

A multi-model assessment of C cycling and soil C sequestration in grasslands and croplands

Renata Sandor, Fiona Ehrhardt, Bruno Basso, Gianni Bellocchi, Arti Bhatia, Lorenzo Brilli, Massimiliano de Antoni Migliorati, Jordi Doltra, Chris Dorich, Luca Doro, et al.

▶ To cite this version:

Renata Sandor, Fiona Ehrhardt, Bruno Basso, Gianni Bellocchi, Arti Bhatia, et al.. A multi-model assessment of C cycling and soil C sequestration in grasslands and croplands. 6th International Symposium on Soil Organic Matter; Harpenden (Royaume Uni), Sep 2017, Harpenden, United Kingdom. pp.2. hal-01644043

HAL Id: hal-01644043 https://hal.science/hal-01644043v1

Submitted on 5 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

O-2c.02

A multi-model assessment of C cycling and soil C sequestration in grasslands and croplands

Renáta Sándor^{1,2}, Fiona Ehrhardt³, Bruno Basso⁴, *Gianni Bellocchi¹, Arti Bhatia⁵, Lorenzo Brilli⁶, Massimiliano De Antoni Migliorati⁷, Jordi Doltra⁸, Chris Dorich⁹, Luca Doro¹⁰, Nuala Fitton¹¹, Sandro José Giacomini¹², Peter Grace⁷, Brian Grant¹³, Matthew T. Harrison¹⁴, Stephanie K. Jones¹⁵, Miko U.F. Kirschbaum¹⁶, Katja Klumpp¹, Patricia Laville¹⁷, Joël Leonard¹⁸, Mark Liebig¹⁹, Mark Lieffering²⁰, Raphaël Martin¹, Russel McAuliffe²¹, Elizabeth Meier²², Lutz Merbold^{23,24}, Andrew D. Moore²⁵, Vasileios Myrgiotis¹⁵, Paul Newton²⁰, Elizabeth Pattey¹³, Sylvie Recous²⁶, Susanne Rolinski²⁷, Joanna Sharp²⁸, Raia Sylvia Massad¹⁷, Pete Smith¹¹, Ward Smith¹³, Val Snow²¹, Lianhai Wu²⁹, Wen Zhang³⁰, Jean-François Soussana³

¹French National Institute for Agricultural Research, Grassland Ecosystem Research Unit, Clermont-Ferrand, France

Introduction

Agricultural activities can lead to either losses or gains of soil organic carbon (SOC) in croplands and grasslands. Increasing SOC stocks improves soil fertility and is seen as a short- to mid-term solution to mitigate greenhouse gas (GHG) emissions. Emerging ecological and societal challenges (climate change, food security, ecosystem sustainability) require improved knowledge of C pools and fluxes, and greater confidence in the biophysical models to assess C balances and implement effective policies in agriculture.

Objectives

An inter-comparison and benchmarking modelling exercise aimed at improving estimates of C storage and GHG fluxes in agricultural systems.

²Institute for Soil Sciences and Agricultural Chemistry, Budapest, Hungary

³French National Institute for Agricultural Research, Paris, France

⁴Michigan State University, East Lansing, MI, United States

⁵Indian Agricultural Research Institute, New Delhi, India

⁶University of Florence, Florence, Italy

⁷Queensland University of Technology, Brisbane, Australia

⁸Cantabrian Agricultural Research and Training Centre, Muriedas, Spain

⁹Colorado State University, Fort Collins, CO, United States

¹⁰University of Sassari, Sassari, Italy

¹¹University of Aberdeen, Aberdeen, United Kingdom

¹²Federal University of Santa Maria, Santa Maria, Brazil

 $^{^{\}rm 13}{\rm Agriculture}$ and Agri-Food Canada, Ottawa, Canada

¹⁴Tasmanian Institute of Agriculture, Burnie, Australia

¹⁵Scotland's Rural College, Edinburgh, United Kingdom

¹⁶Landcare Research, Palmerston North, New Zealand

¹⁷French National Institute for Agricultural Research, Thiverval-Grignon, France

¹⁸French National Institute for Agricultural Research, Barenton-Bugny, France

¹⁹USDA Agricultural Research Service, Mandan, ND, United States

²⁰AgResearch, Christchurch, New Zealand

²¹AgResearch, Palmerston North, New Zealand

²²CSIRO Agriculture and Food, St Lucia, Australia

²³Institute of Agricultural Sciences, Zurich, Swaziland

²⁴International Livestock Research Institute, Nairobi, Kenya

²⁵CSIRO Agriculture Flagship, Canberra, Australia

²⁶French National Institute for Agricultural Research, Reims, France

²⁷Potsdam Institute for Climate Impact Research, Potsdam, Germany

²⁸New Zealand Institute for Plant and Food Research, Lincoln, New Zealand

²⁹Rothamsted Research, Harpenden, United Kingdom

³⁰Chinese Academy of Sciences, Beijing, China

Materials & methods

Field trials from four continents, established in five temperate pastures and five crop rotations with contrasting pedo-climatic conditions, were selected to assess 24 process-based models (16 for crops, 12 for pastures) against SOC and C-N emission data. Model calibration consisted of five stages, from stage 1 (observed outputs unavailable to modellers) to stage 5 (with all observed outputs). We combined the estimates from the individual models (aggregated on annual basis) by computing median values for each output.

Results

Taking the coefficient of variation (CV) as a degree of the variability of simulations, for all the modelled C fluxes (GPP, gross primary production; RECO, ecosystem respiration; NEE, net ecosystem exchange) CV was reduced with calibration. Moving from stage 1 to 5, CV was reduced from 28.3% to 25.1% for RECO, from 45.7% to 34.6% for GPP and from 461.3% to 72.4% for NEE. The greatest decrease obtained at stage 3 responds to the need of calibrating the models against production and phenology data.

Conclusion

The uncertainty envelops of simulated C fluxes (NEE) was reduced with more detailed calibration (improved estimates of GPP and, to a lesser extent, of RECO). We conclude that, to reduce parametric uncertainties in C estimates, production and phenology data are the minimal level requirements for model calibration.

Acknowledgments

This study was coordinated by the Global Research Alliance on agricultural GHGs-Integrative Research Group, supported by the projects CN-MIP, Models4Pastures, MACSUR, COMET-Global and MAGGNET funded by FACCE-JPI multi-partner call on agricultural GHGs.