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Abstract
We describe an efficient algorithm for computing the matrix vector products that
appear in the numerical resolution of boundary integral equations in 2 space di-
mension. This work is an extension of the so-called Sparse Cardinal Sine De-
composition algorithm by Alouges et al., which is restricted to three-dimensional
setups. Although the approach is similar, significant differences appear throughout
the analysis of the method. Bessel decomposition, in particular, yield longer series
for the same accuracy. We propose a careful study of the method that leads to a
precise estimation of the complexity in terms of the number of points and chosen
accuracy. We also provide numerical tests to demonstrate the efficiency of this
approach. We give the compression performance for a N ×N linear system for
several values N up to 107 and report the computation time for the off-line and on-
line parts of our algorithm. We also include a toy application to sound canceling
to further illustrate the efficiency of our method.

Introduction
The Boundary Element Method requires the resolution of fully populated linear
systems Au = b. As the number of unknowns gets large, the storage of the matrix A
and the computational cost for solving the system through direct methods (e.g. LU
factorization) become prohibitive. Instead, iterative methods can be used, which
require very fast evaluations of matrix vector products. In the context of boundary
integral formulations, this takes the form of discrete convolutions:

qk =
Nz

∑
l=1

G(zk− zl) fl , k ∈ {1, · · · ,Nz} . (1)

Here, G is the Green’s kernel of the partial differential equation under considera-
tion, z = (zk)1≤k≤Nz is a set of points in R2, with diameter δmax, |·| is the Euclidian
norm and f = ( fk)1≤k≤Nz is a vector (typically the values of a function at the points
zk). For example, the resolution of the Laplace equation with Dirichlet boundary
conditions leads to (1) with G(x) = − 1

2π log |x| (the kernel of the single layer po-
tential).

In principle, the effective computation of the (qk)1≤k≤Nz using (1) requires
O(N2

z ) operations. However, several more efficient algorithms have emerged to

1



compute an approximation of (1) with only quasilinear complexity in Nz. Among
those are the celebrated Fast Multipole Method (see for example [7, 8, 13, 19, 20]
and references therein), the Hierarchical Matrix [6], and more recently, the Sparse
Cardinal Sine Decomposition (SCSD) [2].

One of the key ingredients in all those methods consists in writing the following
local variable separation:

G(zk− zl)≈∑
j

λ jG
j
1(zk)G

j
2(zl),

which needs to be valid for zk and zl arbitrarily distant from each other, and up to a
controlled accuracy. This eventually results in compressed matrix representations
and accelerated matrix-vector product. Notice that, to be fully effective, the former
separation is usually made locally with the help of a geometrical splitting of the
cloud of points z using a hierarchical octree.

Here we present an alternative compression and acceleration technique, which
we call the Sparse Bessel Decomposition (SBD). This is an extension of the SCSD
adapted to 2-dimensional problems. The SBD and SCSD methods achieve perfor-
mances comparable to the aforementioned algorithms, they are flexible with re-
spect to the kernel G, and do not rely on the construction of octrees, which makes
them easier to implement. In addition, they express in an elegant way the intu-
ition according to which a discrete convolution is nothing but a product of Fourier
spectra.

The method heavily relies on the Non Uniform Fast Fourier Transform (NUFFT)
of type III (see the seminal paper [12] and also [14, 17] and references therein for
numerical aspects and open source codes). The NUFFT is a fast algorithm, which
we denote by NUFFT±[z,ξ ](α) for later use, that returns, for arbitrary sets of Nz
points z and Nξ points ξ in R2 and a complex vector α ∈ CNz , the vector q ∈ CNξ

defined by:

qν =
Nz

∑
k=1

e±izk ·ξ ν αk, ν ∈
{

1, · · · ,Nξ

}
.

This algorithm generalizes the classical Fast Fourier Transform (FFT) [10], to
nonequispaced data, preserving the quasi-linear complexity in Nz,ξ :=max(Nz,Nξ ).
The SBD method first produces a discrete and sparse approximation of the spec-
trum of G,

G(x)≈ Gapprox(x) :=
Nξ

∑
ν=1

eix·ξ ν ω̂ν , |x| ≤ δmax. (2)

This approximation is replaced in (1) to yield

qk ≈
( Nξ

∑
ν=1

e+izk ·ξ ν

[
ω̂ν

Nz

∑
l=1

e−izl ·ξ ν fl)

])

1≤k≤Nz

= NUFFT+[z,ξ ]
(
ω̂�NUFFT−[z,ξ ]

(
f
))

.

(3)

where � denotes the elementwise product between vectors. The decomposition
(2) is obtained ”off-line” and depends on the value of δmax, but is independent of
the choice of the vector f and can thus be used for any evaluation of the matrix
vector product (1). The approximation (3) reduces the complexity from O(N2

z ) to
O(Nz,ξ log(Nz,ξ )), stemming from the NUFFT complexity.
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The NUFFT has already been used in the literature for the fast evaluation of
quantities of the form (1). In particular, our algorithm shares many ideas with the
approach in [18]. The method presented therein also relies on an approximation
of the form (2). However, we choose the set of frequencies ξ in a different way,
leading to a sparser representation of G (see Remark 2).

The kernel G is usually singular near the origin, in which case (2) can only
be accurate for |z| above some threshold δmin. Part of the SBD algorithm is thus
dedicated to computing a local correction using a sparse matrix (which we call
the close correction matrix, denoted by D in the sequel) to account for the closer
interactions. This threshold must be chosen so as to balance the time spent for
computing the far (3) and those close contributions. As a matter of fact, we shall
prove the following:

Theorem 1. Assume the points z are uniformly distributed on a regular curve,
and G(x) = log |x|. Let ε > 0 the desired accuracy of the method, and assume
Nz > |logε|. Fix

a =
|logε|2/3

N2/3−α
z

for some α ∈
[
0, 1

6
]
, and choose

δmin = aδmax.

Then there exists a constant C > 0 independent of Nz, ε and α such that:

(i) The number of operations required for the computation of the representation
(2) valid for |x| ∈ [δmin,δmax] is bounded by

Coff(Nz,ε,α)≤C |logε|N2−3α
z ;

(ii) The number of operations required for the assembling of the close correction
matrix D is bounded by

Cassemble(Nz,ε,α)≤C |logε|2/3 CNUFFT(ε)N
4/3+α
z log(Nz);

(iii) Once these two steps have been completed, (1) can be evaluated for any
choice of vector f at a precision at least ε ∑

l
| fl | in a number of operations

bounded by

Con(Nz,ε,α)≤C |logε|2/3
(

N4/3+α
z +CNUFFT(ε)N

4/3−2α
z logNz

)
.

We prove Theorem 1 using several steps. We first introduce the Fourier-Bessel
series (section 2). In section 3, we present the Sparse Bessel Decomposition, and
analyze its numerical stability. In section section 4, we apply the SBD method to
the Laplace kernel, and give estimates for the number of terms to reach a fixed
accuracy. We also explain how to adapt this method for other kernels. In section 5,
we show how to convert a SBD decomposition into an approximation of the form
(2) through what we call ”circular quadratures” and provide error estimates. In
section 6, we summarize the complexities of each step and prove Theorem 1. We
conclude with some numerical examples.

Before this, let us start by a brief overview of our algorithm.
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1 Summary of the algorithm
The SBD algorithm can be summarized as follows:

Off-line part
Inputs: A radially symmetric kernel G, a set of Nz points z in R2 of diameter
δmax, a value for the parameter δmin, a tolerance ε > 0.

Sparse spectrum sampling: Compute a set of Nξ complex weights ω̂ and
Nξ frequencies ξ so that (2) is valid for δmin ≤ |x| ≤ δmax up to tolerance ε .

Correction Matrix: Determine the set P of all pairs (k, l) such that |zk− zl | ≤
δmin (fixed-radius neighbor search). Assemble the close correction sparse
matrix:

Dkl = δ(k,l)∈P

(
G(zk− zl)−

Nξ

∑
ν=1

ei(zk−zl)·ξ ν ω̂ν

)
. (1.1)

Notice that the second term is a non-uniform discrete Fourier transform. In-
deed, if we introduce (yp)p∈P given by y(k,l)= zk−zl , and Y =NUFFT+[y,ξ ](ω̂),
the non-zero entries of D are given by

Dk,l = G(y(k,l))−Y (k,l).

Outputs: The set of weights ω̂ , the frequencies ξ and the sparse matrix D.

On-line part
Input: All outputs of the off-line part, and a complex vector f of size Nz.

Far approximation: Compute, for all k,

qfar =
Nz

∑
l=1

Gapprox(zk− zl) fl . (1.2)

For this, follow three steps

(i) Space→ Fourier: Compute f̂ = NUFFT−[z,ξ ]( f ).
(ii) Fourier multiply: Perform elementwise multiplication by ω̂:

ĝν = ω̂ν f̂ν .

(iii) Fourier→ Space: Compute qfar = NUFFT+[z,ξ ](ĝ).
Close correction: Compute the sparse matrix product:

qclose = D f .

Output: The vector q = qfar +qclose, with, for any k ∈ {1, · · · ,Nz} ,
∣∣∣∣∣qk−

Nz

∑
l=1

G(zk− zl) fl

∣∣∣∣∣≤ ε
Nz

∑
l=1
| fl | .

The sparse spectrum sampling step:
The main novelty in our algorithm is the method for producing an approximation
of the form (2). We proceed in two steps, uncoupling the radial and circular coor-
dinates.
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Sparse Dessel Decomposition: In a first part, we compute a Bessel series
approximating G(r) on [δmin,δmax], which we call a Sparse Bessel Decomposition.
It takes the form

G(r)≈ G(δmax)+
P

∑
p=1

αpJ0(δmaxρpr), r ∈ [δmin,δmax],

where J0 is the Bessel function of first kind and order zero and (ρp)p∈N∗ is the
sequence of its roots (see Definition 1 for more details). In order to compute the
coefficients (αp)1≤p≤P, we first choose a starting value for P and compute the
weights α1, · · · ,αP that minimize the least square error

∫

δmin≤|x|≤δmax

∣∣∣∣∣∇
(

G(x)−
P

∑
p=1

αpJ0(ρpδmax |x|)
)∣∣∣∣∣

2

dx.

This amounts to solving an explicit linear system. We keep increasing P until the
residual error goes below the required tolerance. To choose the stopping criterion,
we suggest monitoring the L∞ error near δmin where it is usually the highest. The
successive choices of P are made using a dichotomy search.

Circular quadrature: In a second step, we use approximations of the form:

J0(ρp |x|)≈
1

Mp

Mp−1

∑
m=0

eiρpξ m
p ·x, p ∈ {1, · · · ,P},

which are discrete versions of the identity:

J0(ρp |x|) =
1

2π

∫

|ξ |=1
eiρpx·ξ dσ(ξ ).

We sum them to eventually obtain the formula (2).

Remark 1. In the SCSD method [2], the Bessel functions are replaced by cardinal
sine functions, since, for x ∈ R3

1
4π

∫

|ξ |=1
eix·ξ dσ(ξ ) = sinc(|x|),

where the integral is now taken over S2 ⊂ R3.

2 Series of Bessel functions and error estimates
In this section, we give a short introduction to Fourier-Bessel series. A possible
reference on this topic is [24], chapter XVIII. The main result needed for our pur-
pose is Proposition 1, an equivalent statement of which can be found in to Theorem
1 in [22] chapter 8, section 20.

In subsection 2.1, we quickly recall some classical facts on the Laplacian eigen-
functions with Dirichlet boundary conditions on the unit ball and formulate a con-
jecture (Conjecture 1) for the normalization constant supported by strong numer-
ical evidence (Figure 1). It is worth noting that the use Laplace eigenfunctions
as the decomposition basis and the results we obtain hereafter do not rely on the
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space dimension. For example, in R3 the radial eigenvalues of the Laplacian are
proportional to

x 7→
J1/2(2π p |x|)
|x|1/2

, p ∈ N∗.

Therefore, our approach generalizes [2] to any dimension.

2.1 Radial eigenvalues of the Laplace operator with Dirich-
let conditions
In the following, B denotes the unit ball in R2, and C its boundary. We say that a
function u : R2→ R is radial if there exists ũ : R+→ R such that for any x ∈ R2,

u(x) = ũ(|x|).

In this case, we use the notation u(x) = u(r) where |x| = r. We note L2
rad(B) the

closed subspace of L2 that are radial functions and C∞
c,rad(B)= {ϕ ∈C∞

c (B) | ϕ is radial }.
Similarly,

H1
rad(B) =

{
u ∈ L2

rad(B)
∣∣∣∣ ∀1≤ i≤ 2,

∂u
∂xi
∈ L2(B)

}
,

which is a Hilbert space for the norm

‖u‖2
H1

rad(B)
=
∫

B
|u|2 + |∇u|2 = 2π

∫ 1

0
r
(

u(r)2 +u′(r)2
)

dr.

Finally, we note H1
0,rad(B) the closure of C∞

c,rad(B) in H1
rad(B), with the norm

‖u‖2
H1

0,rad(B)
= 2π

∫ 1

0
ru′(r)2dr.

We now briefly recall some facts on Bessel functions. All the results that we
use on this topic can be found in the comprehensive book [1], most of which can
be consulted handily on the digital library [16].

Definition 1. The Bessel function of the first kind and order α , Jα is defined by
the following series:

Jα (r) :=
∞

∑
m=0

(−1)m

m!Γ(m+1+α)

(
r
2

)2m+α
. (2.1)

J0 is a C∞ solution of Bessel’s differential equation

r2 f ′′(r)+ r f ′(r)+ r2 f (r) = 0. (2.2)

The roots (ρp)p∈N∗ of J0, behave, for large p, as

ρp ∼p→∞
π p.

More precisely, ρp = π p− π
4 +O

(
1
p

)
, and

π(p−1/4)≤ ρp ≤ π(p−1/8). (2.3)
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For any p ∈ N∗, we introduce:

ep(x) =CpJ0(ρp |x|),

where the normalization constant Cp is chosen such that
∥∥ep
∥∥

H1
rad(B)

= 1, that is

Cp =
1

(
2π
∫

B rρ2
pJ1(ρpr)2

)1/2
=

1√
πρp

∣∣J1(ρp)
∣∣ .

For any p ∈ N∗, ep satisfies:
−∆ep = ρ2

pep. (2.4)

The following result is well-known.

Theorem 2. The family
{

ep, p ∈ N∗
}

is a Hilbert basis of H1
0,rad(B).

One can check, using asymptotic expansions of Bessel functions, that

Cp =
1√
2π p

+O
(

1
p3/2

)
, (2.5)

We will actually need a more precise knowledge on the constant Cp. We formulate
the next conjecture, which seems hard to establish and for which we didn’t find
any element of proof in the literature. Numerical evidence exposed in Figure 1
strongly suggests it is true.

Conjecture 1. For all p ∈ N∗:

1√
2π p

≤Cp ≤
1√

2π(p−1/4)
. (2.6)

100 101 102 10310−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

p

√
2π pCp−1

1−
√

2π(p−1/4)Cp

Figure 1: Illustration of Conjecture 1 with numerical values of the first 1000 terms
of the sequence vp =

√
2π pCp−1 (blue circles) and wp = 1−

√
2π(p−1/4)Cp (red

crosses) in log-log scale
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2.2 Truncature error for Fourier-Bessel series of smooth
functions
We now introduce the Fourier-Bessel series and prove a bound for the norm of the
remainder. In Theorem 2, we have shown that any function f ∈ H1

0,rad(B) can be
expanded through its so-called Fourier-Bessel series as

f = ∑
p∈N∗

cp( f )ep.

The generalized Fourier coefficients are obtained by the orthonormal projection:

cp( f ) =
∫

B
∇ f (x) ·∇ep(x)dx = ρ2

k

∫

B
f (x)ep(x)dx.

Most references on this topic focus on proving pointwise convergence of the series
even for not very regular functions f (e.g. piecewise continuous, square integrable,
etc.) [3, 9, 15, 21]. In such cases, the Fourier-Bessel series may exhibit a Gibb’s
phenomenon [26]. On the contrary here, we need to establish that the Fourier-
Bessel series of very smooth functions converges exponentially fast. To this aim,
we first introduce the following terminology:

Definition 2. We say that a radial function f satisfies the multi-Dirichlet condition
of order n ∈ N∗ if f is H2n in a neighborhood of C and if for all s ≤ n− 1, the
s− th iterate of −∆ on f , denoted by (−∆)s f , vanishes on C (with the convention
(−∆)0 f = f ).

Proposition 1. If f ∈ H2n(B) satisfies the multi-Dirichlet condition of order n,
then for any p ∈ N∗:

cp( f ) =
1

ρ2n−2
p

∫

B
(−∆)n f (x)ep(x)dx.

Proof. If f satisfies the multi-Dirichlet condition of order n = 1, then by integra-
tion by parts:

cp( f ) =
∫

B
(−∆) f (x)ep(x)dx,

since ep vanishes on C . Assume the result is true for some n≥ 1 and let f satisfy
the multi-Dirichlet condition of order n+ 1. Then, using the fact that ep is an
eigenvector of −∆ associated to the eigenvalue ρ2

p we obtain:

cp( f ) =
1

ρ2n
p

∫

B
(−∆)n f (x) (−∆)ep(x)dx.

The result follows from integration by parts where we successively use that (−∆)n f
and ep vanish on C .

Corollary 1. If f ∈H2n(B) satisfies the multi-Dirichlet condition of order n, there
exists a constant C independent of the function f such that for all p ∈ N∗,

|cp( f )| ≤C
‖(−∆)n f‖L2

rad(B)

(π p)2n−1 .

Notice that this is similar to the fact that the Fourier coefficients of smooth func-
tions decay fast.
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Proof. We apply the result of the previous proposition and remark that since ep is
an eigenfunction of the Laplace operator with unit norm in H1

0,rad(B),
∥∥ep
∥∥

L2
rad(B)

=

1
ρp

∥∥ep
∥∥

H1
0,rad(B)

=
1

ρp
. To conclude, recall ρp ∼ pπ for large p.

Corollary 2. Let the remainder be defined as

RP( f ) =
+∞

∑
p=P+1

cp( f )ep.

If f ∈ H2n(B) satisfies the multi-Dirichlet condition of order n, there exists a con-
stant C independent of n and P such that:

‖RP( f )‖H1
0,rad(B)

≤C
‖(−∆)n f‖L2

rad(B)

(πP)2n

√
P3

n
.

Proof. Parseval’s identity implies

‖RP( f )‖2
H1

0,rad(B)
=

+∞

∑
p=P+1

|cp( f )|2.

According to the previous results, we find that:

‖RP( f )‖H1
0,rad(B)

≤C‖(−∆)n f‖L2
rad(B)

√√√√
+∞

∑
p=P+1

1
(π p)4n−2 .

The announced result follows from ∑
p>P

1
pα ∝

1
(α−1)Pα−1 for α > 1.

2.3 Other boundary conditions
When we replace the Dirichlet boundary condition by the following Robin bound-
ary conditions

∂u
∂n

+Hu = 0 (2.7)

for some constant H ≥ 0, the same analysis can be conducted, leading to Dini
series (also covered in [24]). This time, we construct a Hilbert basis of H1

rad(B)
with respect to the bilinear form

aH(u,v) :=
∫

B
∇u(x) ·∇v(x)dx+H

∫

C
u(x)v(x)dσ(x).

The following result holds.

Theorem 3. Let (ρH
p )p∈N∗ the sequence of positive solutions of

rJ′0(r)+HJ0(r) = 0.
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(i) If H > 0, the functions
eH

p (r) =CpJ0(ρH
p r),

with Cp such that aH(eH
p ,e

H
p ) = 1, form a Hilbert basis of H1

rad(B).

(ii) If H = 0, a constant function must be added to the previous family to form a
complete set.

It can be checked that the truncature error estimates in Corollary 2 extend to this
case, for functions satisfying multi-Robin conditions of order n≥ 1, that is for all
s≤ n−1, (−∆)su satisfies (2.7).

3 Sparse Bessel Decomposition
3.1 Definition of the SBD
Consider the kernel G involved in (1). We can assume up to rescaling G that the
diameter δmax of z is bounded by 1, and therefore, we need to approximate G only
on the unit ball B. If we wish to approximate G in series of Bessel functions, two
kinds of complications are encountered:

(i) G is usually singular near the origin, therefore not in H2n(B) (even for n= 1).

(ii) The multi-Dirichlet conditions may not be fulfilled up to a sufficient order.

The point (ii) is crucial in order to apply the error estimates of the previous
section. The first two kernels that we will study (Laplace and Helmholtz) satisfy
the favorable property:

∆G = λG

for some λ ∈ C, which will be helpful to ensure (ii) at any order. For more gen-
eral kernel, we propose in subsection 4.3 a simple trick to enforce multi-Dirichlet
conditions up to a given order.

As for point (i), we will use the following method: for the approximation

G≈
P

∑
p=1

αpep,

we know by Theorem 2 that the minimal H1
0 error on B is reached for αp = cp(G).

However, if the closest interaction in (1) are computed explicitly, it can be sufficient
to approximate G in a domain of the form a≤ r≤ 1 for some a. For this reason, we
propose to define the coefficients (α1, · · · ,αP) as the minimizers of the quadratic
form

QP(t1, t2, ..., tP) =

∫

A (a)

∣∣∣∣∣∇
(

G(x)−
P

∑
p=1

tpJ0(ρp|x|)
)∣∣∣∣∣

2

dx,

where A (a) is the annulus
{

x ∈ R2
∣∣ a < |x|< 1

}
. In the sequel, those coefficients

will be called the SBD coefficients of G of order P. Obviously, for any radial
function G̃ defined on B that coincides with G on A (a), one has

QP(α1, · · · ,αP)≤

∫

B

∣∣∣∣∣∇
(

G̃(x)−
P

∑
p=1

cp(G̃)J0(ρp|x|)
)∣∣∣∣∣

2

dx.
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In particular, when G̃ is smooth up to the origin, this gives an error estimate via
Corollary 2. If we choose a sufficiently high value for a, we ensure that smooth
enough extensions exist, and ensure fast decay of the coefficients.

Remark 2. The SBD weights do not depend on any specific extension of G outside
the annulus. Therefore, they provide the sparsest approximation one can expect,
contrary the the usual approach where an explicit regularization G̃ of the kernel is
constructed and the coefficients cp(G̃) are used (see, for example [18]).

The next result shows that the H1
0 norm on A (a) controls the L∞ norm, thus

ruling out any risk of Gibb’s phenomenon.

Lemma 1. Let a∈ (0,1) and e∈H1
rad(A (a)) that vanishes on C . Then e coincides

almost everywhere with a continuous function with

|e(x0)| ≤
√
− log |x0|

2π

√∫

A (a)
|∇e(x)|2dx, almost for all x0 ∈A (a).

Proof. It is sufficient to show the inequality for smooth e, the general result fol-
lowing by density. Let x0 ∈A (a), we have, since e(1) = 0:

|e(x0)| ≤
∫ 1

|x0|

∣∣e′(r)
∣∣dr, (3.1)

≤
√

2π
∫ 1

|x0|
r |e′(r)|2 dr

√∫ 1

|x0|
1

2πr
dr. (3.2)

3.2 Numerical computation of the SBD
For a given kernel G, the SBD coefficients αp are obtained numerically by solving
the following linear system:

P

∑
q=1

(∫

A (a)
ρqJ1(ρp|x|)J1(ρq|x|)dx

)
αq

=−
∫

A (a)
G′(x)J1(ρp|x|)dx, 1≤ p≤ P,

(3.3)

Where J1 is the Bessel function of first kind and order 1 (in fact, J′0 = −J1). We
solve this system for increasing values of P until a required tolerance is reached. It
turns out that the matrix AP whose entries are given by

AP
k,l =

∫

A (a)
∇ek ·∇el , k, l ∈ {1, · · · ,P},

is explicit: for (i, j) ∈ {1, · · · ,P}2, the non-diagonal entries of AP are

Ai, j =
2πCiC jρiρ j

ρ2
j −ρ2

i

[
Fi, j(1)−Fj,i(1)−Fi, j(a)+Fj,i(a)

]
,

where
Fi, j(r) = ρirJ0(ρir)J′0(ρ jr),

11



while the diagonal entries are

Ai,i = 2πC2
i
(
Fi(1)−Fi(a)

)
,

where

Fi(r) = ρ2
i r2
[

1
2

J0(ρir)2 +
1
2

J′0(ρir)2
]
+ρirJ0(ρir)J′0(ρir).

Those formulas are obtained using Green’s formulas together with the fact that ek
are eigenfunctions of the Laplace operator. They are valid for any value of ρk (not
just the roots of J0).

3.3 Conditioning of the linear system
The conditioning of A seems to depend almost exclusively on the parameter γ :=
Pa. We were only able to derive an accurate estimate of the conditioning of A
when γ is small enough. For large γ , we will show some numerical evidence for a
conjectured bound on the conditioning of A.

Conditioning of A for small γ

Theorem 4. If Conjecture 1 is true, then, for b = 1, the eigenvalues of A lie in the
interval [F(γ)− π4

144
γ4

P ,1] where

F(γ) = 1−
∫ πγ

0

t
2
(J1(t)2− J0(t)J2(t))dt.

This estimate is only useful when F(γ)> 0, that is γ < γ∗ where γ∗ is the first
positive root of F(z). One has

γ∗ ≈ 1.471.

In particular, for γ = 1, The matrix A is well conditioned, the ratio of its largest
to its smallest eigenvalues being of the order F(1)−1 < 2. A plot of F is provided
below, Figure 2, and some numerical approximations of the minimal eigenvalue of
A are shown in function of γ for several values of P.

Proof. Let u ∈ span{e1,e2, · · · ,eP} and let α its coordinates on this basis. Then

αT Aα =
∫

A (a)
∇u2 <

∫

B
∇u2 = ‖α‖2

2 ,

showing that the eigenvalues of A are bounded by 1. Thus I − A is a positive
symmetric matrix and the smallest eigenvalue of A is bounded by

λmin(A)≥ 1− tr(I−A),

which yields:

λmin(A) ≥ 1−2π
P

∑
p=1

C2
p

∫ ρpa

0
uJ1(u)2du.

We now use Conjecture 1, which implies

2πC2
p ≤

1
p
+

1
3p2 ,

12



0 0.5 1 γ∗

0.5

1

γ

λ m
in
(γ
)

F(γ)
P =50
P =500

Figure 2: Graph of F and numerical values of the minimal eigenvalue of A, λmin(A) in
function of γ , in the case b = 1, for P = 50 (blue circles) and P = 500 (red crosses)

combined with (2.3), to get

λmin(A)≥ 1−
∫ P

0

dt
t

∫ πta

0
uJ1(u)2du − 1

3

P

∑
p=1

1
p2

∫ ρpa

0
uJ1(u)2du.

For the first term, we write

∫ t

0
uJ1(u)2 =

t2

2

(
J2

1 (t)− J0(t)J2(t)
)
,

while for the second, we use the classical inequality J1(u)≤ u
2 to deduce

λmin(A)≥ 1−
∫ πγ

0

t
2

(
J1(t)2− J0(t)J2(t)

)
dt− 1

48

P

∑
p=1

(ρpa)4

p2 .

We use again (2.3) to obtain:

λmin(A)≥ 1−F(γ)− γ4 π4

48
1

P4

P

∑
p=1

p2,

which obviously implies the claimed result.

Conditioning of A for large γ

The behavior of λmin(A) is more difficult to study for large γ . Nevertheless, we ob-
served the following exponential decay: for any P≥ 10, and γ ≥ 1.4, the minimal
eigenvalue of A is bounded below by

λmin(A)≥ 180exp(−5.8γ). (3.4)

13
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10−16

10−12

10−8

10−4

100

γ

λ m
in
(γ
)

γ 7→ 180exp(−5.8γ)
Theorem 4

P = 50
P = 150
P = 500
P = 1500

Figure 3: Lower bounds from Theorem 4 and Equation 3.4, and estimated minimal
eigenvalue of A in function of γ for P= 50 (blue circles), P= 150 (red crosses), P= 500
(yellow squares) and P = 1500 (purple diamonds). For P = 50, the computed minimal
eigenvalue is negative due to numerical errors from γ ≈ 7.5 so corresponding data
cannot be displayed. The horizontal dashed line shows machine precision

4 Application to Laplace and Helmholtz ker-
nels
4.1 Laplace kernel
When solving PDE’s involving the Laplace operator (for example in heat conduc-
tion or electrostatic problems), one is led to (1) with the Laplace kernel G(r) =
log(r) (we have dropped the − 1

2π constant for simplicity). Here we show that its
SBD converges exponentially fast:

Theorem 5. There exist two positive constants L1 and l2 such that

∀a ∈ (0,1),∀P ∈ N∗,∀r ∈ (a,1),

∣∣∣∣∣G(r)−
P

∑
p=1

αpep(r)

∣∣∣∣∣≤ L1e−l2aP

where α1, · · · ,αP are the SBD coefficients of G of order P.

We show this by exhibiting an extension G̃ for which we are able to estimate
the remainder of the Fourier-Bessel series. For any n∈N∗, let us define extensions
G̃n of G as

G̃n =





r2n ∑2n
k=0

ak,n

k!
(r−a)k if r ≤ a,

G(r) otherwise.
(4.1)

where the coefficients ak,n are chosen so that G̃n has continuous derivatives up to
the order 2n:

ak,n =
dk

drk

(
log(r)

r2n

)∣∣∣∣
r=a

.

14



Notice that the r2n term ensures the boundedness of (−∆)nG̃n near the origin. Also
observe that for all s ∈ N:

(−∆)sG̃n vanishes on C ,

since G̃n ≡G in a vicinity of C . We now go into some rather tedious computations
to provide a crude bound for

∥∥(−∆)nG̃n
∥∥

L2(B) in terms of the coefficients ak,n.

Lemma 2. There exists a constant C independent of n and a such that for r < a

∣∣∆nG̃n(r)
∣∣≤C

(
16n

e

)2n
max

k∈{1,··· ,2n}

( |ak,n|
k!

ak
)
. (4.2)

Proof. For r ≤ a, we have

∆nG̃n(r) =
2n

∑
k=0

k

∑
l=0

(
k
l

)
ak,n

k!
(−a)k−l(2n+ l)2(2(n−1)+ l)2× ...× (2+ l)2rl .

This result is obtained by expanding the sum in the definition of G̃n and using the
fact that ∆rk = k2rk−2. Hence, using triangular inequality

|(−∆)nG̃n(r)| ≤
2n

∑
k=0

k

∑
l=0

(
k
l

) |ak,n|
k!

ak−l(2n+ l)2(2(n−1)+ l)2× ...× (2+ l)2rl .

For l ∈ {1, · · · ,2n}, we apply the following (crude) inequality:

(2n+ l)2(2(n−1)+ l)2× ...× (2+ l)2 ≤ (4n)2(4n−2)2× ...× (2n+2)2 (4.3)

to obtain:

|(−∆)nG̃n(r)| ≤ (4n)2(4n−2)2× ...× (2n+2)2×

× max
k∈J0,2nK

( |ak,n|
k!

ak
) 2n

∑
k=0

k

∑
l=0

(
k
l

)
a−lrl

Since r < a, the last sum is bounded by
2n

∑
k=0

2k = 22n+1−1 < 22n+1, while

(4n)2(4n−2)2× ...× (2n+2)2 ∼ 2
(

8n
e

)2n

follows from Stirling formula.

We are now able to prove the following, which implies Theorem 5.

Theorem 6. There exists a constant C such that, for any P ∈ N∗ and a ∈ (0,1),
there exists a radial function G̃ which coincides with G on A (a) satisfying:

∥∥∥∥∥G̃−
P

∑
p=1

cp(G̃)ep

∥∥∥∥∥
H1

0,rad(B)

≤C
√

Pexp
(
−aPπ

32

)
.
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Proof. Let n ∈ N∗, by Leibniz formula,

dk

drk

(
r−2n log(r)

)
=

(−1)kk!
r2n+k


−

k−1

∑
j=0

(
2n+ j−1

j

)

k− j
+

(
2n+ k−1

k

)
log(r)


 .

This leads to

|ak,n|
k!

ak ≤ a−2n
(

2n+ k−1
k

)(
k

2n
− log(a)

)
,

where we have used the identity

k−1

∑
j=0

(
j+2n−1

j

)
=

k
2n

(
k+2n−1

k

)
.

Observe that
(

2n+ k−1
k

)
≤
(

4n−1
2n

)
=

1
2

(
4n
2n

)
≤ 42n

2
√

2πn
k ∈ {1, · · · ,2n},

and thus,

max
0≤k≤2n

( |ak,n|
k!

ak
)
≤
(

4
a

)2n 1
2
√

2πn

(
log
( e

a

))
. (4.4)

Combining (4.4) with estimation (4.2), we find that there exists a constant C such
that, for r < a

|(−∆)nG̃n(r)| ≤
C√

n

(
16n

e

)2n(4
a

)2n
log
( e

a

)
.

Therefore, integrating on B(0,a), we get

∥∥(−∆)nG̃n
∥∥

L2(B(0,a)) ≤
Ca2
√

n
log
( e

a

)(64n
ae

)2n
,

and since
(−∆)nG̃n(x) = (−∆)nG(x) = 0

for |x| > a, the same bound applies to
∥∥(−∆)nG̃n(x)

∥∥
L2(B). We now plug this

estimate into the inequality of corollary 2, to get
∥∥∥∥∥G̃n−

P

∑
p=1

cp(G̃n)ep

∥∥∥∥∥
H1

0,rad(B)

≤ C
P

3
2

n
a2 log

( e
a

)( 64n
aePπ

)2n
.

The previous inequality holds true for any integer n such that n > 1 and any P ∈N.
Without loss of generality, one can assume that aPπ

64 > 1. In this case, let nP =

b aPπ
64 c, and G̃ = G̃nP . Using the fact that x 7→ x log

( e
x

)
is bounded on (0,1], we

get ∥∥∥∥∥G̃−
P

∑
p=1

cp(G̃)ep

∥∥∥∥∥
H1

0,rad(B)

≤C
√

Pe−
aPπ
32 .
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Remark 3. The convergence rate is indeed bounded by a function of the parameter
γ . Figure 4d shows the decay of the L∞ error in function of γ for different values
of P. It can be seen that the error consistently decreases at an exponential rate of
about l2 ≈ 3.7, and stagnates at the minimal error emin ≈ 10−10. We believe this
stagnation is due to rounding errors related to the increasing condition number of
the matrix A. However, note that the situation is invariant for constant γ , thus the
stability of the linear system only depends on the target tolerance and not on the
size of the problem. For example, to reach the error level ε = 10−3, it is sufficient
to take γ ≈ 1.8 and the conditioning of A is about 200, independent on the specific
value of P and a.

a = 0.05 0.5 0.75 1
−4

−3

−2

−1

0

r

log(r)
SBD, P = 5

(a)

a = 0.05 0.5 0.75
10−10

10−4

102

r

∣ ∣ lo
g

r−
∑

p
α

pe
p(

r)
∣ ∣

SBD, P = 5
SBD, P = 30
SBD, P = 50

(b)

0 50 100 150
10−3

10−2

10−1

100

101

p

α
p

cp(G)

SBD : P = 30
SBD : P = 50

(c)

0 2 4 6 8 10
10−11

10−7

10−3

γ

L∞
er

ro
r

P = 50 P = 150
P = 500 P = 1500
γ 7→ 5exp(−3.7γ)

(d)

Figure 4: Approximation of G(r) = logr by SBD. (a):L∞ error between log(x) (dashed
black) and its SBD approximation (solid blue) with a = 0.05 and P = 5. (b): Values
of logr−∑p αpep(r) where αp are the SBD coefficients for a = 0.05 of order P = 5
(Blue circles), P = 30, (red crosses) and P = 50 (yellow squares). (c): Numerical
values of the SBD coefficients αp in function of p, for P = 5 (blue circles), P = 30
(red crosses) and P = 50 (yellow squares). The black stars show the values of the exact
(slowly decaying) Fourier-Bessel coefficients of G, that is αp = cp(G) = 1√

πρp|J1(ρp)| .
(d): Evolution of the L∞ error over [a,1] associated to the SBD for different values of
P in function of γ . An exponential decay is indeed observed, at the roughly estimated
rate of ∝ exp(−3.7γ). The stops decreasing at emin ≈ 10−10, for a value of γ ≈ 6.7
because of the ill conditioning of the linear system (3.3)
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4.2 Helmholtz kernel
Let Y0 the classical Bessel function of second kind and of order 0. For any k >
0, the Helmholtz kernel, r 7→ −i

4 H(1)(kr), where H(1)(r) = J0(r)+ iY0(r), is the
fundamental Green’s kernel associated to the harmonic wave operator −∆− k2,
that satisfies a Sommerfeld radiation condition at infinity, (see for example [25]).
This kernel arises in various physical problems, such as sound waves scattering.
To approximate H(1)(kr) as a sum of dilated J0 functions, it is sufficient to produce
a SBD decomposition of r 7→ Y0(kr). We can obtain good approximations of Y0 in
series of dilated functions in the following way:

- When k is a root of Y0: In this case the multi-Dirichlet condition is satisfied
at any order. Indeed, for any n,

(−∆)nY0(kr)
∣∣
r=1 = k2nY0(k) = 0.

We thus produce a SBD decomposition of Y0 on an interval (a,1). Just like
for the Laplace kernel, it was observed that the approximation error con-
verges exponentially fast to zero, as soon as P is greater than k.

- When k is close to, or greater than the first root of Y0: we find a Sparse
Bessel Decomposition for r 7→ Y0(k′r) on (a,1), where k′ is the first root
of Y0 larger than k. This provides a decomposition for r 7→ Y0(kr) valid on
( k′

k a, k′
k ).

- When k is much smaller than the first root of Y0: the previous idea might
lead to unnecessary efforts. Indeed, to ensure that k′

k a is small enough, one
would have to choose a very small value of a leading to a very long Bessel
series. Instead, one can use the Bessel-Fourier series associated to the Robin
condition (see subsection 2.3):

∂u
∂n

+Hu = 0,

noticing that H =−kY ′0(k)
Y0(k)

> 0 in this region.

a = 0.05 0.5 0.75 1

−2

−1

0

r

Y0(kr), k ≈ 7.086...
SBD, P = 10

Figure 5: SBD of Y0(kr) with k a root of Y0 approximately equal to 7.086, with P = 10
terms and a = 0.05
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4.3 General kernel : enforcing the multi-Dirichlet condi-
tion
For general kernels G, the multi-Dirichlet conditions may not be fulfilled, even
after rescaling. When applying the SBD method without any changes, this leads
to the situation observed in the top panel of Figure 6. In this figure, the SBD is
applied to the kernel G1(r) = log(r)+ sin(r) (note that ∆G1(1) 6= 0), and we plot
the error in function of r for several values of γ and P = 10. The error curve
stagnates near r = 1. In the bottom panel, we apply the SBD to G2(r) = log(r)+
sin(r)− 1

4 ∆G1(1)r2 where the last term enforces the Dirichlet condition, and the
error decay is improved.
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(a) G1(r) = log(r)+ sin(r)
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(b) G2(r) = log(r)+ sin(r)− 1
4 ∆G1(1)r2

Figure 6: SBD of order 10 applied to the kernels G1(r) = log(r)+ sin(r) (top panel)
and G2(r) = log(r) + sin(kr)− 1

4 ∆G1(1)r2 (bottom panel), for γ = 1 (blue circles),
γ = 2 (red crosses) and γ = 3 (purple squares). The vertical dashed lines show the
position of a for each γ .

More generally, for any radial G, we can apply the SBD to a modified function
H = G−K where K is chosen to enforce the multi-Dirichlet condition. Since we
wish to obtain for G a decomposition in sum of Bessel functions, we propose to
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choose K in the form

K(r) =
n

∑
t=1

µtJ0(ωtr)

for some (ωt)1≤t≤n that are not roots of J0. It is not the aim of this paragraph to
describe a systematic way of choosing (ωt)1≤t≤n, as this work is still in progress.
However, when the first few iterates of the Laplace operator on G are known, we
suggest the following choice: let ω ′ the square root of the average ratio between too
successive iterates, choose ω1 as the root of J1 that is closest from ω ′. Then, assign
ω2, · · · ,ωn, successively to the closest roots of J1. The coefficients (µt)1≤t≤n are
finally found by inverting a small linear system

Mµ = λ ,

where λ is the vector given by

λt = (−∆)tG
∣∣
r=1, t ∈ {1, · · · ,n},

and with

M =




−ω2
1 −ω2

2 · · · −ω2
n

ω4
1 ω4

2 · · · ω4
n

...
... · · ·

...
(−1)nω2n

1 (−1)nω2n
2 · · · (−1)nω2n

n




In Figure 7, we show the efficiency of this method by applying the SBD with
100 terms to some highly oscillating function (x 7→ log(x)+ sin(250x)), for n ≤
3, and computing the maximal error of the decomposition in function of γ . The
frequencies (ωt)1≤t≤n are the roots of J1 that are closest to 250.
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Figure 7: Maximal error betwwen the kernel G1(r) = log(x)+ sin(250x) and its 100-
terms SBD in function of γ using the method described in this paragraph for several
values of n.
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5 Circular quadrature
In this section, we study the approximation of the form

J0(ρp|x|)≈
1

Mp

Mp−1

∑
m=0

eiρpξ p
m·x,

for some integer Mp and some quadrature points (ξ p
m)1≤m≤Mp .

5.1 Theoretical bound
Theorem 7. There exists a constant K such that for any r > 0, M ∈ N∗, such that
M ≥ e

2 r, and for any ϕ ∈ R
∣∣∣∣∣J0(r)−

1
M

M−1

∑
m=0

eir sin( 2mπ
M −ϕ)

∣∣∣∣∣≤ K
( er

2M

)M
.

In order to prove this proposition, we first prove a result on Fourier series

Lemma 3. For any 2π−periodic C 2 complex-valued function f one has

1
2π

∫ 2π

0
f − 1

M

M−1

∑
m=0

f
(

2mπ
M

)
=− ∑

k∈Z∗
ckM( f ),

where cn( f ) denotes the Fourier coefficient of f defined as

cn( f ) =
1

2π

∫ 2π

0
f (x)e−inxdx.

Proof. Since f is C 2, it is equal to its Fourier Series, which converges normally:

∀x ∈ R, f (x) = ∑
k∈Z

ck( f )eikx.

Using this expression, we obtain

1
M

M−1

∑
m=0

f
(

2mπ
M

)
= ∑

k∈Z∗
ck( f )

(
1
M

M−1

∑
m=0

eik 2mπ
M

)
.

Now observe that
1
M

M−1

∑
m=0

eik 2mπ
M =

{
1 if k /∈MZ,
0 otherwise.

Therefore

∫ 2π

0
f (x)dx− 1

M

M−1

∑
m=0

f
(

2mπ
M

)
= c0( f )− ∑

k∈MZ
ck( f ) =− ∑

k∈Z∗
ckM( f ).

We now turn to the proof of Theorem 7:
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Proof. The result is based on the following fact:

J0(r) =
∫ 2π

0
eir sin(x)dx =

∫ 2π

0
eir sin(x−ϕ)dx.

Let f : x 7→ eir sin(x−ϕ). Let us recall the integral representation of the Bessel func-
tion of the first kind and of order k where k is a relative integer:

Jk(r) =
∫ 2π

0
eir sin(x)e−ikxdx = e−ikϕ

∫ 2π

0
eir sin(x−ϕ)e−ikxdx.

Thus, one has ck( f ) = eikϕ Jk(r). Consequently, the former Lemma yields

J0(r)−
1
M

M−1

∑
j=0

eir sin( 2 jπ
M −ϕ) =− ∑

k∈Z∗
eiNkϕ JNk(r).

For large |k|,

Jk(r)∼
(

er
2 |k|

)|k|
.

Therefore, there exists a constant C′ such that:
∣∣∣∣∣J0(r)−

1
M

M−1

∑
m=0

eir sin( 2mπ
M −ϕ)

∣∣∣∣∣ ≤ C′ ∑
k∈Z∗

(
er

2M|k|

)M|k|

≤ K
( er

2M

)M

for an appropriate choice of K.

We conclude with the following result

Proposition 2. Let ε > 0, r > 0, and assume M >
e
2

r+ log
(

K
ε

)
. Then

∣∣∣∣∣J0(r)−
1
M

M−1

∑
m=0

eir sin( 2mπ
M −ϕ)

∣∣∣∣∣≤ ε.

Proof. This result is a direct consequence of the previous proposition together with
the following inequality: for any (A,B) ∈

(
R∗+
)2 one has

(
A

A+B

)A+B
≤ e−B.

To prove it, we take the logarithm of this quantity,

f (A,B) =−B
(

1+
A
B

)
log
(

1+
B
A

)

and observe that for any positive x,
(

1+
1
x

)
log(1+ x)≥ 1.
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Hence, we can approximate very efficiently the functions ep of the previous
paragraph as a finite sum as follows. We define the quadrature points ξ p

0 ,ξ
p
1 , ...,ξ

p
Mp−1

by

ξ p
m := ei 2πm

Mp 1≤ p≤ P, 0≤ m≤Mp−1. (5.1)

With this definition, for any x ∈ R2

ep(|x|) =CpJ0(ρp|x|)≈
Cp

Mp

Mp−1

∑
m=0

eiρpx·ξ p
m ,

and the approximation is valid at a precision ε as soon as Mp >
e
2 ρp|x|+log

(
KCp

ε

)
.

6 Estimations of complexities
We now turn to the complexity estimate of the complete algorithm given in sec-
tion 1. We fix α ∈ [0,1/6] and let

a =
|logε|2/3

N2/3−α
z

(6.1)

as in Theorem 1. We will give a bound for the number of operations of each step
of the algorithm in function of Nz, ε and α . We note CSBD, Ccirc, Cassemble, Cfar
and Cclose respectively, the number of operations required to produce the SBD, the
circular quadrature, to assemble the close correction matrix D defined in (1.1), to
compute the far approximation defined in (1.2), and to apply D on a vector. We
will denote by C any positive constant that is independent of Nz, ε and α .

6.1 Offline computations
The first part of the algorithm consists in combining the SBD with the circu-
lar quadratures detailed in the previous two sections to derive an approximation
scheme for the log function in the following form:

log |x|=
Nξ

∑
ν=1

ŵν eix·ξ ν a < |x|< 1

valid to the accuracy ε .

Sparse Bessel Decomposition: We first compute a SBD of log on the ring
{a < r < 1} to reach the accuracy ε

2 , as developed in Sections 3 and 4. We write
this approximation

logr ≈
P

∑
p=1

αpep(r), a < r < 1.

Theorem 5 shows that the accuracy is reached for

P = O
( | log(ε)|

a

)
. (6.2)
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Since the coefficients α1, · · · ,αP are obtained through the inversion of a P× P
matrix, the computation of the SBD requires O(P3) computations. Therefore, there
exists a constant C > 0 independent of Nz, ε and α such that

CSBD(Nz,ε,α)≤C |logε|N2−3α
z . (6.3)

Circular quadrature: We approximate each function ep using a circular quadra-
ture as detailed in section 5. For each p, we choose the number Mp of terms in the
quadrature so that

∣∣∣∣∣J0(ρp |x|)−
1

Mp

Mp

∑
m=1

eiρpx·ξ p
m

∣∣∣∣∣≤
ε

2P
∣∣αp
∣∣Cp

a < |x|< 1, (6.4)

where the quadrature points ξ p
m are defined in (5.1). Proposition 2 implies that

taking

Mp >
e
2

ρp + log
(

2KP|αp|
ε

)
(6.5)

is sufficient to ensure (6.4). In this case, triangular inequality implies that for
a≤ |x| ≤ 1, ∣∣∣∣∣log |x|−

P

∑
p=1

Mp

∑
m=1

Cp
αp

Mp
eix·ξ p

m

∣∣∣∣∣≤ ε.

Bessel’s inequality
P

∑
p=1
|αp|2 ≤

∫

B
|log |x||2

ensures the boundedness of αp. Moreover, ρp = O(p), implying Mp = O(P), and
hence,

Nξ =
P

∑
p=1

Mp = O(P2). (6.6)

Since for any p, the computation of (ξ p
m)1≤m≤Mp has a linear complexity in Mp,

we get:
Ccirc(Nz,ε,α)≤C |logε|2/3 N4/3−2α

z . (6.7)

Equations (6.3) and (6.7) yield the first part of Theorem 1.

Close correction matrix: Recall that δmax is defined as

δmax = max
1≤k,l≤Nz

|zk− zl |

where z are the data points in (1). Let δmin = aδmax. We first determine the set
P of all pairs (k, l) such that |zk− zl | ≤ δmin. This is the classical ”fixed-radius
near neighbors search”, and can be solved in O(Nz logNz + #P) operations (see
for example [4, 5, 11, 23]). In order to compute an approximation of the close
correction sparse matrix:

Dkl = δ(k,l)∈P

(
log |zk− zl |−

Nξ

∑
ν=1

ei(zk−zl)·ξ ν ω̂ν

)
,
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we need #P evaluations of log, and the computation of

NUFFT−[(zk− zl)(k,l)∈P ,ξ ]
(
ν̂)

at precision ε . For data uniformly distributed on a curve, the number of close pairs
scales as

#P = O
(

δmin

δmax
Nz

)
= O(N2

z a). (6.8)

One can check that Nξ ≤ N2
z a using (6.1), (6.2) and (6.6), so that

Cclose ≤CCNUFFT(ε) |logε|2/3 N4/3+α
z log(Nz). (6.9)

This is the second part of Theorem 1.

6.2 On-line Computations
Far approximation: Recall that for all k ∈ {1, · · · ,Nz}, the far approximation
is defined by the following equation:

qfar
k =

Nz

∑
l=1

Gapprox(zk− zl) fl ,

where, according to the previous subsection,

Gapprox(x) =
P

∑
p=1

Mp

∑
m=1

αpCp

Mp
eix·ξ p

m .

Define ω̂ = (ω̂ν )1≤ν≤Nξ and ξ = (ξ ν )1≤ν≤Nξ such that

Gapprox(x) =
Nξ

∑
ν=1

ω̂ν eix·ξ ν .

To compute qfar, recall the following three steps:

(i) Space→ Fourier: Compute f̂ = NUFFT−[z,ξ ]( f ),

(ii) Fourier multiply Perform elementwise multiplication by ω̂:

ĝν = ω̂ν f̂ν ,

(iii) Fourier→ Space: Compute qfar = NUFFT+[z,ξ ](ĝ).

One can check that (6.1) and (6.6) imply Nξ ≥ Nz, thus

Cfar(Nz,ε,α)≤C |logε|2/3 CNUFFT(ε)N
4/3−2α
z log(Nz). (6.10)
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Close correction: D has #P non-zero entries so

Cclose(Nz,ε,α)≤C |logε|2/3 N4/3+α
z . (6.11)

Summing (6.10) and (6.11) yields the second part of Theorem 1.

Remark 4. The extreme cases α = 0 and α = 1/6 correspond respectively to the
situations where one wish to either minimize the total (off-line + on-line) compu-
tation time or just the on-line time. The complexities ”off-line” and ”on-line” then
become (omitting the dependence in ε):

Off-line On-line
α = 0 O(N2

z ) O(N4/3
z )

α = 1/6 O
(

N3/2
z logNz

)
O(N3/2

z )

Table 1: Complexity of the algorithm (omitting dependence in ε) in the two extreme
cases α = 0 and α = 1/6.

7 Numerical examples
7.1 System of N×N particles
To assess for the numerical performance of our method, we first generate two sets
of N points (xk) and (yk) uniformly distributed in a square, for N ranging from 10
to 107, and compute the discrete convolution

qk =
N

∑
l=1

log |xk− yl | fl

where fl is a random vector in RN . We measure both the time needed for off-
line and on-line parts. We also measure the amount of memory occupied by the
assembled operator (Memory usage goes a little bit above this value during the
computation). The results are displayed in Table 2. The computer used for this test
is a laptop cadenced to 1.6 GHz and possessing 32 GB of memory.

Off-line (s) On-line(s) Memory Proportion of full matrix size

N = 10 0.034 0.001 7 kb 800% (no compression)
N = 102 0.027 0.002 83 kb 105% (no compression)
N = 103 0.049 0.003 1.02 Mb 14%
N = 104 0.37 0.02 10.7 Mb 1.4%
N = 105 3.4 0.16 109 Mb 0.15%
N = 106 47.2 2.6 1.07 Gb 0.015%
N = 107 441 41 7.13 Gb 9.8.10−4%

Table 2: Performances of the algorithm
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7.2 Sound canceling
Consider Nz punctual 2-dimensional sound sources located at (zl)1≤l≤Nz and emit-
ting at a single frequency f , with unit amplitude and phases (ϕl)1≤l≤Nz . That is,
for each l ∈ {1, · · · ,Nz}, the source number l generated an acoustic pressure at
each point x and time t in R2 equal to

pl(x, t) = ℜ
[
− i

4
H(1)(k |zl − x|)e−i(ωt−ϕl)

]
,

where ω = 2π f , k = 2π f
c , with c the celerity of the sound waves, and H(1) is the

Hankel function of first kind already defined in subsection 4.2. By superposition,
the resulting pressure at x is

p(x, t) = ℜ

[
− i

4
e−iωt

Nz

∑
l=1

H(1)(k |zl − x|)eiϕl

]
,

and the sound intensity is proportional to

Π(x,ϕ) =

∣∣∣∣∣
Nz

∑
l=1

H(1)(k |zl − x|)eiϕl

∣∣∣∣∣

2

.

Suppose one wishes to choose the phases that minimize the sound intensity in a
prescribed zone Ω (called the silence zone), that is,

ϕ∗ = argmin
ϕ∈[0,2π]Nz

∫

Ω
Π(x,ϕ).

If we approximate the integral over Ω by a uniform quadrature, this leads to solving

ϕ∗ = argmin
ϕ∈[0,2π]Nz

Q

∑
q=1

Π(xq,ϕ),

where xq are the coordinated of the quadrature points. If we let Al,q =H(1)(k
∣∣xq− zl

∣∣)
and q(ϕ) =

(
eiϕl
)

1≤l≤Nz
, this rewrites

ϕ∗= argmin
ϕ∈[0,2π]Nz

q(ϕ)T AT A q(ϕ).

Using our method, the cost function associated to this minimization problem can
be evaluated rapidly, as well as its gradient. Thus, using black-box optimization
procedures, we can find rapidly good candidates for ϕ∗. In Figure 8, we show the
result of one such optimization, with Nz = 100 sound sources randomly located on
a half circle and where the zone of silence is represented by the red circle. The
silence zone is discretized using a mesh of Q = 2.5× 105 points. We stopped
the optimization after 500 evaluations of the objective function and its gradient,
which required a total computation time of 3 minutes on our computer. Note that
since the silence zone is located far away from the sources, we don’t need to use
a close correction matrix to compute the objective function. To produce the image
in Figure 8, the resulting field is evaluated at 2×107 grid points.
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Figure 8: Sound level (in dB) created by 100 punctual 2D sound sources with
wavenumber k ≈ 90 located at random spots on a half circle with radius r = 0.5. The
sources locations are indicated by the small black circles. On the left, we show the
sound level before the optimization of the phases. On the right, we show the result
once the phases of the sources have been optimized to minimize the sound level in the
region delimited by the red circle.
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[3] P. Balodis and A. Córdoba. The convergence of multidimensional fourier-
bessel series. Journal d’Analyse Mathématique, 77(1):269–286, 1999.
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