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Abstract

This paper surveys the stochastic modelling of individual claims occurrence

and development for reserving purposes in non-life (general) insurance. The

paper revisits the continuous time stochastic modelling framework of Norberg

(1993) and Hesselager (1994), and provides a consistent presentation of the

modelling, inference, and forecasting (with simulation and closed-forms) of

individual claims histories as well as aggregate quantities as the overall reserve

for both RBNS and IBNR claims. Numerical illustrations are given based on

real portfolio datasets, as well as comparisons with classical triangle-based

methods.

Keywords: Non-life/General insurance; Stochastic reserving; Individual claims re-

serving; Poisson point processes; Process and estimation errors; Thinning algorithm.

1 Introduction

Since the work of Mack (1993), stochastic reserving models based on runo� triangles

dominate the reserving practice, as surveyed in the book of Wüthrich and Merz

(2008) - the triangles are organized by origin period (e.g. accident, underwriting)

and development period, and are built as an aggregation of input data made of

individual claims paths. At around the same time, other papers proposed to account

for a more precise description of the claims development. To our knowledge, Arjas

(1989), Jewell (1989), Norberg (1993) and Hesselager (1994) are among the oldest

references which introduced a proper probabilistic setting for individual reserving,

in the context of increasing awareness of the power of a "point process" description

of time patterns in many areas of application. In this setting, the time pattern of
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claims occurrences has systematically been investigated in the form of the Poisson

model with time-varying intensity (a stochastic intensity for few exceptions with

so-called Cox process), which will be the framework of interest in this paper. In

their spirit, individual claims models provide a structural modelling of aggregate

'macro' quantities as a result of the 'micro' components of the individual model -

from Norberg (1999), a parametric speci�cation of the continuous time model, which

may be supported by physical reasoning, will automatically induce a parametrization

of the discrete time model. More generally, the virtue of individual-based modelling

emerges in a variety of problems from its structural nature, as it is the case of the

separate evaluation of IBNR (Incurred But Not Reported) and RBNS (Reported

But Not Settled) claims. Although some contributions focused on the development

a coherent modelling framework based on runo� triangles providing separate IBNR

and RBNS reserves, see e.g. Verrall et al. (2010), this appears in a more natural

(and straightforward) way in individual claims modelling, see e.g. the discussion in

Antonio and Plat (2014) and references therein, as it is also naturally the case for

the valuation of non-proportional reinsurance treaties.

Since then, the individual based modelling of claims has gained recent interest in

the literature. Following Norberg (1993), Larsen (2007) revisited the Marked Point

Process approach by including claims features to specify the model components.

Antonio and Plat (2014) proposed to apply the modelling framework developed in

Norberg (1993) and Norberg (1999) to a general liability insurance portfolio of a

European insurance company, based on a set of distributional assumptions and a

maximum likelihood estimation procedure. In their empirical investigation, and in

the context of this speci�c case study, it is shown that individual reserving provides a

better accuracy compared to selected aggregate models. Badescu et al. (2016b) and

Badescu et al. (2016a) investigate the modelling of individual claims by means of a

Cox process and the related inference; in this work, stochastic intensity is crucial to

account for temporal dependence in claims arrival and settlement; the model focuses

on number of reported and IBNR claims, without allowing for payments. Among

the several authors who focused their attention into inferring the distribution of

reporting lags as a �rst step in the computation of a proper IBNR reserve, one can

also refer to Guiahi (1986), Jewell (1989), Zhao and Zhou (2010), and more recently

Verrall and Wüthrich (2016) - this latter paper provided additional interesting in-

sights on the analysis and calibration of arrivals and delays distributions based on

real data; indeed, it is observed a gain in using individual methods in environments

characterized by non-stationarity.

It has also to be noted that other contributions chose another direction for in-

dividual models, away from a continuous time point process description: see in

particular Pigeon et al. (2013) for a discrete time formulation using stochastic indi-
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vidual development factors (see also Taylor et al. (2008)), as well as Godecharle and

Antonio (2015) who rely on the Reserve by Detailed Conditioning (RDC) method

in discrete time from Rosenlund et al. (2012) based on detailed information on indi-

vidual claims, and also Antonio et al. (2016) for a multi-state framework in discrete

time to model the claims development process while allowing for �exible payment

distributions.

In this survey, we revisit the original probabilistic formulations of Norberg (1993)

and Hesselager (1994) as they provide a continuous-time and structural description

of claims arrival and histories, and as we consider additionally that a higher potential

emerges from these methods from a pure 'risk analysis' perspective.

Most of the papers investigated the bene�t accuracy of individual reserving from

a pure empirical point of view, in the form of back-testing e�ciency assessment,

leading to conclusions that were in each case limited to the data set used. Although

this is crucial to get insights on the concrete order of magnitude of the gain of

using individual method based on a given dataset, from our point of view, it has not

been clearly investigated why do stochastic individual reserving methods outperform

aggregate ones from a mathematical perspective. A lot of research work remains to

be done in this direction. A �rst attempt of a theoretical description of the gain in

process error has been carried out in Huang et al. (2015), leading to a comparison

of individual and aggregate models under a common formalism, although simpli�ed

compared to the generic descriptions as provided in Norberg (1993). In this context,

we argue that there is a need to revisit the mathematical foundations of individual

claims modelling and provide professionals with a proper toolbox allowing for an

improved risk assessment.

It is interesting to note that, although for triangle-based models the treatment of

estimation error has early become a standard area of interest, dealing with parameter

uncertainty in the context of individual reserving has been far less investigated.

From an empirical perspective, references as Haastrup and Arjas (1996) (bayesian

non-parametric) and Antonio and Plat (2014) (frequentist parametric) are among

the few to address this question, although parameter uncertainty is a great area of

improvement of accuracy of individual models as data available is "larger" compared

to that of an aggregate triangle. Indeed, as noted by Antonio and Plat (2014), due

to our large sample size, con�dence intervals for parameters are narrow. This is

in contrast with run�o� triangles where sample sizes are typically very small and

parameter uncertainty is an important point of concern.

As for simulation issues, Antonio and Plat (2014) rely on the speci�c form of a

piecewise constant intensity by simulating occurrences as Poisson numbers in each

(small) interval, or inverting cumulative distribution functions. In this paper, it

is used a so-called thinning procedure to simulate the (past) occurrences of IBNR
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claims, the (future) development of RBNS and IBNR claims, as well as possibly

claims which did not occur yet. We argue that such exact simulation method pro-

vides a simple and �exible framework which is well suited for the simulation of claims

occurrences, development and settlement.

The paper is structured in two parts. In Section 2, we develop the modelling

framework for occurrences and reporting delays at the individual claims level, with a

special focus on inferring and forecasting IBNR claims (past) occurrences. Section 3

enriches the previous model for claims payments development over time and settle-

ment, allowing to precisely forecast the payment streams of both IBNR and RBNS

claims. Each section develops the following components: the modelling framework,

the simulation algorithm, the likelihood derivation and inference strategy, a set of

macro results and closed-form formulas on the reserve and associated variance, as

well as numerical examples. The paper ends with some concluding remarks in Sec-

tion 4.

2 Occurrence and reporting

2.1 Stochastic individual claims model

Consider claims occurring at times (Tn)n≥1 given as the jump times of a (non-

homogeneous) Poisson process with intensity λ(t). Each claim which occurs at

time Tn is associated with a delay (waiting time) Un assumed to have distribution

pU |Tn(du). In the modelling, this waiting time represents a reporting delay (the

di�erence between time of noti�cation to the insurer and time of occurrence): this

is a crucial quantity as it determines the set of claims which are observed in the

dataset.

Let us introduce an observation time τ - the set of claims observed is exactly the

set of reported claims at time τ , denoted IR(τ) and de�ned as

IR(τ) = {(Tn, Un) such that Tn + Un ≤ τ} . (1)

The set of all claims which occurred before time τ , introduced as

IO(τ) = {(Tn, Un) such that Tn ≤ τ} ,

can then be split between reported and so-called incurred but not reported (IBNR)

claims as

IO(τ) = IR(τ) ∪ IIBNR(τ),

where

IIBNR(τ) = {(Tn, Un) such that Tn ≤ τ and Tn + Un > τ} .
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2.1 Stochastic individual claims model

A reserve has to be set to cover the future development of both reported (but not

settled) claims, as well as IBNR claims. The prediction of IBNR counts and occur-

rences is a �rst step to achieve the latter objective. The overall reserve computation

is adressed in the next Section 3 which enriches the individual model for claims

payments development.

Poisson point measure representation The Poisson measure formalism is a

powerful tool to analyze quantities based on Poisson times and associated marks.

We recall below the de�nition of Poisson point measures.

De�nition 1. A Poisson point measure Q(ds, dy) with intensity measure q(ds, dy) =

dsµs(dy) on R+×E (with µs some sigma-�nite measure) is a random measure tak-

ing values in N ∪ {+∞} satisfying:
(i) for all non-overlapping measurable sets B1, ..., Bk of Ē = R+×E, r.v. Q(B1), ..., Q(Bk)

are independent (in�nite r.v. being, as a constant, independent of any other),

(ii) for all measurable set B ⊂ Ē such that q(B) < +∞, Q(B) ∼ Poisson (q(B)) .

(iii) Q({0} × E) = 0 (this ensures no jump at time 0). Under this de�nition, the

Poisson point measure is a counting measure on R∗+, that is a.s. for each t > 0,

Q({t} × E) ∈ {0, 1} (see e.g. Ç�nlar (2011), Theorem 2.17).

For the purpose of modelling occurrence and reporting in the present section, let

us consider Q(dt, du) a Poisson point measure with intensity measure

q(dt, du) = λ(t)dt⊗ pU |t(du). (2)

Then the following representation holds:

Q(dt, du) =
∑
n≥1

δ(Tn,Un)(dt, du).

The number of claims which occurred before τ , whatever their reporting delay, can

be simply represented as Q([0, τ ], [0,∞)) =
∫ τ

0

∫∞
0
Q(dt, du); this is the total sum

of numbers in the completed triangle. This provides a straightforward split between

reported claims and IBNR claims as

Q([0, τ ], [0,∞)) =

∫
IR(τ)

Q(dt, du)︸ ︷︷ ︸
Reported

+

∫
IIBNR(τ)

Q(dt, du)︸ ︷︷ ︸
Incurred but not Reported

.

A key result which follows from i) and ii) of De�nition 1 is given below.

Proposition 1. The number of reported claims Q
(
IR(τ)

)
and the number of IBNR

claims Q
(
IIBNR(τ)

)
are independent, and follow Poisson distributions with param-

eters q
(
IR(τ)

)
and q

(
IIBNR(τ)

)
respectively.

In particular, this result states that the expected IBNR number writes

q
(
IIBNR(τ)

)
=

∫ τ

0

∫ ∞
τ−t

λ(t)pU |t(du)dt. (3)
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2.2 Simulation algorithm

The frequency of reported claims Proposition 1 provides the distribution of

the overall number of claims, both reported and IBNR claims, as a Poisson random

variable which can be simulated in a straightforward manner. For our purpose, we

are also interested in the frequency at which those claims occurred, that is on the

distribution of the occurrences (instead of that of the overall number). Let us �rst

compute the probability distribution of reported claims and their associated marks.

To do this, we introduce the Poisson point measure of reported claims as

QR(dt, du) = Q(dt, du)1t+u≤τ ,

whose intensity measure is in fact q(dt, du)1t+u≤τ .

Recall that the intensity measure of Q is q(dt, du) = λ(t)pU |t(du)dt; then the

Poisson point measure QR, represented as

QR(dt, du) =
∑
n≥1

δ(TRn ,U
R
n )(dt, du),

is described as follows:

Proposition 2. (i) The intensity of reported claims occurrences (TRn )n≥1 is

λR(t) = λ(t)pU |t([0, τ − t]), (4)

and at each time of reported claim occurrence TRn , the delay is drawn on [0, τ − TRn ]

with conditional distribution pU |TRn (du)/pU |TRn ([0, τ − TRn ]).

Indeed, the pure jump process NR
t = QR([0, t),R+) which counts the number

of reported claims up to time t can be compensated by the associated intensity

measure, so that the following process is a martingale:

NR
t −

∫
(0,t)×R+

q(ds, du)1s+u≤τ = NR
t −

∫
(0,t)

λ(s)pU |s([0, τ − s])ds,

which proves that the intensity is that given in Equation (4). The associated delay

distribution then follows from the basic de�nition of the Poisson random measure

QR.

2.2 Simulation algorithm

The previous Proposition 2 characterizes the way the observed data sample can be

resimulated: in particular, it states that occurrences of reported claims took place at

frequency given in Equation (4). This formula will be useful to derive the likelihood

in the next Subsection 2.3 dedicated to parameter inference.
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2.2 Simulation algorithm

Note that reciprocally, as the overall intensity is λ(t), Proposition 2 provides

the occurrence frequency of IBNR claims which can be drawn independently from

reported claims, as a non-homogeneous Poisson process with intensity

λIBNR(t) = λ(t)pU |t((τ − t,∞)). (5)

Once the parameters of the model λ(t) and pU |t(du) have been computed (see

next Subsection 2.3), one is then interested in completing the observed data set based

on occurence times of IBNR claims. Due to the stochastic nature of the model, an

algorithm has to be set to practically 'draw' the times at which IBNR claims should

have occurred in the observation period [0, τ ], which we denote
(
T IBNRn

)
. This can be

achieved according to the so-called thinning algorithm which provides a very simple

way of computing paths of any counting process with time-dependent intensity.

The thinning algorithm, which can be seen as a generalization of the accep-

tance/rejection method, works as follows:

1. First consider a bound λ̄ on the intensity - take λ̄ = supt∈[0,τ ] λ
IBNR(t).

2. Then draw the sequence (Sk) on [0, τ ] as a Poisson process with intensity λ̄

- for example by drawing Sk+1 − Sk as iid increments that are exponentially

distributed with parameter λ̄.

3. For each time Sk, draw a Bernoulli random variable with 1-value probability

λIBNR(Sk)/λ̄ - the 1-value corresponds to the acceptance of the time as part

of the sequence
(
T IBNRn

)
.

From a mathematical point of view, the thinning algorithm comes from a key

martingale result which, again, can be conveniently formulated by means of Poisson

random measures - this is detailed at the end of this subsection. Note that this gen-

eral mathematical formalism for such procedure goes back to Kerstan (1964) and

Grigelionis (1971), although the thinning algorithm is most often referred to Lewis

and Shedler (1978) and Ogata (1981) who proposed a more operational description

of the process. A precise formulation is given in the context of Hawkes and pop-

ulation processes in Boumezoued (2016b). Note also that more advanced thinning

procedures can be used, in order e.g. to improve its e�ciency, see e.g. Giesecke

et al. (2011). In this paper, we restrict our attention to the original thinning ap-

proach which is, in its form, su�cient to address e�ciently a wide variety of IBNR

simulation contexts.

The thinning representation of counting processes Consider a Poisson point

measure Ñ(ds, dθ) with intensity measure λ̄ds ⊗ dθ on the space R+ × [0, 1], and

denote by (Ft) the canonical �ltration generated by Ñ . Let (λt) be a (Ft)-predictable
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2.3 The likelihood

process such that a.s. for each t > 0, λt ≤ λ̄. Then the following process (Nt) is a

counting process with (Ft)-predictable intensity λt:

Nt =

∫
(0,t]

∫
R+

1[0,λs/λ̄](θ)Ñ(ds, dθ).

Indeed, N is clearly a counting process because each atom of Ñ is weighted 1 or

0. Also, since a.s.
∫ t

0
λsds < +∞, the martingale property for the Poisson point

measure Ñ ensures that Nt −
∫ t

0

∫ 1

0
1[0,λs/λ̄](θ)dθλ̄ds = Nt −

∫ t
0
λsds is a (Ft)-local

martingale, which shows that the counting process (Nt) has intensity (λt).

2.3 The likelihood

Since claim occurrence is known only if the claim has been reported, it is crucial to

be able to write the likelihood of the data sample made of the set IR(τ) reported

claims, see Equation (1). The partial observation scheme we face here lies in the

family of classical censoring and truncation. More precisely, the occurrence T is

observed if and only if T ≤ τ − U , therefore the occurrence time is right-truncated

by the random variable τ − U .
Having established the occurrence intensity for reported claims, see Equation (4),

we are now ready to derive the likelihood for the data sample observed between time

0 and time τ . Denote nRτ the number of claims reported before τ . In the individual

dataset, one observes the occurrences (tRn )
nRτ
n=1 and the associated reporting delays

(uRn )
nRτ
n=1. The likelihood writes, with convention TR0 = tR0 , U

R
0 = uR0 = 0,

P
(
∀1 ≤ n ≤ nRτ , T

R
n = tRn , U

R
n = uRn , and T

R
nRτ +1 > τ

)
= P

(
TRnRτ +1 > τ | TnRτ = tnRτ

) nRτ∏
n=1

P
(
TRn = tRn | TRn−1 = tRn−1

)
P
(
UR
n = uRn | TRn = tRn

)
= exp

(
−
∫ τ

t
nRτ

λR(s)ds

)
nRτ∏
n=1

λR
(
tRn
)

exp

(
−
∫ tRn

tRn−1

λR(s)ds

)
pU |tRn (uRn )

pU |tRn ([0, τ − tRn ])

= exp

(
−
∫ τ

0

λR(s)ds

) nRτ∏
n=1

λR
(
tRn
) pU |tRn (uRn )

pU |tRn ([0, τ − tRn ])
.

From the formula for λR given in Equation (4), the likelihood �nally writes

exp

(
−
∫ τ

0

λ(s)pU |s([0, τ − s])ds
) nRτ∏
n=1

λ
(
tRn
)
pU |tRn (uRn ),

which leads to the following result:

Proposition 3. The log-likelihood of the observed sample writes

−
∫ τ

0

λ(s)pU |s([0, τ − s])ds+

nRτ∑
n=1

{
ln
(
λ
(
tRn
))

+ ln
(
pU |tRn (uRn )

)}
.
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2.4 Some macro results

Remark 1. (Dependency between occurrence and reporting) An interesting feature

lies in the analysis of the case where delays are independent of occurrences, that is

pU |t(du) ≡ pU(du). In this case, the likelihood writes

exp

(
−
∫ τ

0

λ(s)pU([0, τ − s])ds
)

nRτ∏
n=1

λ
(
tRn
)


nRτ∏
n=1

pU(uRn )

 ,

and it is interesting to note that due to the bias of observing reported claims only, a

dependence between the occurrence and delay distribution still exists, and is captured

in the �rst term exp
(
−
∫ τ

0
λ(s)pU([0, τ − s])ds

)
. That is why in practice the cali-

bration of claims occurrence frequencies and delay distribution has to be performed

simultaneously.

2.4 Some macro results

In the claims reserving practice, reported claims are grouped into years of occurrence

i and year of reporting j; in this paper, both indices are integers starting at value 1,

and we consider τ to be an integer (the beginning or end of a given year, or month,

etc. depending on the time scale considered). The aim of such upper triangle is,

again, to forecast IBNR counts (in the lower triangle). Formally, the aggregate

incremental claim amount for claims which occurred in year i and are reported in

their development year j is de�ned as follows, (see Hesselager (1995) for an extended

study on this segmentation), as it is the case in the actuarial practice: for 1 ≤ i ≤ τ

and 1 ≤ j ≤ τ ,

Xi,j =
∑
n≥1

1Tn∈[i−1,i)1Tn+Un∈[i+j−2,i+j−1) =
∑
n≥1

1(Tn,Un)∈Ki,j , (6)

where

Ki,j = {(t, u) : t ∈ [i− 1, i), t+ u ∈ [i+ j − 2, i+ j − 1)}.

The aggregate cumulative claim amount is then de�ned as

Ci,j =

j∑
k=1

Xi,k.

From Equation (6) the following representation for incremental numbers holds:

Xi,j = Q(Ki,j). (7)

The micro-macro result for claims counts is stated below:

Proposition 4. The individual claims model described in Subsection 2.1 leads to

the aggregate Poisson model, that is:
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2.4 Some macro results

• The random numbers (Xi,j) are independent,

• For 1 ≤ i ≤ τ and 1 ≤ j ≤ τ , Xi,j follows a Poisson distribution with

parameter
αi,1 =

∫ i

i−1

λ(t)pU |t ([0, i− t)) dt if j = 1,

αi,j =

∫ i

i−1

λ(t)pU |t ([i+ j − t− 2, i+ j − t− 1)) dt for j ≥ 2.

(8)

Proof of Proposition 4 As the sets (Ki,j) are disjoint, then by De�nition 1 (i),

the random variables (Xi,j) derived in Equation (7) are independent. By De�ni-

tion 1 (ii), the random variable Q(Ki,j) has a Poisson distribution with parameter

q(Ki,j), where the intensity measure q is de�ned in Equation (2). This concludes

the proof.

With the previous result, it is clear that for counts, the aggregate model is still

Poisson, which largerly justi�es why this model is mainly used for claims counts in

practical applications. It can be emphasized here that the individual arrival process

has a general time-dependent intensity, and that the (time-dependent) distribution

of reporting delays is not speci�ed, which shows the remarkable micro-macro consis-

tency feature recovered here. In the following, we detail a particular case of interest.

Let us �rst recall that the original Poisson model, which leads to the same re-

serves as the Chain-Ladder method, is in fact speci�ed in a separable version of

Equation (8) such that αi,j = βiγj with some parameters βi and γj, see Wüthrich

and Merz (2008), Section 2.3 - the separable form is the key assumption to recover

the same reserves as Chain-Ladder. A question of practical implications is whether

this separable assumption is valid - in our setting, this turns out to look for 'micro'

speci�cations which lead to the separable assumption. Interestingly, assuming a

time-independent delay distribution pU |t ≡ pU is not su�cient to recover a separa-

ble form. This shows that in general, a micro model with an homogeneous delay

distribution does not lead to the separable Poisson assumption. Indeed, in this case

the Poisson parameter in Equation (8) can be rewritten as, by a simple change of

variable (for j ≥ 2 here),

αi,j =

∫ 1

0

λ(i− 1 + s)pU ([j − 1− s, j − s)) ds,

which shows that the dependency between occurrence year i and development year

j lies in the integral of a product of a i-dependent and a j-dependent function.

A general su�cient condition for the separable form to appear (see again Hesse-

lager (1995)), is that the occurrence intensity can be written as an occurrence-year
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2.4 Some macro results

magnitude times a function on [0, 1] driving e.g. the intra-year seasonality, which

formally covers the case where there exists some reference intensity (λ0(s))0≤s≤1 and

constants (ci)1≤i≤τ such that for any 1 ≤ i ≤ τ and 0 ≤ s ≤ 1, λ(i− 1 + s) = ciλ0(s).

Indeed, the Poisson parameter can then be written in the separable form (for j ≥ 2),

αi,j = ci

∫ 1

0

λ0(s)pU ([j − 1− s, j − s)) ds.

In other words, the separable form of the aggregate Poisson model is valid if the

intra-year seasonality is similar from one occurrence year to the next.

Parameter uncertainty As stated in the previous result, the number of IBNR

claims can be derived, in aggregate, as a Poisson random variable with given pa-

rameter. This is the so-called process error induced by the individual model. To

measure parameter uncertainty, or equivalently estimation error, one has to address

the impact of estimator randomness in the resulting output.

Let us denote generally X the total future claims number (or cash �ows) - aim

is to estimate the reserve which corresponds to the expectation of X - the estimator

of the reserve is denoted X̂. To properly decompose the so-called mean square error

of prediction de�ned in the following, one needs to specify the probability measures

at stake:

• P the probability measure related to the uncertainty in the parameters (esti-

mation error) λ(t) and pU |t(du) - these are estimated based on information on

reported claims provided by the random measure QR(dt, du),

• Q the probability measure related to the random measure QIBNR(dt, du),

which drives in particular the random number of IBNR (process variance).

Since by construction of the individual model the number of reported and IBNR

claims are independent, this allows us to write the mean square error of prediction

under the product measure P⊗Q as

MSEP (X̂)

= EP⊗Q

[
(X̂ −X)2

]
,

= EP⊗Q

[
(X̂ − EQ[X] + EQ[X]−X)2

]
,

= EQ
[
(X − EQ[X])2]+ EP

[(
X̂ − EQ[X]

)2
]

+ 2EP⊗Q

[(
X̂ − EQ[X]

)
(EQ[X]−X)

]
,

where the last term reduces to zero as, again by independence,

EP⊗Q

[(
X̂ − EQ[X]

)
(EQ[X]−X)

]
= EP

[
X̂ − EQ[X]

]
EQ [EQ[X]−X] with EQ [EQ[X]−X] = 0.
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This shows that the mean square error of prediction writes

MSEP (X̂) = V arQ(X) + EP

[(
X̂ − EQ[X]

)2
]
,

and is decomposed into a pure process variance (�rst term) and a squared bias which

measures parameter risk (second term).

As the likelihood has been derived in this model, a convenient way of accounting

for parameter uncertainty is to rely on asymptotic properties of maximum likelihood

estimators, whose variance-covariance matrix can be computed as the opposite of the

Hessian inverse. Such approach is discussed here in the standard parametrization

of the individual model, although it can be extended to any piecewise-constant or

continuous parametric speci�cation of each model component.

In the standard setting, we consider homogenous Poisson claims arrivals, that

is λ(t) = λ, as well as exponential and time-invariant reporting delay distribution,

that is pU(du) = θ exp(−θu)du. In this framework, the log-likelihood writes (see

Proposition 3):

lnL(λ, θ) = nRτ ln(λ)− λτ +
λ

θ
(1− e−θτ ) + nRτ ln(θ)− θ

nRτ∑
n=1

un. (9)

As stated in Remark 1, the dependency between the occurrence frequency λ and

the delay parameter θ remains, which represents the observation bias, here through

the middle term of the form λ
θ
(1 − e−θτ ). The result about the mean-square error

of prediction is stated below - it follows from a direct computation of the variance-

covariance matrix Σ (opposite of the Hessian inverse) and the application of the

Delta method; note that the �rst term refers to process error whereas the second

term relates to estimation error.

Proposition 5. In the standard parametrization of the individual claims model, the

total mean-square error of prediction can be approximated as

M̂SEP (X̂) = φ(λ̂, θ̂) +∇φ(λ̂, θ̂)Σ(λ̂, θ̂)
(
∇φ(λ̂, θ̂)

)T
,

where φ(λ, θ) = λ
θ

(
1− e−θτ

)
, then ∇φ(λ, θ) =

(
1
λ
φ(λ, θ),−1

θ
φ(λ, θ) + λτ

θ
e−θτ

)
, and

the variance-covariance matrix writes

1

D(λ, θ)

[
nRτ
θ2

+ λ
θ3

(
e−θτ (θ2τ 2 + 2θτ + 2)− 2

)
1
θ2

(
e−θτ (1 + θτ)− 1

)
1
θ2

(
e−θτ (1 + θτ)− 1

) nRτ
λ2

]
,

with the determinant D(λ, θ) given by

D(λ, θ) =
nRτ
λ2

{
nRτ
θ2

+
λ

θ3

(
e−θτ (θ2τ 2 + 2θτ + 2)− 2

)}
− 1

θ4

{
1− e−θτ (1 + θτ)

}2
.

Remark 2. The result can be adapted for any piecewise constant parameters, in

which framework the same structural form can be identi�ed.
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2.5 Numerical illustration

2.5 Numerical illustration

2.5.1 A numerical experiment

Let us start a numerical experiment with parameters λ = 500 (in average, 500

claims occur each year) and θ = 1/3 (the reporting delay is 3 years in average).

This arbitrary setting allows us to easily illustrate key facts about the toy model.

In Figure 1, the empirical distribution of observed occurrences and delays is repre-

sented. At this stage, the sample bias appears: although the initial occurrences are

distributed as an homogeneous Poisson process, the occurrences of reported claims

are not Poisson anymore. Therefore, it is not possible to directly �t any distribution

on that of occurrences or delays. Instead, by maximizing the log-likelihood (9), we

are able to compute MLEs for the frequency parameter λ and the delay parameter

θ, see again Figure 1. This example illustrates how the true underlying parameters

relate to the observed empirical distributions. In particular, it is shown in Figure 1

that the distance to the true frequency increases with time (due to the existence of

reporting delays), this distance representing IBNR claims. In addition, it is shown

that the true reporting delay distribution results in transportation of mass from

short to longer reporting delays compared to the empirical distribution, due to the

fact that larger delays are less likely to be observed - this will be illustrated on real

data in the next paragraph.

Note that based on these parameters, the number of IBNR follows a Poisson

distribution with a given parameter which takes a simple form in this numerical

experiment; it is indeed equal to∫ τ

0

λ(s)
(
1− pU |s([0, τ − s])

)
ds =

λ

θ

(
1− e−θτ

)
.

In order to give a view on estimation error, we repeat the simulation of arti�-

cial data and the maximization step, producing a sample of 1000 MLEs; these are

depicted in Figure 2.

Figure 1: Distribution of observed occurrences (left) and delays (right) - each graph

includes the underlying theoretical distribution in red.
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2.5 Numerical illustration

Figure 2: Distribution of maximum likelihood estimators based on 1000 simulations

- occurrence frequency λ (left) and delay parameter θ (right)

2.5.2 A practical example on personal injury data

The real dataset 'ausautoBI8999' is obtained from the R package CASdatasets

(Dutang 2016). It contains information on 22,036 settled personal injury insurance

claims in Australia. These claims arose from accidents occurring from July 1989

through to January 1999. Note that claims settled with zero payment are not

included. For the purpose of illustration, the model is calibrated on the 3-years

observation period from month 50 to month 86, while considering only claims which

occurred and were reported in the period. A piecewise constant arrival intensity λ(t)

on bands of 3 months is chosen to account for non-stationarity, and an empirical

speci�cation of the delay distribution is set, augmented with an exponential tail as

pU(du) =

n0∑
k=1

pk1[k−1,k)(u) + 1[n0,∞)(u)

(
1−

n0∑
k=1

pk

)
α exp (−α(u− n0)) ,

where we set n0 = 5 the number of �rst months for which an empirical distribu-

tion is taken. The parameters obtained by the maximization of the log-likelihood

established in Proposition 3 are represented in Figure 3. This shows that the model

predicts a relatively stable claim occurrence for the last months, although a naïve

observation of the reported claims subset would not lead to the same conclusion.

As a consequence, it is shown in Figure 3 that the observed delay distribution does

not match the �tted one, as the likelihood accounts for unobserved (higher) delays

- this is observed in the �gure as the density of the smallest delays is reduced in the

�nal distribution and transported in the tail.

In this setting, the joint parameter estimation routine leads to 1,501 IBNR claims

in average as an application of formula (3) (whereas the separate �t of the observed

occurrence and delay distributions would have led to an expected number of 565).

The dispersion of IBNR due to process error can be easily drawn based on the macro

consistency, see Proposition 1 - this is shown in Figure 4. This provides an input
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2.5 Numerical illustration

of the same 'nature' than an aggregate model would do. More original (and very

useful in several practical applications) is the possibility to simulate the times at

which those IBNR would have occurred, that is to complete the observed dataset (of

reported claims) by that related to IBNR. One stochastic path of IBNR occurrence

times performed by the thinning algorithm described in Subsection 2.2 is illustrated

in Figure 5. As expected, this scenario shows that most IBNR occurred in the last

months, in coherence with the dispersion shape of the IBNR intensity in Equation

(5). In addition, it is possible to add the uncertainty on the parameters to the

simulation to produce a forecast comparable to aggregate alternatives such as that

of Mack (1993) - this has been discussed in Subsection 2.4. The �nal stochastic

forecast including both process and estimation errors is represented in Figure 6.

Finally, we summarize in Table 1 some comparison with Chain-Ladder estimates

and the prediction, process and estimation errors by Mack (1993) on triangles with

varying granularity - that is we change the aggregation step form 6 to 1 months in

the triangle. The numerical computations are performed based on the R package

ChainLadder (Gesmann et al. 2017). A �rst result is that the Best Estimate

values remain in the same orders of magnitude, although the Chain Ladder method

always leads to an overestimation of the expected IBNR compared to the individual

model, and moreover that the value depends on the aggregation step (although the

underlying data is similar), as it remains to formulate di�erent assumptions on the

claims development in each case. In addition, one notices that process error is higher

for the Mack method ; the individual model takes here advantage of its pure Poisson

formulation. Finally, the estimation error for the Mack model is, as expected, very

high for high aggregation step as it leads to fewer data points in the triangle. While

decreasing the aggregation step, one increases the number of points which makes

estimation error reduces (although the number of parameters increases as well, but

not as much). In all cases, the coe�cient of variation for the number of IBNR stays

at a higher level compared to that of the individual model.
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Figure 3: Observed and �tted distribution related to the subsample extracted from

the dataset 'ausautoBI8999' is obtained from the R package CASdatasets.
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IBNR distribution (process error)
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Figure 4: Distribution of IBNR number (process error).
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Figure 5: One stochastic path of IBNR occurrence times.
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IBNR distribution (process and estimation errors)
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Figure 6: Distribution of IBNR number (process and estimation errors).

Method Best Estimate Process error Estimation error Prediction error CV(IBNR)

Individual 1,501 39 66 76 5%

Mack (6) 1,617 335 215 398 25%

Mack (3) 1,618 207 120 240 15%

Mack (2) 1,676 153 91 178 11%

Mack (1) 1,744 122 69 140 8%

Table 1: Best estimate of IBNR number and related process, estimation and pre-

diction errors (standard deviations). The Mack model is applied to a triangle with

varying aggregation window, expressed in months in parenthesis.

3 Payments and settlement

3.1 Modelling the claims development

In this part, we develop the modelling framework allowing for claims payments

development over time, which enriches the previous occurrence and reporting model

developed in Section 2.

In the literature, several studies based on triangles proposed a model in order to

account for incurred amounts (in addition to paid) which include the reserve case

estimates set by expert judgement, in order to guarantee a practical constraint to

match ultimate paid and incurred forecasts - see Mack and Quarg (2004), Merz

and Wüthrich (2010), Happ and Wüthrich (2013), as well as Miranda et al. (2012)

and Martínez Miranda et al. (2015). From an individual perspective, in the spirit
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3.1 Modelling the claims development

of the modelling framework developed in Pigeon et al. (2013), Pigeon et al. (2014)

proposed an extension to paid-incurred data. In this paper, we rather focus on

pure paid claims and leave the extension of the framework surveyed here for further

research.

In this section, the time origin 0 corresponds to a given claim's reporting. Our

aim is to describe the claims development process from reporting to closing; we rely

here on the convenient speci�cation introduced in Antonio and Plat (2014). The

claims development process is made of random times (Vk); at each random time, a

mark Ek is generated. The mark Ek can take its values in the space {1, 2, 3}; let us
introduce these three states:

• Ek = 1 indicates that the claim is settled at time Vk, without any payment at

Vk

• Ek = 2 indicates that the claim is settled at Vk with a payment,

• Ek = 3 indicates that a payment occurs at Vk, without settlement of the claim.

Three intensity functions h1, h2 and h3 are introduced to govern the frequency

at which events of type 1, 2 or 3 occur since reporting of the claim. If an event of

type 2 or 3 occurs, a payment Pk is generated with distribution which may depend

on the time Vk and the type of event, that is on the fact that the claim is closed or

not.

3.1.1 De�nition with a marked (non-homogenous and absorbed) Poisson

process

Inter-arrival times can be seen as a competing risk model; we construct recursively

the sequence (Vk) with V0 = 0 and Vk+1 = εk+Vk, de�ned as follows. First introduce

• S1
k a random time with rate h1(Vk + t), associated with event 1,

• S2
k a random time with rate h2(Vk + t), associated with event 2,

• S3
k a random time with rate h3(Vk + t), associated with event 3.

Consider the random times independent from each other for any kind of event

and any k. Then construct εk = min(S1
k , S

2
k , S

3
k) and specify Ek such that Ek = i

if and only if εk = Sik. Standard results ('clock lemma') show that the rate of εk is∑3
i=1 hi(Vk + t), and that conditionally on Vk and εk, the probability that Ek = i is

hi(Vk + εk)∑3
j=1 hj(Vk + εk)

.
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3.1 Modelling the claims development

This then proves that for a given claim, the sequence of the (Vk, Ek) occurs as a

marked Poisson process with occurrence rate
∑3

i=1 hi(t) and mark probability

pe|t(de) =
1∑3

k=1 hk(t)

3∑
i=1

hi(t)δi(de),

where δi(de) is the Dirac mass at state i.

Finally, the true process is stopped if the generated mark is 1 or 2; one can de�ne

S the settlement delay as the stopping time S = inf{Vk : Ek ∈ {1, 2}}, and consider

the �nal development process

{(Vk, Ek), Vk ≤ S}.

This construction lies in the framework of competing risk models. Although it

provides an intuitive representation of inter-arrival times, this framework is not

well suited to derive the closed-form formulas at stake. In the next subsection, we

propose a continuous time Markov representation of the claims development, which

will then allow us to rely on general results by Hesselager (1994).

3.1.2 De�nition with a Markov process

The di�culty in de�ning the claims development through a simple Markov process

lies in the fact that 'state' 3 (payments without settlement) can occur at consecutive

times. To overcome this issue, let us consider (Xt) a Markov process taking values

in state space N∗, and introduce the following new speci�cation: if a jump occurs

at time Vk, then

• XVk = 1 indicates that the claim is settled at time Vk, without any payment

at Vk,

• XVk = 2 indicates that the claim is settled at Vk with a payment,

• XVk = j, for j ≥ 3, indicates that a payment occurs at Vk, without settlement

of the claim.

We consider that X0 = 3 (the construction holds if we choose another integer higher

than 3). Let us introduce the following transition intensities: for j ≥ 3:

• λj,1(t) = h1(t),

• λj,2(t) = h2(t),

• λj,j+1(t) = h3(t).

All other transition intensities are zero. Then one can prove that the construction

leads to a similar development process as the one described in 3.1.1.
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3.2 The likelihood

Remark 3. (Dealing with reopenings) Once stated in a general Markov setting

with countable state space, it is possible to enrich the model to account for other

events than occurrence, reporting, payments and settlement. A major issue in many

datasets is driven by reopenings, which are observed on several claims path. A spe-

ci�c reopening frequency h4(t) can be introduced, which allows to go from settlement

(state 1 or 2) to new payments (state 3) leading to an other cycle of new payments

(states 4 and more) until settlement. In the model, this amounts to consider that

transition intensities λ1,3(t) and λ2,3(t) are non zero, equal to h4(t). Of course, some

constraints may be applied to h4 to guarantee convergence and avoid in�nite payment

cycles in the calibration and projection. A basic suggestion is to set h4(t) = 0 for t

greater than some time t0 since reporting, after which the claim can not be reopened.

3.2 The likelihood

We identify each claim by the index n, given by its observed occurrence Tn ; for a

given claim n we denote

• V (n)
k the time since reporting of the kth event in the payments development,

• S(n) the settlement delay for claim n,

• τ (n) the time during which the claims development is observed, which can be

expressed as τ (n) = min
(
S(n), τ − Tn − Un

)
,

• E(n)
k the associated event type, taking values in {1, 2, 3},

• δ(n)
k (i) the indicator that the kth event for claim n is of type i ∈ {1, 2, 3},

• X(n)
k the payments (if any) related to the kth event,

• P (.) the probability density function of the payments distribution.

Proposition 6. The likelihood for the claims development component writes

∏
n≥1

exp

(
−
∫ τ (n)

0

(h1 + h2 + h3)(u)du

)∏
k≥1

h1(V
(n)
k )δ

(n)
k (1)h2(V

(n)
k )δ

(n)
k (2)h3(V

(n)
k )δ

(n)
k (3)

×
∏
n≥1

∏
k≥1

{
δ

(n)
k (1) + P (X

(n)
k )

(
δ

(n)
k (2) + δ

(n)
k (3)

)}
.

(10)

Remark 4. The use of the asymptotic normality of maximum likelihood estimators

is still possible in this framework, in a parametric or non-parametric (piecewise

constant) speci�cation of the intensity parameters. The structure of the log-likelihood

shows however that the parameter estimates for each type of event are decorrelated
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(in the precise present speci�cation)- this contrasts with the occurrence and reporting

parameters, as discussed in Subsection 2.3, for which we proposed a more detailed

discussion.

3.3 Simulation algorithm

The simulation algorithm of each claims path lies, again, in the �eld of general thin-

ning procedures for marked population processes - we refer the reader to Boume-

zoued (2016a) for more details on the formalism and the related thinning represen-

tation. The algorithm is described here in the spirit of the Marked Poisson process

representation of the claims path presented in 3.1.1, although it can also be used to

generate general Markov models closer to the construction in 3.1.2. The algorithm

works as follows for generating paths from a given time (set at zero) after reporting

to any arbitrary time ν:

1. First consider bounds h̄i for each event-speci�c intensity function hi, i ∈
{1, 2, 3}, such as h̄i = supt∈[0,ν] hi(t).

2. Then draw a sequence (Uk) on [0, ν] as a Poisson process with intensity h̄1+h̄2+

h̄3 - for example by drawing Uk+1−Uk as iid increments that are exponentially

distributed with parameter h̄1 + h̄2 + h̄3.

3. For each time Uk, draw a Bernouilli random variable with 1-value probability

(h1(Uk) + h2(Uk) + h3(Uk)) /
(
h̄1 + h̄2 + h̄3

)
- the 1-value corresponds to the

acceptance of the Uk as a time of event (1, 2 or 3) for the individual claims

path.

4. To determine the type of event, draw another random variable with values in

{1, 2, 3} with probability for the ith value given by hi(Uk)/ (h1(Uk) + h2(Uk) + h3(Uk))

5. In case of event related to payment (2 or 3), draw the payment with the

appropriate distribution P (.).

3.4 Some macro results

3.4.1 Closed-form formulas for a single claim development

Hesselager (1994) described the path of a given claim as a general continuous time

Markov process with state space N, and derived semi-explicit �rst and second order

moments for X(t)(u, v), which denotes the total payments in (t+u, t+v] for a claim

which occurred at time t. In the model proposed by Hesselager (1994), the claims

path (after reporting) from one state to another is described by a process S(t)(u)

with values in N∗ (we removed 0 which represents the IBNR state), with transition
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probabilities p
(t)
mn(u, v) and associated transition intensities λ

(t)
mn(u). Payments are

made at the transition times of this dynamics; for a transition m → n at a time u

since reporting, a payment Y
(t)
mn(u) is drawn, payments being independent from each

other, with mean y
(t)
mn(u) and standard deviation σ

(t)
mn(u). In the following analysis

of a single claim, we omit without any restriction the index t. We will rely on the

following results by Hesselager (1994).

Proposition 7. For all j ∈ N∗, the mean and variance of the payments related to

the claim in state j after u times units of development can be expressed as

E [X(u,∞) | S(u) = j] =
∑
m∈N∗

∑
n∈N∗\{m}

∫ ∞
u

pjm(u, v)λmn(v)ymn(v)dv, (11)

Var (X(u,∞) | S(u) = j) =
∑
m∈N∗

∑
n∈N∗\{m}

∫ ∞
u

pjm(u, v)λmn(v)
{
σ2
mn(v) + r2

mn(v)
}

dv,

(12)

where

rmn(v) = ymn(v) + E [X(v,∞) | S(v) = n]− E [X(v,∞) | S(v) = m] . (13)

In the next paragraphs, we derive the formulas for the mean and variance (process

error) under our particular (non-homogeneous) Markovian setting as described in

Subsection 3.1.2. Let us recall that in this setting, intensities can be set at zero,

except for the following with j ≥ 3: λj,1(t) = h1(t) (settlement without payment),

λj,2(t) = h2(t) (settlement with payment) and λj,j+1(t) = h3(t) (payment without

settlement).

Expected payments along a claim path In our setting, it is clear thatX(u,∞)

is zero given that the claim is settled, that is given that S(u) = 1 or S(u) = 2.

Moreover, without any change in the path distribution, it is su�cient to study

X(u,∞) given that S(u) = 3. Based on Proposition 7, we then get after some

computation:

E [X(u,∞) | S(u) = 3] =

∫ ∞
u

{
h2(v)y2(v) + h3(v)y3(v)

}{∑
m≥3

p3m(u, v)

}
dv.

Note that
∑

m≥3 p3m(u, v) is the probability that the Markov process stays in the

set {3, 4, ....}, whose transition to states 1 and 2 are h1 and h2 respectively ; therefore∑
m≥3 p3m(u, v) = exp

(
−
∫ u
s

(h1(v) + h2(v))dv
)
- this leads to the following result:

Proposition 8. The expected payments after some time s for a single claims path

can be written as

µ(s) = E [X(s,∞) | S(s) = 3]

=

∫ ∞
s

{(
y2(u)h2(u) + y3(u)h3(u)

)
exp

(
−
∫ u

s

(h1(v) + h2(v))dv

)}
du.

(14)
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Remark 5. An alternative way of computing the quantities µk(u) := E [X(u,∞) | S(u) = k],

as suggested in Hesselager (1994) (see Remark 3.1), is to rely on Thiele's di�erential

equation given as

µ′k(s) = −
∑

j∈N∗\{k}

λkj(s)(ykj(s) + µj(s)− µk(s)).

This equation, stated here in a general Markov framework, provides a convenient

numerical scheme for computing transition probabilities in more general individual

claims models. This can be proved based on the representation given in Equation

(11) - as the proof does not appear in Hesselager (1994), we propose to detail it in

Appendix to guarantee self-consistency of the results included in the present survey.

In our case, denoting µ3 ≡ µ, Thiele's di�erential equation reduces to

µ′(s) = −
(
y2(s)h2(s) + y3(s)h3(s)

)
+

(
h1(s) + h2(s)

)
µ(s), (15)

whose solution satis�es for s ≤ t

µ(s) = µ(t) exp

(
−
∫ t

s

(h1(u) + h2(u))du

)
+

∫ t

s

{(
y2(u)h2(u) + y3(u)h3(u)

)
exp

(
−
∫ u

s

(h1(v) + h2(v))dv

)}
du.

(16)

Letting t → ∞, we recover the closed form in Equation (14) for the expected pay-

ments on a single claim path.

Remark 6. In the homogeneous Markovian setting, under which hi(s) ≡ hi and

yi(s) ≡ yi, the expected payments along a claims path write

µ(s) = µ(0) =
y2h2 + y3h3

h1 + h2

.

Variance of claims payments From Equation (12), and by analogous reasoning

as in the previous part on expected payments, one can state the following result:

Proposition 9. The variance of total payments after some time s along a single

claims path can be written as

γ(s) = Var (X(s,∞) | S(s) = 3) =

∫ ∞
s

H(u) exp

(
−
∫ u

s

(h1(v) + h2(v))dv

)
du.

(17)

where the function H, which depends on time since reporting, is given by

H = h1µ
2 + h2

(
σ2

2 + (y2 − µ)2
)

+ h3

(
σ2

3 + y2
3

)
. (18)
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Remark 7. As in Remark 5, one can alternatively use Thiele's di�erential equation

satis�ed by the variance of payments; denote γk(u) = Var (X(u,∞) | S(u) = k), then

γ′k(s) = −
∑

j∈N∗\{k}

λkj(s)
(
σ2
kj(s) + r2

kj(s) + γj(s)− γk(s)
)
,

where rkj(s) is de�ned in Equation (13). Denote γ(s) ≡ γ3(s); in our case, Thiele's

di�erential equation reduces to

γ′(u) = −H(u) + γ(u) (h1(u) + h2(u)) ,

which allows to recover the result in Proposition 9.

Remark 8. In the homogeneous Markovian setting, under which hi(s) ≡ hi and

yi(s) ≡ yi, the variance of the total payments along a claims path writes

γ(s) ≡ γ =
h1µ

2 + h2 (σ2
2 + (y2 − µ)2) + h3(σ2

3 + y2
3)

h1 + h2

,

where

µ =
y2h2 + y3h3

h1 + h2

.

3.4.2 Closed-form formulas for the claims population

IBNR reserve Recall that times and reporting delays are given as a Poisson point

measure Q(dt, du) with intensity measure q(dt, du) = λ(t)dt ⊗ pU |t(du). Therefore

the ultimate payments for IBNR claims at observation time τ can be expressed as

XIBNR
τ :=

∫ τ

0

∫ ∞
τ−s

X(s)(0,∞)Q(ds, du). (19)

The expected payments are therefore given as

E
[
XIBNR
τ

]
=

∫ τ

0

∫ ∞
τ−s

µ(s)(0)λ(s)pU |s(du)ds,

where µ(s)(0) ≡ µ(0) is expressed in Equation (14). This leads to the following

result:

Proposition 10. The total IBNR reserve writes

E
[
XIBNR
τ

]
=

{∫ τ

0

dsλ(s)

∫ ∞
τ−s

pU |s(du)

}
×
∫ ∞

0

{(
y2(u)h2(u) + y3(u)h3(u)

)
exp

(
−
∫ u

0

(h1(v) + h2(v))dv

)}
du.

(20)

Based on the representation (19), we can also derive the variance of the IBNR

payments as

Var
(
XIBNR
τ

)
=

∫ τ

0

∫ ∞
τ−s

E
[
X(s)(0,∞)2

]
λ(s)pU |s(du)ds. (21)
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Remark 9. Note that this is not a trivial result; it holds according to the fact that

the family of processes
(
X(s)(u,∞)

)
for occurrence times s is independent from the

Poisson point measure Q. To prove it, let us use this independence and construct an

extended Poisson measure M(ds, du, dX̄) with intensity measure m(ds, du, dX̄) =

λ(s)ds ⊗ pU |s(du) ⊗ pX̄|s,u(dX̄), where we use a general notation pX̄|s,u(dX̄) for

the density distribution of the R-valued random variable X(s)(0,∞). Based on this

Poisson point measure, the following representation holds:

XIBNR
τ =

∫ τ

0

∫ ∞
τ−s

∫
R
X̄M(ds, du, dX̄), (22)

and from the classical properties of Poisson point measure, one gets

Var
(
XIBNR
τ

)
=

∫ τ

0

∫ ∞
τ−s

∫
R
X̄2m(ds, du, dX̄),

which then reduces to Equation (21).

We therefore get the following result:

Proposition 11. The variance of the IBNR reserve (process error) writes

Var
(
XIBNR
τ

)
= (γ(0) + µ(0)2)

∫ τ

0

∫ ∞
τ−s

λ(s)pU |s(du)ds, (23)

where µ(0) and γ(0) can be computed from Equations (14) and (17) respectively.

Based on the representation (22), it is also possible to compute the Laplace

transform of the total IBNR payments, which involves the distribution pX̄|s,u(dX̄)

as a whole. Indeed, from Poisson point measures properties as well, one gets

Proposition 12. The Laplace transform of the IBNR reserve writes

E
[
exp

(
−θXIBNR

τ

)]
=

∫ τ

0

ds

∫ ∞
τ−s

pU |s(du)

∫
R
pX̄|s,u(dX̄) exp

(
1− exp

(
−θX̄

))
.

RBNS reserve The future payments for the RBNS claims write

XRBNS
τ =

∫ τ

0

∫ τ−s

0

X(s)(τ − s− u,∞)1S(s)(τ−s−u)6∈{1,2}Q(ds, du).

Let us denote by Fτ the information about reported claims (including RBNS) up to

time τ ; then the RBNS reserve writes

E
[
XRBNS
τ | Fτ

]
=

∫ τ

0

∫ τ−s

0

E
[
X(s)(τ − s− u,∞)1S(s)(τ−s−u)6∈{1,2} | Fτ

]
Q(ds, du).

Using the independence between claims paths and the Markov property of each

single path, we get the following result
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Proposition 13. The RBNS reserve writes

E
[
XRBNS
τ | Fτ

]
=

∫ τ

0

∫ τ−s

0

µ(τ − s− u)1S(s)(τ−s−u) 6∈{1,2}Q(ds, du), (24)

where µ(.) is given in Equation (14).

Finally, the variance of RBNS future payments is given in the following propo-

sition, as that of a sum (integral) of independent trajectories:

Proposition 14.

Var
(
XRBNS
τ | Fτ

)
=

∫ τ

0

∫ τ−s

0

γ(τ − s− u)1S(s)(τ−s−u)6∈{1,2}Q(ds, du).

3.5 Numerical illustration

The numerical illustration is based on a real portfolio, in which 8 groups of claims

can naturally be identi�ed by means of an observed covariate. For purpose of con-

�dentiality, the covariates possible values are labeled from A to H. We represent in

Figure 7 the observed occurrence times and reporting delays used for calibration (all

groups merged in the illustration). The sample is made of 19,870 observed claims,

split into 6,121 settled claims and 13,749 RBNS claims.

The occurrence and reporting component of the model is taken as the standard

parametrization in each group - that is, a constant occurrence frequency is cho-

sen (which depends on claims covariate) as well as a constant reporting parameter

(which again depends on claims group) for the exponentially distributed delay. The

estimated occurrence and reporting parameters are illustrated in Figure 8 and com-

pared to the 'naive' estimates based on a separate �t of frequency and reporting

parameters. Note that this is the average reporting delay (in years) which is repre-

sented here (the inverse of each claims group reporting parameter). As expected, the

joint estimation of occurrence and reporting parameters leads to a higher occurrence

frequency and a higher average delay compared to a separate estimation.

Based on these parameters, it is possible to derive the distribution of the num-

ber of IBNR - this is given in Figure 9 (with the associated prediction error) and

compared with the Mack model (with Gaussian distribution assumption). Again

here, similar conclusions hold as in 2.5.2: the Mack model provides a higher IBNR

(unitary) reserve (4,485) compared to the individual claims model (4,334), while

providing a larger total con�dence interval. Note that here the Mack method is

applied to the full triangle (all 8 groups merged) in order to guarantee reasonable

forecasts - note also that the joint application of the Mack method to both 8 tri-

angles would require an extended framework to account for correlations, see Braun

(2004) and Merz and Wüthrich (2007).
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Let us now focus on the claims payment streams, and recall that the overall

events frequency in the claims path (whatever their type) is driven by h1 + h2 + h3

and that the weight of each parameter relates to the event probability, as described

in 3.1.1. We depict the frequency parameters h1, h2 and h3 in Figure 10, which are

assumed to be constant in a �rst step of the analysis. This �rst indicates that both

settlement frequencies and payments without settlement are of the same order of

magnitude, although one can identify in more details that group C is characterized

by both a high settlement frequency (shorter claims history) and a low payment

frequency (more time between two payments). This contrasts with group B, with a

larger time to settlement, and more frequent payments during the claims paths. In

between, claims such as that of group F are characterized by a medium average time

to settlement and times between payments, compared to the other groups. Note that

as almost no payments at settlement occurred, the estimates for parameter h2 are

close or equal to zero, depending on the group considered.

To re�ne the analysis, we propose to �t yearly piecewise constant parameters

h1, h2 and h3, to better account for the timing of the kind of events which are

observed here. Note that maximum likelihood estimators in this piecewise constant

setting can be derived in closed form based on the likelihood representation (10) - the

calibration results are depicted in Figure 11. This setting appears quite informative

(except for h2 whose values are negligible) as a proper structure can be exhibited

among the several claims groups considered, namely:

• The settlement frequency h1 is low for the two �rst years, then increases for

years 3 and 4, then a slight decrease is observed and �nally an increase or

decrease in the latest years up to 10, depending on the group considered. In

particular, the overall increase of the settlement intensity from earliest years of

development to the latest ones means that the probability for an IBNR claim

to be settled in its �rst year of development is lower than that of an RBNS

claim with already 2 years of development, which in comparison is more likely

to be settled. Therefore such conclusions contradict a simpli�ed homogeneous

Markov framework, which would lead in particular to consider that expected

future payments are the same for RBNS and IBNR claims, see Remarks 6 and

8. Note however that the illustrative computations for the Markov case can

serve as a building block for the piecewise constant intensity model (worth

mentioning that it is not homogeneous Markov).

• The payment (without settlement) frequency h3 shows a di�erent pattern, as it

is high for the �rst year, then deceases to the second year, and �nally increases

(overall) up to the latest year. This means in particular that, the settlement

intensity being given (let us think about it as constant for the interpretation),

payments are more frequent in the �rst and the last year, and increases from
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the second year to the last year. Also, this means that e.g. payments are more

likely to occur (still in this interpretation framework) in the �rst year of an

IBNR claim compared to the second year of a one-year old RBNS claim.

As for the observed payments, we also account for the covariate information and

�t a separate distribution for each claim group. Moreover, due to the nature of

the payments distribution, we use a mixture of a log-normal distribution and an

exponential in the tail - the density is written as

P (x) = p
1

xσ
√

2π
exp

(
−(lnx− µ)2

2σ2

)
1x≤x0 + (1− p)γ exp (−γ(x− x0))1x>x0 ,

with x0 a �xed threshold separating attritional and large claims, which depends on

the group considered - the results are depicted in Figure 12.

The frequency and payments parameters being �tted, this allows us to compute

by closed-form µ(s) and γ(s), the expected payments and related variance along a

single claim path conditional on development length, see Equations (14) and (17)

in Subsection 3.4. The results are depicted in Figure 13 - they can be described

as follows: as a function of claim development, the expected payments decrease in

the 3 �rst years, due to the combination of a decrease of the payment frequency

and an increase (spike) in the settlement frequency h1 (see again Figure 11); then

the expectation increases again, due to the reduction in the settlement frequency

after the third year barrier is attained. This illustrates the bene�t in analyzing the

timing of claims development, and in particular the bias when considering simple

frequency × cost models.

On this topic, the computation of the IBNR and RBNS reserves is informative,

which can be performed in closed-form based on Equations (20) and (24). Indeed,

although the expected number of IBNR represents around 20% of the claims numbers

to be paid (both RBNS and IBNR), which would be the ratio in terms of reserve in a

homogeneous Markov setting, in terms of amounts this represents here around 50%,

which illustrates the importance of quantifying IBNR claims accurately for lines of

business with extended reporting delays - this is depicted in Figure 14.

Also, the comparison with the Chain-Ladder prediction is given in Figure 15. As

for the IBNR unitary reserve (see 2.5.2), the Chain-Ladder method provides higher

reserves for all (except one) groups.

Finally, we propose in Figure 16 a detail of the coe�cients of variation (CV)

for estimation and process errors for each claim group, and we compare the results

of the individual model with that of the Mack model. First, the graph shows a

reduction in process variance in the individual model, whose stochastic formulation

is di�erent (and apparently less overdispersed) compared to the original discrete

time Markov model of Mack (1993). More importantly, it appears that the use of

the individual claims model provides a great reduction in estimation error when
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payments are modelled, which strengthens the results obtained in 2.5.2 for IBNR

claim number. This key conclusion, which has also been observed in other studies

as referenced in this survey, can be interpreted based on two facts: �rst, the more

natural formulation seems to allow for a better �t of the several individual model

building block compared to the Mack model, and second, the larger amount of data

available for each part of claims history combined with this smart parametrization

makes estimators have a low variance. On this basis, we argue that such modelling

framework represents a promising (and complementary) method to assess future

claims development with improved accuracy.

Figure 7: Occurrence times and reporting delays used for calibration

Figure 8: Occurrence and reporting parameters estimated for each claims group
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Figure 9: Prediction of the number of IBNR - comparison between the individual

claims model and the Mack method
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Figure 10: Computation of the frequency parameters h1, h2 and h3 related to pay-

ments and settlement.

Figure 11: Computation of the frequency parameters h1 and h3 driving settlement

and payments respectively, in a time dependent setting.
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Figure 12: Fitted for each claims group: mean and volatility parameters of the

log-normal distribution, as well as the exponential parameter, exponential threshold

and large claim probability.
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Figure 13: Expectation (left) and variance (right) of future payments on a single

claim path, conditional on claim group and development length.

Figure 14: Proportion of IBNR claims in all claims to be payed (both IBNR and

RBNS): numbers and amounts.

Figure 15: Comparison with the Chain-Ladder method
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Figure 16: Coe�cients of variation related to process and estimation errors, for both

the Individual model and the Mack model.

4 Concluding remarks

In this survey, we proposed a uni�ed framework to address the stochastic modelling

of individual claims for reserving purposes, based on the earliest developments of

Norberg (1993) and Hesselager (1994) in this direction. The model is built upon

two major components, driving the occurrence and reporting process, as well as

the claims payments path until settlement. It is shown in this paper how such

framework can be used for calibration, risk analysis and simulation in a variety of

contexts based on a coherent modeling framework. We argue that individual-based

methods, which allow to analyze, understand and forecast risk in a more precise way

compared to triangle-based approaches while taking advantage of detailed individual

information, is worth implementing in current risk management practices.

Further work remains to be done on the exploration of the numerous potentiali-

ties of individual models, in particular by calibrating more �exible models involving

advanced dependence structures between occurrence, reporting and payments (tim-

ing and amount). Also, the comparison with classical methods based on run-o�

triangles suggests mathematical perspectives which are out of scope of the present

survey, but needed to continue improving our understanding of the link with more

classical models.
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Appendix

In this appendix, we propose the proof of Thiele's di�erential equation (discussed

in 3.4) satis�ed by any prospective reserve on a (general) individual Markov model,

as introduced by Hesselager (1994).

Proposition 15. For any set of continuous maps fmn(.) for all n 6= m, the prospec-

tive reserve conditioned on state j at time s,

R(s | j) =
∑
m∈N∗

∑
n∈N∗\{m}

∫ ∞
s

pjm(s, t)λmn(t)fmn(t)dt, (25)

satis�es Thiele's di�erential equation

dR(s | j)
ds

= −
∑

k∈N∗\{j}

λjk(s) (fjk(s) +R(s | k)−R(s | j)) . (26)

Proof of Proposition 15 Let us perform a standard di�erentiation of Equation

(25), leading to

dR(s | j)
ds

= −
∑
m∈N∗

∑
n∈N∗\{m}

pjm(s, s)λmn(s)fmn(s)+
∑
m∈N∗

∑
n∈N∗\{m}

∫ ∞
s

∂pjm(s, t)

∂s
λmn(t)fmn(t)dt,

where the �rst term reduces to −
∑

k∈N∗\{j} λjk(s)fjk(s), since pjm(s, s) = 1m=j.
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As for the second term, let us focus on that in Equation (26) which can be

rewritten as

−
∑

k∈N∗\{j}

λjk(s)(R(s | k)−R(s | j)),

= −
∑

k∈N∗\{j}

λjk(s)
∑
m∈N∗

∑
n∈N∗\{m}

∫ ∞
s

(pkm(s, t)− pjm(s, t))λmn(t)fmn(t)dt,

= −
∑
m∈N∗

∑
n∈N∗\{m}

∫ ∞
s

λmn(t)fmn(t)
∑

k∈N∗\{j}

λjk(s) (pkm(s, t)− pjm(s, t)) dt.

Now, let us compute the following di�erential:

∂pjm(s, t)

∂s

= lim
h→0

pjm(s+ h, t)− pjm(s, t)

h

= lim
h→0

pjm(s+ h, t)−
∑

k∈N∗\{j} pjk(s, s+ h)pkm(s+ h, t)

h

=
∑

k∈N∗\{j}

lim
h→0

pjk(s, s+ h)

h
(pjm(s+ h, t)− pkm(s+ h, t))

=
∑

k∈N∗\{j}

λjk(s) (pjm(s, t)− pkm(s, t)) .

This concludes the proof.
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