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Summary. The dataset which motivated this work is a psychological survey on women
affected by a breast tumor. Patients replied at different moments of their treatment to ques-
tionnaires with answers on ordinal scale. The questions relate to aspects of their life called
dimensions. To assist the psychologists in analyzing the results, it is useful to emphasize
a structure in the dataset. The clustering method achieves that by creating groups of indi-
viduals that are depicted by a representative of the group. From a psychological position,
it is also useful to observe how questions may be clustered. The simultaneous cluster-
ing of both patients and questions is called co-clustering. However, getting questions into
a same group when they are not related to the same dimension does not make sense
from a psychologist stance. Therefore, a constrained co-clustering has been performed
to prevent questions from different dimensions from getting assembled in a same column-
cluster. Then, evolution of co-clusters along time has been investigated. The method relies
on a constrained Latent Block Model embedding a probability distribution for ordinal data.
Parameter estimation relies on a Stochastic EM-algorithm associated to a Gibbs sampler,
and the ICL-BIC criterion is used for selecting the numbers of co-clusters.

1. Introduction

Persons with cancer usually go through traumatizing hardships as chemotherapy and
intense stress. The disease and its treatment has an impact on different domains of
their environment as social life, or emotional state. In psychology, these domains are
divided into dimensions. For example, in Table 1 the domain quality of life is divided
into six dimensions (physical functioning, role functioning, social functioning, emotional
functioning, cognitive functioning, global health evaluation). Differently, the domain
emotional state is defined with the two dimensions anxiety and depression (Zigmond
and Snaith (1983)). Other psychological dimensions have been identified as a quality
of life predictor like perceived control of the illness, which corresponds to the general
belief whereby evolution of the disease depends either on internal factors (action, effort,
personal abilities) or on external factors (hazard, destiny) (Cousson-Gélie (2014)), or
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social support which assesses perceived availability (number of people on whom the
individual thinks they can count if necessary) and the degree of satisfaction relating to
this support (Sarason et al. (1983)).

When psychology experts set up surveys using questionnaires, they often collect a
lot of data, both in terms of number of individuals and in terms of number of variables
(questions). This is generally interesting because the more data they collect, the more
complete they conclusions will be. Nevertheless, just after having collected the data, a
first phase of data mining is necessary. This phase of apprehension makes it possible
to summarize the data, to distinguish structures internal to the data but also to detect
anomalies if they exist. It also allows to better visualize the data and to have a better
overall knowledge of these data. When the dataset is not tagged, it is therefore interesting
to use unsupervised algorithms. The dataset which has initiated this work is a survey
realized on women affected by breast cancer (Cousson-Gélie (2014)). The patients were
asked to reply to various questionnaires related to distinct dimensions, the answers being
of the ordinal kind with different numbers of levels (Agresti (2010)). They repeated this
work at six different moments of their treatment. Therefore the resulting dataset is
a set of six tables, the lines representing the patients, and the columns representing
the questions. First of all, the psychologists are interested in identifying psychological
profiles. Particularly, they are willing to analyze the mutual influence of the different
dimensions for each profile. To help them on this task, a constrained co-clustering
was performed. Co-clustering is a technique which operates simultaneous clustering
of the rows and columns of a matrix (Govaert and Nadif (2014)). As a result, a co-
clustering emphasizes an internal structure in the dataset, which in this case allows
to detect typical psychological profiles and the groups of questions that differentiate
them. The term “constrained” is used because the co-clustering was forced to keep
separated the questions (columns) that did not relate to a common dimension. In a
second time, the experts want to investigate the evolution of their patients answers.
Indeed, they also focus on the changes in their psychological state, which is called the
trajectory (Annema et al. (2017)). Realizing a co-clustering at each time the patients
had to answer the questionnaires gives a better idea of the evolution of the patients on
different perspectives. On a global scale, it shows how groups of persons evolve, and
how replies changed along the study period. On a more precise scale, the co-clustering
makes possible to analyze the behavior of a single patient, by noticing her row-clusters
change over time.

The dataset exclusively contains values of the ordinal type. Unlike categorical data,
ordinal data have received less attention from a clustering aspect. Therefore, confronted
to such data, the practitioners often transform them into continuous data, by associating
an arbitrary number to each level (Kaufman and Rousseeuw (2008); Lewis et al. (2005))
or into nominal data (Vermunt and Magidson (2005)). These choices allow to use well-
known distributions but either loose the information given by the existing order among
levels (when considering them as nominal) or introduce an arbitrary notion of distance
between levels (when transforming them as continuous). In the CUB model Piccolo
(2003), an answer is interpreted as the result of a cognitive process where the decision
is intrinsically continuous but is expressed in a discrete scale of m levels. This approach
interprets the choice of the respondent as a weighted combination of two components.
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The first one reflects a personal feeling and is expressed by a shifted binomial random
variable. The second component reflects an intrinsic uncertainty and is expressed by
a uniform random variable (Iannario (2010)). However, the CUB model can not be
easily used in a clustering context since a mixture of CUB is not identifiable. Several
recent contributions have defined clustering algorithms specific to ordinal data (Jollois
and Nadif (2009); Giordan and Diana (2011); McParland and Gormley (2011); Deldossi
and Zappa (2014); Ranalli and Rocci (2016); Biernacki and Jacques (2016)). In a co-
clustering context, Jacques and Biernacki (2017) defines a model-based algorithm relying
on the Latent block Model (Govaert and Nadif (2014)). It embeds a recent distribution
for ordinal data (BOS for Binary Ordinal Search model, Biernacki and Jacques (2016)) on
an SEM-Gibbs algorithm. This model presents strong advantages through its parsimony
and the significance of its parameter. Nevertheless, the weakness of this model is its
inability to treat variables with different numbers of levels, which is an actual issue for
this dataset.

In this work, the Latent Block Model is adapted as a constrained version, so that
certain questions cannot be part of the same column-cluster. This extension solves two
issues. First, it allows to force the column-clusters to be formed with questions of a
same psychological dimension. Furthermore, it entitles to separate the questions that
do not have the same number of levels, so that the BOS distribution can be used. This
distribution is defined with two meaningful parameters (µ,π), mu indicating a position
(mode), π indicating a scaling (precision), and it makes sense to compare the parameters
of two samples only when the number of levels of these samples are equal. Indeed,
Figure 1 shows two samples with different numbers of levels m, with the same number of
observations N and with the same (µ, π). We notice that the probability distributions
can not be compared because they do not have the same support even if parameters are
identical. Note also that the overall shape of both distrbutions is quite different.

Fig. 1. Two ordinal data samples following a BOS distribution, withN = 1000, µ = 3 and π = 0.5.
On the left, m = 7, on the right, m = 4. It is easily noticed that the two probability distributions
are different.

The paper is organized as follows: Section 2 presents the dataset and the notations,
while Section 3 explains the statistical models that were used. At last, Section 4 describes
the obtained results on the psychological dataset.
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Table 1. Table of domains and dimensions that were brought up in the questionnaires.
Domains

Quality of life
(Aaronson et al. (1993))

Social Support
(Sarason et al. (1983))

Specific Social Support
(Pierce et al. (1997))

Emotional State
(Zigmond and Snaith (1983))

Control perception
(Cousson-Gélie (2014))

Dimensions

Physical functioning,
Role functioning,
Emotional functioning,
Cognitive functioning,
Social functioning,
Global health evaluation.

Satisfaction,
Quantity.

Intensity,
Perception of availability
Conflicts.

Anxiety,
Depression.

Causal attribution,
Control perception,
Religion control.

2. Material

2.1. Dataset

2.1.1. Inquiry population description

Several questionnaires were given to N = 161 women who had their first surgery for
suspicious breast tumor. These patients were from 31 to 77 years old with an average
age of 56.25 years (standard deviation=9.99). Most were married or lived maritally
(77.0%). Near half of the patients were active professionally (49.7%) and 38.5% were
retired at the moment they started the study. These 161 patients were asked to answer
several questionnaires, at different moments of their treatment: one at their first surgery,
and 1, 4, 7, 10, 13 months after this assessment. As a result, the patients replied 6 times
to 134 questions and each answer was given on an ordinal scale (with a number of levels
varying from 4 to 7). Therefore, the dataset is a set of 6 matrices of ordinal data such
that the observations (rows) correspond to the patients, and the variables (columns)
correspond to the questions. The dataset also contains missing values, for which we
distinguish two types. The first one concerns patients that decided not to answer to the
questions at a moment of their treatment. The second one concerns a few questions to
which some patients exceptionally did not replied. In the first case, for each moment,
the co-clustering was performed without taking into account the patients that did not
want to answer at this moment. In the second case, the missing values (18 values in
total) were included in the method, which handles missing data. The way of dealing
with missing data is described afterward.

2.1.2. Psychological dimensions

The questionnaires that were given to the patients were precise. Actually, the conception
of questionnaires is a highly-specialized work in psychology. Each questionnaire relates
to domains of life, and each domain is itself divided into dimensions (e.g: MaloneBeach
and Zarit (1995)). Table 1 lists the domains and the corresponding dimensions that
were present in the study. In the questionnaires, most of the questions are associated
to a dimension. The few questions that are not related to one of these psychological
dimensions concern the treatment and disease symptoms (nausea, tiredness...).
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2.2. Data representation and conventions
First of all, the dataset has been recoded so that for all the questions, the most positive
answer is given the level ”1”. For example, for the question: ”Have you had trouble
sleeping?” with possible responses: ”Not at all.” ”A little.” ”Quite a bit.” ”Very much.”,
the following levels number are assigned to the replies: 1 ”Not at all.”, 2 ”A little.”,
3 ”Quite a bit.”, 4 ”Very much.”, because it is perceived as more positive not to have
had trouble sleeping.

Secondly, a graphical way of representing the data has been defined. Figure 2 exposes
it: the women are projected on lines and the questions are projected on columns. There-
fore, the cell (i, j) is the reply of patient i to question j. The shades of gray indicates
how positively the person replied. For example, for the question ”Have you had trouble
sleeping?”, if the patient answers ”Not at all.”, the corresponding cell will be white,
whereas a response as ”Very much.” will correspond to black cell.

Fig. 2. Graphical representations of the patients replies. The women are in lines and the
questions are in columns. A cell is the answer of a person to a question. The darker the cell is,
the more pessimistic the patient responded.

2.3. Notations
First of all, an ordinal variable x with m levels {l1, ..., lm} is a categorical variable whose
levels order is significant. The order between the levels is quoted by the sequel ”<”:
l1 < ... < lm. Furthermore, for simplicity the levels are numbered {1, ...,m} according
to their order. Following this notation, an ordinal variable x is an element of {1, ...,m}.

The representation of the questionnaires responses at a given time is now detailed.
The questions are separated according to two criteria: the number of levels m and the
dimension it is related to. Indeed, the variables that do not have the same number of
levels and the variables that are not related to the same dimension are pulled apart.
This results in a matrix split up in D tables, such that the dth table is a N × Jd matrix
written xd, where N is the number of observations (patients here) and Jd the number
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of questions in the d-th table. The matrix xd is made of ordinal data with number of
levels md. Figure 3 illustrates these notations.

x =


 x1

 ...

 xD


 , with xd = (xdij)i=1,...,N ; j=1,...,Jd

Fig. 3. Representation of the patients and questions at a given time. Questions related to
different dimensions or with different number of levels m are separated.

The goal of the co-clustering is to partition the rows of x into G row-clusters, and the
column of each submatrix xd into Hd column-clusters.

The dataset contains missing data. The whole dataset will be written x = (x̌, x̂), x̌
being the observed data, and x̂ being the missing data. Consequently a cell of x will be
annotated as follows: x̌ij , whether xij is observed, x̂ij otherwise.

Finally, the bounds for the indices i, j, g, h : 1 ≤ i ≤ N , 1 ≤ j ≤ J , 1 ≤ g ≤ G,
1 ≤ h ≤ H (or 1 ≤ h ≤ Hd from Section 3.2.2) will not be written explicitly. For
example, the matrix x = (xij)1≤i≤N,1≤j≤J will be written (xij)i,j . Furthermore, the
sums and the products relating to rows, columns, row-clusters and column-clusters will
be subscripted respectively by the letters i, j, g, and h. So the sums and products will
be written

∑
i

,
∑
j

,
∑
g

and
∑
h

and
∏
i

,
∏
j

,
∏
g

and
∏
h

.

3. Methods

3.1. The BOS distribution for ordinal data
The Binary Ordinal Search (BOS) model (Biernacki and Jacques (2016)) is a probability
distribution for ordinal data parametrized by a position parameter µ ∈ {1, ...,m} and
a precision parameter π ∈ [0, 1]. This distribution rises from the uniform distribution
when π = 0 to a more peaked distribution around the mode µ when π grows, and
reaches a Dirac distribution at the mode µ when π = 1. Figure 4 illustrates the shape
of the BOS distribution with different values of µ and π. It is shown in Biernacki and
Jacques (2016) that the BOS distribution is a polynomial function of π with degree m−1,
whose coefficients depend on the position parameter µ. For a univariate ordinal variable,
the path in the stochastic binary search can be seen as a latent variable. Therefore,
maximum likelihood estimation of model parameters can be simply performed using an
EM algorithm (Dempster et al. (1977)).

3.2. Latent Block Model extension
In this section, the Constrained Latent Block Model is described but first the Latent
Block Model concepts are recalled (Govaert and Nadif (2014)).
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Fig. 4. BOS distribution p(x;µ, π): shape for m = 5 and for different values of µ and π.

3.2.1. Latent Block Model
Let x = (xij)i,j be a data matrix. It is assumed that there exists a partition v =
(vig)i,g and a partition w = (wjh)j,h such that each element xij is generated under a
parameterized probability density function f(xij ;αgh) where g denotes the cluster of
row i while h denotes the cluster of column j. The univariate random variables xij are
assumed to be conditionally independent given the row and column partitions v and
w. Therefore, the conditional probability density function of x given v and w can be
expressed in the following form:

p(x|v,w;α) =
∏

i,j,g,h

f(xij ;αgh)vigwjh ,

considering that vig = 1 if i belongs to cluster g, whereas vig = 0 otherwise, and that
wjh = 1 when j belongs to cluster h, but wjh = 0 otherwise.

Different univariate distributions can be used regarding the type of data (e.g: Gaus-
sian, Bernoulli, Poisson...). In the present case, the BOS distribution is chosen. The
label of row i is called vi and belongs to {1, ..., G}. Similarly, the label for column j
is called wj and belongs to {1, ...,H}. They are latent variables, and as usual in the
latent variables theory, they are assumed to be independent (Everitt (1984)). So we
have p(v,w;γ,ρ) = p(v;γ)p(w;ρ) with:

p(v;γ) =
∏
i
p(vi;γ) =

∏
i,g
γ
vig
g and p(w;ρ) =

∏
j
p(wj ;ρ) =

∏
j,h

ρ
wjh

h ,

knowing that γg = p(vig = 1) with g ∈ {1, ..., G} and ρh = p(wjh = 1) with h ∈
{1, ...,H}. This implies that, for all i, the distribution of vi is the multinomial distribu-
tionM(γ1, ..., γG) and does not depend on i. In a similar way, for all j, the distribution
of wj is the multinomial distribution M(ρ1, ..., ρH) and does not depend on j. From
these considerations, the parameter of the latent block model is defined as θ = (γ,ρ,α),
where α = (αgh)g,h, with αgh = (µgh, πgh) being the position and precision BOS parame-
ters of the distribution of block (g, h). Additionally, γ = (γ1, ..., γG) and ρ = (ρ1, ..., ρH)
are the mixing proportions. Therefore, if V and W are the sets of all possible labels v
and w, the probability density function p(x;θ) of x can be written:
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p(x;θ) =
∑

(v,w)∈V×W

∏
ig
γ
vig
g

∏
jh

ρ
wjh

h

∏
i,j,g,h

f(xij ;αgh)vigwjh .

3.2.2. Constrained Latent Block Model
In this section, the Latent Block Model is extended as in Robert (2017) so that the
questions from different dimensions are kept separated, as well as the questions with
different number of levels. In this co-clustering framework, x is a N × (J1 + ... + JD)
matrix, and it is seen as matrices x1, ...,xD stored side by side as explained in Section 2.3.
It is supposed that there is a row-partition v, and that for all d ∈ {1, ..., D}, there exists
a column-partition wd such that each element xdij is generated under a parameterized

probability density function f(xdij ;αgh). Here, h denotes the cluster of column j, with

j ∈ {1, ..., Jd} and h ∈ {1, ...,Hd}. The univariate random variables xdij are assumed to

be conditionally independent given the row and column partitions v and wd. Therefore,
the conditional probability density function of x given v and w = (wd)d∈{1,...,D} can be
written in the following form:

p(x|v,w;α) =
∏
i,j,d

f(xdij ;αviwd
j
) =

∏
d,i,j,g,h

f(xdij ;αgh)vigwd
jh ,

knowing that: ∀d ∈ {1, ..., D}, wd
jh = 1 when j belongs to cluster h, but wd

jh = 0
otherwise.

The labels v1, ..., vN , (w
d
1 , ..., w

d
Jd

)d∈{1,...,D} are latent variables assumed to be inde-

pendent: p(v,w;γ,ρ) = p(v;γ)
∏
d

p(wd;ρd) with:

p(v;γ) =
∏
i
p(vi;γ) =

∏
i,g
γ
vig
g and p(wd;ρd) =

∏
j
p(wd

j ;ρd) =
∏
j,h

ρdh
wd

jh ,

knowing that ρdh = p(wjh = 1) with h ∈ {1, ...,H}. Again, for all i, the distribution of
vi is the multinomial distributionM(γ1, ..., γG) and does not depend on i. Evenly, for all
j and for all d, the distribution of wd

j is the multinomial distributionM(ρd1, ..., ρ
d
Hd

) and
does not depend on j. By analogy with the classic Latent Block Model, the probability
density function p(x;θ) is written:

p(x;θ) =
∑

(v,w1,..,wD)∈V×W1×...×WD

∏
i,g
γ
vig
g

∏
d,j,h

ρdh
wd

jh
∏

i,j,g,d,h

f(xdij ;αgh)vigwd
jh .

3.3. Model inference with an SEM-Gibbs algorithm
This section details the model inference in the case of the constrained latent block
model. The aim is to estimate θ by maximizing the observed log-likelihood l(θ; x̌) =∑̂
x

log p(x;θ). In a co-clustering context, the EM algorithm is not computationally

feasible (see Govaert and Nadif (2014)). Indeed, the E step requires the calculation of the
joint conditional probability of the missing labels p(vig = 1, wjh = 1|x;θ(q)) for 1 ≤ i ≤
N, 1 ≤ g ≤ G, 1 ≤ d ≤ D, 1 ≤ j ≤ Jd, 1 ≤ h ≤ Hd, with θ(q) the current value of the
parameter. Therefore, this step implies to compute N×G×(J1×H1+...+JD×HD) terms
that cannot be factorized as for a standard mixture, due to the dependence of the row and
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column labels conditionally to the observations. There exists several alternatives to the
EM algorithm like variational EM algorithm, the SEM-Gibbs algorithm, or Bayesian
inference (Govaert and Nadif (2014)). The SEM-Gibbs is known to avoid spurious
solutions (Keribin et al. (2010)), this is why it is used in this paper.

3.3.1. SEM-Gibbs algorithm

Starting from an initial value for the parameter θ(0), the qth iteration of the algorithm
is composed of two steps.

SE-step The SE-step consists in simulating the latent variables according to their joint
conditional probability by a Gibbs sampling. Therefore, it repeats, for a given number
of iterations, the generation of the row partitions conditionally on the column partitions
and the generation of the column partitions conditionally on the row partitions. The

generation of the row partitions v
(q+1)
ig | x,w(q) is done according to:

p(v
(q+1)
ig = 1 | xd,w(q);θ(q)) ∝ γ(q)g ×

∏
d

tdg(xd
i.|wd(q)

;α(q)),

where tdg(xd
i.|wd(q);α(q)) =

∏
j,h

f(xdij ;µ
d
gh, π

d
gh)w

d
jh

(q)

with xd
i. = (xdij)j . The generation

of the column partitions wd
jh | x,v(q+1) for the dth table xd (d ∈ {1, ..., D}) is done

according to:

p(wd
jh = 1 | xd,v(q+1);θ(q)) ∝ ρdh

(q) × sdh(xd
.j |v(q+1);α(q))

where sdh(xd
.j |v(q+1);α(q)) =

∏
i,g
f(xdij ;µ

d
gh, π

d
gh)v

(q+1)
ig with xd

.j = (xdij)i.

M-step The M-step consists in maximizing the completed log-likelihood by updating
the co-clusters parameters according to the results of the last SE step. It relies on
the EM algorithm used in Biernacki and Jacques (2016) for the estimation of the BOS
distribution on each block.

3.3.2. Imputation of missing values

The SEM-algorithm is able to take into account the missing data and to estimate them.
It is assumed that the whole missing process is Missing At Random (see Little and Rubin
(1986)). First, the notation of x becomes x(q) since the missing variables are going to be
imputed. Then, a third step is added to the SE-step. For all d ∈ {1, .., D}, it generates

the missing data x̂d
(q+1)

ij |x̌d,v(q+1),wd(q+1)

as follows:

p(x̂d
(q+1)

ij |x̌d,v(q+1),wd(q+1)

;θ(q)) =
∏
g,h

p(x̂d
(q+1)

ij ;µdgh
(q)
, πdgh

(q)
)v

(q+1)
ig wgh

d(q+1)

.



10 Margot Selosse et al.

3.3.3. Estimation of partitions and model parameter

The SEM-algorithm repeats several times the aforementioned steps. The first iterations
are called the burn-in period, which means the parameters are not stable yet. Conse-
quently, the iterations that occurred after this burn-in period are taken into account,
they are called the sample distribution. The final estimation of the position parameter
µgh is the mode of the sampling distribution. The final estimation of the continuous
parameters (πdgh,γg,ρ

d
h)d is the median of the sample distribution. It corresponds to a

final estimation of θ that is called θ̂. Then, a sample of (x̂,v, (wd)d) is generated by a

SE-step with θ fixed to θ̂. The final partitions (v̂, ŵ) and the missing observation x̂ are
estimated by the mode of their sample distribution.

3.4. Model Selection
To select the number of clusters, G in rows and H1, ...,HD in columns, a model selection
criterion must be used. The most classical ones, like BIC (Schwarz (1978)) rely on

penalizing the maximum log-likelihood value l(θ̂;x). However, due to the dependency
of the observed data, this value is not available in a co-clustering context.

Alternatively, an approximation of the ICL information criterion (Biernacki et al.
(2000)), called here ICL-BIC, can be invoked since allowing to overcome the previous
problem due to the dependency structure in x̌. The key point is that this latter vanishes
since ICL relies on the complete latent block information (v,w), instead of integrating
on it as it is the case in BIC. In particular, Keribin et al. (2015) detailed how to express
ICL-BIC for the general case of categorical data and Jacques and Biernacki (2017) for
the specific case of ordinal data using the BOS model. In the present work, the ICL-BIC
is therefore adapted for the constrained latent block model:

ICL-BIC(G,H1, ...,HD) = log p(x̌, v̂, ŵ1, . . . , ŵD; θ̂)

−G− 1

2
logN −

∑
d

Hd − 1

2
log Jd −

∑
d

G×Hd

2
log(N × Jd),

where v̂, ŵ1..., ŵD are the row and column partitions discovered by the SEM-algorithm,
and θ̂ is the corresponding estimated model parameter.

Let’s note that the co-clustering has to be performed for each possible values of
G and Hd, d ∈ {1, ..., D}, then the result with the highest ICL-BIC is retained. Let
nG be the number of candidate values for G, while nHd

is the number of candidate
values for Hd, d ∈ {1, ..., D}. Thus, the number of co-clustering processes to execute is
nG × nH1

× ...× nHD
. As an example, if D = 3 and the user wants to try 3 values for G

and for each Hd, then it would require to execute 34 = 81 co-clusterings. Depending on
the dataset, it might take too much time to find the best solution.

We propose the following heuristic search. Let start by computing the ICL-BIC with
minimum values (Gmin, H1min

, ...,HDmin
). Then, add 1 to each number of clusters, step

by step, and compute the ICL-BIC. Retain the best solution (highest ICL-BIC), and
continue the same process until the ICL-BIC stops increasing.
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Table 2. Co-clustering result on dimensions anxiety, depression, symptoms: estimated BOS
parameters (µgh, πgh) for each cluster (g, h).

Anxiety Depression Symptoms
col. cluster 1 col. cluster 2 col. cluster 1 col. cluster 2 col. cluster 1 col. cluster 2

row cluster 1 (2,0.77) (2,0.77) (1,0.70) (2,0.83) (2,0.46) (1,0.74)
row cluster 2 (2,0.68) (3,0.72) (2,0.47) (2,0.79) (3,0.39) (1,0.42)
row cluster 3 (1,0.64) (2,0.44) (1,0.77) (2,0.70) (2,0.58) (1,0.71)
row cluster 4 (1,0.67) (2,0.47) (1,0.79) (2,0.71) (1,0.80) (1,0.93)
row cluster 5 (2,0.72) (3,0.55) (2,0.64) (2,0.75) (2,0.66) (1,0.77)

4. Application on the survey dataset

4.1. Constrained co-clustering on different dimensions
Several constrained co-clusterings were performed on the dataset, with different dimen-
sions and at different times. This section presents some significant results that were
obtained. In the following experiments, the heuristic search described in Section 3.4
was executed with Gmin = 3 and Hdmin

= 1 to choose the numbers of row-clusters and
column-clusters (G and (Hd), d ∈ {1, ..., D}). All the ICL-BIC values are available in
the appendix. The choice for a sufficient number of iterations for the SEM-algorithm
and for the burn-in period was made empirically. It was noticed that the parameters
would stabilize after 150 iterations (or less). Therefore, the burn-in period was set to
400 iterations and the total number of iterations was fixed to 500. In the appendix,
Figure A1 shows how some example parameters converge along iterations.

4.1.1. Anxiety, depression and symptoms.

As a first experiment, it was decided to investigate the responses that were given at time
T5, at the end of the treatment. The questions regarding the treatment’s symptoms are
interesting at this moment because the patients had been going through chemotherapy
for one year at this moment. A constrained co-clustering was realized by fetching the
questions related to the dimensions anxiety, depression and symptoms. In this case, all
the questions have a number of levels m equals to 4. Therefore, the only constraint
is the separation of the questions that are from different dimensions. The execution
time of this set up is about 12 seconds with an Intel Xeon E5-2620 CPU 2.00 GHz and
8Go RAM. The result of the constrained co-clustering is illustrated by Figure 5. For all
the figures, clusters are read from left to right and from top to bottom. Furthermore,
Table 2 details the estimated BOS parameters (µgh and πgh) for g ∈ {1, ..., G} and
h ∈ {1, ...,Hd},∀d ∈ {1, ..., D}.

Five row-clusters are highlighted by the co-clustering results. Table 2 shows that the
positions parameters of the second row-cluster (µ2h)d,h are globally greater than (or equal
to) those of the other row-clusters. It means that the second group feels more anxiety
and depression, and senses more intensively the disease symptoms than the other ones.
It is also noticed that the fourth row-cluster is less inclined to anxiety and depression
and suffers less from the symptoms than the others groups: indeed, parameters (µ4h)d,h
are globally the lowest. Furthermore, the precision parameters (π4h)d,h are quite high
for this row-cluster, which means that the answers do not disperse much around the
position (µ4h)d,h. By observing these two groups results, one could tell that the sense
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Fig. 5. Results from constrained co-clustering on dimensions anxiety, depression and
symptoms.

of symptoms is closely associated to signs of anxiety and depression, which is a pretty
logical and intuitive result. Yet, the first, the third and the fifth groups bring more
information. They are effectively very similar about how much they suffer the disease
symptoms dimensions. However, they differ a lot in the first column cluster of anxiety,
and in the first column cluster of depression. It means than even if a link between
symptoms, anxiety and depression can be deduced from the first observations, it is not
totally confirmed when people do not sense the symptoms at the extremes (very much
or not much). Moreover the column-clusters offer interesting result as well: there is
a clear separation among the symptoms. By examining the questions in each cluster,
it turns out that questions in the first cluster exclusively deal with pain and fatigue,
while the second cluster deals with other symptoms such as nausea or loss of appetite.
The co-clustering therefore detected two sub-dimensions for the symptoms dimension.
What’s more there is a big difference on how the patients sense these two clusters: it
is easily noticed that the position parameters (µg1)(symptoms) are globally higher than
(µg2)(symptoms). Therefore all the patients in general suffer more from pain and fatigue
than the other symptoms.

4.1.2. Social support: satisfaction, availability, intensity and conflicts.

As a second experiment, questions related to the social support were used. The responses
come from the fourth moment of the experiment: it is in the middle of the treatment
for the patients, so they have gone through a lot, but know they have to keep on going
for a few months. Their perception of their social support is therefore interesting at
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Table 3. Co-clustering result on social
support dimensions: estimated BOS pa-
rameters (µgh, πgh) for each cluster (g, h).

Satisfaction Availability Intensity Conflicts
col. cluster 1 col. cluster 1 col. cluster 2 col. cluster 1 col. cluster 2 col. cluster 1 col. cluster 2 col. cluster 3

row cluster 1 (2,0.90) (1,0.72) (1,0.96) (3,0.48) (1,0.59) (4,0.80) (3,0.24) (1,0.62)
row cluster 2 (3,0.87) (1,0.64) (1,0.50) (3,0.46) (2,0.48) (4,0.47) (3,0.42) (1,0.49)
row cluster 3 (1,0.73) (2,0.72) (1,0.86) (3,0.52) (2,0.63) (4,0.59) (3,0.51) (1,0.44)
row cluster 4 (2,0.79) (1,0.61) (2,0.64) (3,0.31) (2,0.50) (3,0.27) (3,0.32) (1,0.44)
row cluster 5 (1,0.93) (1,0.78) (1,0.91) (3,0.27) (1,0.68) (4,0.71) (3,0.18) (1,0.63)

this moment. This aspect includes questions of four dimensions: the satisfaction (with
number of levels m = 6), the perception of availability, the intensity and the conflicts
(with a number of levels m = 4). The questions which relate to the same dimension have
the same number of levels. Again, the only constraint is the separation of the questions
that are not from the same dimensions. The result of the constrained co-clustering is
illustrated by Figure 6. Furthermore, Table 3 details the estimated BOS parameters (µ
and π) for each co-cluster.

Fig. 6. Result from constrained co-clustering on dimensions related to social support.

The co-clustering detected five row-clusters. The third and the fifth ones are clearly
satisfied with the social support they have. Indeed, their position parameters µ31(satisfaction)
and µ51(satisfaction) are equal to 1. Furthermore, the precisions π31(satisfaction) and
π51(satisfaction) are really high, which means that most of the patients effectively replied
in the most positive way to the questions regarding their satisfaction. In contrast, the
women in the first group are quite dissatisfied by their social support compared to the
other ones. An other result is that the third group, which is one of the most satis-
fied, has one of the worst perception of availability from their close family and friends
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(µ31(availability) ≥ µg1(availability)). Furthermore, it is also interesting to observe the

column-clusters that were detected by the co-clustering for the conflicts dimension. The
first group of questions is about the efforts the patient has to make not to enter in
conflict with their close ones. The second group gathered questions about changes in
the relationship, whereas the last cluster concerns the sentiments of anger towards their
close family and friends.

4.1.3. Symptoms at different times.
In this experiment, the questions related to symptoms were selected for different mo-
ments (at time T0, T2 and T5). The constraint is therefore not to separate the questions
from different dimensions, but to separate the questions that are not from the same time.
The point of performing a co-clustering on such a dataset is that the row-clusters gather
people that had a similar evolution regarding this dimension. Furthermore, the column-
clusters give information about how the patients symptoms globally worsens (or get
better) throughout the treatment. BOS parameters for this experiment are available in
Table 4, and Figure 7 illustrates the results.

Fig. 7. Co-clustering results with questions related to symptoms, at three different times.

The co-clustering emphasizes three row-clusters. The third one gathers people that
felt less the disease symptoms than the others: the position parameters (µ3h)d,h are
all equal to 1. What’s more, the precision parameters (π3h)d,h are pretty high, which
implies that the responses do not spread a lot around the value 1. It is also interesting to
investigate how the column-clusters evolve. To begin, for each time, the symptoms are
separated into two column-clusters: systematically, the first one is globally worse than
the second one, because (µg1)(T0,T2,T5) ≥ (µg2)(T0,T2,T5),∀g ∈ {1, ..., G}. It is observed
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Table 4. Co-clustering result on symptoms dimension, at three different times: estimated BOS
parameters (µgh, πgh) for each co-cluster (g, h).

T0 Symptoms T2 Symptoms T25 Symptoms
col. cluster 1 col. cluster 2 col. cluster 1 col. cluster 2 col. cluster 1 col. cluster 2

row cluster 1 (2,0.20) (1,0.67) (2,0.62) (1,0.72) (2,0.64) (1,0.74)
row cluster 2 (2,0.09) (1,0.62) (3,0.43) (1,0.40) (3,0.42) (1,0.46)
row cluster 3 (1,0.66) (1,0.84) (1,0.58) (1,0.85) (1,0.54) (1,0.84)

that at time T0 there is less symptoms in the column-cluster 1 than in column-cluster
2, whereas they are equally shared at times T2 and T5.

4.2. Handling of the dynamical aspect of the data
The patients answered to the same questionnaires at 6 different moments of their treat-
ment and there is a clear interest in the evolution of the responses. Defining a model to
study this evolution is essential, but it is not the purpose of this paper, and it will be
the matter of another work. However, here we focus on providing a tool that allows the
psychologists to visualize the row-clusters evolution, without defining a mathematical
reasoning. To handle this perspective, visualization were created so that the psycholo-
gists could have a first impression of the evolution, with the Javascript library D3js.
First of all, the dimensions of questionnaire EORTC QLQ-C30 were selected. Then, a
co-clustering was performed, similarly to Section 4.1, for each time T0, T1, T2, T3, T4,
T5. The visualization represents the row-clusters on the ordinate axis, and the time
line on the abscissa axis: Figure 8 illustrates the home page of a visualization that was
created with dimensions dealing with quality of life and emotional state. If the expert
wishes to observe the evolution of a single patient, they can click on the list of patients on
the right to see the row-clusters it belongs to through time, like in Figure 9. Moreover, if
the expert wants to know the co-cluster BOS parameters, they click on the row-clusters,
and is able to read the (µ, π) of the corresponding co-clusters, as in Figure 10.

These visualizations showed that the patients globally got stabler with time. Indeed,
it is noticed that whereas a lot of patients changed of row-clusters at the three first
moments T0, T1, T2, these transitions get rarer after time T2.

5. Conclusion

In this paper, a constrained co-clustering algorithm is proposed to analyze psychologi-
cal questionnaires given to women affected by breast cancer. This dataset has a lot of
specificities, which makes the use of classical techniques difficult without changing the
information. First, it is made of questionnaires with answers on an ordinal scale. Fur-
thermore it included a temporal aspect because the patients answered 6 times to these
questionnaires. Then, the questions are assimilated to psychological dimensions, which
can not be ignored. Finally, just like a lot of real dataset, this one contains some missing
values.

To adapt to the particularities of the survey, an extension of the latent block model
is defined, and the parsimonious BOS distribution for ordinal data is employed. What’s
more, model inference is performed with an SEM-Gibbs algorithm, which allows to take
missing values into account. An R package called ordinalClust with a full implementation
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Fig. 8. Home-page: the row-clusters are represented on the ordinate axis, and the time line is
on the abscissa axis.

Fig. 9. When user clicks on a patient on the right list, they can observe the psychological
trajectory of this patient.

of this work is available on CRAN, and will be soon available on the CRAN. Finally,
visualizations have been created to help the psychologists to observe the evolution of
their patients.

The results were particularly satisfying to the psychologist. The proposed technique
provides a parsimonious way to cluster the patients by gathering the questions in a small
number of groups, and the BOS parameters meaningfulness allows to easily interpret the
resulting co-cluster. Furthermore, the constrained co-clustering overtakes two matters:
the different numbers of levels for the questions, and the fact that the questions refer to
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Fig. 10. When user clicks on a row-cluster they are able to see the BOS parameters of all
corresponding co-clusters.

different psychological dimensions.
With the proposed approach, features with different number of levels can be treated

in the co-clustering execution, but they are not allowed to be part of the same column-
cluster. As a future work, it would be interesting to make that possible, and ideally, to
perform co-clusterings with data of different kinds (continuous, functional...). At last,
although the dynamical aspect of the data has been approached with visualizations it
would be advantageous to define a mathematical model on this aspect.
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Table 1. ICL-BIC values for experiment with dimensions: anxiety, depression and
symptoms.

iteration
number

tested set ICL-BIC value
iteration
number

tested set ICL-BIC value

0 3111 -3182.636

4

4222 -2897.574

1

3211 -3202.003 3322 -2899.502
4111 -3178.63 3232 -2915.243
3121 -3135.95 3223 -2914.43
3112 -2981.384

5

5222 -2887.428

2

4112 -2955.255 4322 -2901.103
3212 -3012.662 4232 -2902.765
3122 -2931.426 4223 -2911.143
3113 -3003.892

6

6222 -2890.224

3

4122 -2909.457 5322 -2890.043
3222 -2907.208 5232 -2898.423
3132 -2937.025 5223 -2900.492
3123 -2941.77

Table 2. ICL-BIC values for experiment with dimensions of social support.
iteration
number

tested set ICL-BIC value
iteration
number

tested set ICL-BIC value
iteration
number

tested set ICL-BIC value

0 31111 -4159.044

4

51113 -3745.543

7

61223 -3654.905

1

41111 -4148.478 42113 -3792.785 52223 -3664.249
32111 -4169.625 41213 -3807.943 51323 -3660.886
31211 -4167.269 41123 -3708.452 51233 -3670.111
31121 -4109.996 41114 -3782.372 51224 -3665.377
31112 -3890.939

5

51123 -3684.643

2

41112 -3861.417 42123 -3723.946
32112 -3901.316 41223 -3710.339
31212 -3966.906 41133 -3814.453
31122 -3847.206 41124 -3807.466
31113 -3792.995

6

61123 -3672.869

3

41113 -3759.687 52123 -3689.939
32113 -3800.504 51223 -3646.392
31213 -3793.978 51133 -3670.815
31123 -3760.164 51124 -3674.937
51113 -3803.808

Appendix

The following tables present the ICL-BIC obtained by executing the heuristic search
described in Section 3.4 on the applications described in Section 4. At each iteration,
the values in bold represent the highest ICL-BIC values of the iteration. The underlined
values are the final chosen values for (G,H1, ...,HD).

Figure A1 presents the evolution of some parameters through the SEM-algorithm
iterations.
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Table 3. ICL-BIC values for experiment
with symptoms dimensions at times (T0,
T1, T2).

iteration
number

tested set ICL-BIC value

0 3111 -4479.951

1

4111 -4473.039
3211 -4419.312
3121 -4278.773
3112 -4259.51

2

4112 -4206.192
3212 -4200.733
3122 -4021.611
3113 -4262.249

3

4122 -4033.372
3222 -3967.913
3132 -4012.178
3123 -4103.417

4

4222 -3981.241
3322 -4082.588
3232 -4080.828
3223 -4046.097
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Fig. A1. Parameters evolution along time in the SEM-algorithm.


