula (4.12) is to ensure the cancellation of the sum of the integral
of non conservative products. The validity of the continuity equation on the dual mesh (4.13) aims at
recovering a discrete total energy balance: namely, we want to mimic the formal computation of Section 2.4
so as to derive an equation for the kinetic energy (2.8). Altogether, these properties ensure the consistency
of the scheme

(
P ′ε,∆t,∆x

)
with (Pε) when ∆t and ∆x tend to zero. It is necessary, if one wants to recover the

Rankine–Hugoniot relations (for further details we refer to [12]). In this respect, we performed discrete time
and space differentiation on the discrete momentum equation and continuity equation (4.6), (4.5). Using
(4.12) and (4.13), we obtained in Proposition 4.2 a discrete kinetic energy balance with a residual term and
in Proposition 4.3 a discrete potential energy balance with another residual term. On the contrary to our
formal computation of Section 3.4 where the solution was assumed to be smooth, in Propositions 4.2 and 4.3
the discrete numerical approximation is a priori discontinuous. It thus yields the presence of Dirac measures.
The residual terms are therefore the numerical manifestation of this measures. For instance, one can check
that if the velocity uε has a discontinuity then the residual term in Proposition 4.2 does not tend to zero
when ∆x and ∆t do. The role of Sk+1

ε,i is therefore to compensate the contribution of this residual term on
each cell.

• It is proven in Lemmas 2.1 and 3.1 of [11] that such a discretization of the continuity equation and the
pressure equation yields the unconditional positivity of the density (provided it is at initial time) and the
unconditional non negativity of the pressure (provided it is at initial time). Essentially, the proof relies
on the algebraic structure of the discretization of the continuity equation that plays a central role in the
derivation of stability estimate. The discrete continuity equation (4.5) is used to prove the non-negativity of
the pressure. Without going too much in the details, with the choice of an upwind flux the discrete continuity
equation (4.5) can be re-written into the form:

M
(
uk+1
ε

)
nk+1
ε = nkε

where M
(
uk+1

)
∈MN+1 (R) is an M -matrix. As far as the nonnegativity of the pressure is concerned, the

authors in [11] work with the internal energy. One can re-write the discrete pressure equation (4.7) in terms
of the internal energy by decomposing the pressure as pkε,i = nkε,is

k
ε,i and obtain that the pressure equation

re-writes

∆x
∆t

(
nk+1
ε,i s

k+1
ε,i − n

k
ε,is

k
ε,i

)
+ F k+1

ε,i+ 1
2
sk+1
ε,i+ 1

2
− F k+1

ε,i− 1
2
sk+1
ε,i− 1

2
+ nk+1

ε,i

(
sk+1
ε,i

)+
δi
(
uk+1
ε

)
= Sk+1

ε,i

where

sk+1
ε,i+ 1

2
=

{
sk+1
ε,i if F k+1

ε,i+ 1
2
≥ 0,

sk+1
ε,i+1 otherwise.
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Multiplying by
(
sk+1
ε,i

)−
, using the discrete continuity equation (4.5) and summing enables to show that(

skε,i
)− = 0 for all i ∈ {0, . . . , N}. The discussion of Section 3.3 on the stability shows that to avoid the

standard CFL stability condition of the form ∆t
∆x =

ε→0
O
(
ε

1
2

)
, it is necessary to implicit the gradient of

total pressure in the momentum equation (2.2) as well as the flux of mass in the continuity equation (2.1).
Keeping this in mind, to recover some energy balance, it also requires to implicit the flux of mass also in the
momentum equation (2.2). This is why our scheme is fully implicit. It may possible that another approach,
as in the spirit of pressure-correction scheme [12] may avoid the implicitness of the flux to obtain stability
under a CFL number that does not depend on ε.

• The flux of mass and pressure (4.14)–(4.19) at the interfaces can be written under the form:

F k+1
ε,i+ 1

2
= nk+1

ε,i+ 1
2
uk+1
ε,i+ 1

2
−
(
nk+1
ε,i+1 − n

k+1
ε,i

)
2

|uk+1
ε,i+ 1

2
|,

(up)k+1
ε,i+ 1

2
=

(
pk+1
ε,i+1 + pk+1

ε,i

)
2

uk+1
ε,i+ 1

2
−
(
pk+1
ε,i+1 − p

k+1
ε,i

)
2

|uk+1
ε,i+ 1

2
|.

which can be seen as a Rusanov flux where the viscosity only depends on the velocity. In the standard
Rusanov flux [21], the viscosity depends on the maximal characteristics speeds of the system which in our
case would include the acoustic speed cε (2.9).

We have the following.

Theorem 4.1 (Positivity). Let ε > 0, and let n0
ε ∈ (R+

∗ )Z
, p0
ε ∈ (R+)Z

, u0
ε ∈ RZ periodic. Let k ∈ {0, . . . , b T∆T c}

and nkε ∈ RZ, ukε ∈ RZ, pkε ∈ RZ a solution to
(
P ′ε,∆t,∆x

)
. Therefore for all i ∈ Z nkε,i > 0 and pkε,i ≥ 0.

4.1. Unconditional stability and uniform in ε bounds

In this section, we are concerned with the well posedness of the scheme
(
P ′ε,∆t,∆x

)
. More precisely, we are

going to prove that:

• The scheme is well-defined. Namely it has a solution for any positive numbers ε,∆t,∆x.
• Solutions to the scheme are unconditionnaly stable. Namely, for any positive numbers ε,∆t,∆x, the scheme

preserves the positivity of the density, the non negativity of the pressure, the total mass, the total momentum.
It dissipates some discrete energy functional and provides L∞ bounds on the pressure and density that are
uniform in ε as soon as the initial data are O (1) as ε→ 0+.

By periodicity, summing the discrete continuity equation (4.5) and the discrete momentum equation (4.6)
yields the conservation of the total mass and momentum, namely for all k ∈ {0, . . . , b T∆tc}:

N∑
i=0

nkε,i =
N∑
i=0

n0
ε,i,

N∑
i=0

nkε,i− 1
2
ukε,i− 1

2
=

N∑
i=0

n0
ε,i− 1

2
u0
ε,i− 1

2
.

Moreover, because the scheme also provides the density to be positive, we control the L1-norm of the discrete
density nkε,h and thus any norm since we are working in finite dimensional functional spaces. This therefore
gives the L∞ boundedness of the density. The cornerstone to get the existence of a solution to (Pε,∆t,∆x)′ and
an L∞ bound on the pressure, is to obtain an estimate for the discrete energy. More precisely, let us define for
a solution

(
nkε , u

k
ε , p

k
ε

)
to the scheme

(
P ′ε,∆t,∆x

)
the discrete energy functional:

E
(
nkε , u

k
ε , p

k
ε

)
=

N∑
i=0

εnkε,i− 1
2

(
uk
ε,i− 1

2

)2

2
+

pkε,i
γ − 1

+ Ten
k
ε,i

(
ln
(
nkε,i
)
− 1
)∆x. (4.22)
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To prove the decay of this functional, we need a discrete analogue of the conservative energy equation (2.8).
To do so, we crucially uses the duality property (4.12) and the validity of the discrete continuity equation (4.13)
on the dual mesh. One has the following.

Proposition 4.2 (Kinetic energy balance). Let ε > 0, let n0
ε ∈ (R+

∗ )Z
, p0
ε ∈ (R+)Z

, u0
ε ∈ RZ periodic. Let

k ∈ {0, . . . , b T∆T c} and nkε ∈ RZ, pkε ∈ RZ, ukε ∈ RZ a solution to
(
P ′ε,∆t,∆x

)
. Then the following relation holds

for all k ∈ {0, . . . , b T∆tc}, i ∈ {0, . . . , N}:

∆x
2∆t

(
nk+1
ε,i− 1

2

(
uk+1
ε,i− 1

2

)2

− nkε,i− 1
2

(
ukε,i− 1

2

)2
)

+
1
2

(
F k+1
ε,i

(
uk+1
ε,i

)2 − F k+1
ε,i−1

(
uk+1
ε,i−1

)2)
+

1
ε
δε,i− 1

2

(
pk+1

)
uk+1
ε,i− 1

2
+
Te
ε
δε,i− 1

2

(
nk+1

)
uk+1
ε,i− 1

2
= −Rk+1

ε,i− 1
2
, (4.23)

where the residual term is given by

Rk+1
ε,i− 1

2
:=

∆x
∆t

nk
ε,i− 1

2

(
uk+1
ε,i− 1

2
− uk

ε,i− 1
2

)2

2
− F k+1

ε,i

(
uk+1
ε,i − u

k+1
ε,i− 1

2

)2

+ F k+1
ε,i−1

(
uk+1
ε,i−1 − u

k+1
ε,i− 1

2

)2

. (4.24)

Moreover, because of the definition of velocity at the interface, one has Rk+1
ε,i− 1

2
≥ 0.

Proof. It is a consequence of Lemma A.1 by taking the convex function s ∈ R 7→ ψ (s) = s2

2 . The non negativity
of the residual term, follows from the definition of the velocity at the interfaces of each cell Ci− 1

2
. Indeed one

has by definition

uk+1
ε,i :=

{
uk+1
ε,i− 1

2
if F kε,i ≥ 0,

uk+1
ε,i+ 1

2
else.

We therefore deduce that

Rk+1
ε,i− 1

2
=

∆x
∆t

nk
ε,i− 1

2

(
uk+1
ε,i− 1

2
− uk

ε,i− 1
2

)2

2
+
(
F k+1
ε,i

)− (
uk+1
ε,i+ 1

2
− uk+1

ε,i− 1
2

)2

+
(
F k+1
ε,i−1

)+ (
uk+1
ε,i− 3

2
− uk+1

ε,i− 1
2

)2

.

�

We obtained a discrete balance for the kinetic energy, but we need a discrete balance for the total energy.
Note that in the kinetic energy balance (4.23), we have two non conservative terms: 1

εδi− 1
2

(
pk+1
ε

)
uk+1
ε,i− 1

2
and

Te
ε δi− 1

2

(
nk+1
ε

)
uk+1
ε,i− 1

2
. When carrying the discrete summation of the kinetic energy balance, the sum correspond-

ing to this term is compensated by the sum of the non conservative term of the discrete pressure equation (4.7)
thanks to the duality formula (4.12). In order to get rid of the second term, we shall mimick at the discrete
level the formal computation of Section 2.4. We have the following.

Proposition 4.3 (Discrete potential balance). Let ε > 0, let n0
ε ∈ (R+

∗ )Z
, p0
ε ∈ (R+)Z

, u0
ε ∈ RZ periodic. Let

k ∈ {0, . . . , b T∆T c} and nkε ∈ RZ, pkε ∈ RZ, ukε ∈ RZ a solution to
(
P ′ε,∆t,∆x

)
. Then the following relation holds

for all k ∈ {0, . . . , b T∆tc}, i ∈ {0, . . . , N}:

∆x
∆t

(
nk+1
ε,i

(
ln
(
nk+1
ε,i

)
− 1
)
−nkε,i

(
ln
(
nkε,i
)
− 1
))

+ F k+1
ε,i+ 1

2
ln
(
nk+1
ε,i+1

)
− F k+1

ε,i− 1
2

ln
(
nk+1
ε,i

)
(4.25)

− uk+1
ε,i+ 1

2
δε,i+ 1

2

(
nk+1

)
= −Dk+1

ε,i ,
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where the dissipative term is non negative and given by:

Dk+1
ε,i :=

∆x
∆t

(
nk+1
ε,i − nkε,i

)2
2αk+1

ε,i

+
(
uk+1
ε,i+ 1

2

)+ nk+1
ε,i

(
nk+1
ε,i+1 − n

k+1
ε,i

)2
2
(
βk+1
ε,i

)2 +
(
uk+1
ε,i+ 1

2

)− nk+1
ε,i+1

(
nk+1
ε,i+1 − n

k+1
ε,i

)2
2
(
γk+1
ε,i

)2
where

αk+1
ε,i ∈] min

(
nkε,i, n

k+1
ε,i

)
,max

(
nkε,i, n

k+1
ε,i

)
[, βk+1

ε,i , γ
k+1
ε,i ∈] min

(
nk+1
ε,i+1, n

k+1
ε,i

)
,max

(
nk+1
ε,i+1, n

k+1
ε,i+1

)
[.

Proof. Let us consider the function ψ : s ∈ R∗+ 7→ s (ln (s)− 1) . Let k ∈ {0, . . . , b T∆tc}, and i ∈ {0, . . . , N}. Let
us multiply the discrete continuity equation (4.5) by ψ′

(
nk+1
ε,i

)
, therefore we have:

∆x
∆t

(
nk+1
ε,i − n

k
ε,i

)
ψ′
(
nk+1
ε,i

)
+
(
F k+1
ε,i+ 1

2
− F k+1

ε,i− 1
2

)
ψ′
(
nk+1
ε,i

)
= 0. (4.26)

Since the function ψ is C2
(
R∗+
)

and that the density is everywhere positive, a Taylor-Lagrange expansion
around nk+1

ε,i yields the existence of αk+1
i ∈] min

(
nkε,i, n

k+1
ε,i

)
,max

(
nkε,i, n

k+1
ε,i

)
[ such that

ψ
(
nkε,i
)
− ψ

(
nk+1
ε,i

)
=
(
nkε,i − nk+1

ε,i

)
ψ′
(
nk+1
ε,i

)
+

(
nkε,i − n

k+1
ε,i

)2
ψ′′
(
αki
)

2
·

�

Therefore we can re-write the first term:

∆x
∆t

(
nk+1
ε,i − n

k
ε,i

)
ψ′
(
nk+1
ε,i

)
=

∆x
∆t

(
ψ
(
nk+1
ε,i

)
− ψ

(
nkε,i
))

+

(
nkε,i − n

k+1
ε,i

)2
ψ′′
(
αki
)

2
·

For the second term, we simply rewrite it as:(
F k+1
ε,i+ 1

2
− F k+1

ε,i− 1
2

)
ψ′
(
nk+1
ε,i

)
= F k+1

ε,i+ 1
2
ψ′
(
nk+1
ε,i+1

)
− F k+1

ε,i− 1
2
ψ′
(
nk+1
ε,i

)
+ F k+1

ε,i+ 1
2

(
ψ′
(
nk+1
ε,i

)
− ψ′

(
nk+1
ε,i+1

))
.

Using the definition of the flux, the expansion of the second term of the right hand side yields

F k+1
ε,i+ 1

2

(
ψ′
(
nk+1
ε,i

)
− ψ′

(
nk+1
ε,i+1

))
= nk+1

ε,i

(
ln
(
nk+1
ε,i

)
− ln

(
nk+1
ε,i+1

))(
uk+1
ε,i+ 1

2

)+

− nk+1
ε,i+1

(
ln
(
nk+1
ε,i

)
− ln

(
nk+1
ε,i+1

))(
uk+1
ε,i+ 1

2

)−
.

since the logarithm function is C2
(
R∗+
)
, a Taylor-Lagrange expansion around both nk+1

ε,i and nk+1
ε,i+1 yields the

existence of βk+1
i , γk+1

i ∈] min
(
nk+1
ε,i+1, n

k+1
ε,i

)
,max

(
nk+1
ε,i+1, n

k+1
ε,i+1

)
[ such that:

ln
(
nk+1
ε,i+1

)
− ln

(
nk+1
ε,i

)
=

(
nk+1
ε,i+1 − n

k+1
ε,i

)
nk+1
ε,i

−
(
nk+1
ε,i+1 − n

k+1
ε,i

)2
2
(
βk+1
i

)2 ·

ln
(
nk+1
ε,i

)
− ln

(
nk+1
ε,i+1

)
=

(
nk+1
ε,i − n

k+1
ε,i+1

)
nk+1
ε,i+1

−
(
nk+1
ε,i − n

k+1
ε,i+1

)2
2
(
γk+1
i

)2 ·

We therefore obtain that

F k+1
ε,i+ 1

2

(
ψ′
(
nk+1
ε,i

)
− ψ′

(
nk+1
ε,i+1

))
= −

(
nk+1
ε,i+1 − n

k+1
ε,i

) (
uk+1
ε,i+ 1

2

)+

+
nk+1
ε,i

(
nk+1
ε,i+1 − n

k+1
ε,i

)2
2
(
βk+1
i

)2 (
uk+1
ε,i+ 1

2

)+

+
(
nk+1
ε,i+1 − n

k+1
ε,i

) (
uk+1
ε,i+ 1

2

)−
+
nk+1
ε,i+1

(
nk+1
ε,i+1 − n

k+1
ε,i

)2
2
(
γk+1
i

)2 (
uk+1
ε,i+ 1

2

)−
.
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Collecting all the terms together yields

F k+1
ε,i+ 1

2

(
ψ′
(
nk+1
ε,i

)
− ψ′

(
nk+1
ε,i+1

))
= −uk+1

ε,i+ 1
2
δi+ 1

2

(
nk+1
ε

)
+
nk+1
ε,i

(
nk+1
ε,i+1 − n

k+1
ε,i

)2
2
(
βk+1
i

)2 (
uk+1
ε,i+ 1

2

)+

+
nk+1
ε,i+1

(
nk+1
ε,i+1 − n

k+1
ε,i

)2
2
(
γk+1
i

)2 (
uk+1
ε,i+ 1

2

)−
.

Gathering all the term together yields the result.

Remark 4.4. Note that the dissipation term Dk+1
ε,i does not vanish when ∆t and ∆x tend to zero if the density

has a discontinuity.

Remark 4.5. The source term Sk+1
ε,i is by construction so as

N∑
i=0

Sk+1
ε,i

γ − 1
− ε

2
Rk+1
ε,i− 1

2
= 0.

We can now prove the following Theorem.

Theorem 4.6 (Existence and unconditional stability).
Let ε > 0 and let n0

ε ∈ (R+
∗ )Z

, p0
ε ∈ (R+)Z

, u0
ε ∈ RZ periodic. For all k ∈ {0, . . . , b T∆tc} there exists at least one

nkε ∈ (R+
∗ )Z

, pkε ∈ (R+)Z
, ukε ∈ RZ solution to

(
P ′ε,∆t,∆x

)
. Besides, for all k ∈ {0, . . . , b T∆tc} the following holds:

(a)
N∑
i=0

nkε,i =
N∑
i=0

n0
ε,i,

N∑
i=0

nkε,i− 1
2
ukε,i− 1

2
=

N∑
i=0

n0
ε,i− 1

2
u0
ε,i− 1

2
.

(b)

E
(
nk+1
ε , uk+1

ε , pk+1
ε

)
− E

(
nkε , u

k
ε , p

k
ε

)
= −Te

N∑
i=0

∆tDk+1
ε,i

where Dn+1
ε,i ≥ 0 is defined by (4.25).

(c) Consequently,

−Te ≤ E
(
nkε , u

k
ε , p

k
ε

)
≤ E

(
n0
ε, u

0
ε, p

0
ε

)
− Te

k∑
n=0

N∑
i=0

∆tDn+1
ε,i .

(d) Moreover, one has

0 ≤ sup
i=0,..,N

nkε,i +
N∑
i=0

εnkε,i− 1
2

(
uk
ε,i− 1

2

)2

2
+

pkε,i
γ − 1

∆x ≤
‖n0

ε,h‖
∆x

+ E
(
n0
ε, u

0
ε, p

0
ε

)
+ Te.

(e) Provided the initial data n0
ε, u

0
ε, p

0
ε is O (1) as ε → 0, we have the L∞-boundedness uniformly in ε of the

density and pressure:
sup

i=0,...,N
nkε,i =

ε→0
O (1) , sup

i=0,..,N
pkε,i =

ε→0
O (1) .

Proof. We begin with proving the estimates: (a) it suffices to sum the discrete continuity and momentum
equation. (b) and (c) We begin with summing the kinetic energy balance (A.1) together with the pressure
equation (4.7) (divided by γ−1) and the discrete potential balance (4.25). Then thanks to the periodic boundary
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conditions and the discrete duality between the divergence of the velocity and the gradient of pressure (4.12),

the non conservative terms cancel. Moreover, since by construction
∑N
i=0

Sk+1
ε,i

γ−1 −
ε
2R

k+1
ε,i− 1

2
= 0, we get

E
(
nn+1
ε , un+1

ε , pn+1
ε

)
− E (nnε , u

n
ε , p

n
ε ) = −Te

N∑
i=0

∆tDn+1
ε,i

where the residual Dn+1
ε,i is defined in (4.3). Then it suffices to sum the previous equality from n = 0 to

n = k − 1 to get the desired result. (d) Note that for all x ∈ R+
∗ , Tex (ln (x)− 1) ≥ −Te therefore we have,

N∑
i=0

εnkε,i− 1
2

(
uk
ε,i− 1

2

)2

2
+

pkε,i
γ − 1

− Te

∆x ≤ E
(
nkε , u

k
ε , p

k
ε

)
. Moreover, since E

(
nkε , u

k
ε , p

k
ε

)
≤ E

(
n0
ε, u

0
ε, p

0
ε

)
it

comes that
N+1∑
i=0

εnkε,i− 1
2

(
uk
ε,i− 1

2

)2

2
+

pkε,i
γ − 1

∆x ≤ E
(
n0
ε, u

0
ε, p

0
ε

)
+ Te.

The stability estimate (d) is obtained thanks to the discrete continuity equation (4.5) combined with the
conservation of the L1-norm and the positivity of the density, one has

0 < sup
i=0,...,N

nkε,i ≤

N∑
i=0

nkε,i∆x

∆x
=
‖n0

ε,h‖L1

∆x
·

The last estimate (e) is a consequence of (d). For the sake of simplicity, we now omit to precise the dependence
on ε of the discrete density, pressure and velocity. Let us now prove that the scheme is well-defined, we shall
apply the Brouwer fixed point theorem. By periodicity, it suffices to prove the existence of the scheme over
one period. To do so, let us consider k ∈ {0, . . . , b T∆tc} and a solution

(
nk, uk, pk

)
. We look for (n, u, p) ∈

RN+1 × RN+1 × RN+1 solution to:

∀i ∈ {0, . . . , N}, (4.27)
∆x
∆t

(
ni − nki

)
+ Fi+ 1

2
(n, u)− Fi− 1

2
(n, u) = 0, (4.28)

∆x
∆t

(
ni− 1

2
ui− 1

2
− nki− 1

2
uki− 1

2

)
+ Fi (n, u)ui − Fi−1 (n, u)ui−1 +

1
ε
δi− 1

2
(p+ Ten) = 0, (4.29)

∆x
∆t

(
pi − pki

)
+ (up)i+ 1

2
− (up)i− 1

2
+ (γ − 1) (pi)

+
δi (u) = Si (n, u) , (4.30)

n0 = nN+1, p0 = pN+1, u− 1
2

= uN+ 1
2
, (4.31)

where Fi+ 1
2

(n, u) = niu
+
i+ 1

2
− ni+1u

−
i− 1

2
,

Fi =
F
i− 1

2
+F

i+ 1
2

2 , ni− 1
2

= ni−1+ni
2 ,

, ui :=

{
ui− 1

2
if Fi ≥ 0,

ui+ 1
2

else.

and
(up)i+ 1

2
:=
(
ui+ 1

2

)+

pi −
(
ui− 1

2

)−
pi+1.

2
ε (γ − 1)

Si (n, u) :=
∆x
2∆t

nki

(
ui+ 1

2
− uki+ 1

2

)2

+
∆x
2∆t

nki

(
ui− 1

2
− uki− 1

2

)2

+
[
(Fi (n, u))+ + (Fi (n, u))−

] (
ui+ 1

2
− ui− 1

2

)2

.
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We shall build (n, u, p) as the fixed point of a certain map. Let us introduce for M > 0, BM := {u ∈

RN+1:
(∑N

i=0 u
2
i− 1

2

) 1
2 ≤ M} which is a convex and compact subset of RN+1. Let us now denote by S : u ∈

BM 7→ (n (u) , p (u)) ∈
(
RN+1

)∗
+
×
(
RN+1

)
+
7→ u∗ (n (u) , p (u)) the mapping that associates with a given

velocity u, the density n (u) > 0 solution to (4.28), the pressure p (u) ≥ 0 solution to (4.30) and u∗ (n (u) , p (u))
solution to (4.29). Note that this map is well-defined since for fixed u ∈ BM , the system of equation on n (u) is
linear, invertible and yields n (u) ∈ (R+

∗ )N+1, the system of equation on p (u) is also linear, invertible and yields
p (u) ∈ (R+)N+1 and the equation on u∗ (n (u) , p (u)) is explicit. Moreover, the map S is continuous on BM for
every M > 0. It remains to prove that there exists M > 0 (that depends on the mesh size and the previous
state at time tk) such that S (BM ) ⊂ BM . The discrete total energy balance (that is also valid for the system,
given the velocity field u ∈ RN+1) yields the following

N+1∑
i=0

u∗i− 1
2

(n (u) , p (u))2 =
2
ε

N+1∑
i=0

εni− 1
2

(u)u∗
i− 1

2
(n (u) , p (u))2

2ni− 1
2

(u)
≤ 4
ε inf
i=0,...,N

ni (u)
Ek + Te

∆x
,

where Ek is the discrete total energy associated with the solution
(
nk, uk, pk

)
. To conclude, it suffices to prove

that we can find M > 0 such that 4
ε inf
i=0,...,N

ni(u)
Ek+Te

∆x ≤ M2. To do so, let us estimate the lower bound

inf
i=0,...,N

ni (u) . One has that n (u) satisfies for all i ∈ {0, . . . , N}:

ni = nki −
∆t
∆x

ni

(
u+
i+ 1

2
+ u−

i− 1
2

)
+

∆t
∆x

ni+1u
−
i+ 1

2
+

∆t
∆x

ni−1u
+
i− 1

2
.

Since n (u) is positive we infer that

ni ≥ nki −
∆t
∆x

ni

(
u+
i+ 1

2
+ u−

i− 1
2

)
.

Because u ∈ BM , one has u+
i+ 1

2
≤ |ui+ 1

2
| ≤ M and u−

i− 1
2
≤ |ui− 1

2
| ≤ M and therefore ni ≥ nki − 2∆t

∆x niM ,

which gives ni ≥ nki
1+ 2∆t

∆x M
. Therefore we have the lower bound,

inf
i=0,...,N

ni (u) ≥
inf

i=0,...,N
nki

1 + 2∆t
∆xM

·

It thus yields the control of the L2-norm of S (u):

N∑
i=0

u∗i− 1
2

(n (u) , p (u))2 ≤
4
(
1 + 2∆t

∆xM
)

ε inf
i=0,...,N

nki

Ek + Te
∆x

·

Then we claim that there exists M > 0 (large enough) such that
4(1+ 2∆t

∆x M)
ε inf
i=0,...,N

nki

Ek+Te
∆x ≤ M2. In virtue of the

Brouwer fixed-point theorem there exists at least one (n, u, p) solution to (4.28)–(4.31). By induction we deduce
that the scheme is well-defined for all k ∈ {0, . . . , b T∆tc}. �

Remark 4.7. Provided the initial data are O (1) as ε → 0+, the scheme provides bounds that are uniform
in ε for the pressure and the density. Up to subsequences, the sequences

(
nkε
)
,
(
pkε
)

converges to some limit(
nk0
)
,
(
pk0
)
. Nevertheless, it is not enough to conclude the asymptotic consistency of the scheme. We need a

uniform estimate on the velocity
(
ukε
)
. Unfortunately, we have not been able to get more informations on the

velocity. In the same spirit, it worth noticing that in the case one has a uniform in ε estimate for the velocity,
the kinetic energy must tend to zero as ε → 0+ and the source term Sk+1

ε,i and the residual term Rk+1
ε,i as

well.
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5. An iterative linear scheme to solve the non linear one

5.1. Definition of the linear scheme

Here we propose an iterative procedure to solve the non linear scheme
(
P ′ε,∆t,∆x

)
based on a linear implicit

scheme. The reason for introducing such an iterative process lies in the fact that, the non linear scheme requires
to solve a genuinely non linear system. Standard Newton-like methods may be very cumbersome and delicate
to implement. Our motivation here, is therefore to avoid this specific difficulty by offering an iterative scheme
where each iteration requires to determine the solution of a linear scheme that is proven to preserve positivity
and is linearly L2 stable independently of the small parameter ε. Let us now define our iterative scheme: given
ε > 0 and k ∈ {0, . . . , b T∆tc} and nkε ∈ (R+

∗ )Z
, pkε ∈ (R+)Z

, ukε ∈ RZ a solution to
(
P ′ε,∆t,∆x

)
, we define at time

tk the iterative scheme Ik
(
P ′ε,∆t∆x

)
:

(
n−1,k, p−1,k, u−1,k

)
=
(
nkε , p

k
ε , u

k
ε

)
,
(
n0,k, p0,k, u0,k

)
=
(
nkε , p

k
ε , u

k
ε

)
, (5.1)

∀r ∈ N, ∀i ∈ {0, . . . , N}, (5.2)
∆x
∆t

(
nr+1,k
i − nkε,i

)
+ F r+1,k

i+ 1
2
− F r+1,k

i− 1
2

= 0, (5.3)

∆x
∆t

(
nr,k
i− 1

2
ur+1,k

i− 1
2
− nkε,i− 1

2
ukε,i− 1

2

)
+ F r,ki ur,ki − F

r,k
i−1u

r,k
i−1 +

1
ε
δi− 1

2

(
pr+1,k + Ten

r+1,k
)

= 0, (5.4)

∆x
∆t

(
pr+1,k
i − pkε,i

)
+ (up)r,k

i+ 1
2
− (up)r,k

i− 1
2

+ (γ − 1)
(
pr,ki

)+

δi
(
ur+1,k

)
= Sr,ki , (5.5)

∀i ∈ Z, (5.6)
nr+1,k
i = nr+1,k

i+N+1, (5.7)

pr+1,k
i = pr+1,k

i+N+1, (5.8)

ur+1,k

i− 1
2

= ur+1,k

i+N+ 1
2
, (5.9)

where the integer r here refers to the internal number of iterations. To lighten the notation we shall omit in this
section the dependence on ε of the internal iteration

(
nr,k, pr,k, ur,k

)
. Provided the density remains positive, at

each iteration r ∈ N, the velocity ur+1,k is defined from equation (5.4) depends implicitly on pr+1,k and nr+1,k

but explicitly on the flux. Here the mass flux is defined at each iteration r ∈ N by:

F r+1,k

i+ 1
2

:= nr,k
i+ 1

2
ur+1,k

i+ 1
2
−

(
nr,ki+1 − n

r,k
i

)
2

∣∣∣ur,k
i+ 1

2

∣∣∣ , (5.10)

where nr,k
i+ 1

2
:=

nr,ki +nr,ki+1
2 and the source term is here given by

2
ε (γ − 1)

Sr,ki :=
∆x
2∆t

nkε,i

(
ur,k
i+ 1

2
− uki+ 1

2

)2

+
∆x
2∆t

nkε,i

(
ur,k
i− 1

2
− uki− 1

2

)2

+
[(
F r,ki

)+

+
(
F r,ki

)−](
ur,k
i+ 1

2
− ur,k

i− 1
2

)2

. (5.11)

Other quantities are defined similarly as for the non linear scheme (4). Note that if the sequence(
nr,k, pr,k, ur,k

)
∈ RZ × RZ × RZ converges to some (n, u, p) ∈ RZ × RZ × RZ then (n, u, p) solves the non

linear scheme
(
P ′ε,∆t,∆x

)
at the iteration k + 1.

5.2. Reduction to an elliptic system and positivity conservation

Let k ∈ {0, . . . , b T∆tc}, provided the density is positive, each internal iteration r ∈ N of Ik
(
P ′ε,∆t∆x

)
is

equivalent to solve a linear elliptic system of unknown
(
nr+1,k, pr+1,k

)
. Then the update of the velocity ur+1,k
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becomes an explicit step. For clarity of exposure, we shall defined some discrete finite difference operators.
Namely, for a vector qr ∈ RZ, and for i ∈ Q the discrete centered Laplacian operator centered at xi is defined
by:

∆i (qr) := δi+ 1
2

(qr)− δi− 1
2

(qr) where δi+ 1
2

(qr) := qri+1 − qri . (5.12)

We also define the the diffusion operators:

∆n−1

i (qr) :=
δi+ 1

2
(qr)

nr
i+ 1

2

−
δi− 1

2
(qr)

nr
i− 1

2

· (5.13)

∆|u|i (qr) = δi+ 1
2

(qr) |uri+ 1
2
| − δi− 1

2
(qr) |uri− 1

2
|. (5.14)

We can now re-write the iterative scheme. Thanks to the momentum equation (5.4) one has for all r ∈ N and
for all i ∈ {0, . . . , N} :

nr,k
i− 1

2
ur+1,k

i− 1
2

= nkε,i− 1
2
ukε,i− 1

2
− ∆t

∆x

(
F r,ki ur,ki − F

r,k
i−1u

r,k
i−1

)
− ∆t
ε∆x

δi− 1
2

(
pr+1,k + Ten

r+1,k
)
.

If nr,k
i± 1

2
> 0 one has:

δi
(
ur+1,k

)
= δi

(
nkεu

k
ε

nr,k

)
− ∆t

∆x
∆−ni

(
F r,kur,k

)
− ∆t

∆xε
∆n−1

i

(
pr+1,k + Ten

r+1,k
)
. (5.15)

where δi
(
nkεu

k
ε

nr,k

)
=

nk
i+ 1

2

nr,k
i+ 1

2

uk
i+ 1

2
−

nk
i− 1

2

nr,k
i− 1

2

uk
i− 1

2
. Plugging this expression into the pressure equation (5.5) yields

pr+1,k
i − (γ − 1)

(
pr,ki

)+ (∆t)2

ε (∆x)2 ∆n−1

i

(
pr+1,k + Ten

r+1,k
)

= pkε,i + p̄r,ki (5.16)

with

p̄r,ki = (γ − 1)
(
pr,ki

)+ (∆t)2

(∆x)2 ∆n−1

i

(
F r,kur,k

)
− (γ − 1)

(
pr,ki

)+ ∆t
∆x

δi

(
nkuk

nr,k

)
− ∆t

∆x
δi

(
(up)r,k

)
+

∆t
∆x

Sr,ki .

(5.17)
Eventually using the definition of the flux (5.10), the discrete continuity equation (5.3) rewrites

nr+1,k
i − (∆t)2

ε (∆x)2 ∆i

(
pr+1,k + Ten

r+1,k
)

= nkε,i + n̄r,ki , (5.18)

with

n̄r,ki =
∆t

2∆x
∆|u|i

(
nr,k

)
− ∆t

∆x
δi
(
nkuk

)
+

(∆t)2

(∆x)2 ∆i

(
F r,kur,k

)
. (5.19)

It thus yields a linear elliptic system of unknown
(
nr+1,k, pr+1,k

)
that writes

(
Lr+1,k
ε

)
:



∀i ∈ {0, . . . , N},
nr+1,k
i − (∆t)2

ε(∆x)2 ∆i

(
pr+1,k + Ten

r+1,k
)

= nkε,i + n̄r,ki ,

pr+1,k
i − (γ − 1)

(
pr,ki

)+
(∆t)2

ε(∆x)2 ∆n−1

i

(
pr+1,k + Ten

r+1,k
)

= pkε,i + p̄r,ki ,

with n̄r,ki given by (5.19), p̄r,ki given by (5.17), and,
∀i ∈ Z,
nr+1,k
i = nr+1,k

i+(N+1), pr+1,k
i = pr+1,k

i+(N+1).

Provided nr is positive, there exists a unique
(
nr+1,k, pr+1,k

)
∈ RZ × RZ solution to

(
Lr+1,k
ε

)
.
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Remark 5.1. In the limit ε→ 0+, the system
(
Lr+1,k
ε

)
degenerates into

(
Lr+1,k

0

)
:


∀i ∈ {0, . . . , N},
∆i

(
pr+1,k + Ten

r+1,k
)

= 0, ∆n−1

i

(
pr+1,k + Ten

r+1,k
)

= 0,
∀i ∈ Z,
nr+1,k
i = nr+1,k

i+(N+1), pr+1,k
i = pr+1,k

i+(N+1)

which is an ill-posed problem since any constant vector is solution. This difficulty is overcomed using a Duality-
Based decomposition [25] which here consists in the decomposition of the solution into Lr+1,k

ε into its mean and
fluctuation.

We are now going to prove that the solution to
(
Lr+1,k
ε

)
is such that pr+1,k + Ten

r+1,k ∈ (R+
∗ )Z. To do so,

we shall need the following Lemma.

Lemma 5.2. Let ε > 0, let nkε ∈ (R+
∗ )Z

, pkε ∈ (R+)Z
, ukε ∈ RZ periodic. Let r ∈ N and nr,k ∈ (R+

∗ )Z
, pr,k ∈

(R+)Z
, ur,k ∈ (R)Z a solution to

(
Lr,kε

)
. There exits δr,k > 0 that depends only on

(
nkε , p

k
ε , u

k
ε , n

r,k, pr,k, ur,k
)

and Te > 0 such that if 0 < ∆t
∆x < δr,k then pkε,i + Ten

k
ε,i + p̄r,ki + Ten̄

r,k
i > 0 for all i ∈ Z.

Proof. Let λ := ∆t
∆x , then one decomposes for all i ∈ {0, . . . , N} the rights hand side (5.19) and (5.17) as:

nkε,i + n̄r,ki = nkε,i − n̄
r,k
−,i (λ) + n̄r,k+,i (λ) , pkε,i + p̄r,ki = pkε,i − p̄

r,k
−,i (λ) + p̄r,k+,i (λ) ,

with

n̄r,k−,i (λ) = λ2∆i

(
F r,kur,k

)−
+ λ

(
∆|u|i

(
nr,k

)−
2

+ δi
(
nkuk

)−)
,

p̄r,k−,i (λ) = λ2 (γ − 1)
(
pr,ki

)+

∆n−1

i

(
F r,kur,k

)−
+ λ

(
(γ − 1)

(
pr,ki

)+

δi

(
nkuk

nr,k

)+

+ δi

(
(up)r,k

)+
)
.

and where n̄r,k+,i (λ) = n̄r,ki + n̄r,k−,i (λ) ≥ 0 and p̄r,k+,i (λ) = p̄r,ki + p̄r,k−,i (λ) +λSr,ki ≥ 0 for all λ ≥ 0. Then combining
all the terms together, yields that

pkε,i + Ten
k
ε,i + p̄r,ki + Ten̄

r,k
i = pkε,i + Ten

k
ε,i − p̄

r,k
−,i (λ)− Ten̄r,k−,i (λ) + p̄r,k+,i (λ) + Ten̄

r,k
+,i (λ) .

Since p̄r,k+,i (λ) + Ten̄
r,k
+,i (λ) ≥ 0, it suffices to prove that the second degree polynomial function fr,ki : λ 7→

pkε,i+Ten
k
ε,i− p̄

r,k
−,i (λ)−Ten̄r,k−,i (λ) is positive on some interval containing zero. Now let us remark that fr,ki (0) =

pki + Ten
k
i > 0 therefore by continuity there exists λr,ki > 0 such that if 0 < λ < λr,ki then fr,ki (λ) > 0. Letting

δr,k := min
i∈{0,...,N}

λr,ki we have 0 < λ < δr,k ⇒ pkε,i + Ten
k
ε,i + p̄r,ki + Ten̄

r,k
i > 0 for all i ∈ {0, . . . , N} and by

periodicity it holds for all i ∈ Z. �

Remark 5.3. Note that for the previous lemma to hold, it is necessary that pkε,i+Ten
k
ε,i > 0 for all i ∈ {0, .., N}.

This lemma gives a threshold for the CFL number at each iteration. Namely given k ∈ {0, . . . , b T∆tc} and r ∈ N,
one can choose the CFL number as ∆t

∆x ≤ min
i∈{0,...,N}

sup{λ > 0 | pkε,i + Ten
k
ε,i − p̄r−,i (λ) − Ten̄r−,i (λ) > 0}. Note

that the supremum is easily computable since it consists in computing the positive roots of a family of second
degree polynomials.

Let us now give a result of positivity.
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Theorem 5.4 (Positivity). Let ε > 0, let nkε ∈ (R+
∗ )Z

, pkε ∈ (R+)Z
, ukε ∈ RZ periodic. Let r ∈ N and

nr ∈ (R+
∗ )Z

, pr ∈ (R+)Z
, ur ∈ (R)Z a solution to

(
Lr,kε

)
. There exits δr,k > 0 that depends only on(

nkε , p
k
ε , u

k
ε , n

r, pr, ur
)

and Te > 0 such that if 0 < ∆t
∆x < δr,k then the solution to

(
Lr+1,k
ε

)
verifies

pr+1,k+Tenr+1,k ∈ (R+
∗ )Z. Moreover if ∆i∗

(
pr+1,k

)
≥ 0 and ∆n−1

j∗
(
nr+1,k

)
≥ 0 where i∗ := arg

i∈{0,...,N}
minnr+1,k

i

and j∗ := arg
j∈{0,...,N}

min pr+1,k
j then nr+1,k ∈ (R+

∗ )Z and pr+1,k ∈ (R+)Z
.

Proof. Let δr,k > 0 the one of Lemma 5.2. Let us define for all i ∈ Z, wr+1,k
i = pr+1,k

i +Ten
r+1,k
i . Then one has

for all i ∈ {0, . . . , N},

wr+1,k
i − Te (∆t)2

ε (∆x)2 ∆i

(
wr+1,k

)
− (γ − 1)

(
pr,ki

)+ (∆t)2

ε (∆x)2 ∆n−1

i

(
wr+1,k

)
= pkε,i + Ten

k
ε,i + p̄r,ki + Ten̄

r,k
i > 0.

Let us show that wr+1,k
i > 0 for all i ∈ {0, . . . , N}. By contradiction, if it is not the case then let i∗ =

arg
i∈{0,...,N}

minwr+1,k
i . One has therefore wr+1

i∗ ≤ 0, ∆i∗
(
wr+1

)
≥ 0 and ∆n−1

i∗
(
wr+1

)
≥ 0, it therefore gives that

wr+1
i∗ − Te (∆t)2

ε (∆x)2 ∆i∗
(
wr+1

)
− (γ − 1) (pri )

+ (∆t)2

ε (∆x)2 ∆n−1

i∗
(
wr+1

)
≤ 0,

and leads to a contradiction. Using a similar maximum principle for the elliptic density equation and the pressure
equation, one can prove the positivity of the density and the non negativity of the pressure. �

5.3. Linear L2-stability analysis for the iterative scheme

Let us consider a constant state (n0, u0, p0) ∈ R+
∗ ×R+

∗ ×R+ and note that it is an equilibrium to
(
P ′ε,∆t,∆x

)
.

Let therefore k ∈ {0, . . . , b T∆tc} and assume that the initial guess for the iterative scheme Ik
(
P ′ε,∆t,∆x

)
writes

for all i ∈ Z:
nki = n0 + ñki , uki− 1

2
= u0 + ũki− 1

2
, pki = p0 + p̃ki ,

where
(
ñk, ũk, p̃k

)
∈ RZ × RZ × RZ is a perturbation of the constante state. Now writing the solution of our

iterative scheme Ik
(
P ′ε,∆t,∆x

)
as

nr,ki = n0 + ñr,ki , ur,k
i− 1

2
= u0 + ũr,k

i− 1
2
, pr,ki = p0 + p̃r,ki .

and neglecting the second order terms, we get that the linearized iterative scheme reads LIk
(
P ′ε,∆t,∆x

)
:

(
ñ0,k, ũ0,k, p̃0,k

)
=
(
ñk, ũk, p̃k

)
,

∀r ∈ N, ∀i ∈ {0, . . . , N}
∆x
∆t

(
ñr,ki − ñki

)
+ n0δi

(
ũr+1,k

)
+ u0δi− 1

2

(
ñr,k

)
= 0,

∆x
∆t

(
p̃r+1,k
i − p̃ki

)
+ p0δi

(
ũr,k

)
+ u0δi− 1

2

(
p̃r,k
)

+ (γ − 1) δi
(
ũr+1,k

)
= 0,

∆x
∆t n0

(
ũr+1,k

i− 1
2
− ũk

i− 1
2

)
+ n0u0δi−1

(
ũr,k

)
+ 1

εδi− 1
2

(
p̃r+1,k + Teñ

r+1,k
)

= 0,

∀i ∈ Z,
ñr+1,k
i+(N+1) = ñr+1,k

i , ũr+1,k

i+(N+ 1
2 ) = ũr+1,k

i− 1
2
, p̃r+1,k

i+(N+1) = p̃r+1,k
i .

Assuming for all r ∈ N the Fourier decomposition in L2[0, 1]per:

ñr,ki =
∑
l∈Z

nr,kl e2iπlxi , ũr,k
i− 1

2
=
∑
l∈Z

ur,kl e
2iπlx

i− 1
2 , p̃r,ki =

∑
l∈Z

pr,kl e2iπlxi with i2 = −1
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and injecting these expression in the linearized iterative scheme yields for all modes of index l ∈ Z the linear
system

AlX
r+1,k
l = Xk

l +BlX
r,k
l with for l ∈ N, Xr,k

l =

nr,klur,kl
pr,kl

 , Xk
l =

nklukl
pkl

 , (5.20)

and

Al =


1 isln0 0

Teisle
−iπl∆x

εn0
1 isle

−iπl∆x

εn0

0 (γ − 1) p0isl 1

 , (5.21)

Bl =


−u0isle−iπl∆x 0 0

0 −u0isle−iπl∆x 0

0 −p0isl −u0isle−iπl∆x

 (5.22)

where sl := 2 ∆t
∆x sin (πl∆x). In view of the Parseval identity, the L2 norm of the approximation associated with

LIk
(
P ′ε,∆t,∆x

)
is given by

‖ñrh‖2L2 =
∑
l∈Z
|nrl |2, ‖ũrh‖2L2 =

∑
l∈Z
|url |2, ‖p̃rh‖2L2 =

∑
l∈Z
|plr|2.

We shall then say that the linearized iterative scheme is linearly L2 stable if for all l ∈ Z the sequence(
Xr,k
l

)
r∈N

converges and its limit denoted Xk+1,k
l satisfies ‖Xk+1,k

l ‖2 ≤ ‖Xk
l ‖2 where ‖.‖2 is the Euclidian

norm on C3. Now to proceed further, it is easy to see that the matrices Al and Al − Bl are invertible for all
l ∈ Z. One can therefore prove the following.

Lemma 5.5. Let ‖.‖2 also denote the subordinate Euclidian norm for matrices. If for all l ∈ Z, ‖A−1
l Bl‖2 < 1

and ‖ (Al −Bl)−1 ‖2 ≤ 1 then linearized iterative scheme is L2-stable.

Proof. We deduce from the recursive formula (5.20) and the assumption that ‖A−1
l Bl‖2 < 1 for all l ∈ Z and

r ∈ N one has
Xr,k
l =

(
A−1
l Bl

)r
Xk
l +

(
Id −

(
A−1
l Bl

)r) (
Id −

(
A−1
l Bl

))−1
A−1
l Xk

l .

The sequence
(
Xr,k
l

)
r∈N

converges to

Xk+1,k
l =

(
Id −

(
A−1
l Bl

))−1
A−1
l Xk

l =
(
Al
(
Id −A−1

l Bl
))−1

Xk
l = (Al −Bl)−1

Xk
l

and it is easy to conclude. �

One can show that ‖ (Al −Bl)−1 ‖2 ≤ 1. It therefore suffices to determine under which condition we have
‖A−1

l Bl‖2 < 1. A necessary condition is that spectral radius of A−1
l Bl is lower than one. We thus have the

following.

Theorem 5.6 (Asymptotic linear L2-stability). Let (n0, u0, p0) ∈ R+
∗ × R+

∗ × R+. Assume there is 0 < δ < 1
such p0

Ten0+(γ−1)p0
< 1−δ and the CFL condition ∆t

∆x <
1

2u0
. Therefore there is η > 0 such that for any 0 < ε < η

and for all l ∈ Z the matrix A−1
l Bl has three distinct eigen values of modulus strictly lower than 1.
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Proof. Standard but tedious computations yields that for all l ∈ Z the matrix A−1
l Bl has three eigen values

given by:

λ± (ε) = −
e−ilπ∆xsl

(
2 · in0u0ε+ slp0 ± 2

√
s2
l (((Ten0 + p0 (γ − 1))n0e−ilπ∆xu0

2ε+ 1/4 p0
2) + iε n0p0u0)

)

2 sl2 (Ten0 + p0 (γ − 1)) e−iπl∆x + 2 ε n0
,

λ0 = −islu0e−iπl∆x.

Remark that λ± (ε) →
ε→0
− (p0±p0)

2(Ten0+(γ−1)p0)
and |λ0| = slu0. Therefore there is η > 0 such that for all 0 < ε < η,

|λ+ (ε) | < p0
Ten0+(γ−1)p0

+ δ < 1, |λ− (ε) | < 1. It then suffices that slu0 < 1, that is the case under the CFL condition
∆t
∆x

< 1
2u0

. �

Remark 5.7. Note that the veracity of the condition: there is 0 < δ < 1 such p0
Ten0+(γ−1)p0

< 1− δ depends on
the kind of physics we consider. Typically, if we write the ionic pressure as p0 = Tin0 where Ti is a ionic reference
temperature then the inequality writes: 1

Te
Ti

+(γ−1)
< 1− δ. It therefore depends both on the temperature ratio

Te
Ti

and the value of γ. In the plasma physics context, fluid models are derived from kinetic ones and γ takes the
form γ = 2

dv
+ 1 where dv is the dimension of the velocity space. When dv ≥ 2, the stability essentially depends

on the temperature ratio.

Remark 5.8. If one replaces in the previous analysis u0 = 0, one can show that the scheme is unconditionally
stable.

6. Numerical results

The aim of this section is to illustrate the main features of our non linear scheme
(
P ′ε,∆t,∆x

)
and to test its

ability to be stable and consistent in the drift regime ε� 1. We shall explain how we proceed numerically: we
fix N ∈ N, T > 0 and take ∆x = 1

N+1 . For k ∈ {0, .., b T∆tc} and r ∈ N we define the relative l2 error at the

r-th iteration of the solver Ik
(
P ′ε,∆t,∆x

)
by er+1,k

k := ‖W r+1,k−W r,k‖2
‖W r,k‖2 where we denote W r,k =

(
nr,k, ur,k, pr,k

)
the solution of Ik

(
P ′ε,∆t,∆x

)
at iteration r ∈ N and where ‖.‖2 denotes the euclidian norm on R3(N+1). For

each iteration k ∈ {0, . . . , b T∆tc}, the iterative solver Ik
(
P ′ε,∆t,∆x

)
computes at each internal iteration r ∈ N the

time step according to the CFL condition of Lemma 5.2, that is ∆t = ∆x min
i∈{0,...,N}

sup{λ > 0 | pkε,i + Ten
k
ε,i −

p̄r,k−,i (λ)− Ten̄r,k−,i (λ) > 0}. The iterative scheme stops iterating when there is r ∈ N such that er+1
k < 10−10. In

all the numerical test cases presented under, the electron temperature is Te = 1.

6.1. Shock speed computation in ε = O (1) regime

Here we test the ability of our scheme to capture the correct shock speed. For this test case, homogeneous
Neumann boundary conditions are prescribed on each boundary. We consider the Riemann problem with the
initial condition defined for all x ∈ [0, 1] by

n0 (x) = 1.0, p0 (x) =
(
103 − 1

)
1x≤0.5 (x) +

(
10−2 − 1

)
1x>0.5 (x) , u0 (x) = 0. (6.1)

We discretize the problem with ∆x = 1
512 and we choose ε = 1 and γ = 1.4. We represent in Figure 1 the

exact solution and the approximation at time T = 0.012 and the evolution of the discrete energy (4.22). We see
that the scheme computes the correct shock speed and is slightly diffusive. Refining the mesh size diminishes
the diffusion. The energy as expected theoretically is non increasing.
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Figure 1. Riemann problem with initial data (6.1). ε = 1, Te = 1, γ = 1.4. The solid line is
the exact solution in figure (A),(B) and (C) is the exact solution. Figure (D) is the evolution
of the discrete energy.

6.2. The drift regime ε� 1

For this test case, we consider an initial condition of the form:

∀x ∈ [0, 1], n0
ε (x) = 1 + ε cos (2πx) , u0

ε (x) = 1.0, p0
ε (x) = 1− ε cos (2πx) , (6.2)

with γ = 3. We discretize the problem with a spatial step ∆x = 1/64 and a temporal step that is fixed
∆t = ∆x

100 , then the CFL is fixed at 0.01. We look at ε values of 10−4 and 10−6. We compare the numerical
solution to

(
P ′ε,∆t,∆x

)
with the analytical solution to (P ′ε) which is given for all t ≥ 0 and x ∈ [0, 1]per by

nε (t, x) = n0
ε (x− t), uε (t, x) = 1.0, pε (t, x) = p0

ε (x− t) . In Figure 2, we represent the error between the
analytical solution and the numerical approximation given by

(
P ′ε,∆t,∆x

)
at time T = 1.0. We observe that there

is a little error between the limit solution and the numerical approximation. Note that in the case ε = 10−6,
the CFL ∆t

∆x is ten times greater than
√
ε and the scheme is still able to compute a solution which evidences its

asymptotic stability.
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Figure 2. Error for the initial (6.2), Te = 1, γ = 3.0. Left column: ε = 10−4. Right column:
ε = 10−6. Top row: error on the density. Middle row: error in velocity. Bottom row: error in
pressure.

6.3. Spatial convergence of the scheme

Here we measure the spatial convergence of
(
P ′ε,∆t,∆x

)
towards an analytical solution. The test case we pay

attention to, is a pure transport problem where the velocity remains constant. For ε > 0 given, the functions
defined for t ≥ 0 and x ∈ [0, 1]per by:

nε (t, x) = n0
ε (x− t) , pε (t, x) = p0

ε (x− t) , uε (t, x) = 1.0,

where p0
ε (x) = 1.0 + ε cos (2πx), n0

ε (x) = −p0
ε(x)+2.0
Te

, and u0
ε (x) = 1 are solutions to (P ′ε) . We perform a spatial

convergence study where the CFL is 0.1. We represent in Figure 3, the total L1-error between the analytical
solution and its approximation as a function of ∆x at the final time T = 0.01 for ε ∈ {1, 10−2, 10−4}. We
measure a spatial convergence rate equal to one for all the curves, which is the best we could expect from the
scheme since the exact solution is smooth and the flux are first order consistent.
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Figure 3. L1-error (in logarithmic scale) between the exact solution and the numerical solution
as a function of ∆x at the time T = 0.01 for ε ∈ {1, 10−2, 10−4}. The CFL number is 0.1.

7. Conclusion

We considered the numerical discretization of the quasi-neutral Euler–Boltzmann equations. We proposed a
non linear implicit scheme based on staggered grids that was proven to be unconditionally stable and to provide
some uniform bounds with respect to ε. Because of its non linearity, we proposed an iterative linear implicit
scheme to solve it. The iterative scheme was proven to preserve the positivity and to be L2 linearly stable under
a CFL condition that does not involve ε. We test the ability of the scheme to compute the correct shock speed
through a Riemann problem and we showed that the scheme is stable when the CFL number is larger than√
ε. Let us mention some perspectives of amelioration of this work. Due to the lack of uniform estimate for the

velocity, the theoretical convergence of the scheme in the drift regime is not proven. This problem is postponed
to a future work. Extension of the scheme to higher order in space flux is also a possible perspective. Eventually,
the extension of the scheme to a more realistic magnetized plasma model in a three dimensional geometry is an
on going work.

Appendix A.

A.1. Kinetic balance

We recall a technical lemma needed to derive the kinetic energy balance equation, a proof can be found in
[27].

Lemma A.1. Let ε > 0, Te > 0 and ψ ∈ C2 (R) a convex function. Let
(
nk, uk, pk

)
k∈N solution to the non

linear scheme
(
P ′ε,∆t,∆

)
. Then the following relation holds for all k ∈ N and i ∈ {0, . . . , N}:

∆x
∆t

(
ψ
(
uk+1
i− 1

2

)
− ψ

(
uki− 1

2

))
+ F k+1

i ψ
(
uk+1
i

)
− F k+1

i−1 ψ
(
uk+1
i−1

)
+

1
ε

(
pk+1
i − pk+1

i−1

)
ψ′
(
uk+1
i− 1

2

)
= −Te

ε

(
nk+1
i − nk+1

i−1

)
ψ′
(
uk+1
i− 1

2

)
−Rk+1

i− 1
2
,

(A.1)
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where the residual term is given by

Rk+1
i− 1

2
:=

∆x
∆t

nk
i− 1

2

(
uk+1
i− 1

2
− uk

i− 1
2

)2

2
ψ′′
(
ξk+1
i− 1

2

)
(A.2)

− F k+1
i

(
uk+1
i − uk+1

i− 1
2

)2

ψ′′
(
ξk+1
i

)
+ F k+1

i−1

(
uk+1
i−1 − u

k+1
i− 1

2

)2

ψ′′
(
ξk+1
i−1

)
where

ξk+1
i− 1

2
∈] min

(
uk+1
i− 1

2
, uki− 1

2

)
,max

(
uk+1
i− 1

2
, uki− 1

2

)
[, ξk+1

i ∈] min
(
uk+1
i , uk+1

i− 1
2

)
,max

(
uk+1
i , uk+1

i− 1
2

)
[,

ξk+1
i−1 ∈] min

(
uk+1
i−1 , u

k+1
i− 1

2

)
,max

(
uk+1
i−1 , u

k+1
i− 1

2

)
[.

In particular, since ψ is convex and by definition of the flux, the residual term is non negative, Rk+1
i− 1

2
≥ 0.
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