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An analyticai class of standing wave solutions to the Korteweg-de Vries (KdV) equation is obtained 
in the framework of continuous finite generalized functions. This paper shows how this class can be 
used to describe a great variety of wave shapes, especially bores and jumps. These new solutions are 
built by appropriately combining parts of two ordinary KdV waves. These represent a system with 
a steep transition between different energy levels of two potential wells. A number of specifie cases 
of the generalized solutions are identical to those obtained recently within the theory of the KdV 
equation forced by a Dirac delta function. Numerical simulations of both stationary and transient 
KdV equations are carried out in a few cases. The weak formulation used in the numerical scheme 
is equivalent to the analytical generalized functions approach. Simulations of initially perturbed 
wave fronts prove the high degree of stability of many of these solutions.© 1995 American Institute 
of Physics. 

1. INTRODUCTION 

It is known that free-surface waves with a transition be­
tween two different flat levels cannot exist without dissipa: 
tion of energy. The Korteweg- de Vries (KdV) equation, as a 
long-wave approximation of dispersive waves in the back­
ground of a perfect fluid mode!, adroits no solution of this 
ki nd. 

One way of generalizing the equation to include such a 
solution is to add a term to represent a forcing action. This 
forced KdV (fKdV) equation arises in many situations: mov­
ing pressure distribution,1 one-layer flow,2 two-layer flow,3 

stratified flow over topography,4 surface waves in channels 
of arbitrary shape,5 and so forth. In this family of works, 
level-jump flows, hydraulic falls, and cusped solitary waves 
were derived as steady-state solutions?·3 

Another approach is the one that motivates the present 
work. 1t consists of loo king for weak solutions of the original 
KdV mode! in the context of generalized functions. Such a 
solution has already been obtained in gas dynamics in the 
form of infinitely narrow solitary wave with infinitely large 
amplitude. 6 A more realistic result of this idea was achieved 
by fitting laboratory-generated bores with discontinuities of 
velocity and acceleration. 7•8 

Many works have been devoted to the numerical behav­
ior of the KdV equation. Most of these deal with the stability 
of regular solitary or periodic solutions. The stability of gen­
eralized solution waves have received much Jess attention 
and their numerical simulation is still in its infancy. 

In the following, we introduce the generalized formula­
tion of the KdV equation (Sec. II). We deduce its weak so­
lutions by introducing a discontinuity in the fust and/or sec­
ond derivative. The equivalence is outlined between sorne of 
these solutions and those obtained for the fKdV. Section III 
is dedicated to numerical time-dependent simulations. Re-
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sults are presented on the stability of certain generalized so­
lutions with respect to perturbed initial conditions. The value 
of the jump in the second derivative is related to the ampli­
tude of a localized force. 

Il. GENERALIZED SOLUTIONS OF KDV EQUATION 

When the reduced KdV equation 

au(x,t) au(x,t) a3u(x,t) 
at + u(x,t) ax + ax3 = O (1) 

is written in the coordinate system X= x-ct, it becomes the 
equation of the stationary KdV wave: 

du du d3u 
-c dX +u dX + dX3 =O. (2) 

Let U(X) be a continuous finite generalized solution of 
(2), which is infinitely differentiable everywhere except at 
one point X =X 0 , where derivatives may be discontinuous: 
U(X)=u(X) at X=I=X0 . Use U~l to designate the jump of 
the ith-order derivative of U(X) at the pointX= X0 : 

(3) 

where u(X) is the solution of the steady-state KdV in the 
ordinary sense. The derivative is undefined at the point 
X= X 0 , but it is weil defined in the generalized sense. A 
generalized function is usually defined on a space of func­
tions ~(X) as a linear continuous functional: 

( U(X), ~(X))= f~'-" U(X) ~(X)dX. (4) 

From the definition, one gets the expression for the kth-order 
derivative of U(X): 
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(~~.~(X)) 

~ ( [ :> ~ u'd'&<'+ ''<x-x,> ].</>(Xl). (5) 

where (jil(X) is the ith-order derivative of the Dirac delta 
function. The basic function ~(X) belongs to a space of 
nontrivial infinitely differentiable functions on a compact 
support, so that a generalized form is easily obtained for the 
dispersive term of Eq. (2). The nonlinear term requires sorne 
extra algebra. 

The problem defining a direct product of distributions 
bas no general solution. ln the current case we can write for 
the convective term 

( U ~~.~) = f~~ U(X)[:; + Ub
0
>ô(X-X0 ) ] ~(X)dX, 

(6a) 

{ J
X0-• du J~ du 

lim+ -~ u(X) dX ~(X)dX+ Xo••u(X) dX ~(X)dX 
E->0 

+ J ~o_•: U(X) :; ~(X)dX} . 
The integrand of the last integral (6a) is finite, so we get 

( U ~~·~)= f~~u(X) :; ~(X)dX= ( u :;.~) . 
(6b) 

By multiplying Eq. (2) by ~(X) and integrating using 
( 6b) and (5) for k = 3, we get the stationary KdV equation in 
the generalized sense: 

(7a) 

or 

-Xo) ] .~) =0. (Th) 

The main property of (7b) is that it not only bas in.finitely 
differentiable solutions, but also cusped solutions with two 
free parameters (U~2> and U~1>). Such a wave propagates 
without change of form. 

The vanishing boundary conditions are usually applied 
at infinity for solitary waves: 

U-h-+0 IXI-+00, (8a) 

where h is the leve! at infinity. For bores, the limiting values 
of the solution differ at plus and minus infinity: 

U-+H X-.-oo, U-+h X-+oo. (8b) 

In the case of undular bores, one can impose the limits on the 
wavelength À: 
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U~H, U(X+X.) = U(X) X-.-oo, U-+h X -.oo. 
(Sc) 

In the general case of a double-sided undulation we have to 
set different undulation modes at plus and minus in.finity: 

U~H _ ,U(X+X. + ) = U(X),X-+-ooU~H+, 

U(X+X. +)= U(X),X-.oo. 
(8d) 

The formalism developed further on is applied here to find a 
finite solution of problem (7b) with appropriate boundary 
conditions. The suggested form for U(X) is 

where u _(X), u+(X) are smooth enough functions for con­
vergence of the integral (7a); 8_ = 0_(X- X 0 ) , 

0 + = 8 +(X-X 0) are asymmetrical Heaviside functions. 
Inserting (9) in (7b) and collecting terms in u_ and u+ 

leads to the following equation: 

J
Xo[ du _ du _ d3u_] 
-~ -c dX +u_(X) dX + dX3 ~(X)dX 

J~[ du+ du+ d
3
u+] 

+ Xo -c dX +u+(X) dX + dX3 ~(X)dX 

(10) 

+[U~2> -u~2>]~(Xo)-[U~1 > -u~1 >] ~ (Xo)=O. 

The constants u~i) denote the jump between i-order deriva­
tives of u _(X) and u +(X) at point X=X0 

(i) diu + diu_ 
u0 =d7 (X0)-d7 (X0). 

Thus U(X) in (9) gives the finite continuous generalized 
solution of Eq. (7b) if u_(X) and u+(X) satisfy the steady­
state KdV wave equation in the ordinary sense (2): 

du _ du _ d3u_ 
-c dX +u _(X) dX + dX3 = O, 

(lla) 

and if the following conditions are fulfilled at the point of 
discontinuity X= X 0 : 

u+(X0 )= u _(X0 ), u~l)=U~l), u~2>=u~2> . (llb) 

Relationships (lla) and (llb) show that the generalized 
solution sought can be obtained by an appropriate matching 
of two ordinary standing KdV waves at the point X= X 0 . 

The situation is similar to that of shock waves in one­
dimensional gas dynamics where two ordinary solutions cor­
responding to our u _(X), u+(X) are matched at the point of 
discontinuity. The Hugoniot conditions correspond to the 
conditions (llb). 

The generalized standing KdV wave (9) can now be con­
structed using two elliptic eosines. These are defined by the 
values of four different parameters, from the left side 
(X<X0 :c_,x _ ,w_ ,e_) to the right side 
(X> X 0 : c + ,x+ , w + , e +) of the discontinuity: 
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U={ c- i-(1-2m_)w:+3::_m_w:cn2
[ w_ ~-(X 

- X-)im-]} O_(X -Xo)+ { c-l;_(1-2m +)w~ 

+3l;_m+w~cn2[ w+ ~+ (X- X+)im+]} O+(X-Xo), 

(12a) 

where 

cos t ( 7r- arcsin e _) 
m_= 

cos( t arcsin e _) 

cos t ( 7r- arcsin e +) 
m+= 

cos( t arcsin e +) 

This shows that the system jumps from a phase potential 
weil, described by parameter w_ , to another potential weil, 
determ.ined by w+, at the "phase time" X 0 • The values of c, 
w_ , w+, X-, X+, e _ , e+ in (12a) can be found by solving 
the system of nonlinear equations consisting of the condi­
tions at the point of discontinuity (llb) and of boundary 
conditions (8a)-(8c). In the general case this system should 
be solved numerically. 

The energy levels ( e _ , e +) of the system may differ. 
Here are three typical examples of such constructions. 

Wben the initial energy leve! equals one (e_=1), the 
system is in the state of a solitary wave [Figs. 1 and 2(d)]. 
Then, if the phase energy of the system does not change at 
X 0 ( e + = 1), the system performs the same type of phase 
motion described by another parameter, since the potential 
well is changed: 

In the physical space, such a solution describes the fam­
ily of asymmetrical cusped waves which, in the symmetrical 
case, coincides with that of Miles2 and Shen.3 

Wben the energy in the initial potential weil equals zero, 
i.e., the wave is calm [Figs. 1 and 2(a)], and in the final 
potential weil it equals one, the wave appears in the physical 
space as a family of bores:8 
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FIG. 1. Phase potential curve of lbe KdV integral of motion n(q) 
=4q3

- 3q plotted as a function of q:q1 ,q0,qb roots of the equation n(q) 
=0. Energy levels of the stationary KdV wave as a hydrodynamic conser­
vative system are shawn in bold: eb the leve! of symmetrical harmonie 
vibrations; e, the leve! of anharmonic cnoidal vibrations; ed the leve! of 
aperiodic phase motion. 

U =(c+ w:.)e_(X- X 0 )+[ c-w~ + 3w~ sech2 ~+ (X 

- x+)]e+(X-X0). (12c) 

Finally, if the energy in the initial potential well takes an 
intermediate leve! - 1 < e _ < 1, the system performs vibra­
tions [Figs. 1, 2(b), and 2(c)], which transform into the sech­
profile of a family of undular KdV bores: 

u={ c - i-(1- 2m _) w:. +3-l-m _w:.cn2 

x[w- ~ (X- x - )lm-] } e_(X-X0 ) 

+[ c - w~ +3w~ sech2 ~+ (X- X+)] 8+(X-X0 ). 

(12d) 

The potential energy presents the surface II = II ( q, r) in the 
phase space (II ,q, r). Figure 1 shows only the transverse 
cross section of this surface for a fixed phase time. For 
r<X 0 the system in the state e _ moves along axis r in the 
potential well w_ . At the moment r =X 0 both the total phase 
energy of the system and the form of the potential weil w+ 
change instantaneously, while the continuity of the phase tra­
jectory is provided by the appropriate matching of the phase 
potential curved surfaces. 

The differentiai operator of Eq. (7b), in comparison with 
that of the ordinary sense (2), bas two new terms. These 
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FIG. 2. Phase trajeclories of lhe bydrodynamie syslem al differenl energy 
levcls as funclions of lhe phase time -r=X. (a) -e.=O corresponds 10 lhe 
calm surface, (b) lo lhe sinusoïdal wave eb= -0.94, (c) 10 the cnoidal wave 
ec=O, (d) 10 the soli lary wave ed=O. The phase mass of lhe syslem is ,.,.=3. 

contain the Dirac delta function and its first derivative, which 
are functions of both coordinate space and time. Thus the 
generation of a standing generalized KdV wave can be per­
formed both by an instantaneous and localized process (in 
comparison with the characteristic scales of the wave propa­
gation). This ldnd of process is also used to recover the 
forced KdV equation. 

If the fust derivative of an extemal force f is added to 
the right-hand part of the KdV equation (1), the equation is 
called the forced KdV equation3 (fKdV). Usually the term f 
is assumed to be distributed over a finite interval, which 
makes the fKdV equation valid in the ordinary sense. When 
"the length of this interval tends to zero and the amplitude of 
the force tends to infinity," or strict! y speaking 
(!,4J)-+(8,4J), the fKdVequation can be written only in the 
generalized sense, which leads to equation of the generalized 
stationary KdV wave (7b). 

Ill. STABILITY SIMULATION OF CERTAIN 
GENERALIZED SOLUTIONS 

Many methods have been used to explore the numerical 
behavior of the KdV equation. For instance, in a previous 
work we used a splitting scheme9 for the initial value prob­
lem with a pseudospectral method for the dispersive term 
and a shape preserving spline, or Bernstein's polynomial in-
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terpolation, for the nonlinear one. 10 Here, we will keep on 
with the idea of cubic splines. The most appropriate numeri­
cal approaches in determining nonsmooth solutions of partial 
differentiai equations are based on integral formulations. 
More precisely, the weighted residual method is equivalent 
to the generalized formulation, from the point of view of 
computation. 

If one looks for a spatial approximation ü(x,t) of the 
solution u(x,t) , then the residual is defined as 

- aü(x,t) - aü(x,t) a3ü(x,t) 
R(u;x,t)== at +u(x,t) ax + ax3 

A similar equation, with - aü/ at , will be examined for 
waves propagating in the opposite direction. The approxi­
mate solution is determined in such a way that the residual is 
orthogonal to a Sobolev set offunctions, denoted cpj(x). The 
problem is then equivalent to finding the ü(x,t) that mini­
mizes this residual, weighted with functions epi over the do­
main n. 

The classical solution of the KdV equation is at !east 
c C3>(ü), and an integral formulation was necessary in order 
to " weaken the equation" and obtain classes of generalized 
solutions. An analogous procedure is used in the computa­
tional method, and the third term in R(ü,x,t) is integrated 
twice 

f alü(x ,t) [ a
2
ü(x,t) ] 

n dx 'Pj(x ) ax3 = 'Pj(x) ax 2 r 

-[dcpj(x) aü(x,t)] 
dx ax r 

f d2q>j(x) aü(x,t) 
+ dx d2 a ' n x x 

(13) 

where r is the set of boundary points. The right-hand side 
(RHS) of (13) is weil defined if the cpi(x)'s are cC2>(ü). 
Nevertheless, our former experience with collocation meth­
ods for classical KdV and Vlasov equations has proved that 
the convective term is better computed with a third degree 
polynomial interpolation like cubic splines. A monotonie par­
tition of 0 is defined with (N + 1) nodes of abscissa 
{x0=L- , ... ,x; , ... ,xN= L +}. The approximation ü(x,t) is 
taken as 

ü(x,t) = v;(t ) l/l;(x ), 

where Einstein's convention is used. Since only the fust de­
rivative of u appears in the left-hand side (LHS) of (13), 
ü(x,t) needs only to be continuously differentiable in x and 
the 1/J;(x)'s may be taken to be c(l>(ü). One simple way is 
to use piecewise first order splines in each interval 
Û e = ( XeXe+ t). The advantage iS that the COefficientS are the 
nodal values of ü(x, t): v;(t) = ü(x; ,t) for any i. As the oum­
ber of the time-dependent unknowns v;( t) equals the number 
of interpola ting nodes x;, we need (N + 1) conditions. lnsert­
ing ü(x,t) into the KdV operator we get, for convective 
form, 
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f dr/l;(x) 
X rfrk(x) -d- cp1(x)dx 

n. x 
(j = O ... N) 

+fie ui(t) d2r{!i(x)dx2 dcpj(x)dx dx 

- [dcp1(x) du;(x) d
2
u;(x)] 

- --;_r;-~- cpi(x) d2x 
r. 

(14a) 

and conservative form in the frame moving with velocity c 

= [ d
2
u(X)] _ [ dcp1(X) du(X)] 

cpi(X) dX2 dX dX . 
r r 

(14b) 

At last the final time differentiai equations are assembled to 
give system 

dU(t) 
± M ~+C(U)U(t)+DU(t)= B. (15) 

The RHS vector B is zero everywhere except eventually at 
the discontinuity points and the boundaries; U is the vector 
of nodal unknowns and M, C, and D are 5-diagonal matrices. 
The boundary values will be those of the predicted analytical 
solution. The actual scheme involves only Neumann bound­
ary conditions, but another integration by parts may be per­
formed to incorporate boundary conditions of the fust kind. 
The global system (15) is quadratic relative to the unknowns 
(u;). It is solved by means of a Newton-Raphson algorithm 
which is iterative and therefore bas to start from a seed 
U0(X). The high precision of the algorithm also requires that 
U 0(X) not be too far from the final solution. Furthermore, 
Eq. (15) is not a convex problem, and the scheme may not 
converge under certain circumstances. 

The steady-state problem is solved first. There are at 
!east three reasons for proceeding this way. First, we have to 
check the stability of the nurnerical scheme. Second, certain 
effects like that of the discontinuities on the selection of the 
solution are easier to obtain in the steady case. Last, as the 
equation is nonlinear and permits many different solutions, it 
is also a faster way of investigating the result obtained from 
a given initial set of data. Computations show that different 
initial conditions with the same value u&2> of the jump in the 
second derivative lead to different steady-state solutions. 
These simulations agree with analytical expressions (12a)­
(12c) up to four figures. Other nonobvious waves have been 
found that are ali combinations of parts of two classical so­
lutions. 

One may consider the value u&2> of the discontinuity 
[ u"] as an in dependent parameter. In the forced KdV ap­
proach, this value may be understood as the amplitude of a 
Dirac force a pp lied at x= X 0 . The question is then to find the 
wave profile under the effect of a given force. For X 0 = 0 and 
U0(X) given by (12c) with amplitude 3w2= 3 and celerity 
c = 1, the analytical value is 
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FIG. 3. Numerical (squares) and analytical (solid) elevation of the bore as 
funer ion of the jump U~2) in u"(x). 

3 3 
u~2)=- 2 w4= - 2• 

If u&2> is changed to - 1, the amplitude of the asymptotic 
solution is decreased from 3 to 2.4495. More precisely, the 
upstream value is 2.6330 and the downstream at 0.1835. If 
we denote the upstream and downstream elevations of the 
ftuid as H 11 and Hd and their difference as 6.H, the three 
values are theo very close to the theoretical predictions. 
These predictions can be deduced from system (12c). For 
sech2 profiles we have 

6.H=3w2 sech2
( I ·(X-X+)). {16a) 

Solving for X= X 0 , we get 

u<t>2 u<2> 
- 2_ 0 0 

c=w -3 6.H2 -2 6.H . (16b) 

In the case of a bore, u&1>=o and X0 always coïncides with 
X + . This simplification gives 

H 11 -Hd= ± ~-6Ub2) and c= ±~ ~- 6U&2 ' . (16c) 

Figure 3 summarizes this influence for certain values of the 
jump [ u"]. In these examples with continuo us fust deriva­
tive, the determining parameters of the bore are now c and 
u&2>, and no longer the amplitude A, as for the usual KdV 
solitary wave equation. 

The effect of [ u'] on the asymptotic solution can be 
explained by an analysis similar to the one above. According 
to (16b), the value of u&1> is such that I2 U&1>twU&2>I<l. In 
the two cases discussed below, we again use X 0 = 0 and a 
bore U 0(X). Without Joss of generality, u&2> may be a non­
zero constant. The action of u&'> consists in shifting the 
profile of the wave horizontally in such a way that at X 0 , 

[u'(X0)] = U&1>. The value of this shift is obtained from 
(16b). Therefore the amplitude of the bore is no longer fitted 
by U0(X): the process described in the former paragraph is 
performed and adjusts the amplitude. The final steady-state 
profiles may be compared to Figs. 3(a) and 3(b) in Shen,u 
obtained for locally forced critical surface waves in channels 
of arbitrary cross section. 

The next step is to find the stability of the solutions 
obtained from the lime-dependent gKdV. One significant rea­
son for this is that it is quite impossible to generate experi-
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mental waves with exact analytical shapes. On the other 
band, the initial profile will always be close to the solutions 
of the steady-state problem7 and theo will be taken as u(x,O) 
= ag(x/À) , where g is a Gaussian function, À a characteris­
tic scale, and a the constant amplitude. The upper bound for 
À is k:nown from the inverse scattering theory applied to the 
KdV equation. lts value is À1=12(2114/7r112)=8.0513 for 
an initially Gaussian function. The computational grid bas 
N = 160 points from L _ = - 40 to L + = 40. The time step is 
equal to a third of the C.F.L. criterion. A first-order finite 
difference is used to discretize the time derivative in (16b). 
The scheme is completely implicit and thereby depends 
heavily on the boundary limits. Since we stiJl set only the 
first and second derivatives at the edges, the artefact due to 
the numerical reflection of the waves limits the validity of 
the numerical mode) in time. 

The evolution of three typical two-level waves is inves­
tigated: secant bore, truncated bore, truncated soliton. The 
reason for this choice is that these shapes were fitted to a real 
free surface, in a previous experimental work.8 In this experi­
ment, the initial condition is obtained by applying a Lorentz 
force to a volume of a conducting liquid. At the initial time, 
the magnetic field is eut off and the wave propagates freely. 

The numerical initial condition is a Gauss function with 
given À close to Àc= À1/2, linked upstream to a flat level. 
The point of the junction is x = 0 for the sech bore, and is 
shifted 4Ax for the truncated bore and - 4Ax for the trun­
cated soli ton. The values of [ u 1 ] and [ u"] are those of the 
expected solution. Computations are stopped either after a 
sufficiently long time or when the relative error on the fust 
three invariants becomes grea ter than 1%. The invariants are 
defined here, by analogy with the classical ones, as the sum 
of the invariants on each side of X 0 . As the wave fronts are 
trapped at X 0 , the depicted results are referenced to the mov­
ing discontinuities. 

The approach towards the asymptotic solution may be 
very complex and take a very long time. However, sorne 
properties of this process may be seen from examining the 
simplest cases: 

(i) Waves with discontinuous second derivative have 
been already considered by Benjamin.12 His conclusion is 
that "the effects of an initial discontinuity in uxx are instantly 
manifested over a range of x extending to -oo." Our com­
putations confirm this result for a bore (Fig. 4). However, we 
show that this instability disappears for a KdV equation with 
negative time derivative. In other words, the jump (obtained 
from a bore with an x-axis inversion) is stable for the usual 
equation (Fig. 5). 

(ii) A wide class of waves are emitted from the initial 
profile, depending on its extent. These waves may be faster 
or slower than the bore, and may move up or downstream. 
Their amplitudes are naturally smallest wh en À= Àc . For 
sufficiently large À, the Gaussian gives a bore and a solitary 
wave (KdV with - u,), the latter is always traveling faster 
than the bore. When, for numerical reasons, they are re­
flected by the right boundaries, they never intersect the bore. 
More generally, only waves coming from upstream can cross 
the bore. 

(iii) Nearly the same conclusions may be deduced for 
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40 

40 0 

FIG. 4. Oscillations on the plateau of the bore solution of the KdV equation 
u,+uux+ tlxxx=O. These disappear when the rime derivative term is 
changed to - u, . 

truncated solitons which are stable within the preceding re­
strictions [Figs. 6(a) and 6(b)]. As the initial profiles are aU 
increasing functions, a bump bas to be created by the system 
in order to produce a truncated soliton. The specifie feature 
in this example is an oscillation of the peak of the wave, 
which propagates up- and downstream. These oscillations 
damp out more or Jess rapidly as the time increases. 

IV. CONCLUSION 

It appears from numerical simulations that generalized 
solutions are highly stable with respect to the perturbations 
of the wave front. In this approach, both fust and second 
derivatives may be discontinuous. The jump in the second 
derivative is clearly interpreted as the amplitude of a singular 
externat force. The appearance of a discontinuity in the first 
derivative extends the fKdV to include a term with a Dirac 
derivative. The different solutions are obtained only by corn­
bining different values of the parameters [ u 1 ] and [ u"] . Of 
course, the method has been. tested for the strong solutions, 
i.e. [u 1 ] = [u"] = O. lt follows then that the "weak" form of 

40 

FIG. 5. Nonsolitary contribution to a jump with discontinuous second de­
rivative for initial profile u(x,O) = lt exp(- (x- X0)

2/ À 2). Parameters are 
lt = l, }..=10,X0 = 0 and U~2)= 1.5. 
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40 

(a) 

40 

FIG. 6. Nonsolitary contribution to a truncated soliton with discontinuous 
fust and second derivatives for initial profile u{x,O) 
=h exp( - (x-X0)2/X.2). Parameters are 11=1, X-=10, X0=1 for (a) and 
X0 = -1 for (b). The amplitudes of the discontinuities are dctermincd from 
the steady-state solution. 

the KdV equation is a unifying model for a larger class of 
solitary waves, including solitons, falls, and jumps. Concern­
ing bores, their shape and elevation are uniquely defined by 
the velocity c and the discontinuity U~2), provided the direc­
tion of propagation is appropriate. The current numerical al­
gorithm is restricted in time by boundary effects. Neither the 
Neumann nor the Dirichlet boundary conditions are weil 
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suited to simulating long-time behavior of solitary waves in 
unbounded domain. The boundaries defined must not interact 
witb radiating waves. The implementation of "transparent" 
or "absorbing" conditions, although unnecessary in the 
present calculations, would enable the simulation of the sys­
tem (with many discontinuity points for instance) on longer 
times and reasonable space grids. 
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