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Summary. The dataset that motivated this work is a psychological survey on women
affected by a breast tumour. Patients replied at different stages of their treatment to ques-
tionnaires with answers on an ordinal scale. The questions relate to aspects of their life
referred to as “dimensions”. To assist psychologists in analysing the results, it is useful
to highlight the structure of the dataset. The clustering method achieves this by creating
groups of individuals that are depicted by a representative of the group. From a psycho-
logical position, it is also useful to observe how questions may be clustered. The simulta-
neous clustering of both patients and questions is called “co-clustering”. However, placing
questions in the same group when they are not related to the same dimension does not
make sense from a psychological perspective. Therefore, constrained co-clustering was
performed to prevent questions of different dimensions from being placed in the same
column-cluster. The evolution of co-clusters over time was then investigated. The method
uses a constrained Latent Block Model embedding a probability distribution for ordinal
data. Parameter estimation relies on a stochastic EM algorithm associated with a Gibbs
sampler, and the ICL-BIC criterion is used to select the number of co-clusters.

1. Introduction

The aim of this work is to provide an efficient tool for exploring ordinal data from
psychological surveys. Indeed, when psychology experts set up surveys for a study,
they often collect a large quantity of data, both in terms of the number of individuals
(people) and the number of variables (questions). This is advantageous because the more
data they collect, the more reliable their conclusions will be. Nevertheless, shortly after
collecting the data, a first exploratory phase is necessary. This phase of understanding
makes it possible to synthesize the data, to distinguish structures inherent to the data
and to detect anomalies if they exist. It also allows better visualization and overall
understanding of the data. Unsupervised algorithms for clustering or pattern detection
help provide a global overview of a dataset. In high dimensions, when the number of
variables is large, it is often useful to simultaneously cluster the rows and columns of the
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data (Govaert and Nadif (2003)). Indeed, as it is necessary to summarize the individuals
into homogeneous groups, it is also interesting to summarize the variables. The result
of this type of simultaneous clustering, referred to as “co-clustering”, provides a more
refined synthesis by summarizing the dataset using blocks, as illustrated by Figure 1.
This work presents a novel method for co-clustering ordinal data, as the psychological
surveys that motivated this work are based on questionnaires with answers on ordinal
scales.

original data
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coclustering
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Fig. 1. Original dataset (left) and co-clustering results (right).

The dataset that initiated this work is a survey carried out among women affected
by breast cancer (Cousson-Gélie (2014)). Individuals with cancer usually experience
traumatizing hardships such as chemotherapy and intense stress. The disease and its
treatment have an impact on different domains of their environment, such as their social
life or emotional state. In psychology, these domains are divided into dimensions. For
example, in Table 1, the domain quality of life is divided into six dimensions (physical
functioning, role functioning, social functioning, emotional functioning, cognitive func-
tioning and global health evaluation). In contrast, the domain emotional state is defined
using two dimensions: anxiety and depression (Zigmond and Snaith (1983)). Other psy-
chological dimensions have been identified as a quality of life predictor, such as perceived
control of the illness, which corresponds to the general belief whereby evolution of the
disease depends either on internal factors (action, effort or personal abilities) or on ex-
ternal factors (luck or destiny) (Cousson-Gélie (2014)), or social support, which assesses
perceived availability (number of people on whom the individual thinks they can count if
necessary) and the degree of satisfaction relating to this support (Sarason et al. (1983)).

The patients were asked to reply to various questionnaires related to distinct dimen-
sions, the answers being of the ordinal kind with different numbers of levels (Agresti
(2010)). They repeated this task at six different stages of their treatment. Therefore,
the resulting dataset comprises a set of six tables, with the rows representing the pa-
tients and the columns representing the questions. First of all, the psychologists sought
to identify psychological profiles. In particular, they wanted to analyse the mutual
influence of the different dimensions for each profile. To help them with this task, con-
strained co-clustering was performed. As mentioned above, co-clustering is a technique
that performs simultaneous clustering of the rows and columns of a matrix. As a result,
co-clustering highlights the internal structure of the dataset, which in this case makes it
possible to detect typical psychological profiles and the groups of questions that differ-
entiate them. The term “constrained” is used because the co-clustering operation was
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set up as to ensure that the questions (columns) that did not relate to a common di-
mension were kept separate. This is referred to as a “cannot-link constraint” (Wagstaff
et al. (2001)), here it applies only on the column-clusters. Next, the experts sought to
investigate how their patients’ answers evolved over certain characteristic periods of time
(stages). Indeed, they also wanted to focus on the changes in their psychological state,
which is known as the “trajectory” (Annema et al. (2017)). Performing co-clustering at
each stage at which the patients had to answer the questionnaires gives a better idea
of the changes among patients from different perspectives. On a global scale, it shows
how the groups of individuals evolved, and how the replies changed during the study
period. On a more precise scale, co-clustering made it possible to analyse the behaviour
of a single patient, by allowing the observation of how her row-clusters changed over the
time periods.

The dataset exclusively contains values of the ordinal type. Confronted with such
data, practitioners often transform them into continuous data by associating an arbi-
trary number with each level (Kaufman and Rousseeuw (2008); Lewis et al. (2005)), or
transform them into nominal data (Vermunt and Magidson (2005)). These choices make
it possible to use well-known distributions, but result in either the loss of the information
given by the existing order among levels (when considering them as nominal data) or
the introduction of an arbitrary notion of distance between levels (when transforming
them into continuous data).

Recent contributions have defined clustering algorithms specific to ordinal data. Sev-
eral contributions use Gaussian latent variables to model the data: in McParland and
Gormley (2011), the observed data are viewed as discrete versions of an underlying la-
tent Gaussian variable. In Ranalli and Rocci (2016), the observed categorical variables
are considered as a discretization of an underlying finite mixture of Gaussians. Other
contributions use the multinomial distribution to model the data. In Giordan and Di-
ana (2011), the authors use the multinomial distribution and a cluster tree, while Jollois
and Nadif (2009) use a constrained multinomial distribution. Another approach is to
consider a mixture model. For instance, Corduas (2008) proposes a clustering algorithm
based on a mixture of CUB models (D’Elia and Piccolo (2005)). In the CUB model, an
answer is interpreted as the result of a cognitive process where the decision is intrinsi-
cally continuous but is expressed on a discrete scale of m levels. This approach interprets
the choice of the respondent as a weighted combination of two components. The first
reflects a personal feeling and is expressed by a shifted binomial random variable. The
second component reflects an intrinsic uncertainty and is expressed by a uniform random
variable. More recently, Biernacki and Jacques (2016) have defined a new distribution
for ordinal data, referred to as “ BOS”, which is used through a mixture model to per-
form ordinal data clustering. The BOS distribution is defined with two Gaussian-like
parameters (µ,π), µ being a position parameter (the mode of the distribution), and π
being a precision parameter indicating the spread of the data around the mode. One of
the advantages of the BOS model is that its parameters are easy to interpret, which is
very important when working with non-statistician professionals. The BOS model will
be described in more detail in Section 3.1.

In a co-clustering context, Jacques and Biernacki (2018) define a model-based algo-
rithm relying on the Latent Block Model (LBM, Govaert and Nadif (2003)) embedding
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the BOS distribution. Nevertheless, the weakness of this model is its inability to treat
variables with different numbers of levels. Indeed, the LBM relies on the assumption
that data in a block are independent and identically distributed. This means that to be
identically distributed, two variables should at least share the same distribution support.
Consequently, the co-clustering model of Jacques and Biernacki (2018) assumes that all
the ordinal features have the same number of levels. This is an issue for the psychological
survey studied in this paper since the number of levels can be different. Furthermore, as
explained before, the questions of the survey being studied are related to psychological
dimensions. This means that the variables are already grouped according to the dimen-
sion. While it is still interesting to perform co-clustering that will detect smaller groups,
it is also important not to group together questions that are not related to the same
dimension.

In the present work, co-clustering is performed through a constrained version of the
Latent Block Model, so that certain questions cannot be part of the same column-
cluster. This extension solves the two issues discussed. Firstly, it allows separation of
the questions that do not have the same number of levels.It also makes it possible to
constrain the column-clusters so that they are formed with questions regarding the same
psychological dimension.

The paper is organized as follows: Section 2 presents the dataset and the notation,
while Section 3 explains the statistical models that were used. Section 4 describes the
results obtained on the psychological dataset. Lastly, Section 5 concludes this paper.

2. Materials

2.1. Dataset
2.1.1. Description of survey population

Several questionnaires were given to N = 161 women having their first surgery for
suspicious breast tumour. These patients were between 31 and 77 years old with an
average age of 56.25 years (standard deviation = 9.99). Most were married or living
maritally (77.0%). Nearly half of the patients were active professionally (49.7%) and
38.5% were retired when they started the study. These 161 patients were asked to answer
several questionnaires at different stages of their treatment: one at their first surgery,
and followed by a questionnaire 1, 4, 7, 10, 13 months after this assessment. This means
that the patients replied six times to 134 questions and each answer was given on an
ordinal scale (with between four and seven levels). Therefore, the dataset comprises a
set of six matrices of ordinal data such that the observations (rows) correspond to the
patients, and the variables (columns) correspond to the questions.

The dataset also contains missing values, for which we distinguish two types. The
first type occurred when some patients did not answer any of the questions at one of the
six stages (i.e. they did not return the questionnaire at this stage). In this case, when co-
clustering was performed solely on the answers for this stage, the rows corresponding to
these patients were placed in a special row-cluster called “did not answer” (see Figure 8).
Co-clustering was then performed without taking them into account. The second type
occurred when some patients failed to answer to only a couple of questions (i.e. they
returned an incomplete questionnaire). In this case, the patient was taken into account
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Table 1. Table of domains and dimensions raised in the questionnaires.
Domains

Quality of life
(Aaronson et al. (1993))

Social Support
(Sarason et al. (1983))

Specific Social Support
(Pierce et al. (1997))

Emotional State
(Zigmond and Snaith (1983))

Control perception
(Cousson-Gélie (2014))

Dimensions

Physical functioning,
Role functioning,
Emotional functioning,
Cognitive functioning,
Social functioning,
Global health evaluation.

Satisfaction,
Quantity.

Intensity,
Perception of availability,
Conflict.

Anxiety,
Depression.

Causal attribution,
Control perception,
Religion control.

for co-clustering, and the missing values (18 values in total) were estimated by the
algorithm. The way the algorithm deals with this type of missing data is described later
on.

2.1.2. Psychological dimensions

The questionnaires given to the patients were detailed; indeed, the design of question-
naires is a highly specialized undertaking in psychology. Each questionnaire relates to
domains of life, and each domain is itself divided into dimensions (e.g. MaloneBeach and
Zarit (1995)). Table 1 lists the domains and the corresponding dimensions included in
the study. In the questionnaires, most of the questions are associated with a dimension.
The few questions that are not related to one of these psychological dimensions concern
the symptoms of the disease and its treatment (nausea, tiredness, etc.).

2.2. Data representation and conventions
First of all, the dataset was recoded so that for all the questions, the most positive
answer was given the level “1”. For example, for the question: “Have you had trouble
sleeping?” with possible responses: “Not at all”, “A little”, “Quite a bit” and “Very
much”, the following levels were assigned to the replies: 1 “Not at all”, 2 “A little”,
3 “Quite a bit” and 4 “Very much”, because it is perceived as more positive not to have
had trouble sleeping.

Secondly, a graphical way of representing the data was defined, as shown in Fig-
ure 2: the women are projected onto rows and the questions are projected onto columns.
Therefore, the cell (i, j) is the reply of patient i to question j. The shades of grey in-
dicate how positively the individual replied. For example, for the question “Have you
had trouble sleeping?”, if the patient answers “Not at all”, the corresponding cell will be
white, whereas a response such as “Very much” will correspond to a black cell.

2.3. Notation
Firstly, an ordinal variable x with m levels {l1, ..., lm} is a categorical variable for which
the order of levels is significant. The order of levels is indicated by “<”: l1 < ... < lm.
For simplicity the levels are numbered {1, ...,m} according to their order. Following this
notation, an ordinal variable x is an element of {1, ...,m}.
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Fig. 2. Graphical representation of the patients’ replies. The women are represented by rows
and the questions by columns. A cell represents an individual’s answer to a question. The
darker the cell, the more pessimistically the patient responded.

The representation of the questionnaire responses at a given time will now be detailed.
The questions are separated according to two criteria: the number of levels m and the
dimension to which they are related. This means that variables with a different number
of levels and variables related to different dimensions are separated. This results in a
matrix split up into D tables, such that the dth table is an N × Jd matrix written xd,
where N is the number of observations (in this case patients) and Jd the number of
questions in the dth table. The matrix xd comprises ordinal data with a number of levels
md. Figure 3 illustrates this notation.

x =


 x1

 ...

 xD


 , with xd = (xdij)i=1,...,N ; j=1,...,Jd

Fig. 3. Representation of the patients and questions at a given time. Questions related to
different dimensions or with a different number of levels m are separated.

The goal of co-clustering is to partition the rows of x into G row-clusters, and the
column of each submatrix xd into Hd column-clusters.

The dataset contains missing data. The whole dataset will be written x = (x̌, withx̂),
x̌ being the observed data and x̂ the missing data. Consequently, a cell of x will be
annotated as follows: x̌ij , if xij is observed, x̂ij otherwise.

Finally, the bounds for the indices i, j, g, h: 1 ≤ i ≤ N , 1 ≤ j ≤ J , 1 ≤ g ≤ G,
1 ≤ h ≤ H (or 1 ≤ h ≤ Hd from Section 3.2.2) will not be written explicitly. Therefore,
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the sums and products relating to rows, columns, row-clusters and column-clusters will
be subscripted respectively by the letters i, j, g, and h, meaning that the sums and
products will be written

∑
i

,
∑
j

,
∑
g

and
∑
h

, and
∏
i

,
∏
j

,
∏
g

and
∏
h

.

3. Methods

3.1. The BOS distribution for ordinal data
The binary ordinal search (BOS) model (Biernacki and Jacques (2016)) is a probability
distribution for ordinal data parametrized by a position parameter µ ∈ {1, ...,m} and
a precision parameter π ∈ [0, 1]. This distribution rises from the uniform distribution
when π = 0 to a more peaked distribution around the mode µ when π increases, and
reaches a Dirac distribution at the mode µ when π = 1. Figure 4 illustrates the shape
of the BOS distribution with different values of µ and π. It is shown in Biernacki and
Jacques (2016) that the BOS distribution is a polynomial function of π with degree
m−1, whose coefficients depend on the position parameter µ. Therefore, p(xij |µ, π) can
be written as:

p(xij |µ, π) =
m−1∑
p=0

ap(m,µ, xij)π
p.

For a univariate ordinal variable, the path in the stochastic binary search can be seen
as a latent variable. Therefore, maximum likelihood estimation of model parameters can
be performed simply using an EM algorithm (Dempster et al. (1977)).

Fig. 4. BOS distribution p(x;µ, π): shape for m = 5 and for different values of µ and π.

3.2. Latent block model extension
In this section, the constrained latent block model is described after a brief summary of
the latent block model concept (Govaert and Nadif (2013)).
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3.2.1. Latent block model
Let x be a data matrix. It is assumed that there exists a partition v and a partition
w such that each element xij is generated under a parameterized probability density
function f(xij ;αgh), where g denotes the cluster of row i while h denotes the cluster
of column j. The univariate random variables xij are assumed to be conditionally
independent given the row and column partitions v and w. Therefore, the conditional
probability density function of x given v and w can be expressed in the following form:

p(x|v,w;α) =
∏

i,j,g,h

f(xij ;αgh)vigwjh ,

considering that vig = 1 if i belongs to cluster g, whereas vig = 0 otherwise, and that
wjh = 1 when j belongs to cluster h, but wjh = 0 otherwise.

Different univariate distributions can be used depending on the type of data (e.g.
Gaussian, Bernoulli, Poisson, etc.). In the present case, the BOS distribution has been
chosen. The label for row i is called vi and belongs to {1, ..., G}. Similarly, the label
for column j is called wj and belongs to {1, ...,H}. They are latent variables, and as is
usual in latent variable theory, they are assumed to be independent (Everitt (1984)). So
we have p(v,w;γ,ρ) = p(v;γ)p(w;ρ) with:

p(v;γ) =
∏
i
p(vi;γ) =

∏
i,g
γ
vig
g and p(w;ρ) =

∏
j
p(wj ;ρ) =

∏
j,h

ρ
wjh

h ,

knowing that γg = p(vig = 1) with g ∈ {1, ..., G} and ρh = p(wjh = 1) with h ∈
{1, ...,H}. This implies that, for all i, the distribution of vi is the multinomial distribu-
tion M(γ1, ..., γG) and does not depend on i. Similarly for all j, the distribution of wj

is the multinomial distributionM(ρ1, ..., ρH) and does not depend on j. Based on these
considerations, the parameter of the latent block model is defined as θ = (γ,ρ,α), where
α = (αgh)g,h, with αgh = (µgh, πgh) being the position and precision BOS parameters
of the distribution of block (g, h). Additionally, γ = (γ1, ..., γG) and ρ = (ρ1, ..., ρH) are
the mixing proportions. Therefore, if V and W are the sets of all possible labels v and
w, the probability density function p(x;θ) of x can be written:

p(x;θ) =
∑

(v,w)∈V×W

∏
ig
γ
vig
g

∏
jh

ρ
wjh

h

∏
i,j,g,h

f(xij ;αgh)vigwjh .

3.2.2. Constrained latent block model
In this section, the latent block model is extended as in Robert (2017) so that the ques-
tions from different dimensions are kept separate, as are the questions with a different
number of levels. Note that this extension can also be used in the case of ordinal data
with different numbers of levels, by requiring variables with a different number of levels
to be kept separate.
In this co-clustering framework, x is an N × (J1 + ... + JD) matrix, and it is seen as
matrices x1, ...,xD stored side by side as explained in Section 2.3. It is assumed that
there is a row-partition v, and that for all d ∈ {1, ..., D} there exists a column-partition
wd such that each element xdij is generated under a parameterized probability density

function f(xdij ;αgh). Here, h denotes the cluster of column j, with j ∈ {1, ..., Jd} and
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h ∈ {1, ...,Hd}. The univariate random variables xdij are assumed to be conditionally

independent given the row and column partitions v and wd. Therefore, the conditional
probability density function of x given v and w = (wd)d∈{1,...,D} can be written in the
following form:

p(x|v,w;α) =
∏
i,j,d

f(xdij ;αviwd
j
) =

∏
d,i,j,g,h

f(xdij ;αgh)vigwd
jh ,

knowing that: ∀d ∈ {1, ..., D}, wd
jh = 1 when j belongs to cluster h, but wd

jh = 0
otherwise.

The labels v1, ..., vN , (w
d
1 , ..., w

d
Jd

)d∈{1,...,D} are latent variables assumed to be inde-

pendent: p(v,w;γ,ρ) = p(v;γ)
∏
d

p(wd;ρd) with:

p(v;γ) =
∏
i
p(vi;γ) =

∏
i,g
γ
vig
g and p(wd;ρd) =

∏
j
p(wd

j ;ρd) =
∏
j,h

ρdh
wd

jh ,

knowing that ρdh = p(wjh = 1) with h ∈ {1, ...,H}. Again, for all i, the distribution of
vi is the multinomial distributionM(γ1, ..., γG) and does not depend on i. Equally for all
j and for all d, the distribution of wd

j is the multinomial distributionM(ρd1, ..., ρ
d
Hd

) and
does not depend on j. By analogy with the classical latent block model, the probability
density function p(x;θ) is written:

p(x;θ) =
∑

(v,w1,..,wD)∈V×W1×...×WD

∏
i,g
γ
vig
g

∏
d,j,h

ρdh
wd

jh
∏

i,j,g,d,h

f(xdij ;αgh)vigwd
jh .

3.3. Model inference with an SEM-Gibbs algorithm
This section details the model inference in the case of the constrained latent block
model. The aim is to estimate θ by maximizing the observed log-likelihood l(θ; x̌) =∑̂
x

log p(x;θ). In a co-clustering context, the EM algorithm is not computationally

feasible (see Govaert and Nadif (2013)). Indeed, the E-step requires the calculation of
the joint conditional probability of the missing labels p(vig = 1, wjh = 1|x;θ(q)) for

1 ≤ i ≤ N, 1 ≤ g ≤ G, 1 ≤ d ≤ D, 1 ≤ j ≤ Jd, 1 ≤ h ≤ Hd, with θ(q) the current value
of the parameter. Therefore, this step involves computing N×G×(J1×H1+...+JD×HD)
terms that cannot be factorized as for a standard mixture, due to the dependence of the
row and column labels conditionally on the observations. There exist several alternatives
to the EM algorithm, such as the variational EM algorithm (Govaert and Nadif (2005)),
the SEM-Gibbs algorithm or Bayesian inference (Govaert and Nadif (2013)). The SEM-
Gibbs algorithm is known to avoid spurious solutions (Keribin et al. (2010)), which is
why it is used in this paper.

3.3.1. SEM-Gibbs algorithm
Starting from an initial value for the parameter θ(0), the qth iteration of the algorithm
is composed of two steps.
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SE-step The SE-step consists in simulating the latent variables according to their joint
conditional probability using Gibbs sampling. Therefore, it repeats, for a given number
of iterations, the generation of the row partitions conditionally on the column partitions
and the generation of the column partitions conditionally on the row partitions. The

generation of the row partitions v
(q+1)
ig | x,w(q) is performed according to:

p(v
(q+1)
ig = 1 | xd,w(q);θ(q)) ∝ γ(q)g ×

∏
d

tdg(xd
i.|wd(q)

;α(q)),

where tdg(xd
i.|wd(q);α(q)) =

∏
j,h

f(xdij ;µ
d
gh, π

d
gh)w

d
jh

(q)

with xd
i. = (xdij)j . The generation of

the column partitions wd
jh | x,v(q+1) for the dth table xd (d ∈ {1, ..., D}) is performed

according to:

p(wd
jh = 1 | xd,v(q+1);θ(q)) ∝ ρdh

(q) × sdh(xd
.j |v(q+1);α(q)),

where sdh(xd
.j |v(q+1);α(q)) =

∏
i,g
f(xdij ;µ

d
gh, π

d
gh)v

(q+1)
ig with xd

.j = (xdij)i.

M-step The M-step consists in maximizing the completed log-likelihood by updating
the co-cluster parameters according to the results of the last SE-step. It relies on the
EM algorithm used in Biernacki and Jacques (2016) for the estimation of the BOS
distribution on each block.

3.3.2. Imputation of missing values
The SEM algorithm is able to take into account the missing data and estimate them. It
is assumed that the whole missing process is “missing at random” (see Little and Rubin
(1986)). Firstly, the notation of x becomes x(q) since the missing variables are going
to be imputed. Then, a third step is added to the SE-step. For all d ∈ {1, .., D}, it

generates the missing data x̂d
(q+1)

ij |x̌d,v(q+1),wd(q+1)

as follows:

p(x̂d
(q+1)

ij |x̌d,v(q+1),wd(q+1)

;θ(q)) =
∏
g,h

p(x̂d
(q+1)

ij ;µdgh
(q)
, πdgh

(q)
)v

(q+1)
ig wd

gh
(q+1)

.

3.3.3. Estimation of partitions and model parameters
The SEM algorithm repeats the aforementioned steps several times. The first iterations
are called the burn-in period, which means the parameters are not yet stable. Conse-
quently, the iterations that occur after this burn-in period are taken into account; they
are called the sample distribution. The final estimate of the position parameter µgh is
the mode of the sampling distribution. The final estimate of the continuous parame-
ters (πdgh,γg,ρ

d
h)d is the median of the sample distribution. This corresponds to a final

estimate of θ that is called θ̂. Next, a sample of (x̂,v, (wd)d) is generated by an SE-

step with θ fixed to θ̂. The final partitions (v̂, ŵ) and the missing observation x̂ are
estimated by the mode of their sample distribution.
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3.4. Model selection
To select the number of clusters, G in rows and H1, ...,HD in columns, a model selec-
tion criterion must be used. The most classical, such as BIC (Schwarz (1978)) rely on

penalizing the maximum log-likelihood value l(θ̂;x). However, due to the dependency
of the observed data, this value is not available in a co-clustering context.

Alternatively, an approximation of the ICL information criterion (Biernacki et al.
(2000)), referred to here as the ICL-BIC, can be invoked as it makes it possible to
overcome the previous problem due to the dependency structure in x̌. The key point
is that this latter vanishes as the ICL relies on the complete latent block information
(v,w), instead of integrating it out as is the case for BIC. In particular, Keribin et al.
(2015) detail how to express the ICL-BIC for the general case of categorical data and
Jacques and Biernacki (2018) for the specific case of ordinal data using the BOS model.
In the present work, the ICL-BIC is therefore adapted for the constrained latent block
model:

ICL-BIC(G,H1, ...,HD) = log p(x̌, v̂, ŵ1, . . . , ŵD; θ̂)

−G− 1

2
logN −

∑
d

Hd − 1

2
log Jd −

∑
d

G×Hd

2
log(N × Jd),

where v̂, ŵ1..., ŵD are the row and column partitions discovered by the SEM algorithm,
and θ̂ is the corresponding estimated model parameter.

It should be noticed that co-clustering has to be performed for each possible value
of G and Hd, d ∈ {1, ..., D}, then the result with the highest ICL-BIC retained. Let
nG be the number of candidate values for G, while nHd

is the number of candidate
values for Hd, d ∈ {1, ..., D}. Thus, the number of co-clustering processes to execute is
nG × nH1

× ...× nHD
. As an example, if D = 3 and the user wants to try 3 values for G

and for each Hd, then it would be necessary to execute 34 = 81 co-clustering operations.
Depending on the dataset, it might take too much time to find the best solution.

We propose the following heuristic search. Let us start by computing the ICL-BIC
with minimum values (Gmin, H1min

, ...,HDmin
), then adding 1 to each number of clusters,

step by step, and computing the ICL-BIC. We can then retain the best solution (the
highest ICL-BIC) and continue the same process until the ICL-BIC stops increasing.

4. Application to the survey dataset

4.1. Constrained co-clustering with different dimensions
Several constrained co-clustering operations were performed on the dataset, with differ-
ent dimensions and at different times. This section presents some significant results that
were obtained. In the following experiments, the heuristic search described in Section 3.4
was executed with Gmin = 3 and Hdmin

= 1 to select the number of row-clusters and
column-clusters (G and (Hd), d ∈ {1, ..., D}). All the ICL-BIC values are available in
the appendix. The choice of a sufficient number of iterations for the SEM algorithm
and for the burn-in period was made empirically. It was noticed that the parameters
would stabilize after 150 iterations (or fewer). Therefore, the burn-in period was set
to 400 iterations and the total number of iterations was fixed at 500. In the appendix,
Figure A1 shows how some example parameters converge during iterations.
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Table 2. Co-clustering result on anxiety, depression and symptom dimensions: estimated BOS parameters (µgh, πgh) for each cluster (g, h).
Anxiety Depression Symptom

Col.-cluster 1 Col.-cluster 2 Col.-cluster 1 Col.-cluster 2 Col.-cluster 1 Col.-cluster 2
Row-cluster 1 (2,0.77) (2,0.77) (1,0.70) (2,0.83) (2,0.46) (1,0.74)
Row-cluster 2 (2,0.68) (3,0.72) (2,0.47) (2,0.79) (3,0.39) (1,0.42)
Row-cluster 3 (1,0.64) (2,0.44) (1,0.77) (2,0.70) (2,0.58) (1,0.71)
Row-cluster 4 (1,0.67) (2,0.47) (1,0.79) (2,0.71) (1,0.80) (1,0.93)
Row-cluster 5 (2,0.72) (3,0.55) (2,0.64) (2,0.75) (2,0.66) (1,0.77)

4.1.1. Anxiety, depression and symptom.

As a first experiment, it was decided to investigate the responses that were given at time
T5, at the end of the treatment. The questions regarding the symptoms of the treatment
are interesting at this time because it marks the point at which the patients had been
receiving chemotherapy for one year. Constrained co-clustering was performed by taking
the questions related to the anxiety, depression and symptom dimensions. In this case,
all the questions have a number of levels m equal to 4. Therefore, the only constraint is
the separation of the questions that are related to different dimensions. The execution
time of this set-up is about 12 seconds with a 2.00GHz Intel Xeon E5 2620 CPU and
8 Go of RAM. The result of the constrained co-clustering operation is illustrated by
Figure 5. For all the figures, clusters are read from left to right and from top to bottom.
Table 2 details the estimated BOS parameters (µgh and πgh) for g ∈ {1, ..., G} and
h ∈ {1, ...,Hd}, ∀d ∈ {1, ..., D}.

Fig. 5. Results of constrained co-clustering on anxiety, depression and symptom dimensions.

Five row-clusters are highlighted by the co-clustering results. Table 2 shows that the
position parameters of the second row-cluster (µ2h)d,h are generally greater than (or equal
to) those of the other row-clusters. This means that the second group feels more anxiety
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Table 3. Co-clustering result on social support dimensions: estimated BOS parameters
(µgh, πgh) for each cluster (g, h).

Satisfaction Availability Intensity Conflict
Col.-cluster 1 Col.-cluster 1 Col.-cluster 2 Col.-cluster 1 Col.-cluster 2 Col.-cluster 1 Col.-cluster 2 Col.-cluster 3

Row-cluster 1 (2,0.90) (1,0.72) (1,0.96) (3,0.48) (1,0.59) (4,0.80) (3,0.24) (1,0.62)
Row-cluster 2 (3,0.87) (1,0.64) (1,0.50) (3,0.46) (2,0.48) (4,0.47) (3,0.42) (1,0.49)
Row-cluster 3 (1,0.73) (2,0.72) (1,0.86) (3,0.52) (2,0.63) (4,0.59) (3,0.51) (1,0.44)
Row-cluster 4 (2,0.79) (1,0.61) (2,0.64) (3,0.31) (2,0.50) (3,0.27) (3,0.32) (1,0.44)
Row-cluster 5 (1,0.93) (1,0.78) (1,0.91) (3,0.27) (1,0.68) (4,0.71) (3,0.18) (1,0.63)

and depression, and feels the disease symptoms more intensively than the other groups. It
can also be seen that the fourth row-cluster is less inclined to anxiety and depression and
suffers less from the symptoms than the others groups; indeed, parameters (µ4h)d,h are
generally the lowest. Furthermore, the precision parameters (π4h)d,h are quite high for
this row-cluster, which means that the answers show limited spread around the position
(µ4h)d,h. By observing the results for these two groups, it is possible to establish that the
degree to which symptoms are felt is closely linked to signs of anxiety and depression,
which is a fairly logical and intuitive result. However, the first, third and fifth groups
provide more information. They are effectively very similar in terms of the degree to
which they suffer the disease symptom dimensions. However, they differ a great deal in
the first column-cluster of anxiety, and the first of depression. This means that even if a
link between symptoms, anxiety and depression can be deduced from initial observations,
it is not fully confirmed when people do not experience the symptoms at the extremes
(“Very much” or “Not much”). The column-clusters offer interesting results as well:
there is a clear separation between the symptoms. By examining the questions in each
cluster, it becomes clear that the questions in the first cluster exclusively deal with pain
and fatigue, while the second cluster deals with other symptoms such as nausea or loss
of appetite. The co-clustering operation therefore detected two sub-dimensions for the
symptoms dimension. Furthermore, there is a big difference in how the patients feel
these two clusters: it is clearly noticeable that the position parameters (µg1)(symptoms)

are generally higher than (µg2)(symptoms). Therefore, all the patients in general suffer
more from pain and fatigue than the other symptoms.

4.1.2. Social support: satisfaction, availability, intensity and conflict.

As a second experiment, the questions related to social support were used. The responses
are taken from the fourth stage of the survey. This is in the middle of the patients’
treatment, so they have already experienced a great deal, but know that they have to
keep going for a few more months. Their perception of the social support they receive
is therefore interesting at this point. This aspect includes questions relating to four
dimensions: satisfaction (where the number of levels m = 6), perception of availability,
intensity and conflict (where the number of levels m = 4). The questions that relate to
the same dimension have the same number of levels. Again, the only constraint is the
separation of the questions that are not related to the same dimensions. The result of
the constrained co-clustering operation is illustrated by Figure 6. Furthermore, Table 3
details the estimated BOS parameters (µ and π) for each co-cluster.

The co-clustering operation detected five row-clusters. The third and the fifth are
clearly satisfied with the social support they receive. Indeed, their position parameters
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Fig. 6. Result of constrained co-clustering on dimensions related to social support.

µ31(satisfaction) and µ51(satisfaction) are equal to 1. Furthermore, the precision parameters
π31(satisfaction) and π51(satisfaction) are very high, which means that most of the patients
effectively gave the most positive response to the questions regarding their satisfaction.
In contrast, the women in the first group are quite dissatisfied with their social support
compared to the others. Another result is that the third group, one of the most satisfied,
has one of the worst levels of perception of availability among their close family and
friends (µ31(availability) ≥ µg1(availability)). Furthermore, it is also interesting to observe

the column-clusters that were detected by the co-clustering operation for the conflict
dimension. The first group of questions is about the effort the patient has to make
to avoid conflict with their loved ones. The second group comprises questions about
changes in relationships, while the last cluster concerns feelings of anger towards close
family and friends.

4.1.3. Symptoms at different times

In this experiment, the questions related to symptoms were selected at different stages
(at times T0, T2 and T5). The constraint is therefore not to separate the questions
from different dimensions, but to separate the questions that are from different stages.
The point of performing co-clustering on such a dataset is that the row-clusters group
together individuals who evolved in a similar way regarding this dimension. Furthermore,
the column-clusters provide information about how the patients’ symptoms generally
worsened (or improved) throughout the treatment. BOS parameters for this experiment
are available in Table 4, and Figure 7 illustrates the results.

The co-clustering operation highlights three row-clusters. The third groups together
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Fig. 7. Co-clustering results for questions related to symptoms, at three different times.

Table 4. Co-clustering results for the symptoms dimension, at three different times: estimated BOS parameters (µgh, πgh) for
each co-cluster (g, h).

T0 Symptoms T2 Symptoms T25 Symptoms
Col.-cluster 1 Col.-cluster 2 Col.-cluster 1 Col.-cluster 2 Col.-cluster 1 Col.-cluster 2

Row-cluster 1 (2,0.20) (1,0.67) (2,0.62) (1,0.72) (2,0.64) (1,0.74)
Row-cluster 2 (2,0.09) (1,0.62) (3,0.43) (1,0.40) (3,0.42) (1,0.46)
Row-cluster 3 (1,0.66) (1,0.84) (1,0.58) (1,0.85) (1,0.54) (1,0.84)

people who felt the symptoms of the disease to a lesser degree than the others: the
position parameters (µ3h)d,h are all equal to 1. Furthermore, the precision parameters
(π3h)d,h are fairly high, which implies that the responses show limited spread around the
value 1. It is also interesting to investigate how the column-clusters evolve. To begin
with, for each time, the symptoms are separated into two column-clusters: the first is sys-
tematically worse overall than the second, because (µg1)(T0,T2,T5) ≥ (µg2)(T0,T2,T5), ∀g ∈
{1, ..., G}. It is observed that at time T0 there are fewer symptoms in column-cluster 1
than in column-cluster 2, whereas they are equally shared at times T2 and T5.

4.2. Handling of the dynamical aspect of the data
The patients answered the same questionnaires at six different stages of their treatment
and the way in which the responses change is clearly of interest. Defining a model to
study this evolution is essential, but it is not the purpose of this paper and will be
covered elsewhere. Here, we focus on providing a tool that allows the psychologists
to visualize the evolution of the row-clusters without establishing the mathematical
reasoning. To this end, visualizations were created to provide the psychologists could
have a first impression of this evolution, using Javascript library D3js. First of all, the
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dimensions of questionnaire EORTC QLQ-C30 were selected. Then, co-clustering was
performed, using a similar method to that in Section 4.1, for each time T0, T1, T2, T3,
T4 and T5. The visualization shows the row-clusters on the y-axis, and the timeline on
the x-axis: Figure 8 illustrates the home page of a visualization that was created with
the dimensions dealing with quality of life and emotional state. If the expert wishes
to observe the evolution of a single patient, they can click on the list of patients on
the right to see the row-clusters she belongs to through time, as shown in Figure 9. In
addition, if the expert wants to know the co-cluster BOS parameters, they can click
on the row-clusters, and read the (µ, π) of the corresponding co-clusters, as shown in
Figure 10.

These visualizations showed that, overall, the patients became more stable with time.
Indeed, it can be observed that whereas many patients change row-clusters at the three
first stages T0, T1 and T2, these transitions get rarer after time T2.

Fig. 8. Home page: the row-clusters shown on the y-axis, and the timeline on the x-axis.

5. Conclusion

In this paper, a co-clustering algorithm is proposed to analyse psychological question-
naires given to women affected by breast cancer. This dataset has many specific features,
which makes it difficult to use classical techniques without changing the information.
Firstly, it comprises questionnaires with answers on an ordinal scale. In addition, it in-
cludes a temporal aspect because the patients answered these questionnaires six times.
The questions are also linked to psychological dimensions, which cannot be ignored.
Finally, just like many real datasets, this one contains some missing values.

To adapt to the particularities of the survey, an extension of the latent block model is
defined, and the parsimonious BOS distribution for ordinal data is employed. The reader
should be aware that the classic latent block model is symmetric in nature. It means



Constrained co-clustering for ordinal data 17

Fig. 9. When the user clicks on a patient in he right-hand list, they can observe the psychological
trajectory of this patient.

Fig. 10. When the user clicks on a row-cluster they are able to see the BOS parameters of all
corresponding co-clusters.

that the role of observations can be interchanged with the role of the variables. In this
work, the hypotheses added break this symmetry. The model inference is performed with
an SEM-Gibbs algorithm, which makes it possible to take missing values into account.
An R package called ordinalClust with the full implementation of this work is available
on CRAN. Lastly, visualizations have been created to help psychologists observe the
evolution of their patients.
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The results were particularly satisfying for the psychologists. The proposed technique
provides a parsimonious way to cluster the patients by placing the questions in a small
number of groups, and the meaningfulness of the BOS parameters makes it easy to
interpret the resulting co-cluster. Furthermore, the constrained co-clustering method
resolves two issues: the different numbers of levels for the questions, and the fact that
the questions refer to different psychological dimensions.

With the proposed approach, features with different numbers of levels can be pro-
cessed using the co-clustering method, without allowing them to be part of the same
column-cluster. In future work, it would be interesting to examine that possibility, and
ideally to perform co-clustering operations with data of different kinds (continuous, func-
tional, etc.). Finally, although the dynamical aspect of the data has been approached
with visualizations, it would be advantageous to define a mathematical model in this
respect.
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Table 1. ICL-BIC values for experiment with anxiety, depression and symptom dimensions.
Iteration
number

Tested set ICL-BIC value
Iteration
number

Tested set ICL-BIC value

0 3111 -3182.636

4

4222 -2897.574

1

3211 -3202.003 3322 -2899.502
4111 -3178.63 3232 -2915.243
3121 -3135.95 3223 -2914.43
3112 -2981.384

5

5222 -2887.428

2

4112 -2955.255 4322 -2901.103
3212 -3012.662 4232 -2902.765
3122 -2931.426 4223 -2911.143
3113 -3003.892

6

6222 -2890.224

3

4122 -2909.457 5322 -2890.043
3222 -2907.208 5232 -2898.423
3132 -2937.025 5223 -2900.492
3123 -2941.77

Table 2. ICL-BIC values for experiment with social support dimensions.
Iteration
number

Tested set ICL-BIC value
Iteration
number

Tested set ICL-BIC value
Iteration
number

Tested set ICL-BIC value

0 31111 -4159.044

4

51113 -3745.543

7

61223 -3654.905

1

41111 -4148.478 42113 -3792.785 52223 -3664.249
32111 -4169.625 41213 -3807.943 51323 -3660.886
31211 -4167.269 41123 -3708.452 51233 -3670.111
31121 -4109.996 41114 -3782.372 51224 -3665.377
31112 -3890.939

5

51123 -3684.643

2

41112 -3861.417 42123 -3723.946
32112 -3901.316 41223 -3710.339
31212 -3966.906 41133 -3814.453
31122 -3847.206 41124 -3807.466
31113 -3792.995

6

61123 -3672.869

3

41113 -3759.687 52123 -3689.939
32113 -3800.504 51223 -3646.392
31213 -3793.978 51133 -3670.815
31123 -3760.164 51124 -3674.937
51113 -3803.808

Appendix

The following tables present the ICL-BIC obtained by executing the heuristic search
described in Section 3.4 for the applications described in Section 4. At each iteration,
the values in bold represent the highest ICL-BIC values of the iteration. The underlined
values are the final chosen values for (G,H1, ...,HD).

Figure A1 presents the evolution of some parameters through the SEM algorithm
iterations.
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Table 3. ICL-BIC values for experiment with symptom dimensions at times (T0, T1, T2).
Iteration
number

Tested set ICL-BIC value

0 3111 -4479.951

1

4111 -4473.039
3211 -4419.312
3121 -4278.773
3112 -4259.51

2

4112 -4206.192
3212 -4200.733
3122 -4021.611
3113 -4262.249

3

4122 -4033.372
3222 -3967.913
3132 -4012.178
3123 -4103.417

4

4222 -3981.241
3322 -4082.588
3232 -4080.828
3223 -4046.097
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Fig. A1. Evolution of parameters over time in the SEM algorithm.


