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Summary. The dataset which motivated this work is a psychological survey on women
affected by a breast tumor. Patients replied at different moments of their treatment to
questionnaires with answers on ordinal scale. The questions relate to aspects of their life
called dimensions. To assist the psychologists in analyzing the results, it is useful to em-
phasize a structure in the dataset. The clustering method achieves that by creating groups
of individuals that are depicted by a representative of the group. From a psychological po-
sition, it is also useful to observe how questions may be grouped. This is why a clustering
should be performed also on the features, which is called a co-clustering problem. How-
ever, gathering questions that are not related to the same dimension does not make sense
from a psychologist stance. Therefore, a constrained co-clustering has been performed
to prevent questions from different dimensions from getting assembled in a same column-
cluster. Then, evolution of co-clusters along time has been investigated. The method relies
on a constrained Latent Block Model embedding a probability distribution for ordinal data.
Parameter estimation relies on a Stochastic EM-algorithm associated to a Gibbs sampler,
and the ICL-BIC criterion is used for selecting the numbers of co-clusters.

1. Introduction

Persons with cancer usually go through traumatizing hardships as chemotherapy and
intense stress. The disease and its treatment has an impact on different domains of
their environment like social life, or emotional state. In psychology, these domains are
divided in dimensions. For example, in Table 1 the domain quality of life is divided
into six dimensions (physical functioning, role functioning, social functioning, emotional
functioning, cognitive functioning, global health evaluation). Differently, the domain
emotional state is defined with the two dimensions anxiety and depression Zigmond
and Snaith (1983). Others psychological dimensions have been identified as a quality
of life predictor like perceived control of the illness, which corresponds to the general
belief whereby evolution of the disease depend either on internal factors (action, effort,
personal abilities) or on external factors (hazard, destiny) (Cousson-Gélie, 2014), or
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social support which assesses perceived availability (number of people on whom the
individual thinks they can count if necessary) and the degree of satisfaction relating to
this support (Sarason et al., 1983).

The dataset which has initiated this work is a survey realized on women affected
by breast cancer (Cousson-Gélie, 2014). The patients were asked to reply to various
questionnaires related to distinct dimensions, the answers being of the ordinal kind with
different numbers of levels (Agresti, 2012). They repeated this exercise at six different
moments of their treatment. Therefore the resulting dataset is a set of six tables, the
lines representing the patients, and the columns representing the questions. First of all,
the psychologists are interested in identifying psychological profiles. Particularly, they
are willing to analyze the mutual influence of the different dimensions for each profile.
To help them on this task, a constrained co-clustering was performed. Co-clustering is
a technique which operates simultaneous clustering of the rows and columns of a matrix
(Govaert and Nadif, 2014). As a result, a co-clustering emphasizes an internal structure
in the dataset, which in this case allows to detect typical psychological profiles and the
groups of questions that differentiates them. The term “constrained” is used because the
co-clustering was forced to keep separated the questions (columns) that did not relate to
a common dimension. In a second time, the experts want to investigate the evolution of
their patients. Indeed, the notion of trajectory is also important in psychology (Annema
et al., 2017): not only does it look at the psychological state of a patient, but it also
focuses on the changes of this state. Realizing a co-clustering at each time the patients
had to answer the questionnaires gives a better idea of the evolution of the patients on
different perspectives. On a global scale, it shows how groups of persons evolve, and
how replies changed along the study period. On a more precise scale, the co-clustering
makes possible to analyze the behavior of a single patient, by noticing her row-clusters
changes over time.

The dataset exclusively contains values of the ordinal type, which is a particular type
of categorical data, occurring when the levels are ordered (Agresti, 2012). Unlike categor-
ical data, ordinal data have received less attention from a clustering aspect. Therefore,
confronted to such data, the practitioners often transform them into continuous data, by
associating an arbitrary number to each level (Kaufman and Rousseeuw (2008), Lewis
et al. (2005)) or into nominal data (Vermunt and Magidson, 2005). These choices allow
to use well-known distributions but loose the information given by the existing order
among levels. More recent contributions have defined clustering algorithms specific to
ordinal data (Jollois and Nadif (2009), Giordan and Diana (2011)). In a co-clustering
context, Jacques and Biernacki (2017) defines a model-based algorithm relying on the
Latent block Model (Govaert and Nadif (2014)). It embeds a recent distribution for or-
dinal data (BOS for Binary Ordinal Search model, Biernacki and Jacques (2016)) on an
SEM-Gibbs algorithm. This model presents strong advantages through its parsimony
and the significance of its parameter. Nevertheless, the weakness of this model is its
inability to treat variables with different numbers of levels, which is an actual issue for
this dataset.

In this work, the Latent Block Model is adapted as a constrained version, so that
certain questions cannot be part of the same column-cluster. This extension solves two
issues. First, it allows to force the column-clusters to be formed with questions of a
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same psychological dimension. Furthermore, it entitles to separate the questions that do
not have the same number of levels, so that the BOS distribution can be used. Indeed,
this distribution is defined with two parameters (µ,π). It makes sense to compare the
parameters of two samples generated from different (µ,π) only when the number of
levels of these samples is equal. The paper is organized as follows: Section 2 presents
the dataset and the notations, while Section 3 explains the statistical models that were
used. At last, Section 4 describes the obtained results on the psychological dataset.

2. Material

2.1. Dataset
2.1.1. Inquiry population description
Several questionnaires were given to N = 161 women who had their first surgery for
suspicious breast tumor. These patients were from 31 to 77 years old with an average
age of 56,25 years (standard deviation=9.99). Most were married or lived maritally
(77,0%). Near half of the patients were active professionally (49,7%) and 38.5% were
retired the moment they got into the study. These 161 patients were asked to answer
several questionnaires, at different moments of their treatment: one at their first surgery,
and 1, 4, 7, 10, 13 months after this assessment. As a result, the patients replied 6 times
to 134 questions and each answer was given on an ordinal scale (with a number of levels
varying from 4 to 7). Therefore, the dataset is a set of 6 matrices of ordinal data such
that the observations (rows) correspond to the patients, and the variables (columns)
correspond to the questions. Furthermore, sometimes some patients did not reply to a
couple of questions: therefore, there is a little proportion of missing data (18 values) in
the dataset.

2.1.2. Psychological dimensions
The questionnaires that were given to the patients were not made with casual questions.
As a matter of fact, the conception of questionnaires is a highly-specialized work in
psychology. Each questionnaire relates to precise domains of life that are themselves
divided into dimensions (e.g: MaloneBeach and Zarit (1995)), Table 1 lists the ones that
were broached in the study. Most of the questions are actually associated to a dimension.
The few questions that are not related to one of these psychological dimensions actually
concern the treatment and disease symptoms (nausea, tiredness...).

2.2. Data representation and conventions
First of all, it has been agreed that for all the questions, the most positive answer is
given the level ”1”. For example, for the question: ”Have you had trouble sleeping?” with
possible responses: ”Not at all.” ”A little.” ”Quite a bit.” ”Very much.”, the following
levels number are assigned to the replies: 1 ”Not at all.”, 2 ”A little.”, 3 ”Quite a bit.”,
4 ”Very much.”, because it is perceived as more positive not to have had trouble sleeping.

Secondly, a graphical way of representing the data has been accorded. Figure 1
exposes it: the women are projected on lines and the questions are projected on columns.
Therefore, the cell (i, j) is the reply of patient i to question j. The shades of gray
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Table 1. Table of domains and dimensions approached by the questionnaires.
Domains

Quality of life Social Support
Specific Social Support

(for a close person)
Emotional State

Control perception
regarding the disease

Dimensions

Physical functioning,
Role functioning,
Emotional functioning,
Cognitive functioning,
Social functioning,
Global health evaluation.

Satisfaction,
Quantity.

Intensity,
Perception of availability
Conflicts.

Anxiety,
Depression.

Causal attribution,
Control perception,
Religion control.

indicates how positively the person replied. For example, for the question ”Have you
had trouble sleeping?”, if the patient answers ”Not at all.”, the corresponding cell will
be white, whereas a response like ”Very much.” would imply a black cell.

Fig. 1. Graphical representations of the patients replies. The women are in lines and the
questions are in columns. A cell is the answer of a person to a question. The darker the cell is,
the more pessimistic the patient responded.
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2.3. Notations
First of all, an ordinal variable x with m levels {l1, ..., lm} is a categorical variable whose
levels order is significant. The total order relation between the levels is quoted in the
sequel ”<”: l1 < ... < lm. Furthermore, for simplicity the levels are numbered {1, ...,m}
according to their order. Following this notation, an ordinal variable x is therefore an
element of {1, ...,m}.

The representation of the questionnaires responses at a given time is now detailed.
The questions are separated according to two criteria: the number of levels m and the
dimension it is related to. Indeed, the variables that do not have the same number of
levels and the variables that are not related to the same dimension are pulled apart.
This results in a matrix split up in D tables, such that the dth table is a N × Jd matrix
written xd, made of ordinal data with number of levels md, as illustrated in Figure 2.

x =


 x1

 ...

 xD


 , with xd = (xdij)i=1,...,N ; j=1,...,Jd

Fig. 2. Representation of the patients and questions at a given time. Questions related to
different dimensions or with different number of levels m are separated

The dataset contains missing data. The whole dataset will be written x = (x̌, x̂), x̌
being the observed data, and x̂ being the missing data. Consequently a cell of x will be
annotated as follows: x̌ij , whether xij is observed, x̂ij otherwise.

Finally, the limits of variation 1 ≤ i ≤ N , 1 ≤ j ≤ J , 1 ≤ g ≤ G, 1 ≤ h ≤ H
(or 1 ≤ h ≤ Hd from Section 3.2.2) will be implicit. For example, the matrix x =
(xij)1≤i≤N,1≤j≤J will be written (xij)i,j . Furthermore, the sums and the products relat-
ing to rows, columns, row-clusters and column-clusters will be subscripted respectively
by the letters i, j, g, and h. So the sums and products will be written

∑
i

,
∑
j

,
∑
g

and∑
h

and
∏
i

,
∏
j

,
∏
g

and
∏
h

.

3. Methods

3.1. The BOS distribution for ordinal data
The BOS model (Biernacki and Jacques, 2016) is a probability distribution for ordinal
data parametrized by a position parameter µ ∈ {1, ...,m} and a precision parameter
π ∈ [0, 1]. It was built by assuming that an ordinal variable is the result of a stochastic
binary search algorithm within the ordered table (1, ...,m). This distribution rises from
the uniform distribution when π = 0 to a more peaked distribution around the mode µ
when π grows, and reaches a Dirac distribution at the mode µ when π = 1. Figure 3
illustrates the shape of the BOS distribution with different values of µ and π. It is shown
in Biernacki and Jacques (2016) that the BOS distribution is a polynomial function of
π with degree m − 1, whose coefficients depend on the position parameter µ. For a
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univariate ordinal variable, the path in the stochastic binary search can be seen as a
latent variable. Therefore, maximum likelihood estimation of model parameters can be
simply performed using an EM algorithm (Dempster et al., 1977).

Fig. 3. BOS distribution p(x;µ, π): shape for m = 5 and for different values of µ and π

3.2. Latent Block Model extension
In this section, the Constrained Latent Block Model is described but first the Latent
Block Model concepts are recalled (Govaert and Nadif, 2014).

3.2.1. Latent Block Model
Let x = (xij)i,j be a data matrix. It is assumed that there exists a partition v =
(vig)i,g and a partition w = (wjh)j,h such that each element xij is generated under a
parameterized probability density function f(xij ;αgh) where g denotes the cluster of
row i while h denotes the cluster of column j. The univariate random variables xij are
assumed to be conditionally independent given the row and column partitions v and
w. Therefore, the conditional probability density function of x given v and w can be
expressed in the following form:

p(x|v,w;α) =
∏

i,j,g,h

f(xij ;αgh)vigwjh ,

considering that vig = 1 if i belongs to cluster g, whereas vig = 0 otherwise, and that
wjh = 1 when j belongs to cluster h, but wjh = 0 otherwise.

Different univariate distributions can be used regarding the type of data (e.g: Gaus-
sian, Bernoulli, Poisson...). In the present case, the BOS distribution is chosen. The
label of row i is called vi and belongs to {1, ..., G}. Similarly, the label for column j is
called wj and belongs to {1, ...,H}. They are latent variables assumed to be independent
so p(v,w;γ,ρ) = p(v;γ)p(w;ρ) with:

p(v;γ) =
∏
i
p(vi;γ) =

∏
i,g
γ
vig
g and p(w;ρ) =

∏
j
p(wj ;ρ) =

∏
j,h

ρ
wjh

h ,
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knowing that γg = p(vig = 1) with g ∈ {1, ..., G} and ρh = p(wjh = 1) with h ∈
{1, ...,H}. This implies that, for all i, the distribution of vi is the multinomial distribu-
tionM(γ1, ..., γG) and does not depend on i. In a similar way, for all j, the distribution
of wj is the multinomial distribution M(ρ1, ..., ρH) and does not depend on j. From
these considerations, the parameter of the latent block model is defined as θ = (γ,ρ,α),
where α = (αgh)g,h, with αgh = (µgh, πgh) being the position and precision BOS parame-
ters of the distribution of block (g, h). Additionally, γ = (γ1, ..., γG) and ρ = (ρ1, ..., ρH)
are the mixing proportions. Therefore, if V and W are the sets of all possible labels v
and w, the probability density function p(x;θ) of x can be written:

p(x;θ) =
∑

(v,w)∈V×W

∏
ig
γ
vig
g

∏
jh

ρ
wjh

h

∏
i,j,g,h

f(xij ;αgh)vigwjh .

3.2.2. Constrained Latent Block Model

In this section, the Latent Block Model is extended as in Robert (2017) so that the
questions from different dimensions are kept separated, as well as the questions with
different number of levels. In this co-clustering framework, x is a N × (J1 + ... + JD)
matrix, and it is seen as matrices x1, ...,xD stored side by side as explained in Section 2.3.
It is supposed that there is a row-partition v, and that for all d ∈ {1, ..., D}, there exists
a column-partition wd such that each element xdij is generated under a parameterized

probability density function f(xdij ;αgh). Here, h denotes the cluster of column j, with

j ∈ {1, ..., Jd} and h ∈ {1, ...,Hd}. The univariate random variables xdij are assumed to

be conditionally independent given the row and column partitions v and wd. Therefore,
the conditional probability density function of x given v and wd

d∈{1,...,D} can be written
in the following form:

p(x|v,w1, ...,wD;α) =
∏
i,j,d

f(xdij ;αviwd
j
) =

∏
d,i,j,g,h

f(xdij ;αgh)vigwd
jh ,

knowing that: ∀d ∈ {1, ..., D}, wd
jh = 1 when j belongs to cluster h, but wd

jh = 0
otherwise.

The labels v1, ..., vN , (w
d
1 , ..., w

d
Jd

)d∈{1,...,D} are latent variables assumed to be inde-

pendent: p(v,w1...wD;γ,ρ) = p(v;γ)
∏
d

p(wd;ρd) with:

p(v;γ) =
∏
i
p(vi;γ) =

∏
i,g
γ
vig
g and p(wd;ρd) =

∏
j
p(wd

j ;ρd) =
∏
j,h

ρdh
wd

jh ,

knowing that ρdh = p(wjh = 1) with h ∈ {1, ...,H}. Again, for all i, the distribution of
vi is the multinomial distributionM(γ1, ..., γG) and does not depend on i. Evenly, for all
j and for all d, the distribution of wd

j is the multinomial distributionM(ρd1, ..., ρ
d
Hd

) and
does not depend on j. By analogy with the classic Latent Block Model, the probability
density function p(x;θ) is written:

p(x;θ) =
∑

(v,w1,..,wD)∈V×W1×...×WD

∏
i,g
γ
vig
g

∏
d,j,h

ρdh
wd

jh
∏

i,j,g,d,h

f(xdij ;αgh)vigwd
jh .
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3.3. Model inference with an SEM-Gibbs algorithm
This section details the model inference in the case of the constrained latent block
model. The aim is to estimate θ by maximizing the observed log-likelihood l(θ; x̌) =∑̂
x

p(x;θ). In a co-clustering context, the EM algorithm is not computationally feasible

(see Govaert and Nadif (2014)). Indeed, the E step requires the calculation of the
joint conditional probability of the missing labels p(vig = 1, wjh = 1|x;θ(q)) for 1 ≤
i ≤ N, 1 ≤ g ≤ G, 1 ≤ d ≤ D, 1 ≤ j ≤ Jd, 1 ≤ h ≤ Hd, with θ(q) the current
value of the parameter. Therefore, this step implies to compute N × G × (J1 × H1 +
... + JD × HD) terms that cannot be factorized as for a standard mixture, due to the
dependence of the row and column labels conditionally to the observations. There exists
several alternatives to the EM algorithm like variational EM algorithm the SEM-Gibbs
algorithm or Bayesian inference (Govaert and Nadif, 2014). The SEM-Gibbs is known
to avoid spurious solutions (Keribin et al., 2010), this is why it is used in this paper.
Starting from an initial value for the parameter θ(0) , the qth iteration of the algorithm
is composed of two steps.

3.3.1. SE-step

The SE-step consists in estimating the joint conditional probability of the missing labels
by a Gibbs sampling. Therefore, it repeats several times these steps:

First step. Generate the row partitions with v
(q+1)
ig | (xd)d∈{1,..,D}, (w

d)
(q)
d∈{1,..,D} :

p(vig = 1 | xd,wd(q)

;θ(q))d∈{1,...,D} ∝ γ(q)g ×
∏
d

tdg(xdi.|wd(q)

;α(q)), (1)

where: tdg(xdi.|wd(q);α(q)) =
∏
j,h

f(xdij ;µ
d
gh, π

d
gh)w

d
jh

(q)

.

Second step. For all d ∈ {1, ..., D} generate the column partitions for the dth table xd

with wd
jh | (x)dd∈{1,..,D},v

(q+1) :

p(wd
jh = 1 | xd,v(q+1);θ(q)) ∝ ρdh

(q) × sdh(xd.j
|v(q+1);α(q)), (2)

where: sdh(x.j |v(q+1);α(q)) =
∏
i,g
f(xdij ;µ

d
gh, π

d
gh)v

(q+1)
ig .

3.3.2. M-step

The M-step consists in maximizing the completed log-likelihood by updating the co-
clusters parameters according to the results of the last SE step. It relies on the EM
algorithm used in Biernacki and Jacques (2016) for the estimation of the BOS distribu-
tion on each block.
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3.3.3. Imputation of missing values

The SEM-algorithm is able to take into account the missing data and to estimate them.
It is assumed that the whole missing process is Missing At Random (see Little and Rubin
(1986)). First, the notation of x becomes x(q) since the missing variables are going to be
imputed. Then, a third step is added to the SE-step. For all d ∈ {1, .., D}, it generates

the missing data x̂d
(q+1)

ij |x̌d,v(q+1),wd(q+1)

as follows:

p(x̂d
(q+1)

ij |x̌d,v(q+1),wd(q+1)

;θ(q)) =
∏
g,h

p(x̂d
(q)

ij ;µdgh
(q)
, πdgh

(q)
)v

(q+1)
ig wd

gh
(q+1)

.

3.3.4. Estimation of partitions and model parameter

The SEM-algorithm repeats several times the aforementioned steps. The first iterations
are called the burn-in period, which means the parameters are not stable yet. Conse-
quently, the iterations that occurred after this burn-in period are taken into account,
they are called the sample distribution. The final estimation of the position parameter
µgh is the mode of the sampling distribution. The final estimation of the continuous
parameters (πdgh,γg,ρ

d
h)d is the median of the sample distribution. It corresponds to a

final estimation of θ that is called θ̂. Then, a sample of (x̂,v, (wd)d) is generated by a

SE-step with θ fixed to θ̂. The final partitions (v̂, ŵ) and the missing observation x̂ are
estimated by the mode of their sample distribution.

3.4. Model Selection

3.4.1. ICL Criterion

To select the number of clusters, G in rows and H1, ...,HD in columns, a model selec-
tion criterion must be used. The most classical ones, like BIC (Schwarz, 1978) rely on

penalizing the maximum log-likelihood value l(θ̂;x). However, due to the dependency
of the observed data, this value is not available in a co-clustering context. Instead, an
approximation of the ICL information criterion (Biernacki et al., 2000) called ICL-BIC is
employed. Keribin et al. (2015) details the ICL-BIC expression for the case of categorical
data. In Jacques and Biernacki (2017), the BOS distribution is considered as a specific
model for categorical data and the ICL-BIC expression is easily deduced from Keribin
et al. (2015). In the present work, the ICL-BIC is therefore adapted for the constrained
latent block model:

ICL-BIC(G,H1, ...,HD) =

log p(x̌, v̂, ŵ1..., ŵD; θ̂)− G−1
2 logN −

∑
d

Hd−1
2 log Jd −

∑
d

G×Hd

2 log(N × Jd),

where v̂, ŵ1..., ŵD are the row and column partitions discovered by the SEM-algorithm,
and θ̂ is the corresponding estimated model parameter.

On a dataset, the co-clustering is performed several times, with different (G,H1, ...,HD).
The configuration with the highest ICL-BIC is retained.
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3.4.2. Highest ICL-BIC search

In order to find the best (G,H1, ...,HD), the co-clustering has to be performed for each
possible values of G and Hd, d ∈ {1, ..., D}, then the result with the highest ICL-BIC is
retained. Let nG be the number of candidate values for G, while nHd

is the number of
candidate values for Hd, d ∈ {1, ..., D}. Thus, the number of co-clustering to execute is
nG × nH1

× ... × nHD
. As an example, if D = 3 and the user wants to try 3 values for

G and for each Hd, then it would require to execute 34 = 81 co-clusterings. Depending
on the dataset, it might take too much time to find the best solution. With the Bi-
Km1 algorithm, Robert (2017) offers an efficient way to find a good (G,H1, H2) in the
case of binary data, and with D = 2. In this work, D can get much larger, which
significantly increases the execution time. Therefore, a strategy that simplifies the Bi-
Km1 is proposed here. Algorithm 1 sums up this strategy.

Let call (Gmin, Gmax) the boundaries of the candidate values for G. Similarly, for all
d ∈ {1, ..., D}, (Hdmin

, Hdmax
) are the boundaries of the candidate values for Hd. The al-

gorithm starts with the set (Gmin, H1min
, ...,HDmin

). At iteration r, the current best set

(G,H1, ...,HD) is called (G,H1, ...,HD)(r) and is made of values: (G(r), H
(r)
1 , ...,H

(r)
D ). At

rth iteration, D+1 different co-clusterings are performed with sets (G(r)+1, H
(r)
1 , ...,H

(r)
D ),

(G(r), H(r) + 1, ...,H
(r)
D ),...,(G(r), H

(r)
1 , ...,H

(r)
D + 1). Then, the ICL-BIC is computed for

each result. If none of the ICL-BIC is better than for the set (G,H1, ...,HD)(r), the
algorithm finishes and (G,H1, ...,HD)(r) is the set to use. In the other case, the set
with the highest ICL-BIC is retained, and becomes (G,H1, ...,HD)(r+1). The algorithm
afterwards reiterates the same steps.

(G,H1, ...,HD)0 = (Gmin, H1min
, ...,HDmin

) ;
ICL-BIC=-inf ;
better-ICL = TRUE ;
r=0 ;
while better-ICL do

r = r+1 ;

Perform D + 1 different co-clusterings with sets (G(r+1), H
(r)
1 , ...,H

(r)
D ),

(G(r), H
(r)
1 + 1, ...,H

(r)
D ),...,(G(r), H

(r)
1 , ...,H

(r)
D + 1) ;

Compute the ICL-BIC for each result ;

(G,H1, ...,HD)(r+1) = set with highest ICL-BIC ;

if ICL-BIC((G,H1, ...,HD)(r+1))≥ICL-BIC((G,H1, ...,HD)(r)) then
better-ICL = TRUE ;

else
better-ICL = FALSE ;

end

end

return (G,H1, ...,HD)(r)

Algorithm 1: Algorithm for finding a good set (G,H1, ...,HD).



Constrained co-clustering for ordinal data 11

Table 2. Co-clustering result on dimensions anxiety, depression, symptoms: estimated BOS param-
eters (µgh, πgh) for each cluster (g, h).

Anxiety Depression Symptoms
col. cluster 1 col. cluster 2 col. cluster 1 col. cluster 2 col. cluster 1 col. cluster 2

row cluster 1 (2,0.77) (2,0.77) (1,0.70) (2,0.83) (2,0.46) (1,0.74)
row cluster 2 (2,0.68) (3,0.72) (2,0.47) (2,0.79) (3,0.39) (1,0.42)
row cluster 3 (1,0.64) (2,0.44) (1,0.77) (2,0.70) (2,0.58) (1,0.71)
row cluster 4 (1,0.67) (2,0.47) (1,0.79) (2,0.71) (1,0.80) (1,0.93)
row cluster 5 (2,0.72) (3,0.55) (2,0.64) (2,0.75) (2,0.66) (1,0.77)

4. Application on the survey dataset

4.1. Constrained co-clustering on different dimensions
Several constrained co-clusterings were performed on the dataset, with different dimen-
sions and at different times. This section presents some significant results that were
obtained. In the following experiments, Algorithm 1 was executed with Gmin = 3
and Hdmin

= 1 to choose the numbers of row-clusters and column-clusters (G and
(Hd), d ∈ {1, ..., D}). All the ICL-BIC values are available in the appendix. The choice
for a good number of iterations for the SEM-algorithm and for the burn-in period was
made empirically. It was noticed that the parameters would stabilize after 150 iterations
(or less). Therefore, the burn-in period was set to 400 iterations and the total number
of iterations was fixed to 500. In the appendix, Figure A1 shows how some example
parameters converges through iterations.

4.1.1. Anxiety, depression and symptoms.

As a first experiment, it was decided to investigate the responses that were given at
time T5, at the end of the treatment. For the symptoms dimension, it is a key moment
because the patient has been going through chemotherapy for one year. A constrained
co-clustering was realized by fetching the questions related to the dimensions anxiety,
depression and symptoms. In this case, all the questions have a number of levels m
equals to 4. Therefore, the only constraint is the separation of the questions that are
from different dimensions. The execution time of this set up is about 12 seconds with
an Intel Xeon E5-2620 CPU 2.00 GHz and 8Go RAM. The result of the constrained co-
clustering is illustrated by Figure 4. For all the figures, clusters are read from left to right
and from top to bottom. Furthermore, Table 2 details the estimated BOS parameters
(µgh and πgh) for g ∈ {1, ..., G} and h ∈ {1, ...,Hd},∀d ∈ {1, ..., D}.

Five row-clusters are highlighted by the co-clustering results. Table 2 shows that
the positions parameters of the second row-cluster (µ2h)d,h are globally greater than (or
equal to) those of the other row-clusters. It means that the second group presents more
signs of anxiety and depression, and senses more intensively the disease symptoms than
the other ones. It is also noticed that the fourth row-cluster is less inclined to anxiety
and depression and suffers less from the symptoms than the others groups: indeed, pa-
rameters (µ4h)d,h are globally the lowest. Furthermore, the precision parameters (π4h)d,h
are quite high for this row-cluster, which means that the answers do not disperse much
around the position (µ4h)d,h. By observing these two groups results, one could tell that
the sense of symptoms is closely associated to signs of anxiety and depression, which
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Fig. 4. Results from constrained co-clustering on dimensions anxiety, depression and
symptoms.

is a pretty logical and intuitive result. Yet, the first, the third and the fifth groups
bring more information. They are effectively very similar about how much they suffer
the disease symptoms dimensions. However, they differ a lot in the first column cluster
of anxiety, and in the first column cluster of depression. It means than even if a link
between symptoms, anxiety and depression can be deduced from the first observations,
it is not totally confirmed when people do not sense the symptoms at the extremes (very
much or not much). Moreover the column-clusters offer interesting result as well: there
is a clear separation among the symptoms. By examining the questions in each cluster,
it turns out that questions in the first cluster exclusively deal with pain and fatigue,
while the second cluster deals with other symptoms such as nausea or loss of appetite.
The co-clustering therefore detected two sub-dimensions for the symptoms dimension.
What’s more there is a big difference on how the patients sense these two clusters: it
is easily noticed that the position parameters (µg1)(symptoms) are globally higher than
(µg2)(symptoms). Therefore all the patients in general suffers more from pain and fatigue
than the others symptoms.

4.1.2. Social support: satisfaction, availability, intensity and conflicts.

As a second experiment, questions related to the social support were used. The responses
come from the fourth moment of the experiment: it is in the middle of the treatment
for the patients, so they have gone through a lot, but know they have to keep on going
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Table 3. Co-clustering result on social sup-
port dimensions: estimated BOS parameters
(µgh, πgh) for each cluster (g, h).

Satisfaction Availability Intensity Conflicts
col. cluster 1 col. cluster 1 col. cluster 2 col. cluster 1 col. cluster 2 col. cluster 1 col. cluster 2 col. cluster 3

row cluster 1 (2,0.90) (1,0.72) (1,0.96) (3,0.48) (1,0.59) (4,0.80) (3,0.24) (1,0.62)
row cluster 2 (3,0.87) (1,0.64) (1,0.50) (3,0.46) (2,0.48) (4,0.47) (3,0.42) (1,0.49)
row cluster 3 (1,0.73) (2,0.72) (1,0.86) (3,0.52) (2,0.63) (4,0.59) (3,0.51) (1,0.44)
row cluster 4 (2,0.79) (1,0.61) (2,0.64) (3,0.31) (2,0.50) (3,0.27) (3,0.32) (1,0.44)
row cluster 5 (1,0.93) (1,0.78) (1,0.91) (3,0.27) (1,0.68) (4,0.71) (3,0.18) (1,0.63)

for a few months. Their perception of their social support is therefore interesting at
this moment. This aspect includes questions of four dimensions: the satisfaction (with
number of levels m = 6), the perception of availability, the intensity and the conflicts
(with a number of levels m = 4). The questions which relate to the same dimension have
the same number of levels. Again, the only constraint is the separation of the questions
that are not from the same dimensions. The result of the constrained co-clustering is
illustrated by Figure 5. Furthermore, Table 3 details the estimated BOS parameters (µ
and π) for each co-cluster.

Fig. 5. Result from constrained co-clustering on dimensions related to social support.

The co-clustering detected five row-clusters. The third and the fifth ones are clearly
satisfied with the social support they have. Indeed, their position parameters µ31(satisfaction)
and µ51(satisfaction) are equal to 1. Furthermore, the precisions π31(satisfaction) and
π51(satisfaction) are really high, which means that most of the patients effectively replied
in the most positive way to the questions regarding their satisfaction. The women in



14 Margot Selosse et al.

Table 4. Co-clustering result on symptoms dimension, at three different times: estimated BOS
parameters (µgh, πgh) for each co-cluster (g, h).

T0 Symptoms T2 Symptoms T25 Symptoms
col. cluster 1 col. cluster 2 col. cluster 1 col. cluster 2 col. cluster 1 col. cluster 2

row cluster 1 (2,0.20) (1,0.67) (2,0.62) (1,0.72) (2,0.64) (1,0.74)
row cluster 2 (2,0.09) (1,0.62) (3,0.43) (1,0.40) (3,0.42) (1,0.46)
row cluster 3 (1,0.66) (1,0.84) (1,0.58) (1,0.85) (1,0.54) (1,0.84)

the first group are quite dissatisfied by their social support compared to the other ones.
An interesting result is that the notion of satisfaction does not seem tightly linked to
the perception of availability. Actually, the third group, which is one of the most satis-
fied, has one of the worst perception of availability from their close family and friends
(µ31(availability) ≥ µg1(availability)). Similarly, the presence of conflicts does not seem to

have an impact on the satisfaction neither: the BOS parameters of the different row-
clusters for the conflict dimension do not significantly change from a row-cluster to
another. At last, a inherent structure has been detected among the questions related to
conflicts. Indeed, the dimension is divided into three groups. By reading the questions
of each group, it can be interpreted as follow: the first group of questions is about the
efforts the patient has to make not to enter in conflict with their close ones. The second
groups gathered questions about changes in the relationship, whereas the last cluster
concerns the sentiments of anger towards their close family and friends.

4.1.3. Symptoms at different times.

In this experiment, the questions related to symptoms were selected for different mo-
ments (at time T0, T2 and T5). The constraint is therefore not to separate the questions
from different dimensions, but to separate the questions that are not from the same time.
The point of performing a co-clustering on such a dataset is that the row-clusters gather
people that had a similar evolution regarding this dimension. Furthermore, the column-
clusters give information about how the patients symptoms globally worsens (or get
better) throughout the treatment. BOS parameters for this experiment are available in
Table 4, and Figure 6 illustrates the results.

The co-clustering emphasizes three row-clusters. The third one gathers people that
felt less the disease symptoms than the others: the position parameters (µ3h)d,h are
all equals to 1. What’s more, the precision parameters (π3h)d,h are pretty high, which
implies that the responses do not spread a lot around the value 1. It is also interesting to
investigate how the column-clusters evolve. To begin, for each time, the symptoms are
separated into two column-clusters: systematically, the first one is globally worse than
the second one, because (µg1)(T0,T2,T5) ≥ (µg2)(T0,T2,T5),∀g ∈ {1, ..., G}. It is observed
that at time T0 there is less symptoms in the column-cluster 1 than in column-cluster
2, whereas they are equally shared at times T2 and T5.

4.2. Handling of the dynamical aspect of the data
The patients answered to the same questionnaires at 6 different moments of their treat-
ment. Consequently, there is an interest in the evolution of the responses. To handle this
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Fig. 6. Co-clustering results with questions related to symptoms, at three different times.

perspective, visualization were created so that the psychologists could have a first im-
pression of the evolution, with the Javascript library D3js. First of all, the interesting
dimensions were selected. Then, a co-clustering was performed, similarly to Section 4.1,
for each time T0, T1, T2, T3, T4, T5. The visualization represents the row-clusters on
the ordinate axis, and the time line on the abscissa axis: Figure 7 illustrates the home
page of a visualization that was created with dimensions dealing with quality of life and
emotional state. If the expert wishes to observe the evolution of a single patient, they
can click on the list of patient on the right to see the row-clusters it belongs to through
time, like in Figure 8. Moreover, if the expert wants to know the co-cluster BOS param-
eters, they click on the row-clusters, and is able to read the (µ, π) of the corresponding
co-clusters, as in Figure 9.

These visualizations showed that the patients globally got stabler with time. Indeed,
it is noticed that whereas a lot of patients changed of row-clusters at the three first
moments T0, T1, T2. these transitions get rarer after time T2.

5. Conclusion

In this paper, a constrained co-clustering algorithm is proposed to analyze psychologi-
cal questionnaires given to women affected by breast cancer. This dataset has a lot of
specificities, which makes the use of classical techniques difficult without changing the
information. First, it is made of questionnaires with answers on the ordinal scale. Fur-
thermore it included a temporal aspect because the patients answered 6 times to these
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Fig. 7. Home-page: the row-clusters are represented on the ordinate axis, and the time line is
on the abscissa axis.

Fig. 8. When user clicks on a patient on the right list, they can observe the psychological
trajectory of this patient.

questionnaires. Then, the questions are assimilated to psychological dimensions, which
can not be ignored. Finally, just like a lot of real dataset, this one contains some missing
values.

To adapt to the particularities of the survey, an extension of the latent block model
is defined, and the parsimonious BOS distribution for ordinal data is employed. What’s
more, model inference is performed with an SEM-Gibbs algorithm, which allows to take
missing values into account. An R package with a full implementation of this work is
available upon request to the authors, and will be soon available on the CRAN. Finally,
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Fig. 9. When user clicks on a row-cluster they are able to see the BOS parameters of all
corresponding co-clusters.

visualizations have been created to help the psychologists to observe the evolution of
their patients.

The results were particularly satisfying to the psychologist. The proposed technique
provides a parsimonious way to cluster the patients by gathering the questions in a small
number of groups, and the BOS parameters meaningfulness allows to easily interpret the
resulting co-cluster. Furthermore, the constrained co-clustering overtakes two matters:
the different numbers of levels for the questions, and the fact that the questions refer to
different psychological dimensions.

With the proposed approach, features with different number of levels can be treated
in the co-clustering execution, but they are not allowed to be part of the same column-
cluster. As a future work, it would be interesting to make that possible, and ideally, to
perform co-clusterings with data of different kinds (continuous, functional...). At last,
although the dynamical aspect of the data has been approached with visualizations it
would be advantageous to define a mathematical model on this aspect.
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Table 1. ICL-BIC values for experiment with dimensions: anxiety, depression and
symptoms.

iteration
number

tested set ICL-BIC value
iteration
number

tested set ICL-BIC value

0 3111 -3182.636

4

4222 -2897.574

1

3211 -3202.003 3322 -2899.502
4111 -3178.63 3232 -2915.243
3121 -3135.95 3223 -2914.43
3112 -2981.384

5

5222 -2887.428

2

4112 -2955.255 4322 -2901.103
3212 -3012.662 4232 -2902.765
3122 -2931.426 4223 -2911.143
3113 -3003.892

6

6222 -2890.224

3

4122 -2909.457 5322 -2890.043
3222 -2907.208 5232 -2898.423
3132 -2937.025 5223 -2900.492
3123 -2941.77

Table 2. ICL-BIC values for experiment with dimensions of social support.
iteration
number

tested set ICL-BIC value
iteration
number

tested set ICL-BIC value
iteration
number

tested set ICL-BIC value

0 31111 -4159.044

4

51113 -3745.543

7

61223 -3654.905

1

41111 -4148.478 42113 -3792.785 52223 -3664.249
32111 -4169.625 41213 -3807.943 51323 -3660.886
31211 -4167.269 41123 -3708.452 51233 -3670.111
31121 -4109.996 41114 -3782.372 51224 -3665.377
31112 -3890.939

5

51123 -3684.643

2

41112 -3861.417 42123 -3723.946
32112 -3901.316 41223 -3710.339
31212 -3966.906 41133 -3814.453
31122 -3847.206 41124 -3807.466
31113 -3792.995

6

61123 -3672.869

3

41113 -3759.687 52123 -3689.939
32113 -3800.504 51223 -3646.392
31213 -3793.978 51133 -3670.815
31123 -3760.164 51124 -3674.937
51113 -3803.808

Appendix

The following tables present the ICL-BIC obtained by executing Algorithm 1 on the
applications described in Section 4. At each iteration, the values in bold represents
the highest ICL-BIC values of the iteration. The underlined values are the final chosen
values for (G,H1, ...,HD).

Figure A1 presents the evolution of some parameters through the SEM-algorithm
iterations.
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Table 3. ICL-BIC values for experiment with
symptoms dimensions at times (T0, T1, T2).

iteration
number

tested set ICL-BIC value

0 3111 -4479.951

1

4111 -4473.039
3211 -4419.312
3121 -4278.773
3112 -4259.51

2

4112 -4206.192
3212 -4200.733
3122 -4021.611
3113 -4262.249

3

4122 -4033.372
3222 -3967.913
3132 -4012.178
3123 -4103.417

4

4222 -3981.241
3322 -4082.588
3232 -4080.828
3223 -4046.097
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Fig. A1. Parameters evolution along time in the SEM-algorithm.


