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A GINZBURG-LANDAU MODEL WITH

TOPOLOGICALLY INDUCED FREE DISCONTINUITIES

MICHAEL GOLDMAN, BENOÎT MERLET, AND VINCENT MILLOT

Abstract. We study a variational model which combines features of the Ginzburg-Landau

model in 2D and of the Mumford-Shah functional. As in the classical Ginzburg-Landau theory,

a prescribed number of point vortices appear in the small energy regime; the model allows

for discontinuities, and the energy penalizes their length. The novel phenomenon here is that

the vortices have a fractional degree 1/m with m > 2 prescribed. Those vortices must be

connected by line discontinuities to form clusters of total integer degrees. The vortices and

line discontinuities are therefore coupled through a topological constraint. As in the Ginzburg-

Landau model, the energy is parameterized by a small length scale ε > 0. We perform a complete

Γ-convergence analysis of the model as ε ↓ 0 in the small energy regime. We then study the

structure of minimizers of the limit problem. In particular, we show that the line discontinuities

of a minimizer solve a variant of the Steiner problem. We finally prove that for small ε > 0, the

minimizers of the original problem have the same structure away from the limiting vortices.
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1. Introduction

The purpose of this article is to study the asymptotic behavior of a family of functionals combin-

ing aspects of both Ginzburg-Landau [BBH94, SS04] and Mumford-Shah [AFP00, Fus03, Lem16]

functionals in dimension two. Those extend the standard Ginzburg-Landau energy, and give rise to

the formation of vortex points connected by line defects in the small energy regime. Interestingly,

vortices and line defects are coupled through topological constraints.

To be more specific, let us introduce the mathematical context. We consider for m ∈ N, m > 2,

the group of m-th roots of unity Gm =
{

1,a,a2, . . . ,am−1
}

with a := e2iπ/m. We are interested

in maps taking values in the quotient space C/Gm. We identify C/Gm with the round cone

N :=
{

(z, t) ∈ C× R : t = |z|
√
m2 − 1

}
⊆ R3

by means of the map P : C→ N defined as

P(z) :=
1

m

(
p(z), |z|

√
m2 − 1

)
with p(z) :=

zm

|z|m−1
.

The map P induces an isometry between C/Gm and N , and restricted to C \ {0} it defines a

covering map of N \ {0} of degree m. For a given open set Ω and p ≥ 1 we can thus say that

u ∈ W 1,p(Ω,C/Gm) if P(u) ∈ W 1,p(Ω,N ) (where we say that a map v ∈ W 1,p(Ω,N ) if v takes

values in N and v ∈W 1,p(Ω,R3)).
1
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Figure 1. The cone N and the projection P. P(u1) = P(u2) = P(u3).

For a simply connected smooth bounded domain Ω ⊆ R2 and a “small” parameter ε > 0, the

standard Ginzburg-Landau energy over Ω of a vector valued W 1,2-map reads

Eε(u) :=
1

2

∫
Ω

|∇u|2 +
1

2ε2
(1− |u|2)2 dx .

Here, the main functional under investigation is defined for u ∈ SBV 2(Ω) satisfying the constraint

P(u) ∈W 1,2(Ω;N ) by

F 0
ε (u) := Eε

(
P(u)

)
,+H1(Ju) , (1.1)

where Ju denotes the jump set of u (see [AFP00] and Section 2.3 below). We stress that F 0
ε extends

Eε, that is F 0
ε (u) = Eε(u) whenever u ∈W 1,2(Ω), which comes from the isometric character of P.

In the same way F 0
ε appears as a Mumford-Shah type functional since

F 0
ε (u) =

1

2

∫
Ω

|∇u|2 +
1

2ε2
(1− |u|2)2 dx+H1(Ju) ,

where ∇u denotes the absolutely continuous part of the measure Du. The constraint P(u) ∈
W 1,2(Ω;N ) rephrases the fact that the functional is restricted to the class

{
u ∈ SBV 2(Ω) :

u+/u− ∈ Gm on Ju
}

. In particular, only specific discontinuities in the orientation are allowed.

The case m = 2, which consists in identifying u and −u, is of special interest as it appears in many

physical models, see Section 1.2 below.

We also consider an Ambrosio-Tortorelli regularization of (1.1) where the jump set Ju is (for-

mally) replaced by the zero set {ψ ∼ 0} of some scalar phase field function ψ, and the lengthH1(Ju)

by a suitable energy of ψ. We introduce a second small parameter η and consider for u ∈ L2(Ω)

and ψ ∈W 1,2(Ω; [0, 1]) satisfying P(u) ∈W 1,2(Ω;N ) and uψ ∈W 1,2(Ω), the functional

F ηε (u, ψ) := Eε
(
P(u)

)
+

1

2

∫
Ω

η|∇ψ|2 +
1

η
(1− ψ)2 dx . (1.2)

Compared to the original Ambrosio-Tortorelli functional [AT90, AT92], u and ψ are only coupled

through the constraint uψ ∈ W 1,2(Ω), and not in the functional itself. As for F 0
ε , the functional

F ηε extends Eε in the sense that F ηε (u, 1) = Eε(u) whenever u ∈W 1,2(Ω).

We aim to study low energy states (in particular minimizers) of the functionals F 0
ε and F ηε under

Dirichlet boundary conditions of the form u = g on ∂Ω for a prescribed smooth g ∈ C∞(∂Ω; S1).

Concerning F 0
ε , we work in the class Gg(Ω) of maps satisfying P(u) = P(g) on ∂Ω. Then, we

penalize possible deviations from g on ∂Ω by considering the modified energy

F 0
ε,g(u) := F 0

ε (u) +H1
(
{u 6= g} ∩ ∂Ω

)
.

Notice that such a penalization is necessary in order to have lower semi-continuity of the functional

(see for instance [GMS79]). For the functional F ηε , we restrict ourselves to admissible pairs (u, ψ)
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satisfying uψ = g and ψ = 1 on ∂Ω, and write Hg(Ω) the corresponding class. In this setting, the

functionals F 0
ε,g and F ηε still extend Eε restricted to W 1,2

g (Ω), so that

min
Gg(Ω)

F 0
ε,g 6 min

W 1,2
g (Ω)

Eε and min
Hg(Ω)

F ηε,g 6 min
W 1,2
g (Ω)

Eε . (1.3)

As in the classical Ginzburg-Landau theory [BBH94], we assume that the winding number (or

degree) is strictly positive, i.e.,

d := deg(g, ∂Ω) > 0 .

In this way, g does not admit a continuous S1-valued extension to Ω. This topological obstruction

is responsible for the formation of vortices (point singularities) in any configuration of small energy

Eε as ε→ 0, and the minimum value of Eε over W 1,2
g is given by πd| log ε| at first order. In view

of (1.3), creating discontinuities in the orientation may lead to configurations of smaller energy.

Indeed, direct constructions of competitors show that the minimum value of F 0
ε,g or F ηε is less than

πd
m | log ε| at first order, and thus (almost) minimizers must have line singularities (or ”diffuse” line

singularities for F ηε ), at least for ε (and η) small enough.

1.1. Heuristics. The starting point is the identity

Eε
(
P(u)

)
=

1

m2
Eε
(
p(u)

)
+
m2 − 1

m2
Eε
(
|p(u)|

)
.

Following the standard theory of the Ginzburg-Landau functional [BBH94, SS04], one may expect

that for configurations u of small energy, the leading term is 1
m2Eε

(
p(u)

)
, and that p(u) has

(classical) Ginzburg-Landau energy Eε close to the one of the minimizers under the boundary

condition p(u) = p(g) on ∂Ω. Since p(g) = gm, its topological degree equals md, and p(u) should

have md distinct vortices of degree +1, i.e., md distinct points xk in Ω such that p(u)(xk) = 0 and

p(u)(x) ∼ αk
x− xk
|x− xk|

for ε� |x− xk| � 1 and some constant αk ∈ S1 .

In terms of Eε, the energetic cost of each vortex is π| log ε| at leading order, and therefore Eε
(
P(u)

)
should be less than πd

m | log ε|, again at leading order. This discussion led us to consider the energy

regimes

F 0
ε,g(u) 6

πd

m
| log ε|+O(1) and F ηε (u, ψ) 6

πd

m
| log ε|+O(1) (1.4)

for u ∈ Gg(Ω) or (u, ψ) ∈ Hg(Ω), respectively. Once again, it corresponds to the energy regime of

md vortices of degree +1 in the variable p(u). By an elementary topological argument, one can

see that any pre-image by p of x−xk
|x−xk| must have at least one discontinuity line departing from xk,

and has a (formal) winding number around xk equal to 1/m (in other words, the phase has a jump

of 2π/m around xk). For this reason, any configuration u satisfying (1.4) must be discontinuous.

In the sharp interface case (1.1), we actually expect that each connected component of the jump

set Ju connects mk vortices for some k ∈ {1, · · · , d}, since the winding number around any such

connected component must be an integer. A similar picture should hold in the diffuse case (1.2)

with Ju replaced by the zero set {ψ = 0}. The energy associated with discontinuities is their length

(or diffuse length), and there should be a competition between this term which favors clustered

vortices and the so-called renormalized energy from Ginzburg-Landau theory which is a repulsive

(logarithmic) point interaction.

1.2. Motivation. Our original motivation for studying the functionals (1.2) and (1.1) stemmed

from the analysis of the defect patterns observed in the so-called ripple or Pβ′ phase in biological

membranes such as lipid bilayers [Sac95, BFL91, LS07, LM93, RS83]. In this phase, which is

intermediate between the gel and the liquid phase, periodic corrugations are observed at the surface

of the membranes (see [RS83] for instance). Two different kinds of periodic sawtooth profiles are

observed. A symmetric one and an asymmetric one respectively called Λ and Λ/2−phases (see

Figure 2 for a schematic representation of a cross-section). In the asymmetric phase, only defects
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Λ

Λ/2

Figure 2. Left: profile of the Λ−phase. Right: profile of the Λ/2−phase.

Λ/2−phase

Λ−phase

Figure 3. Creation of two vortices of degree 1/2.

of integer degree are allowed while in the symmetric phase half integer degree vortices are also

permitted. Since two vortices of degree 1/2 have an energetic cost of order π
2 | log ε| (where ε is the

lengthscale of the vortex) while a vortex of degree 1 has a cost of order π| log ε|, it is expected that

even in the regime where the Λ/2−phase is favored (which happens for nearly flat membranes),

a phase transition occurs around the defects with the nucleation of a small island of Λ−phase

leading to the formation of two vortices of degree 1/2 (see Figure 3). In the model proposed by

[BFL91], the order parameter is given by f(ϕ), where f is a fixed profile (corresponding to the

one on the right part of Figure 2) and ϕ is the phase modulation. Their functional corresponds to

F ηε , for ε = η, m = 2 and u = ∇ϕ (so that u represents the local speed at which the profile f is

modulated). In [BFL91], the authors further argue that the constraint of u being a gradient can

be relaxed so that we recover completely our model.

We also point out that (1.1) and (1.2) have connections with many other models appearing in

the literature. As an example, we can mention the issue of orientability of Sobolev vector fields

into RP1, see [BZ11]. More generally, our functionals resemble the ones suggested recently to

model liquid crystals where both points and lines singularities appear, see [Bed16]. Similarly to

[BZ11], a central issue here is to find square roots (and more generally m−th roots) of W 1,p-

functions into S1 (see [IL17]), and this is intimately related to the question of lifting of Sobolev

functions into S1, see [BBM00, Dem90, BMP05, Mer06, DI03].
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While completing this article, we have been aware of the work [BCLP16], where the authors

perform an analogous Γ-convergence analysis for a discrete model, obtaining in the continuous limit

almost the same functional as ours. These authors were motivated by applications to liquid crystals,

micromagnetics, and crystal plasticity, and we refer to their introduction for more references on

the physical literature.

1.3. Main results. Our first main theorem is a Γ-convergence result in the energy regime (1.4)

(we refer to [DM93, Bra02] for a complete exposition on Γ-convergence theory). To describe the

limiting functional, we need to introduce the following objects. First, set Ad to be the family of

all atomic measures of the form µ = 2π
∑md
k=1 δxk , for some md distinct points xk ∈ Ω. To µ ∈ Ad,

we associate the so-called canonical harmonic map vµ defined by

vµ(x) := eiϕµ(x)
md∏
k=1

x− xk
|x− xk|

with

{
∆ϕµ = 0 in Ω ,

vµ = gm on ∂Ω .

In turn, the renormalized energy W(µ) can be defined as the finite part of the energy of vµ, i.e.,

W(µ) := lim
r↓0

{
1

2

∫
Ω\Br(µ)

|∇vµ|2 dx− πmd| log r|

}
,

and we refer to (2.15) for its explicit expression.

We provide below a concise version of the Γ-convergence result, complete statements can be

found in Theorem 3.1 and Theorem 3.2.

Theorem 1.1. The functionals {F 0
ε,g − πd

m | log ε|} and {F ηε − πd
m | log ε|} (respectively restricted to

Gg(Ω) and Hg(Ω)) Γ-converge in the strong L1-topology as ε→ 0 and η → 0 to the functional

F0,g(u) :=
1

2m2

∫
Ω

|∇ϕ|2 dx+
1

m2
W(µ) +mdγm +H1

(
Ju) +H1({u 6= g} ∩ ∂Ω

)
defined for u ∈ SBV (Ω; S1) such that um = eiϕvµ for some µ ∈ Ad and ϕ ∈ W 1,2(Ω) satisfying

eiϕ = 1 on ∂Ω. The constant γm, referred to as core energy (see (3.1)), only depends on m.

We point out that there is of course a compactness result companion to Theorem 1.1. Namely,

if a sequence {uε} satisfies the energy bound (1.4), and is uniformly bounded in L∞(Ω), then {uε}
converges up to a subsequence in L1(Ω), and {p(uε)} converges (again up to a subsequence) in

the weak W 1,p-topology for every p < 2. As can be expected, the proof of Theorem 1.1 combines

ideas coming from the study of the Ginzburg-Landau functional [BBH94, SS04, CJ99, AP14,

LX99, JS02], together with ideas from free discontinuities problems [AFP00, Bra98, BCS07, AT92].

Concerning the compactness part, we have included complete proofs to provide a rather self-

contained exposition. Although some estimates (such as the W 1,p bound, see Lemma 2.12) are

certainly known to the Ginzburg-Landau community (see for instance [CJ99, LX99]), they have

never been used in the context of Γ-convergence. The Γ-lim inf inequality is a relatively standard

combination of techniques developed in [CJ99, AP14, BCS07], while the construction of recovery

sequences is a much more delicate issue. The main difficulty comes from the the constraint um =

eiϕvµ, which prevents us to apply directly the existing approximation results by functions with

a smooth jump set, see e.g. [CT99, BCP96, DPFP17, BCG14]). Our approach uses a (new)

regularization technique (see Lemma 3.17) which is somehow reminiscent of [AT90] and could be

of independent interest. Another difficulty comes from the optimal profile problem defining the

core energy γm. The underlying minimization problem involves the Ginzburg-Landau energy of

N -valued maps, and one has to find almost minimizers which can be lifted into C-valued maps in

SBV 2, see Section 3.2.

The Γ-convergence result applies to minimizers of either F 0
ε,g or F ηε (whose existence is proven in

Theorems 2.7 & 2.8). It shows that they converge in L1(Ω) to a minimizer u of F0,g. Our second

main result deals with the characterization of such minimizer u. It is based on the following
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observations. First, from the explicit form of F0,g, it follows that ϕ = 0 in the representation

um = eiϕvµ. In particular, u can be characterized as a solution of the minimization problem

min

{
1

m2
W(µ) +H1

(
Ju) +H1({u 6= g} ∩ ∂Ω

)
: u ∈ SBV (Ω; S1) , um = vµ for some µ ∈ Ad

}
.

In turn, this later can be equivalently rewritten as

min
µ∈Ad

min

{
1

m2
W(µ) +H1

(
Ju) +H1({u 6= g} ∩ ∂Ω

)
: u ∈ SBV (Ω; S1) , um = vµ

}
.

As a consequence, fixing µ ∈ Ad and solving

L(µ) := min

{
H1
(
Ju) +H1({u 6= g} ∩ ∂Ω

)
: u ∈ SBV (Ω; S1) , um = vµ

}
,

we are left with a finite dimensional problem to recover the minimizers of F0,g.

Given µ ∈ Ad, we compare in Theorem 1.2 below the minimization problem L(µ) with the

following variant of the Steiner problem (see e.g. [GP68]):

Λ(µ) := min
{
H1(Γ) : Γ ⊆ Ω compact with sptµ ⊆ Γ

and every connected component Σ satisfies Card(Σ ∩ sptµ) ∈ mN
}
.

We shall see that any minimizer Γ of Λ(µ) is made of at most d disjoint Steiner trees, i.e., connected

trees made of a finite union of segments meeting either at points of sptµ, or at triple junction

making a 120◦ angle. From now on, when talking about triple junctions we always implicitly

include this condition on the angles.

Our second main result is the following theorem, in which we assume Ω to be convex (to avoid

issues at the boundary).

Theorem 1.2. Assume that Ω is convex. For every µ ∈ Ad, L(µ) = Λ(µ). Moreover, if u is a

minimizer for L(µ), then its jump set Ju is a minimizer for Λ(µ), u ∈ C∞(Ω \ Ju), and u = g

on ∂Ω. Vice-versa, if Γ is a minimizer for Λ(µ), then there exists a minimizer u for L(µ) such

that Ju = Γ.

To complete the picture, we shall give several examples illustrating the fact that the geometry

of minimizers for Λ(µ) strongly depends on m, d, and the location of sptµ. In the case m = 2, a

minimizer for Λ(µ) is always given by a disjoint union of d segments connecting the points of sptµ

(see Proposition 4.7). However, for m > 3 and d > 2, minimizers are not always the disjoint union

of d Steiner trees containing exactly m vortices (see Proposition 4.8 and Proposition 4.10).

In our third and last main result, we use the characterization of the minimizers of F0,g provided

by Theorem 1.2 to show that for ε > 0 small enough, minimizers of F 0
ε,g have essentially the same

structure away from the limiting vortices.

Theorem 1.3. Assume that Ω is convex. Let εh → 0, and let uh be a minimizer of F 0
εh,g

over

Gg(Ω). Assume that uh → u in L1(Ω) as h → ∞ for some minimizer u of F0,g. Setting µ :=

curl j(um), for every σ > 0 small enough and every h large enough, the following holds:

(i) Juh \Bσ(µ) is a compact subset of Ω \Bσ(µ) made of finitely many segments, meeting by

three at an angle of 120◦ (i.e., triple junctions).

(ii) uh ∈ C∞
(
Ω \ (Bσ(µ) ∪ Juh)

)
and uh = g on ∂Ω.

In addition,

(iv) Juh converges in the Hausdorff distance to Ju.

(v) uh → u in Ckloc(Ω \ Ju) ∩ C1,α
loc (Ω \ Ju) for every k ∈ N and α ∈ (0, 1).
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In proving Theorem 1.3, we actually show a stronger result that we now briefly describe (see

Theorem 5.1, Remark 5.2, and Section 5.1). In each (sufficiently small) ball Br(x) ⊆ Ω \ Bσ(µ)

and ε small enough, uε is bounded away from zero, and it can be decomposed as uε = φεwε
where φε ∈ SBV 2(Br(x)) and wε is minimizing the classical Ginzburg-Landau energy Eε(·, Br(x))

with respect to its own boundary condition (and as a consequence, wε is smooth). The proof

of this decomposition relies on the energy splitting discovered by Lassoued & Mironescu [LM99].

Combined with the classical Wente estimate [Wen69, BC84], it leads to a lower expansion of the

energy of the form

F 0
ε (uε, Br(x)) > Eε(wε, Br(x)) +

1

α

(∫
Br(x)

|∇φε|2 dx+ αH1
(
Jφε ∩Br(x)

))
,

for some constant α > 0 (see Proposition 5.11). Using suitable competitors, we deduce that φε is

a Dirichlet minimizer the Mumford-Shah functional in Br(x). Applying the calibration results of

[ABDM03, Mor02], we infer that φε takes values into the finite set Gm, reducing the problem to a

minimal partition problem in Br(x). The classical regularity results on two dimensional minimal

clusters then yields the announced geometry of the jump set.

The paper is organized as follows. Section 2 is devoted to a full set of preliminary results.

First, we present some fine properties of the BV -functions under investigation, and then we prove

existence of minimizers for F ηε and F 0
ε,g. In a third part, we provide all the material and results

concerning the Ginzburg-Landau energy that we shall use. The Γ-convergence result of Theorem

1.1 is the object of Section 3. In Section 4, we prove Theorem 1.2 and give the aforementioned

examples of Λ(µ)-minimizers. In the last Section 5, we return to the analysis of minimizers of F 0
ε,g,

and prove Theorem 1.3.

2. Preliminaries

2.1. Conventions and notation. Throughout the paper we identify the complex plane C with R2.

We say that a property holds a.e. if it holds outside a set of Lebesgue measure zero.

• For a, b ∈ R2, we write a ∧ b := det(a, b);

• For a ∈ R2 and M = (b1, . . . , bn) ∈M2×n(R), we write

a ∧M := t(a ∧ b1, . . . , a ∧ bn) ∈ Rn ;

• For M ∈Md×n(R), we write |M | := |tr(M tM)|1/2;

• For a = (a1, a2) ∈ R2 we let a⊥ := (−a2, a1)

• for a set Ω ⊆ R2, we call ν its external normal and τ its tangent chosen so that (ν, τ) is a

direct basis (in particular ν⊥ = τ and ∂Ω is oriented counterclockwise);

• The distributional derivative is denoted by Df ;

• For v ∈ Rn, we let ∂vf := Df(v) be the partial derivative of f in the direction v and if

v = el is a vector of the canonical basis of Rn then we simply write ∂lf := ∂elf ;

• ∇f = (∂lfk)k,l is the Jacobian matrix of the vector valued function f ;

• For j = (j1, j2), we denote by curl j := ∂1j2 − ∂2j1 the rotational of j;

• For A ⊆ Rn, we denote by Br(A) the tubular neighborhood of A of radius r. For a measure

µ, we simply write Br(µ) := Br(sptµ);

• In most of the paper, we work with Ω a given bounded open and simply connected set.

Nevertheless, since in sections 4 and 5 we will require that Ω is convex, we will repeat at

the beginning of each section the hypothesis we are making on Ω;

• We shall not relabel subsequences if no confusion arises.

2.2. Finite subgroups of S1 and isometric cones. Given an integer m > 2, we denote by Gm

the subgroup of S1 made of all m-th roots of unity, i.e.,

Gm =
{

1,a,a2, . . . ,am−1
}

with a := e2iπ/m .
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We consider the quotient space C/Gm endowed with the canonical distance

dist
(
[z1], [z2]

)
:= min

z1∈[z1], z2∈[z2]
|z1 − z2| = min

k=0,...,m−1
|z1 − akz2| ,

where [z] is the equivalence class of z ∈ C. We note that C/Gm is isometrically embedded into

R3 ' C×R by means of the Lipschitz mapping P : C→ R3 given by

P(z) :=
1

m

(
p(z), |z|

√
m2 − 1

)
where p(z) :=

zm

|z|m−1
.

In this way we identify C/Gm with the round cone of R3,

N := P(C) =
{

(x, t) ∈ R2 ×R : t = |x|
√
m2 − 1

}
,

and one has dist
(
[z1], [z2]

)
= dN

(
P(z1),P(z2)

)
for every z1, z2 ∈ C, where dN denotes the geodesic

distance on N induced by the Euclidean metric (in particular, |P(z)| = |z| for every z ∈ C).

Similarly, S1/Gm coincides with the horizontal circle

S :=
{

(x, t) ∈ N : |x| = 1/m, t =
√

1− 1/m2
}

= P(S1) .

Note that in the case m = 2, S ' S1/{±1} is the real projective line RP1. Finally, we point out

that P is smooth away from the origin, and since P is isometric,

|∇P(z)v| = |v| for every v ∈ R2 and every z ∈ C \ {0} , (2.1)

where ∇P(z) ∈ M3×2(R) is the differential of P at z represented in real coordinates. Similarly,

we write ∇p(z) ∈M2×2(R) for the differential of p at z.

2.3. BV and SBV functions, weak Jacobians. Concerning functions of bounded variations,

their fine properties, and standard notations, we refer to [AFP00]. Let us briefly introduce the

main properties and definitions used in the paper. For an open subset Ω of R2, we first recall that

BV (Ω,Rq) is the space of functions of bounded variation in Ω, i.e., functions u ∈ L1(Ω,Rq) for

which the distributional derivative Du is a finite (matrix valued) Radon measure on Ω. We recall

that for a function u ∈ BV (Ω,Rq), we have the following decomposition

Du = ∇udx+Dju+Dcu ,

where

Dju := (u+ − u−)⊗ νu H1 Ju . (2.2)

The functions u± denote the traces of u on the jump set Ju which is a countably H1-rectifiable

set. Since all the properties we will consider are oblivious to modifications of Ju on sets of zero H1

measure, we shall not distinguish between Ju and the singular set of u (usually denoted as Su).

In particular, when Ju is regular or a finite union of polygonal curves, we will also not distinguish

between Ju and its closure so that we shall often consider it as a compact set. Analogously, for sets

E of finite perimeter, i.e., such that χE ∈ BV (Ω), we simply denote by ∂E the reduced boundary.

The space SBV (Ω,Rq) is defined as the subspace of BV (Ω,Rq) made of functions u satisfying

Dcu ≡ 0. For a finite exponent p > 1, the subspace SBV p(Ω,Rq) ⊆ SBV (Ω,Rq) is defined as

SBV p(Ω,Rq) :=
{
u ∈ SBV (Ω,Rq) : ∇u ∈ Lp(Ω) and H1(Ju) <∞

}
.

Remark 2.1 (pre-Jacobian). For a smooth function u, we define the pre-Jacobian of u as

j(u) := u ∧∇u = 2 det(∇u),

which also writes j(u) = Re(iu∇ū) in complex notation. Notice that if u = ρeiθ for some smooth

functions ρ and θ, then j(u) = ρ2∇θ so that j(u) measures the variation of the phase. In particular,

if Ω is simply connected and u takes values into S1, then curl j(u) = 0 and we can write j(u) = ∇θ,
hence recovering the phase θ.

To our purposes, we need to extend the notion of pre-Jacobian to BV -maps.
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Definition 2.2. For u ∈ BV (Ω), we define the pre-Jacobian of u to be the measurable vector field

j(u) := u ∧∇u ,

where ∇u is the absolutely continuous part of Du. It belongs to L1(Ω) whenever u ∈ L∞(Ω) or

∇u ∈ L2(Ω) (since BV (Ω) is continuously embedded in L2(Ω)).

Lemma 2.3. Let u ∈ BV (Ω). Then V := P(u) and v := p(u) are of bounded variation in Ω, and

(i) V (x) ∈ N for a.e. x ∈ Ω;

(ii) JV ⊆ Ju;

(iii)
(
V +, V −, νV

)
=
(
P(u+),P(u−), νu

)
on JV ;

(iv) P
(
u+(x)

)
= P

(
u−(x)

)
for every x ∈ Ju \ JV ;

(v) |∇V | = |∇u| a.e. in Ω;

(vi) |DcV | = |Dcu|;

(vii) j(v) = mj(u) a.e. in Ω.

Proof. The fact that V ∈ BV (Ω; R3), as well as items (i), (ii), (iii), and (iv), is a direct consequence

of the 1-Lipschitz property of P, see [AFP00, proof of Theorem 3.96]. Moreover, |DV | 6 |Du|.
It now remains to prove (v), (vi), and (vii). Recall that, by [AFP00, Proposition 3.92], we have

|Du|(Zu) = 0 where

Zu :=
{
x ∈ Ω \ Ju : u(x) = 0

}
.

For k ∈ N, we set

A0 :=
{
x ∈ Ω \ Ju : |u(x)| > 1

}
, Ak :=

{
x ∈ Ω \ Ju : 2−k < |u(x)| 6 2−k+1

}
,

so that Ω \ Zu = ∪kAk with a disjoint union. Then, for each k ∈ N, we consider Pk ∈ C1(C; R3)

such that Pk(z) = P(z) whenever |z| > 2−k. Using the chain-rule formula in BV (see [AFP00,

Theorem 3.96]), for Pk(u) and the locality of the derivative of a BV function (see [AFP00, Re-

mark 3.93]), we readily obtain (v) and (vi).

To prove (vii), we first notice that for z ∈ C \ {0} and X ∈ R2, we have

p(z) ∧ (∇p(z)X) = mz ∧X .

Therefore, if x ∈ Ω \ Zu is a Lebesgue point for ∇u and ∇V , we have for each l ∈ {1, 2},

v(x) ∧ ∂lv(x) = p(u(x)) ∧
(
∇p(u(x))∂lu(x)

)
= mu(x) ∧ ∂lu(x) ,

and the proof is complete. �

Corollary 2.4. If u ∈ BV (Ω) is such that P(u) ∈W 1,p(Ω;N ) for some p > 1, then u ∈ SBV (Ω)

and ∇u ∈ Lp(Ω). Moreover, u±(x) 6= 0 for every x ∈ Ju, and u+(x)/u−(x) ∈ Gm. If, in addition,

|u| > δ a.e. in Ω for some δ > 0, then u ∈ SBV p(Ω) and |Dju| > δ|a− 1|H1 Ju.

Proof. The fact that u ∈ SBV (Ω) and ∇u ∈ Lp(Ω) is a direct consequence of (vi) and (v) in

Lemma 2.3, respectively. Next, assume that u+(x) = 0 for some x ∈ Ju. Then (iv) in Lemma 2.3

yields u−(x) = 0, so that x 6∈ Ju. Hence u± does not vanish on Ju. Moreover from (iv) in

Lemma 2.3, we directly infer that u+/u− ∈ Gm \ {1} on Ju.

Finally, if |u| > δ > 0 a.e. in Ω, then |u±| > δ on Ju. Therefore, for every x ∈ Ju we have

|u+(x)− u−(x)| > δ|u+(x)/u−(x)− 1| > δ min
k=1,...,m−1

|ak − 1| = δ|a− 1| ,

and thus |Dju| > δ|a− 1|H1 Ju by (2.2). In particular, H1(Ju) <∞ and u ∈ SBV p(Ω). �
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Definition 2.5 (weak Jacobian). For an open set Ω ⊆ R2 and u ∈ BV (Ω) such that j(u) ∈ L1(Ω),

the weak Jacobian of u is defined as the distributional curl in Ω of the vector field j(u). It belongs

to (C0,1
0 (Ω))∗, and its action on a Lipschitz function φ ∈ C0,1

0 (Ω) that vanishes on the boundary is

〈curl j(u), φ〉 = −
∫

Ω

j(u) · ∇⊥φdx .

Lemma 2.6. Assume that Ω ⊆ R2 is simply connected. Let u1, u2 ∈ SBV (Ω; S1) be such that

p(uk) ∈W 1,1(Ω; S1) for k = 1, 2. Then, the following properties are equivalent

(i) curl j(u1) = curl j(u2) in D′(Ω);

(ii) there exist ϕ ∈ W 1,1(Ω) and a Caccioppoli partition {Ek}mk=1 of Ω (see e.g. [AFP00,

Chapter 4, Section 4.4]) such that

u2 =

(
m∑
k=1

akχEk

)
eiϕu1 . (2.3)

In addition, if P(u1) = P(u2) and (i) holds, then ϕ is a multiple constant of 2π/m.

Proof. Define ũ := u2u1 ∈ SBV (Ω; S1) and ṽ := p(ũ) ∈ W 1,1(Ω; S1). By Corollary 2.4, we have

H1(Jũ) <∞. Then Lemma 2.3, together with the fact that p(ũ) = p(u2)p(u1), leads to

j(ṽ) = j
(
p(u2) p(u1)

)
= j(p(u2))− j(p(u1)) = m

(
j(u2)− j(u1)

)
.

If (i) holds, then curl j(ṽ) = 0 in D′(Ω). By [Dem90] (see also [BMP05, Theorem 7]) there exists

ϕ ∈ W 1,1(Ω) such that ṽ = eimϕ. Consequently, p(e−iϕũ) = 1 and thus e−iϕũ ∈ BV (Ω; Gm),

so that e−iϕũ =
∑m−1
k=0 akχEk for some Caccioppoli partition {Ek}m−1

k=0 of Ω. This proves (2.3).

When p(u1) = p(u2), then ṽ = 1, and we infer that ϕ(x) ∈ 2π
m Z for a.e. x ∈ Ω. Since ϕ ∈W 1,1(Ω)

we conclude that ϕ is constant.

If (ii) holds, then for each l ∈ {1, 2},

∂lu2 =

(
m−1∑
k=0

akχEk

)
eiϕ
(
∂lu1 + i∂lϕu1

)
a.e. in Ω .

Consequently, j(u2) = j(u1) +∇ϕ a.e. in Ω, and (ii) follows. �

2.4. Energies, functional classes, and existence of minimizers. Throughout this section,

we assume that Ω ⊆ R2 is a smooth, bounded, and simply connected domain. For q ∈ {2, 3} and

ε > 0, we consider the Ginzburg-Landau functional Eε : W 1,2(Ω; Rq)→ [0,∞) defined by

Eε(u) :=
1

2

∫
Ω

|∇u|2 dx+
1

4ε2

∫
Ω

(1− |u|2)2 dx .

For any Borel set A ⊆ Ω, we let

Eε(u,A) :=
1

2

∫
A

|∇u|2 dx+
1

4ε2

∫
A

(1− |u|2)2 dx .

We shall use the analogous notation for the localized version of most of the energies under consid-

eration.

For u ∈ SBV 2(Ω) such that v := p(u) = um/|u|m−1 ∈W 1,2(Ω), we have (by Lemma 2.3)

Eε (P(u)) =
1

m2
Eε(v) +

m2 − 1

m2
Eε(|v|) =: Gε(v) . (2.4)

Equivalently, the functional Gε : W 1,2(Ω)→ [0,∞) can be defined by

Gε(v) =
1

2m2

∫
Ω

|∇v|2 + (m2 − 1)
∣∣∇|v|∣∣2 dx+

1

4ε2

∫
Ω

(1− |v|2)2 dx . (2.5)

For the phase field we consider the functionals Iη : W 1,2(Ω; [0, 1])→ [0,∞) defined for η > 0 as

Iη(ψ) :=
η

2

∫
Ω

|∇ψ|2 dx+
1

2η

∫
Ω

(1− ψ)2 dx .
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The classes of functions we are interested in are the following

H(Ω) :=
{

(u, ψ) ∈ L2(Ω)×W 1,2(Ω; [0, 1]) : P(u) ∈W 1,2(Ω;N ) and ψu ∈W 1,2(Ω)
}
,

and

G(Ω) :=
{
u ∈ SBV 2(Ω) : P(u) ∈W 1,2(Ω;N )

}
.

Notice that in the definition of H(Ω), the condition ψu ∈W 1,2(Ω) degenerates on the set {ψ = 0}
allowing for discontinuities of u. Typically, u may jump through lines where ψ vanishes and (since

P(u) does not jump) the jump satisfies formally the constraint P(u+) = P(u−) in the spirit of

Lemma 2.3 (iv).

On the classes H(Ω) and G(Ω), we define the functionals F ηε : H(Ω)→ [0,∞) and F 0
ε : G(Ω)→

[0,∞) by

F ηε (u, ψ) := Eε
(
P(u)

)
+ Iη(ψ) and F 0

ε (u) := Eε
(
P(u)

)
+H1(Ju) . (2.6)

Note that F 0
ε is a functional of the type “Mumford-Shah”. Indeed, by Lemma 2.3 we have

F 0
ε (u) =

1

2

∫
Ω

|∇u|2 +
1

2ε2
(1− |u|2)2 dx+H1(Ju) .

As already pointed out in the introduction, F ηε can be seen as an “Ambrosio-Tortorelli” regular-

ization of F 0
ε (with a coupling between u and ψ in the class H(Ω) rather than in the functional

itself).

We aim to minimize F ηε and F 0
ε under a given Dirichlet condition on the boundary. We fix

a smooth map g : ∂Ω ' S1 → S1 of topological degree d > 0. Accordingly, we introduce the

subclasses

Hg(Ω) :=
{

(u, ψ) ∈ H(Ω) : ψ = 1 and ψu = g on ∂Ω
}
, (2.7)

and

Gg(Ω) :=
{
u ∈ G(Ω) : P(u) = P(g) on ∂Ω

}
.

Note that in Gg(Ω) we do not impose the condition u = g on ∂Ω. Instead we penalize deviations

from g minimizing over Gg(Ω) the functional

F 0
ε,g(u) := F 0

ε (u) +H1
(
{u 6= g} ∩ ∂Ω

)
(2.8)

in place of F 0
ε . As already mentioned in the introduction, this penalization is necessary to ensure

lower semi-continuity (since F 0
ε,g is precisely the L1(Ω)-relaxation of F 0

ε ).

As a warm-up, let us prove that the functionals F ηε and F 0
ε,g admit minimizers.

Theorem 2.7. The functional F ηε admits a minimizing pair (uε, ψε) in Hg(Ω). In addition, any

such minimizer satisfies ‖uε‖L∞(Ω) 6 1.

Theorem 2.8. The functional F 0
ε,g has a minimizer uε in Gg(Ω). In addition, any such minimizer

satisfies ‖uε‖L∞(Ω) 6 1.

The proof of Theorem 2.7 rests on the following compactness result.

Proposition 2.9. Let Ω be a bounded open subset of R2. Let {(uh, ψh)}h∈N ⊆ H(Ω) be such that

sup
h

{
‖uh‖L∞(Ω) + ‖∇ψh‖L2(Ω) +

∥∥∇(P(uh))
∥∥
L2(Ω)

}
<∞ .

Then, there exist a subsequence and (u, ψ) ∈ H(Ω) such that(
ψh, ψhuh,P(uh)

)
⇀
(
ψ,ψu,P(u)

)
weakly in W 1,2(Ω) .
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Proof. Set φh := ψhuh, Vh := P(uh), and notice that P(φh) = ψhVh. Therefore,

∇(P(φh)) = ψh∇Vh +∇ψh ⊗ Vh .

By (2.1), |∇φh| =
∣∣∇(P(φh))

∣∣ a.e. in Ω, and since 0 6 ψh 6 1, we infer that∫
Ω

|∇φh|2 dx 6 2

∫
Ω

|∇Vh|2 dx+ 2‖uh‖2L∞(Ω)

∫
Ω

|∇ψh|2 dx .

Hence {ψh}, {Vh}, and {φh} are bounded in W 1,2(Ω). Thus, we can find a subsequence such that

(ψh, φh, Vh) ⇀ (ψ, φ, V ) weakly in W 1,2(Ω) and a.e. in Ω, for some (ψ, φ, V ) ∈ W 1,2(Ω; [0, 1]) ×
W 1,2(Ω)×W 1,2(Ω;N ). On the one hand, since {uh} is bounded in L∞(Ω), the sequence {uh(x)}
is bounded for a.e. x ∈ Ω, and we deduce that φ(x) = limh ψh(x)uh(x) = 0 for a.e. x ∈ {ψ = 0}.
On the other hand, one has limh uh(x) = φ(x)/ψ(x) and V (x) = limh Vh(x) = P(φ(x)/ψ(x)) for

a.e. x ∈ {ψ 6= 0}. Now, we define u ∈ L∞(Ω) by setting

u :=
φ

ψ
χ{ψ 6=0} + α(V )χ{ψ=0} ,

where α : N → C is the “unrolling map” of the cone N , i.e.,

α(z, t) :=

{
m|z|eiθ/m for z = |z|eiθ ∈ C \ {0} with θ ∈ [0, 2π) ,

0 otherwise .

By construction, we have φ = ψu and V = P(u), and the proof is complete. �

Proof of Theorem 2.7. Let {(uh, ψh)} ⊆ Hg(Ω) be a minimizing sequence for F ηε in Hg(Ω). Since

P(uh) ∈W 1,2(Ω; R3), we have |uh| ∈W 1,2(Ω) and thus also [max(1, |uh|)]−1 ∈W 1,2(Ω) ∩ L∞(Ω).

Since ψh = 1 and ψhuh = g on ∂Ω, we have |uh| = 1 on ∂Ω and then also [max(1, |uh|)]−1 = 1 on

∂Ω. Consequently, setting

ûh :=
uh

max(1, |uh|)
, (2.9)

we have ψhûh ∈W 1,2(Ω), ψhûh = g on ∂Ω, and ‖ûh‖L∞(Ω) 6 1. Since also,

P(ûh) =
P(uh)

max(1, |uh|)
=

P(uh)

max(1, |P(uh)|)
∈W 1,2(Ω;N ) , (2.10)

we have (ψh, ûh) ∈ Hg(Ω). Moreover, (2.10) implies that Eε(P(ûh)) 6 Eε(P(uh)) with equality if

and only if |P(uh)| 6 1 a.e. in Ω (and since |P(uh)| = |uh|, equality holds if and only if |uh| 6 1

a.e. in Ω).

As a consequence, F ηε (ûh, ψh) 6 F ηε (uh, ψh), and thus {(ûh, ψh)} is also a minimizing sequence

for F ηε in Hg(Ω). Since ‖ûh‖L∞(Ω) 6 1, we can apply Proposition 2.9 to find a subsequence

such that (ψh, ψhûh,P(ûh)) ⇀ (ψε, ψεuε,P(uε)) weakly in W 1,2(Ω) for some (uε, ψε) ∈ H(Ω)

with |P(uε)| = |uε| 6 1 a.e. in Ω. From the continuity of the trace operator, we deduce that

ψε = 1 and ψεuε = g on ∂Ω, that is (uε, ψε) ∈ Hg(Ω). Finally, the functional F ηε being clearly

lower semi-continuous with respect to the weak convergence in W 1,2(Ω), we conclude that (uε, ψε)

minimizes F ηε over Hg(Ω). Since the truncation argument above shows that any minimizer satisfies

the announced L∞ bound, the proof is complete. �

Proof of Theorem 2.8. The truncation argument is identical to the one above so we may reduce

ourselves to the class of functions u satisfying ‖u‖L∞(Ω) ≤ 1. Let {uh} ⊆ Gg(Ω) be a minimizing

sequence for F 0
ε,g.

We fix some r0 > 0 small enough in such a way that

Ω̃ :=
{
x ∈ R2 : dist(x,Ω) < r0

}
(2.11)

defines a smooth domain, and that the nearest point projection on ∂Ω, denoted by Π, is well defined

and smooth in
{
x ∈ R2 : dist(x, ∂Ω) < 2r0

}
. We extend each uh to Ω̃ by setting uh(x) = g

(
Π(x)

)
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for x ∈ Ω̃ \ Ω. Then we have Juh ∩ Ω̃ = (Juh ∩ Ω) ∪ ({uh 6= g} ∩ ∂Ω), so that

F 0
ε (uh, Ω̃) = F 0

ε,g(uh) + Cg ,

for a constant Cg depending only on g, r0, and Ω. Since |∇uh| = |∇(P(uh))| by Lemma 2.3, we

deduce that {∇uh} is bounded in L2(Ω̃). Hence we can apply [AFP00, Theorem 4.7 & 4.8] to

find a subsequence such that uh ⇀ uε weakly* in BV (Ω̃) and a.e. in Ω to some uε ∈ SBV 2(Ω̃).

From the a.e. convergence, we deduce that uε(x) = g
(
Π(x)

)
for x ∈ Ω̃ \Ω. Then, still by [AFP00,

Theorem 4.7],

lim inf
h→∞

H1(Juh ∩ Ω) +H1
(
{uh 6= g} ∩ ∂Ω

)
= lim inf

h→∞
H1(Juh ∩ Ω̃)

> H1(Juε ∩ Ω̃) = H1(Juε ∩ Ω) +H1
(
{uε 6= g} ∩ ∂Ω

)
. (2.12)

Since {P(uh)} is bounded in W 1,2(Ω) and P(uh)→ P(uε) a.e. in Ω, we infer that P(uh) ⇀ P(uε)

weakly in W 1,2(Ω). As a consequence, uε ∈ Gg(Ω). Finally, the lower semi-continuity of Eε with

respect to the weak W 1,2-convergence, together with (2.12), leads to F 0
ε,g(uε) 6 lim infh F

0
ε,g(uh).

Hence uε is a minimizer of F 0
ε,g in Gg(Ω). �

2.5. Asymptotic for the Ginzburg-Landau functional. The aim of this subsection is to recall

some classical facts about the asymptotic limit as ε ↓ 0 of low energy states for the Ginzburg-

Landau functional Eε. In this section we still assume that Ω ⊆ R2 is a smooth, bounded, and

simply connected domain. Some of the material below can be found with greater details in [BBH94,

SS04, AP14] and the references therein. We start with the notion of renormalized energy originally

introduced in [BBH94].

2.5.1. The renormalized energy and canonical harmonic maps. Let us denote by Ad the set of all

finite positive measures µ of the form

µ = 2π

md∑
k=1

δxk , (2.13)

for some md distinct points {x1, . . . , xmd} ⊆ Ω.

Given µ ∈ Ad, the canonical harmonic map vµ : Ω \ sptµ → C associated to µ is the map

defined by

vµ(x) := eiϕµ(x)
md∏
k=1

x− xk
|x− xk|

, (2.14)

with {
∆ϕµ = 0 in Ω ,

vµ = gm on ∂Ω .

Note that ϕµ is a smooth function in Ω uniquely determined up to constant multiple of 2π. The

canonical map vµ is a smooth harmonic map from Ω \ sptµ into S1. It satisfies{
div j(vµ) = 0

curl j(vµ) = µ
in D′(Ω) .

It turns out that vµ ∈ W 1,p(Ω) for every p ∈ [1, 2), but fails to be in W 1,2(Ω). However, the

Dirichlet energy of vµ still have a well defined finite part called the renormalized energy given by

W(µ) := −π
∑
k 6=l

log |xk − xl|+
1

2

∫
∂Ω

gm ∧ ∂(gm)

∂τ
Φµ dH1 − π

md∑
k=1

Rµ(xk) , (2.15)
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where Φµ is the solution of 

∆Φµ = µ in Ω ,

∂Φµ
∂ν

= gm ∧ ∂(gm)

∂τ
on ∂Ω ,∫

∂Ω

Φµ dH1 = 0 ,

and Rµ(x) := Φµ(x) −
∑
k log |x − xk| . Note that Rµ is an harmonic function in Ω, smooth up

to ∂Ω. The function Φµ is related to the harmonic map vµ through the relation

j(vµ) = ∇⊥Φµ , (2.16)

and W(µ) is the finite part of the Dirichlet energy of vµ in the sense that

lim
r↓0

{
1

2

∫
Ω\Br(µ)

|∇vµ|2 dx− πmd| log r|

}
= W(µ) . (2.17)

2.5.2. Asymptotic for low energy states. We are now ready to state the following compactness

result, which is a slight improvement of [AP14, Th. 6.1]. The proof is postponed to the end of this

section.

Theorem 2.10. For a sequence εh ↓ 0, let {vh} ⊆ W 1,2
gm (Ω) be such that {vh} is bounded in

L∞(Ω), and

Eεh(vh) 6 πmd| log εh|+O(1) as h→∞ . (2.18)

There exist a subsequence, a measure µ ∈ Ad, and a phase ϕ ∈W 1,2(Ω) such that

(i) vh ⇀ eiϕvµ weakly in W 1,p(Ω) for every p ∈ [1, 2);

(ii) vh ⇀ eiϕvµ weakly in W 1,2
loc (Ω \ sptµ);

(iii) eiϕ = 1 on ∂Ω;

(iv) for r > 0 small enough,

lim inf
h→∞

{
Eεh

(
vh, Br(µ)

)
− πmd log

r

εh

}
> C∗ , (2.19)

for a constant C∗ independent of r, and

lim inf
r↓0

lim inf
h→∞

{
1

2

∫
Ω\Br(µ)

|∇vh|2 dx− πmd| log r|

}
>

1

2

∫
Ω

|∇ϕ|2 dx+ W(µ) .

Moreover, µh := curl j(vh) ∈ L1(Ω) converges to µ = curl j(eiϕvµ) in the weak* topology of

(C0,1
0 (Ω))∗.

The proof of this theorem relies on the following two auxiliary results. In particular, Lemma 2.12

provides an a priori W 1,p-bound for sequences of low Ginzburg-Landau energy. We believe that

Proposition 2.11 and Lemma 2.12 are already well known to experts (see in particular [CJ99,

Theorem 1.4.4]). Since we did not find clear statements and proofs in the existing literature, we

have decided to provide here (mostly) self-contained proofs.

Proposition 2.11. Let v ∈W 1,1(Ω; S1) and µ ∈ Ad be such that{
curl j(v) = µ in D′(Ω) ,

v = gm on ∂Ω .

If v ∈W 1,2
loc (Ω \ sptµ) and

lim inf
r↓0

{
1

2

∫
Ω\Br(µ)

|∇v|2 dx− πmd| log r|

}
<∞ , (2.20)
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then v = eiϕvµ for some ϕ ∈W 1,2(Ω) such that eiϕ = 1 on ∂Ω. In addition,

lim
r↓0

{
1

2

∫
Ω\Br(µ)

|∇v|2 dx− πmd| log r|

}
=

1

2

∫
Ω

|∇ϕ|2 dx+ W(µ) .

Proof. The fact that v = eiϕvµ for some ϕ ∈ W 1,1(Ω) with eiϕ = 1 on ∂Ω follows as in the proof

of Lemma 2.6. Moreover, v ∈W 1,2
loc (Ω \ sptµ; S1) yields ϕ ∈W 1,2

loc (Ω \ sptµ). Let us prove that in

fact ϕ ∈W 1,2(Ω). First notice that

|∇v|2 = |j(v)|2 = |∇ϕ|2 + |j(vµ)|2 + 2∇ϕ · j(vµ) = |∇ϕ|2 + |∇vµ|2 + 2∇ϕ · ∇⊥Φµ , (2.21)

where the last identity follows from (2.16).

For each k ∈ {1, . . . ,md}, we set

Rkµ(x) := Φµ(x)− log |x− xk| ,

so that Rkµ is a smooth harmonic function in Ω \ ∪l 6=k{xl}. Notice in particular that

∂τΦµ = ∂τR
k
µ on ∂Br(xk).

Integrating by parts (2.21) in Ωr := Ω \Br(µ) with r > 0 small enough, leads to∫
Ωr

|∇v|2 dx =

∫
Ωr

|∇ϕ|2 dx+

∫
Ωr

|∇vµ|2 dx+ 2

md∑
k=1

∫
∂Br(xk)

ϕ∂τΦµ dH1

=

∫
Ωr

|∇ϕ|2 dx+

∫
Ωr

|∇vµ|2 dx+ 2

md∑
k=1

∫
∂Br(xk)

ϕ∂τR
k
µ dH1 . (2.22)

By the boundary trace theorem for BV functions [AFP00, Theorem 3.87], and the embedding of

W 1,1 into L2,∫
∂Br(xk)

|ϕ| dH1 .
∫
Br(xk)

|∇ϕ|+ 1

r
|ϕ| dx .

∫
Br(xk)

|∇ϕ|dx+

(∫
Br(xk)

|ϕ|2dx

)1/2

−→
r→0

0 . (2.23)

Using the smoothness of Rkµ near xk, we can combine (2.17), (2.20), (2.22), and (2.23) to deduce

that ∫
Ωr

|∇ϕ|2 dx = O(1) as r → 0 .

Therefore ϕ ∈ W 1,2(Ω). Going back to (2.22), we subtract πmd| log r| from both sides of this

identity, and we let r → 0 to reach the conclusion. �

Lemma 2.12. For a sequence εh ↓ 0, let {vh} ⊆ W 1,2
gm (Ω,C) be such that {vh} is bounded in

L∞(Ω), (2.18) holds, and for which µh := j(vh) weakly* converges in (C0,1
0 (Ω))∗ to some measure

µ ∈ Ad as h→∞. Then {vh} is bounded in W 1,p(Ω) for every 1 6 p < 2.

The proof of Lemma 2.12 rests on the so-called ‘ball construction” in [SS04, Theorem 4.1] that

we now recall.

Theorem 2.13 ([SS04]). For any α ∈ (0, 1) there exists ε0(α) > 0 such that, for any ε ∈ (0, ε0(α))

and any v ∈ C∞(Ω) satisfying Eε(v) 6 εα−1, the following holds for some universal constants c0,

c1, and c2: for any r ∈
[
c0ε

α/2, 1
)

there exists a finite collection Br =
{
Bj
}
j∈J of disjoint closed

balls such that

(i) r =
∑
j rj ;

(ii) setting Ωε :=
{
x ∈ Ω : dist(x, ∂Ω) > ε

}
and V εr := Ωε ∩

(
∪j Bj

)
,{

x ∈ Ωε :
∣∣|v(x)| − 1

∣∣ > εα/4} ⊆ V εr ;
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(iii) setting dj = deg(v, ∂Bj) if Bj ⊆ Ωε, and dj = 0 otherwise,

Eε(v, V
ε
r ) > πDr

(
log

r

Drε
− c1

)
(2.24)

whenever Dr :=
∑
j |dj | 6= 0;

(iv) the following estimate holds

Dr 6 c2
Eε(v)

α| log ε|
. (2.25)

Finally, if r1 < r2, then every ball of Br1 is contained in a ball of Br2 .

Proof of Lemma 2.12. Since Ω is a smooth bounded domain and g is smooth, any map in W 1,2
gm (Ω)∩

L∞(Ω) can be (strongly) approximated in the W 1,2-sense by a sequence in {v ∈ C∞(Ω) : v =

gm on ∂Ω} which also remains bounded in L∞(Ω). Hence, we can assume vh ∈ C∞(Ω) for each h.

Recall that µ writes µ = 2π
∑md
k=1 δxk . Setting

σ0 :=
1

4
min

{
1,min

k
dist(xk, ∂Ω),min

k 6=l
|xk − xl|

}
,

we may assume without loss of generality that σ0 = 1. We choose α = 1/2 in Theorem 2.13 (this

choice of α is arbitrary). By (2.18), we have Eεh(vh) 6 ε
−1/2
h for εh small enough, and we can

therefore apply Theorem 2.13 to vh.

We claim that for εh sufficiently small,

Dr > md for every r ∈
[
c0ε

1/4
h , 1/6

]
. (2.26)

Let us introduce the modified function

ṽh := min

{
|vh|

1− ε1/8
h

, 1

}
vh
|vh|
∈W 1,2(Ω) .

Noticing that

j(ṽh) = min

{
1(

1− ε1/8
h

)2 , 1

|vh|2

}
j(vh) ,

and setting µ̃h := curl j(ṽh), we estimate

‖µ̃h − µh‖(C0,1
0 (Ω))∗ = sup

‖φ‖
C

0,1
0 (Ω))

≤1

∫
Ω

(
min

{
1(

1− ε1/8
h

)2 , 1

|vh|2

}
− 1

)
j(vh) · ∇⊥φdx

≤
∫

Ω

∣∣∣∣∣min

{
1(

1− ε1/8
h

)2 , 1

|vh|2

}
− 1

∣∣∣∣∣ |j(vh)|dx

. ε1/8
h ‖j(vh)‖L1(Ω) −→

h→∞
0 , (2.27)

where in the last step we have used that since j(vh) = vh ∧∇vh,

‖j(vh)‖L1(Ω) . ‖vh‖L∞(Ω)‖∇vh‖L∞(Ω) . ‖vh‖L∞(Ω)E
1/2
εh

(vh)
(2.18)

. ‖vh‖L∞(Ω)| log εh|1/2.

Given r ∈
[
c0ε

1/4
h , 1/6

]
, we set

Aεhr :=
{
t ∈ [1/2, 1− r] : ∂Bt(µ) ∩ V εhr = ∅

}
.

By item (i) in Theorem 2.13, we have |Aεhr | > 1/2 − 2r > 1/6. Then, for each k = 1, . . . ,md, we

define a function ζk ∈ C0,1(Ω) compactly supported in Ω by setting

ζk(x) :=

∫ 1

min(1,|x−xk|)
χAεhr (t) dt .

Notice that ‖ζk‖C0,1(Ω) 6 2. Since µ̃h → µ in (C0,1
0 (Ω))∗ by (2.27), we have ‖µ̃h − µ‖(C0,1

0 (Ω))∗ 6

π/12 for εh small enough. Consequently, by definition of σ0 and for εh small,

〈µ̃h, ζk〉 > 〈µ, ζk〉 − 2‖µ̃h − µ‖(C0,1
0 (Ω))∗ > 2π|Aεhr | − π/6 > π/6 ,
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for each k = 1, . . . ,md. Moreover, using that for t ∈ Aεhr and x ∈ ∂Bt(xk), ṽh = vh
|vh| , we have

〈µ̃h, ζk〉 = −
∫
B1(xk)

j(ṽh) · ∇⊥ζk dx =

∫ 1

0

χAεhr (t)

(∫
∂Bt(xk)

j(ṽh) · τ dH1

)
dt

=

∫
A
εh
r

(∫
∂Bt(xk)

j

(
vh
|vh|

)
· τ dH1

)
dt = 2π

∫
A
εh
r

deg
(
vh, ∂Bt(xk)

)
dt ,

and we conclude that for εh sufficiently small (independently of r),∫
A
εh
r

deg
(
vh, ∂Bt(xk)

)
dt > 1/12 for each k = 1, . . . ,md .

Hence, for each k = 1, . . . ,md, there exists a radius ρkh ∈ Aεhr such that deg
(
vh, ∂Bρkh(xk)

)
6= 0

whenever εh is small enough (independently of r). In turn, it implies the existence, for each

k = 1, . . . ,md, of an element Bkh(r) ∈ Br such that Bkh(r) ⊆ Bρkh(xk) ⊆ Ωεh and deg
(
vh, ∂B

k
h(r)

)
6=

0, whenever εh is small. By the very definition of Dr, we infer that (2.26) holds for εh small

(independently of r).

Combining (2.18) and (2.25), we deduce that Dr 6 C for some constant C independent of εh
and r. Then, (2.24) yields for εh small enough,

Eεh(vh, V
εh
r ) > πmd log

(
r

εh

)
− C for every r ∈

[
c0ε

1/4
h , 1/6

]
,

where C is still a constant independent of r and εh. In view of (2.18), we thus have

Eεh(vh,Ω \ V εhr ) 6 πmd| log r|+ C for every r ∈
[
c0ε

1/4
h , 1/6

]
. (2.28)

Now we define on the set {|vh| > 0} the map v̂h := vh/|vh|. Given r ∈
[
c0ε

1/4
h , 1/12

]
, we have∣∣|vh| − 1

∣∣ 6 ε
1/8
h on V εh2r \ V εhr , and we can apply [SS04, Proposition 4.2] to deduce that for εh

sufficiently small (independently of r),

1

2

∫
V
εh
2r \V

εh
r

|∇v̂h|2 dx >
md∑
k=1

1

2

∫
Bkh(2r)\V εhr

|∇v̂h|2 dx > πmd log 2 .

Therefore, if εh is small, using that

|∇vh|2 = |∇|vh||2 + |vh|2|∇v̂h|2 ≥ |vh|2|∇v̂h|2;

we obtain

1

2

∫
V
εh
2r \V

εh
r

|∇vh|2 dx >
1

2

∫
V
εh
2r \V

εh
r

|vh|2|∇v̂h|2 dx > πmd log 2− Cε1/8
h , (2.29)

for some constant C independent of r and εh. Then set for j ∈ N, rj := 2−j/6 and define

Jh := max
{
j ∈ N : rj > c0ε

1/4
h

}
.

Using the fact that V εhrj+1
⊆ V εhrj , estimate (2.28) leads to

Jh−1∑
j=0

1

2

∫
V
εh
rj
\V εhrj+1

|∇vh|2 dx 6 Eεh(vh,Ω \ V εhrJh ) 6
(
πmd log 2

)
Jh + C . (2.30)

Since Jh = O(| log εh|), we infer from (2.29) and (2.30) that∫
V
εh
rj
\V εhrj+1

|∇vh|2 dx 6 C(1 + Jhε
1/8
h ) 6 C for every j = 0, . . . , Jh − 1 , (2.31)

for a constant C independent of εh.
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Finally, fix an arbitrary p ∈ [1, 2). Noticing that |V εhrj | = O(r2
j ), we estimate by means

of (2.28), (2.31), and Hölder’s inequality,

∫
Ω\V εhrJh

|∇vh|p dx 6
∫

Ω\V εhr0
|∇vh|p dx+

Jh−1∑
k=0

∫
V
εh
rj
\V εhrj+1

|∇vh|p dx

6 C

1 +

Jh−1∑
k=0

r2−p
j

(∫
V
εh
rj
\V εhrj+1

|∇vh|2 dx

)p/2 6 C

22−p − 1
,

for some constant C independent of εh (and p). Since,∫
V
εh
rJh

|∇vh|p dx 6 Cr2−p
Jh

(∫
Ω

|∇vh|2 dx
)p/2

6 Cεh
2−p

4 | log εh|p/2 6 C ,

we conclude that {vh} is indeed bounded in W 1,p(Ω). �

Proof of Theorem 2.10. In view of (2.18), we can apply [AP14, Theorem 6.1] to find a subsequence

such that µh
∗
⇀µ weakly* in (C0,1

0 (Ω))∗ for some measure µ = 2π
∑md
k=1 δxk ∈ Ad. Moreover, for a

radius r satisfying

0 < r 6 σ0 :=
1

4
min

{
1,min

k
dist(xk, ∂Ω),min

k 6=l
|xk − xl|

}
,

estimate (2.19) holds by [AP14, Theorem 4.1]. Consequently,

Eεh
(
vh,Ω \Br(µ)

)
6 πmd| log r|+ C , (2.32)

for a constant C independent of r and εh. As a consequence of (2.32), we can extract a further

subsequence such that vh ⇀ v0 weakly in W 1,2
loc (Ω \ sptµ) for some v0 ∈ W 1,2

loc (Ω \ sptµ; S1). By

lower semi-continuity we have

lim inf
h→∞

Eεh
(
vh,Ω \Br(µ)

)
>

1

2

∫
Ω\Br(µ)

|∇v0|2 dx . (2.33)

In addition, from the continuity of the trace operator we deduce that v0 = gm on ∂Ω. Thanks

to Lemma 2.12, {vh} is also bounded in W 1,p(Ω) for every 1 ≤ p < 2 so that vh ⇀ v0 weakly in

W 1,p(Ω) for every p ∈ [1, 2). From this convergence, we easily derive

〈µh, ζ〉 = −
∫

Ω

j(vh) · ∇⊥ζ dx −→
h→∞

−
∫

Ω

j(v0) · ∇⊥ζ dx = 〈curl j(v0), ζ〉 ,

for every ζ ∈ D(Ω), and thus curl j(v0) = µ in D′(Ω). Combining (2.32) with (2.33) yields

lim sup
r↓0

{
1

2

∫
Ω\Br(µ)

|∇v0|2 dx− πmd| log r|

}
<∞ .

Hence, we are now in position to apply Proposition 2.11 to conclude that v0 = eiϕvµ for some

ϕ ∈W 1,2(Ω) satisfying eiϕ = 1 on ∂Ω, and the proof is complete. �

3. The Γ-convergence results

In this section, our main objective is to determine the Γ-limit of the functional F ηε defined

in (2.6) as η ↓ 0 and ε ↓ 0. We introduce F̃ ηε : L1(Ω)× L1(Ω)→ (−∞,∞] given as

F̃ ηε (u, ψ) :=

F ηε (u, ψ)− πd

m
| log ε| if (u, ψ) ∈ Hg(Ω) ,

∞ otherwise ,

where F ηε and the class Hg(Ω) are defined in (2.6),(2.7) respectively. Throughout this section

Ω ⊆ R2 denotes a smooth, bounded, and simply connected domain.
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In a first part, we shall prove that the domain of the Γ-limit is determined by the class of

functions

Lg(Ω) :=
{
u ∈ SBV (Ω; S1) : um = eiϕvµ for some µ ∈ Ad

and ϕ ∈W 1,2(Ω) satisfying eiϕ = 1 on ∂Ω
}
,

where Ad is the family of measures defined in (2.13), and vµ is the canonical harmonic map

associated to µ through (2.14). We emphasize that Lg(Ω) ⊆ SBV p(Ω; S1) for every p ∈ [1, 2) by

Corollary 2.4. In turn, the Γ-limit is given by the functional F0,g : Lg(Ω)→ R defined by

F0,g(u) := E0(u) +H1(Ju) +H1
(
{u 6= g} ∩ ∂Ω

)
,

where we have set for um =: eiϕvµ,

E0(u) :=
1

2m2

∫
Ω

|∇ϕ|2 dx+
1

m2
W(µ) +mdγm .

In the expression above, γm is a structural constant which is usually interpreted as the core energy

of a singularity. In our context, it is defined as

γm := lim
R→∞

min

{
E1(w,BR)− π

m2
logR : w ∈W 1,2(BR;N ) ,

w(z) =
1

m

( z
|z|
,
√
m2 − 1

)
on ∂BR

}
. (3.1)

Existence and finiteness of this limit follows from a classical comparison argument (see Lemma 3.9,

and [BBH94, Lemma III.1]). We also note that the value of F0,g(u) only depends on u and

not on a particular representation um = eiϕvµ. Indeed, one always has µ = curl j(um) and

|∇ϕ| = |∇(vµu
m)|.

To properly state the Γ-convergence result, it is now convenient to introduce F̃0 : L1(Ω) ×
L1(Ω)→ (−∞,∞] given by

F̃0(u, ψ) :=

{
F0,g(u) if u ∈ Lg(Ω) and ψ ≡ 1 ,

∞ otherwise .

Theorem 3.1. Let εh ↓ 0 and ηh ↓ 0 be arbitrary sequences. The sequence of functionals
{
F̃ ηhεh

}
Γ-converges in the strong

[
L1(Ω)

]2
-topology to F̃0 as h→∞. More precisely:

(i) If {(uh, ψh)} ⊆ Hg(Ω), {uh} is bounded in L∞(Ω), and suph F̃
ηh
εh

(uh, ψh) <∞, then there

exist a subsequence and u ∈ Lg(Ω) with um =: eiϕvµ such that (uh, ψh)→ (u, 1) in L1(Ω),

vh := p(uh) ⇀ um weakly in W 1,p(Ω) for every p < 2 and weakly in W 1,2
loc (Ω \ sptµ),

and the measures µh := curl j(vh) weakly* converge to µ = curl j(um) in the (C0,1
0 (Ω))∗

topology.

(ii) Under the conclusions of (i),

lim inf
h→∞

{
Eεh

(
P(uh)

)
− πd

m
| log εh|

}
> E0(u) , (3.2)

and

lim inf
h→∞

Iηh(ψh) > H1(Ju) +H1
(
{u 6= g} ∩ ∂Ω

)
. (3.3)

Moreover, if F̃0(u, 1) = limh F̃
ηh
εh

(uh, ψh) < ∞, then p(uh) → um strongly in W 1,p(Ω) for

every p < 2 and strongly in W 1,2
loc (Ω \ sptµ),

lim
h→∞

Eεh
(
P(uh),Ω \Br(µ)

)
=

1

2m2

∫
Ω\Br(µ)

|∇(um)|2 dx for every r > 0 , (3.4)
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and

lim
h→∞

Iηh
(
ψh
)

= H1(Ju) +H1
(
{u 6= g} ∩ ∂Ω

)
. (3.5)

(iii) For every u ∈ Lg(Ω), there exists a sequence {(uh, ψh)} ⊆ Hg(Ω) such that uh = g on ∂Ω,

(uh, ψh)→ (u, 1) in L1(Ω), p(uh)→ um strongly in W 1,p(Ω) for every p < 2 and strongly

in W 1,2
loc (Ω \ sptµ), and satisfying

lim
h→∞

{
Eεh

(
P(uh)

)
− πd

m
| log εh|

}
= E0(u) , (3.6)

lim
h→∞

Iηh(ψh) = H1(Ju) +H1
(
{u 6= g} ∩ Ω

)
. (3.7)

We can proceed analogously with the sharp interface functionals F 0
ε,g defined in (2.8), and

introduce F̃ 0
ε : L1(Ω)→ (−∞,∞] and F̃0 : L1(Ω)→ (−∞,∞] defined as

F̃ 0
ε (u) :=

F
0
ε,g(u)− πd

m
| log ε| if u ∈ Gg(Ω) ,

∞ otherwise ,

F̃0(u) :=

{
F0,g(u) if u ∈ Lg(Ω) ,

∞ otherwise .

Theorem 3.2. Let εh ↓ 0 be an arbitrary sequence. The sequence of functionals
{
F̃ 0
εh

}
h∈N Γ-

converges in the strong L1(Ω)-topology to F̃0 as h→∞. More precisely:

(i) If {uh} ⊆ Gg(Ω), {uh} is bounded in L∞(Ω), and suph F̂
0
εh

(uh) < ∞, then there exist a

subsequence and u ∈ Lg(Ω) with um =: eiϕvµ such that uh → u in L1(Ω), vh := p(uh) ⇀

um weakly in W 1,p(Ω) for every p < 2 and weakly in W 1,2
loc (Ω \ sptµ), and the measures

µh := curl j(vh) weakly* converge to µ = curl j(um) in the (C0,1
0 (Ω))∗ topology.

(ii) If {uh} ⊆ Gg(Ω) is such that uh → u in L1(Ω), then

lim inf
h→∞

F̃ 0
εh

(uh) > F̃0(u) . (3.8)

Moreover, if F̃0(u) = limh F̃
0
εh

(uh) < ∞, then p(uh) → um strongly in W 1,p(Ω) for

every p < 2 and strongly in W 1,2
loc (Ω \ sptµ), identity (3.4) holds, and for every open set

A ⊆ R2 such that H1
(
Ju ∩ (Ω ∩ ∂A)

)
+H1

(
{u 6= g} ∩ ∂Ω ∩ ∂A

)
= 0,

lim
h→∞

H1
(
Juh ∩ (Ω ∩A)

)
+H1

(
{uh 6= g} ∩ ∂Ω ∩A

)
= H1

(
Ju ∩ (Ω ∩A)

)
+H1

(
{u 6= g} ∩ ∂Ω ∩A

)
. (3.9)

(iii) For every u ∈ Lg(Ω), there exists a sequence {uh} ⊆ Gg(Ω) such that uh → u in L1(Ω)

and

lim
h→∞

F̃ 0
εh

(uh) = F̃0(u) . (3.10)

As a standard consequence of these Γ-convergence results, we have the following corollaries

concerning the minimizers of F ηε and F 0
ε,g, whose existence was proved in Theorems 2.7 & 2.8

respectively (together with the uniform L∞-bound allowing for compactness).

Corollary 3.3. Let εh ↓ 0 and ηh ↓ 0 be arbitrary sequences. For each h ∈ N, let (uh, ψh) be a

minimizer of F ηhεh in Hg(Ω). There exists a subsequence and a map u minimizing F0,g over Lg(Ω)

such that (uh, ψh)→ (u, 1) in L1(Ω), p(uh)→ um strongly in W 1,p(Ω) for every p < 2 and strongly

in W 1,2
loc (Ω \ sptµ) where µ := curl j(um). In addition,

F ηhεh (uh, ψh) =
πd

m
| log εh|+ F0,g(u) + o(1) as h→∞ .

Corollary 3.4. Let εh ↓ 0 be an arbitrary sequence. For each h ∈ N, let uh be a minimizer of

F 0
εh,g

in Gg(Ω). There exists a subsequence and a map u minimizing F0,g over Lg(Ω) such that
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uh → u in L1(Ω), p(uh)→ um strongly in W 1,p(Ω) for every p < 2 and strongly in W 1,2
loc (Ω\ sptµ)

where µ := curl j(um). In addition,

F 0
εh,g

(uh) =
πd

m
| log εh|+ F0,g(u) + o(1) as h→∞ .

Remark 3.5. From the definition of F0,g, any minimizer u of F0,g over Lg(Ω) satisfies um = vµ
where µ := curl j(um) (i.e., in any representation um = eiϕvµ, the phase ϕ is a constant multiple

of 2π). As a consequence,

F0,g(u) =
1

m2
W(µ) +mdγm +H1(Ju) +H1

(
{u 6= g} ∩ ∂Ω

)
.

The rest of this section if devoted to the proofs of Theorems 3.1 & 3.2. Starting with Theo-

rem 3.1, compactness, Γ-lim inf, and Γ-lim sup parts are proved in Subsections 3.1, 3.3, and 3.4

respectively. The proof of Theorem 3.2 is the object of Subsection 3.5.

3.1. Proof of Theorem 3.1 (i): Compactness.

Proposition 3.6. Let εh ↓ 0 and ηh ↓ 0 be arbitrary sequences. Let {(uh, ψh)} ⊆ Hg(Ω) be such

that {uh} is bounded in L∞(Ω), and

sup
h

{
F ηhεh (uh, ψh)− πd

m
| log εh|

}
<∞ . (3.11)

Then, there exist a subsequence and u ∈ Lg(Ω) with um =: eiϕvµ such that

(i) (uh, ψh)→ (u, 1) strongly in L1(Ω);

(ii) vh := p(uh) ⇀ um weakly in W 1,p(Ω) for every p ∈ [1, 2);

(iii) vh ⇀ um weakly in W 1,2
loc (Ω \ sptµ)

Moreover, µh := curl j(vh) ∈ L1(Ω) converges to µ = curl j(um) in the weak* topology of (C0,1
0 (Ω))∗.

The proposition above partially rests on the following preliminary lemma.

Lemma 3.7. Let {(uh, ψh)} ⊆ H(Ω) be such that ψh → 1 a.e. in Ω. Assume that for some

p ∈ (1, 2],

sup
h

{
‖uh‖L∞(Ω) + ‖ψh − 1‖L2(Ω)‖∇ψh‖L2(Ω) +

∥∥∇p(uh)
∥∥
Lp(Ω)

}
<∞ .

Then there exist a subsequence and u ∈ SBV p(Ω) such that P(u) ∈ W 1,p(Ω;N ), uh → u strongly

in L1(Ω), and P(uh) ⇀ P(u) weakly in W 1,p(Ω).

Proof. By assumption and Cauchy-Schwarz inequality, we have∫
Ω

(1− ψh)|∇ψh| dx 6 C ,

for some constant C independent of h. According to the co-area formula (see [AFP00, Theo-

rem 3.40]),∫
Ω

(1− ψh)|∇ψh| dx =

∫ 1

0

(1− t)H1
(
∂{ψh < t} ∩ Ω

)
dt >

∫ 3/4

1/4

(1− t)H1
(
∂{ψh < t} ∩ Ω

)
dt .

Therefore, we can find a level th ∈ (1/4, 3/4) such that∫
Ω

(1− ψh)|∇ψh| dx >
1

4
H1(∂Eh ∩ Ω) , with Eh := {ψh < th} .

Notice that |Eh| → 0 since ψh → 1 a.e. in Ω.

Let us now define

ũh := (1− χEh)uh .



22 MICHAEL GOLDMAN, BENOÎT MERLET, AND VINCENT MILLOT

With our choice of Eh, we have that (1−χEh)/ψh ∈ SBV p(Ω)∩L∞(Ω). Since ψhuh ∈W 1,2(Ω)∩
L∞(Ω), we deduce that ũh = (ψhuh)(1 − χEh)/ψn ∈ SBV p(Ω) ∩ L∞(Ω) with Jũh ⊆ ∂Eh. Since

P(ũh) = (1− χEh)P(uh) ∈ SBV (Ω; R3), we infer that

|∇ũh| =
∣∣∇(P(ũh))

∣∣ = (1− χEh)
∣∣∇(P(uh))

∣∣ 6 ∣∣∇(P(uh))
∣∣ a.e. in Ω .

Consequently,

sup
h

{
‖ũh‖L∞(Ω) + ‖∇ũh‖Lp(Ω) +H1(Jũh)

}
<∞ . (3.12)

Now select a subsequence such that P(uh) ⇀ w weakly in W 1,p(Ω). In view of (3.12), we can

apply Ambrosio’s compactness theorem in SBV (see e.g. [AFP00, Theorem 4.8 & Remark 4.9]) to

find a further subsequence such that ũh → u strongly in L1(Ω) for some u ∈ SBV p(Ω) ∩ L∞(Ω).

Then,

‖uh − u‖L1(Ω) 6 ‖ũh − u‖L1(Ω) + ‖uh‖L∞(Ω)|Eh| −→
h→∞

0 .

Since P is 1-Lipschitz, we have ‖P(uh)− P(u)‖L1(Ω) 6 ‖uh − u‖L1(Ω), and thus w = P(u). �

Proof of Proposition 3.6. Let us first recall (2.4), that is Eεh(P(uh)) = Gεh(vh) with vh := p(uh).

In view of (2.4), assumption (3.11) implies

Eεh(vh) 6 πmd| log εh|+ C , (3.13)

that is (2.18) holds. In turn, we deduce from (3.11) that

‖ψh − 1‖L2(Ω)‖∇ψh‖L2(Ω) 6
η

2

∫
Ω

|∇ψh|2dx+
1

2η

∫
Ω

(1− ψh)2dx = Iηh(ψh) 6 C ,

for a constant C independent of ηh. Clearly, it implies that ψh → 1 a.e. Ω, at least for a suitable

subsequence. We are thus in position to apply first Theorem 2.10 to {vh}, and then Lemma 3.7 to

{(uh, ψh)} to conclude the proof. �

Remark 3.8. We emphasize that, in addition to the conclusions of Proposition 3.6, assump-

tion (3.11) implies suph Iηh(ψh) <∞.

3.2. Optimal profiles and the constant γm. In this subsection, we first study the core energy

associated with one vortex in the Ginzburg-Landau energies {Eε}. We consider for R > 0 and

ε > 0, the minimum value

γm(ε,R) := min

{
Eε(w,BR)− π

m2
log

R

ε
: w ∈W 1,2(BR;N ) ,

w(z) =
1

m

( z
|z|
,
√
m2 − 1

)
on ∂BR

}
. (3.14)

In view of identity (2.5) defining the functional Gε, the value γm(ε,R) can be written as

γm(ε,R) = min

{
Gε(v,BR)− π

m2
log

R

ε
: v ∈W 1,2(BR) , v(z) =

z

|z|
on ∂BR

}
.

Notice that, by homogeneity,

γm(ε,R) = γm(1, R/ε) =: γm(R/ε) . (3.15)

We start by proving that γm admits a limit as R→∞. This will be needed for the lower bounds

(3.2) and (3.8).

Lemma 3.9. The function R 7→ γm(R) is non increasing and the limit

γm := lim
R→∞

γm(R) (3.16)

is finite.
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Proof. The proof of this lemma closely follows the proof of [BBH94, Lemma III.1]. Let us first

show that γm is non increasing. Let 0 < R1 < R2, and consider an admissible competitor w for the

minimization problem defining γm(R1). We extend w by 0-homogeneity in the annulus BR2 \BR1 ,

i.e., w(x) = w(R1x/|x|) for x ∈ BR2
\ BR1

. By construction w ∈ W 1,2(BR2
;N ), and it is an

admissible competitor for γm(R2). Elementary computations then yield

E1(w,BR2
) = E1(w;BR1

) +
π

m2
log

R2

R1
.

Hence, γm(R2) 6 E1(w;BR1
)− π

m2 logR1. Taking the infimum with respect to w yields γm(R2) 6

γm(R1), so that γm is indeed non increasing. Next, for an arbitrary w ∈ W 1,2(B1;N ) satisfy-

ing w(x) = (1/m)(x,
√
m2 − 1) on ∂B1, we have w = (1/m)(v,

√
m2 − 1|v|) with v ∈ W 1,2(B1)

satisfying v(x) = x on ∂B1. Consequently, for ε > 0 we have

Eε(w,B1) = Gε(v,B1) >
1

m2
Eε(v,B1) >

π

m2
log

1

ε
− C ,

for some universal constant C by [BBH94]. In view of (3.15), we infer that γm(1/ε) is bounded

from below, and thus γm > −∞. �

The following lemma and its subsequent corollary will allow us to construct a recovery sequence

close to the vortices.

Lemma 3.10. For every v ∈ W 1,2(B1) satisfying v(x) = x on ∂B1, there exists a sequence

{uk} ⊆ SBV 2(B1) such that

(i) p(uk) ∈W 1,2(B1) and p(uk)(x) = x in a neighborhood of ∂B1;

(ii) Juk ⊆ Σk where Σk is a smooth simple curve (i.e., a smooth image of [0, 1]) contained in

B1;

(iii) p(uk)→ v strongly in W 1,2(B1).

Proof. Step 1. Since the function ṽ : z 7→ v(x) − x belongs to W 1,2
0 (B1), for each k ∈ N we can

find φk ∈ C∞c (B1) such that ‖ṽ − φk‖W 1,2(B1) 6 2−k. Implicitly, we extend φk by 0 outside B1.

Then, we select a sequence of radii {rk} ⊆ (3/4, 1) such that rk → 1 as k →∞, and sptφk ⊆ Brk .

By Morse-Sard Theorem, we can find {ck} ⊆ C with |ck| < (1 − rk)2 such that ck is a regular

value of the mapping x 7→ x + φk(x) for each k ∈ N. Next, we consider for each k ∈ N a cut-off

function χk ∈ C∞(R2; [0, 1]) satisfying χk(x) = 1 for |x| 6 rk, χk(x) = 0 for |x| > (1 + rk)/2, and

(1− rk)|∇χk| 6 C for a constant C independent of k. Now we define the smooth function

vk(x) := x+ φk(x)− ckχk(x) ,

which satisfies vk(x) = x in a neighborhood of ∂B1. We estimate

‖vk − v‖W 1,2(B1) 6 ‖ṽ − φk‖W 1,2(B1) + |ck|‖χk‖W 1,2(B1) 6 2−k + C(1− rk) .

Therefore vk → v strongly in W 1,2(B1) as k →∞.

Step 2. Let us fix an index k ∈ N. To complete the proof, we shall produce a map uk ∈ SBV 2(B1)

such that p(uk) = vk and Juk is contained in a closed and smooth simple curve. First notice that

our choice of ck and the fact that φk = 0 on B1 \Brk imply that

|vk| > rk − |ck| > 11/16 in B1 \Brk ,

so that {vk = 0} = {vk = 0} ∩ Brk = {x + φk(x) = ck} ∩ Brk is a finite set. Hence we can

find a smooth simple curve Σk contained in B1 such that Σk ∩ ∂B1 = {ak, bk} with ak, bk the

distinct endpoints of Σk, Σk meets ∂B1 orthogonally at ak and bk, and {vk = 0} ⊆ Σk. In this

way, B1 \ Σk = A1
k ∪ A2

k where A1
k and A2

k are disjoint simply connected open sets with Lipschitz

boundary. Since vk does not vanish in each Ajk, it admits a smooth m-th square root ujk in each

Ajk, which is continuous up to ∂Ajk. We define

uk(x) := ujk(x) if x ∈ Ajk .
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It is then elementary to check that uk ∈ SBV 2(B1). By construction, items (i), (ii), and (iii)

hold. �

Corollary 3.11. Let εh ↓ 0 be an arbitrary sequence. There exist {uh} ⊆ SBV 2(B1) ∩ L∞(Ω)

with ‖uh‖L∞(Ω) 6 1, and a sequence of smooth simple curves {Σh} ⊆ B1 such that Juh ⊆ Σh for

every h ∈ N, p(uh) ∈W 1,2(Ω), p(uh)(x) = x in a neighborhood of ∂B1, and

lim
h→∞

{
Eεh

(
P(uh), B1

)
− π

m2
| log εh|

}
= γm .

Proof. Let us fix an arbitrary h ∈ N. Consider wh ∈ W 1,2(B1,N ) a solution of the minimization

problem (3.14) defining γm(εh, 1) (existence easily follows from the direct method of calculus of

variations), and write wh = (1/m)(vh, |vh|
√
m2 − 1) with vh ∈ W 1,2(B1). We apply Lemma 3.10

to vh to produce a sequence {uk} and curves {Σk}. The convergence property (iii) in Lemma 3.10

implies that Eεh
(
P(uk)

)
→ Eεh(wh) as k → ∞. Hence, we can find kh ∈ N such that, setting

ũh := ukh and Σh := Σkh , one has Jũh ⊆ Σh and Eεh
(
P(ũh)

)
6 Eεh(wh) + εh. Setting uh :=

ũh/max
(
1, |ũh|

)
, we observe that uh ∈ SBV 2(B1), ‖uh‖L∞(Ω) 6 1, and Juh ⊆ Jũh ⊆ Σh. As

in (2.10) we have p(uh) = p(ũh)/max
(
1, |p(ũh)|

)
, and we infer that p(uh) ∈W 1,2(Ω), p(uh)(x) = x

in a neighborhood of ∂B1, and

γm(εh, 1) 6 Eεh
(
P(uh)

)
6 Eεh

(
P(ũh)

)
6 Eεh(wh) + εh .

Since Eεh(wh) = γm(εh, 1)→ γm as h→∞ by (3.15) and Lemma 3.9, the conclusion follows. �

To close this section, we characterize the optimal one dimensional profile related to the energy Iη.

This will be important to go from a recovery sequence for the sharp interface functional F 0
ε,g to a

recovery sequence of the diffuse interface functional F ηε .

Lemma 3.12. For every η > 0,

min

{
I1D
η (ψ) :=

η

2

∫
R

|ψ′(s)|2 ds+
1

2η

∫
R

(1− ψ(s))2 ds : ψ(0) = 0

}
= 1 .

The minimum is uniquely achieved by ψη(s) := ψ?(s/η) with ψ?(s) = 1− e−|s|.

Proof. By rescaling, we may assume without loss of generality that η = 1. Write

Φ(t) := (1− |t|)2/2 =

∫ 1

|t|
(1− s) ds .

Let ψ : R → R be such that ψ(0) = 0 and I1D
1 (ψ) < ∞. First, notice that the condition

I1D
1 (ψ) < ∞ implies that lims→±∞ ψ(s) = 1. Then, by Cauchy-Schwarz and Young inequalities,

we have

I1D
1 (ψ) >

∫
R

|1− ψ(s)| |ψ′(s)| ds =

∫ 0

−∞

∣∣(Φ ◦ ψ)′
∣∣ ds+

∫ ∞
0

∣∣(Φ ◦ ψ)′
∣∣ ds > 2(Φ(0)− Φ(1)) = 1 .

We have equality in the above chain of inequalities if and only if |ψ′| = |1 − ψ|. Using ψ(0) = 0

and the condition
∫
R
|ψ′|2 ds <∞ leads to the optimal profile ψ?. �

3.3. Proof of Theorem 3.1 (ii): The Γ-lim inf inequality.

Proposition 3.13. Let εh ↓ 0 and ηh ↓ 0 be arbitrary sequences. If {(uh, ψh)} ⊆ Hg(Ω) is such

that (uh, ψh)→ (u, ψ) in L1(Ω), then

F̃0(u, ψ) 6 lim inf
h→∞

F̃ ηhεh (uh, ψh) . (3.17)

In addition,

(i) if the liminf is finite, then u ∈ Lg(Ω), ψ ≡ 1, and (3.2)-(3.3) hold;

(ii) if equality holds and the liminf is a finite limit, then p(uh) converges to um =: eiϕvµ
strongly in W 1,p(Ω) for every p < 2 and strongly in W 1,2

loc (Ω \ sptµ), and (3.4)-(3.5) hold.
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Proof. Without loss of generality, we may assume that

lim inf
h→∞

F̃ ηhεh (uh, ψh) = lim
h→∞

F̃ ηhεh (uh, ψh) <∞ . (3.18)

We may also assume that ‖uh‖L∞(Ω) 6 1. Indeed, on the first hand (3.18) clearly implies that

|u| = 1. On the other hand, the truncation argument used in the proof of Theorem 2.7 shows that

replacing uh by ûh given by (2.9) does not increase the energy. Moreover,

‖uh − ûh‖L1(Ω) 6 ‖|uh| − 1‖L1(Ω) 6 ‖uh − u‖L1(Ω) , (3.19)

so that ûh → u in L1(Ω). Hence (uh, ψh) can be replaced by (ûh, ψh).

Next, we apply Theorem 3.6 to extract a further subsequence to obtain all the conclusions of

that theorem. As a consequence, ψ = 1 and u ∈ Lg(Ω) with um = eiϕvµ. We have to show that

F0,g(u) 6 lim
h→∞

F̃ ηhεh (uh, ψh) . (3.20)

We shall prove this inequality in several steps.

Step 1. We first claim that (3.3) holds. Notice that by Remark 3.8, suph Iηh(ψh) <∞. We consider

the larger domain Ω̃ defined in (2.11), as

Ω̃ :=
{
x ∈ R2 : dist(x,Ω) < r0

}
,

for r0 small enough and we recall that the nearest point projection Π on ∂Ω is well defined

and smooth in Ω̃ \ Ω. We extend (uh, ψh) and u to Ω̃ by setting for x ∈ Ω̃ \ Ω, ψh(x) = 1,

uh(x) = g
(
Π(x)

)
, and u(x) = g

(
Π(x)

)
. Then, it is elementary to check that (uh, ψh) ∈ H(Ω̃) and

u ∈ SBV p(Ω̃) for every p < 2. In addition, P(uh) ⇀ P(u) weakly in W 1,p(Ω̃) for every p < 2, and∫
Ω̃

(1− ψh)|∇ψh| dx 6
ηh
2

∫
Ω̃

|∇ψh|2 dx+
1

2ηh

∫
Ω̃

(1− ψh)2 dx = Iηh(ψh) 6 C .

Next, consider some arbitrary δ ∈ (0, 1/2). Arguing as in the proof of Proposition 3.7,∫ 1−δ

δ

(1− t)H1
(
∂{ψh < t} ∩ Ω̃

)
dt 6 Iηh(ψh) ,

so that we can find a level th ∈ (δ, 1− δ) such that

1− 2δ

2
H1(∂Eh ∩ Ω̃) 6 Iηh(ψh) with Eh := {ψh < th} . (3.21)

Notice that Eh ⊆ Ω, and |Eh| → 0 since ψh → 1 in L1(Ω).

Fix some p ∈ (1, 2). Defining

ũh := (1− χEh)uh ,

we argue as in the proof of Proposition 3.7 to show that ũh ∈ SBV p(Ω̃)∩L∞(Ω̃) with Jũh ⊆ ∂Eh,

and that ũh → u in L1(Ω̃). Moreover, |∇ũh| 6
∣∣∇(P(uh))

∣∣ a.e. in Ω̃, so that {∇ũh} is bounded in

Lp(Ω̃). By [BCS07, Theorem 1], we have

lim inf
h→∞

{
δ

∫
Ω̃

|∇ũh|p dx+
1− 2δ

2
H1(∂Eh ∩ Ω̃)

}
> δ

∫
Ω̃

|∇ũ|p dx+ (1− 2δ)H1(Ju ∩ Ω̃) ,

and thus

H1(Ju ∩ Ω̃) 6 lim inf
h→∞

1

2
H1(∂Eh ∩ Ω̃) + Cδ .

Inserting this inequality in (3.21) and letting δ ↓ 0, we conclude that

lim inf
h→∞

Iηh(ψh) > H1(Ju ∩ Ω̃) .

Since u = g ◦Π in Ω̃ \Ω, we have Ju ⊆ Ω, and thus H1(Ju ∩ Ω̃) = H1(Ju ∩Ω) +H1
(
{u 6= g}∩∂Ω

)
,

and inequality (3.3) follows.

Step 2. We now prove the lower bound (3.2). Note that putting (3.2) and (3.3) together leads

to (3.20). First, we recall that (3.18) implies (2.18) with vh := p(uh) (by means of (2.4)). Then

the proof of (3.2) follows very closely the ones of [AP14, Theorem 5.3] and [CJ99, Lemma 4.1.1]
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for the classical Ginzburg-Landau functional. We provide a quite detailed proof for the reader’s

convenience. Write µ = 2π
∑md
k=1 xk, and choose σ > 0 in such a way that the balls Bσ(xk) are

contained inside Ω and are pairwise disjoint. Set

K :=

{
vα : C \ {0} → S1 defined as v(z) = α

z

|z|
: α ∈ S1

}
.

For each k ∈ {1, . . . ,md}, our aim is to prove that either vh is W 1,2-close to K on ∂Bσ(xk), or it

has “large” energy. We define for t ∈ (0, σ] and w ∈W 1,2(Bt \Bt/2),

dt(w,K) := min
{
‖w − v‖W 1,2(Bt\Bt/2) : v ∈ K

}
.

It is proven in [AP14] that for a given δ ∈ (0, 1), there exists a constant cδ > 0 independent of t

such that the condition lim infh dt(vh(·+ xk),K) > δ implies

lim inf
h→∞

1

2

∫
Bt(xk)\Bt/2(xk)

|∇vh|2 dx > π log 2 + cδ . (3.22)

Now let L ∈ N be such that

Lcδ
m2
>

1

2m2

∫
Ω

|∇ϕ|2 dx+
1

m2
W(µ) +mdγm −

πd

m
log σ − C∗

m2
,

where cδ is the constant from (3.22), and C∗ is the constant from (2.19). For l ∈ {1, . . . , L} we write

Cl(xk) := B21−lσ(xk) \ B2−lσ(xk). By the weak W 1,2
loc (Ω \ sptµ) convergence of vh to um = eiϕvµ,

we have for each k and l,

lim inf
h→∞

1

2

∫
Cl(xk)

|∇vh|2 dx >
1

2

∫
Cl(xk)

|∇ϕ|2 + |∇vµ|2 dx > π log 2 . (3.23)

We now have to distinguish two different cases.

Case 1: For h large enough, and for each 1 6 l 6 L, there exists at least one kl ∈ {1, . . . ,md} such

that d21−lσ(uh(·+ xkl),K) > δ. Then, we estimate

Eεh
(
P (uh)

)
− πd

m
| log εh| >

1

m2
Eεh(vh)− πd

m
| log εh|

>
1

m2

{
Eεh(vh, B2−Lσ(µ))− πdm| log εh|

}
+

1

m2

L∑
l=1

md∑
k=1

1

2

∫
Cl(xk)

|∇vh|2 dx .

Taking the liminf in h, and combining (2.19), (3.22), and (3.23) yields

lim inf
h→∞

{
Eεh

(
P (uh)

)
− πd

m
| log εh|

}
>
πd

m
log

σ

2L
+
C∗
m2

+
L

m2
(πdm log 2 + cδ)

=
πd

m
log σ +

C∗
m2

+
Lcδ
m2

>
1

2m2

∫
Ω

|∇ϕ|2 dx+
1

m2
W(µ) +mdγm , (3.24)

and thus (3.2) holds.

Case 2: For a subsequence there exists l ∈ {1, . . . , L} such that, setting σ := 21−lσ, dσ(uh(· +
xk),K) < δ for every k ∈ {1, . . . ,md}. Let us prove that for εh small enough,

Gεh
(
vh, Bσ(µ)

)
− πd

m
log

σ

εh
> mdγm(εh, σ)− Cσδ , (3.25)

where, here and below, Cσ denotes a nonnegative number depending on σ but not on h or δ. To

establish this inequality, we shall modify vh in Bσ(µ) without increasing the energy too much, and

in such a way that it is admissible for (3.16). We can proceed on each ball Bσ(xk) separately, and

we may assume without loss of generality that xk = 0. Up to a rotation, we can even assume that∫
Bσ\Bσ/2

∣∣∇vh −∇(eiθ)
∣∣2 dx 6 δ2 , (3.26)
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where θ(x) denotes the argument of x/|x|. As (2.18) holds, we infer from (2.19) in Theorem 2.10

that ∫
B3σ/4\Bσ/2

|∇vh|2 +
1

ε2
h

(1− |vh|2)2 dx 6 Cσ .

Therefore, for every h we can find σ̃h ∈ [σ/2, 3σ/4] for which∫
∂Bσ̃h

|∇vh|2 +
1

ε2
h

(1− |vh|2)2 dH1 6 Cσ , (3.27)

and ∫
∂Bσ̃h

∣∣∇vh −∇(eiθ)
∣∣2 dH1 6 Cσδ

2 . (3.28)

From (3.28) we first derive∫
∂Bσ̃h

|∇vh|2 dH1 =

∫
∂Bσ̃h

∣∣∇vh −∇(eiθ) +∇(eiθ)
∣∣2 dH1

6
1 + δ

δ

∫
∂Bσ̃h

∣∣∇vh −∇(eiθ)
∣∣2 dH1 + (1 + δ)

∫
∂Bσ̃h

∣∣∇(eiθ)
∣∣2 dH1

6 Cσδ +
2π

σ̃h
(1 + δ) ≤ Cσδ +

2π

σ̃h
. (3.29)

Next, by a scaling argument, one obtains

‖|u| − 1‖2L∞(∂Br) . Cεh

∫
∂Br

|∇u|2 +
1

ε2
h

(1− |u|2)2 dH1

for every εh ≤ r and u ∈W 1,2(∂Br). Hence, (3.27) yields

‖|vh| − 1‖L∞(∂Bσ̃h ) 6 Cσε
1/2
h . (3.30)

We can thus write vh = ρhe
iθh on ∂Bσ̃h . Moreover, we have deg(vh, ∂Bσ̃h) = 1 by (3.28), so that

θh − θ can be chosen to be single valued. Let us extend ρh and θh by zero homogeneity outside

Bσ̃h . For εh small enough, we set σ̂h := σ̃h + ε
1/2
h , and we define ṽh in Bσ̂h as

ṽh(x) :=


vh(x) in Bσ̃h ,(
ρh(x)

σ̂h − |x|
σ̂h − σ̃h

+
|x| − σ̃h
σ̂h − σ̃h

)
eiθh(x) in Bσ̂h \Bσ̃h .

From (3.27) and (3.30) we infer that

Gεh(ṽh, Bσ̂h \Bσ̃h) 6 Cσε
1/2
h . (3.31)

In turn, (3.29) and (3.30) yield, for εh small enough,∫
∂Bσ̂h

|∇ṽh|2 dH1 6 Cσδ +
2π

σ̂h
. (3.32)

We now are left to define ṽh in Bσ \Bσ̂h . We define for x ∈ Bσ \Bσ̂h ,

θ̂h(x) :=
σ − |x|
σ − σ̂h

θh +
|x| − σ̂h
σ − σ̂h

θ ,

i.e., the linear interpolation between θh(x) and θ(x). Setting ṽh(x) := eiθ̂h(x) in Bσ \ Bσ̂h , it can

be proven by means of (3.32) and elementary computations (see [CJ99, Lemma 4.1.1]) that∫
Bσ\Bσ̂h

|∇ṽh|2 dx 6 2π log
σ

σ̂h
+ Cσδ .
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Combining this last inequality with (3.31), we first derive

Gεh(vh, Bσ) = Gεh(ṽh, Bσ) +Gεh(vh, Bσ \Bσ̃h)−Gεh(ṽh, Bσ \Bσ̃h)

> Gεh(ṽh, Bσ) +
1

2m2

∫
Bσ\Bσ̂h

|∇vh|2 − |∇ṽh|2 dx−Gεh(ṽh, Bσ̂h \Bσ̃h)

> Gεh(ṽh, Bσ) +
1

2m2

(∫
Bσ\Bσ̂h

|∇vh|2 dx− 2π log
σ

σ̂h

)
− Cσ(δ + ε

1/2
h ) .

From (3.26) we then obtain∫
Bσ\Bσ̂h

|∇vh|2 dx >
∫
Bσ\Bσ̂h

∣∣∇(eiθ)
∣∣2 dx+

∫
Bσ\Bσ̂h

∣∣∇vh −∇(eiθ)
∣∣2 dx

− 2

(∫
Bσ\Bσ̂h

∣∣∇(eiθ)
∣∣2 dx)1/2(∫

Bσ\Bσ̂h

∣∣∇vh −∇(eiθ)
∣∣2 dx)1/2

> 2π log
σ

σ̂h
− Cσδ ,

and we deduce that for εh small enough,

Gεh(vh, Bσ) > Gεh(ṽh, Bσ)− Cσ(δ + ε
1/2
h ) .

By the definition of γm(ε, σ) (see (3.14)), we conclude that for εh small,

Gεh(vh, Bσ)− π

m2
log

σ

εh
> γm(εh, σ)− Cσ(δ + ε

1/2
h ) ,

which proves (3.25).

We can now complete the proof of (3.2). Indeed, by (3.25) and the convergence of vh towards

eiϕvµ in the weak W 1,2
loc (Ω \ sptµ) topology,

lim inf
h→∞

{
Gεh(vh)− πd

m
| log εh|

}
= lim inf

h→∞

{
Gεh

(
vh,Ω \Bσ(µ)

)
− πd

m
| log σ| + Gεh(vh, Bσ(µ))− πd

m
log

σ

εh

}
> lim inf

h→∞

{
Gεh

(
vh,Ω \Bσ(µ)

)
− πd

m
| log σ|

}
+md lim

h→∞
γm(εh, σ)− Cσδ

>
1

2m2

∫
Ω\Bσ(µ)

|∇(eiϕvµ)|2 dx− πd

m
| log σ|+mdγm − Cσδ , (3.33)

where the last inequality follows from (3.15) and Lemma 3.9. In view of Proposition 2.11, letting

first δ ↓ 0 and then σ ↓ 0 leads to (3.2).

Step 3. In order to complete the proof, let us show that if equality holds in (3.17), then (3.4)

and (3.5) hold. Note that (3.4) rewrites as

lim
h→∞

Gεh
(
vh,Ω \Br(µ)

)
=

1

2m2

∫
Ω\Br(µ)

|∇(eiϕvµ)|2 dx ∀r > 0 , (3.34)

which, combined with the weak convergence of {vh} in W 1,2
loc (Ω \ sptµ) to eiϕvµ, classically leads

to its strong convergence in W 1,2
loc (Ω \ sptµ).

From (3.2) and (3.3) we first infer that

lim
h→∞

Iηh(ψh) = H1(Ju) +H1
(
{u 6= g} ∩ ∂Ω

)
,

and

lim
h→∞

{
Gεh(vh)− πd

m
| log εh|

}
=

1

2m2

∫
Ω

|∇ϕ|2 dx+
1

m2
W(µ) +mdγm .
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In view of (3.24), Case 2 in Step 2 above must hold. We argue by contradiction assuming that (3.34)

does not hold. Then we can find a subsequence, σ0 > 0, and η0 > 0 such that

lim inf
h→∞

Gεh
(
vh,Ω \Bσ0

(µ)
)
>

1

2m2

∫
Ω\Bσ0

(µ)

|∇(eiϕvµ)|2 dx+ η0 .

By lower semi-continuity of the Dirichlet energy, the same inequality holds for every σ ∈ (0, σ0).

Then, for σ and δ small enough, we have by (3.33),

1

2m2

∫
Ω

|∇ϕ|2 dx+
1

m2
W(µ) +mdγm = lim

h→∞

{
Gεh(vh)− πd

m
| log εh|

}
>

1

2m2

∫
Ω\Bσ(µ)

|∇(eiϕvµ)|2 dx− πd

m
| log σ|+mdγm − Cσδ + η0 ,

where σ is determined from σ as in Case 2 above. Using Proposition 2.11 again, we let δ → 0 and

then σ → 0 to reach a contradiction.

To conclude, it only remains to prove that vh → eiϕvµ strongly in W 1,p(Ω) for every p < 2. Fix

an arbitrary p ∈ (1, 2). Since {|∇vh|p} is bounded in L1(Ω), we can extract a further subsequence

such that |∇vh|p ⇀ |∇(eiϕvµ)|p + ν∗ weakly* as measures for some non negative finite measure ν∗
on Ω. From the strong convergence of vh in W 1,2

loc (Ω \ sptµ), we infer that spt ν∗ ⊆ sptµ. Since

{∇vh} is also bounded in Lq(Ω) for every q ∈ (p, 2), we have by Hölder’s inequality

ν∗(Ω) 6 lim inf
h→∞

∫
Br(µ)

|∇vh|p dx 6 Cr2(1−p/q) for every r > 0 and q ∈ (p, 2) .

Letting r ↓ 0 we deduce that ν∗ ≡ 0 which together with the weak convergence in W 1,p(Ω) of vh
towards eiϕvµ concludes the proof. �

3.4. Proof of Theorem 3.1 (iii): Construction of recovery sequences. In this section we

prove the Γ−limsup inequality.

Proposition 3.14. Let εh ↓ 0 and ηh ↓ 0 be arbitrary sequences. For every u ∈ Lg(Ω) with

um =: eiϕvµ, there exists a sequence {(uh, ψh)} ⊆ Hg(Ω) such that {uh} ⊆ SBV 2(Ω), and

(i) (uh, ψh)→ (u, 1) strongly in L1(Ω);

(ii) p(uh)→ um strongly in W 1,2
loc (Ω \ sptµ) and W 1,p(Ω) for every p < 2;

(iii) (3.6) and (3.7) hold.

Moreover, we can choose uh such that

lim
h→∞

H1(Juh) = H1(Ju) +H1
(
{u 6= g} ∩ ∂Ω

)
. (3.35)

The proof of Proposition 3.14 relies on a suitable approximation procedure showing that maps

in Lg(Ω) having a compact jump set lying at a positive distance from the boundary are dense

in energy. This is the purpose of the following section. The proof of Proposition 3.14 is then

performed in Section 3.4.2.

3.4.1. Some density results.

Lemma 3.15. Let u ∈ Lg(Ω) with um =: eiϕvµ and µ = 2π
∑md
k=1 δxk . For every δ > 0, there

exists u∗ ∈ Lg(Ω) and constants ξ1, · · · , ξmd ∈ S1 such that

(i) dist(Ju∗ , ∂Ω) > 0, u∗ = g on ∂Ω, and curl j(um∗ ) = µ;

(ii) um∗ (x) = ξk
x− xk
|x− xk|

in a neighborhood of xk for each k ∈ {1, · · · ,md};

(iii) ‖u− u∗‖L1(Ω) < δ and E0(u∗) < E0(u) + δ;

(iv) H1(Ju∗) < H1(Ju) +H1 ({u 6= g} ∩ ∂Ω) + δ.
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Remark 3.16. If one considers δk ↓ 0 and {uk} ⊆ Lg(Ω) the corresponding sequence provided by

Lemma 3.15, then umk → um strongly in W 1,p(Ω) for every p < 2. Indeed, writing umk = eiϕkvµ,

item (iii) implies the strong convergence of {∇ϕk} in L2(Ω), which in turn yields the strong

convergence of {umk } in W 1,p(Ω).

Proof of Lemma 3.15. Step 1. We start by modifying u in such a way that (i), (iii), and (iv) hold.

We proceed as follows. We consider the larger domain Ω̃ defined in (2.11), and we recall that the

nearest point projection Π on ∂Ω is well defined and smooth in {x : dist(x, ∂Ω) < 2r0}. Denote

by dΩ : R2 → R the signed distance to ∂Ω, i.e., dΩ(x) := dist(x, ∂Ω) for x ∈ R2 \Ω, and dΩ(x) :=

−dist(x, ∂Ω) for x ∈ Ω. Note that dΩ is smooth in {x : dist(x, ∂Ω) < 2r0}. Next we consider a

smooth vector field X ∈ C∞c (Ω̃ \ sptµ; R2) satisfying X = ∇dΩ in {x : dist(x, ∂Ω) < r0/2}, and

we fix σ ∈ (0, r0/2) such that sptX ⊆ Ω̃ \ Bσ(µ). We denote by {φt}t∈R the integral flow on R2

generated by X. Then spt(φt − id) ⊆ Ω̃ \ Bσ(µ) for every t ∈ R, so that {φt}t∈R defines a one

parameter family of smooth diffeomorphisms from Ω̃ \Bσ(µ) onto Ω̃ \Bσ(µ).

We extend u to Ω̃ by setting u(x) := g
(
Π(x)

)
for x ∈ Ω̃ \ Ω. Then we set ut := u ◦ φt, and we

consider the restriction of ut to Ω. By construction, for every t > 0 we have ut ∈ Lg(Ω), ut = g

on ∂Ω, ut = u in Bσ(µ), and dist(Jut , ∂Ω) > 0. Moreover, as t ↓ 0, we have ut → u weakly* in

BV (Ω), ∇ut → ∇u strongly in L2(Ω \Bσ(µ)), and

H1(Jut)→ H1(Ju) +H1 ({u 6= g} ∩ ∂Ω) .

Given δ > 0, we can then choose t > 0 small enough so that ut satisfies (i), (iii), and (iv) of

Lemma 3.15.

Step 2. To complete the proof, we shall modify further ut in Bσ(µ) to achieve property (ii). Fix

σ′ ∈ (0, σ) such that 2σ′ < min{|xk − xl| : 1 6 k < l 6 md}. From the specific form of vµ
(see (2.14)), for each k ∈ {1, · · · , dm} there exists ψk ∈W 1,2(Bσ′(xk)) such that

um(x) = eimψk(x) x− xk
|x− xk|

for x ∈ Bσ′(xk) .

For ρ > 0 and θ ∈ [0, 2π) we set qm(ρeiθ) := ρeiθ/m, and define ϑk(x) := qm((x − xk)/|x − xk|)
for x ∈ Bσ′(xk). Since curl j(ϑmk ) = µ = curl j(um) in Bσ′(xk) and p(ϑk) = p(u), we can invoke

Lemma 2.6 to infer that there exists ûk ∈ SBV (Bσ′(xk),Gm) such that

u = ûkϑke
iψk in Bσ′(xk) .

We now fix a cut-off function χ ∈ C∞c (B1, [0, 1]) such that, χ ≡ 1 in B1/2, and we set χk,r(x) :=

χ((x− xk)/r) for r > 0. We define for k ∈ {1, · · · ,md} and r ∈ (0, σ′),

uk,r(x) := ûk(x)ϑk(x) exp
(
iψk(x) + iχk,r(x)

(
ψk,r − ψk(x)

))
for x ∈ Bσ′(xk) ,

where ψk,r denotes the mean value

ψk,r :=
1

πr2

∫
Br(xk)

ψk(x) dx .

By construction, we have

umk,r(x) = ξk,r
x− xk
|x− xk|

for x ∈ Br/2(xk) ,

with ξk,r := exp(imψk,r), and uk,r = u = ut in Bσ′(xk) \Br(xk). Finally, we set

u∗(x) :=

{
uk,r(x) if x ∈ Bσ′(xk) ,

ut(x) if x ∈ Ω \Bσ′(µ) .

By means of Poincaré’s inequality (and Step 1), it is standard to check that for r small enough,

u∗ complies to all the requirements of the lemma. �

Now we show that we can substitute to u∗ a mapping u] with a compact jump set.



A G.L. MODEL WITH TOPOLOGICALLY INDUCED FREE DISCONTINUITIES 31

Lemma 3.17. Let u∗ ∈ Lg(Ω) be such that dist(Ju∗ , ∂Ω) > 0. For every δ > 0, there exist

u] ∈ Lg(Ω), a compact set K ⊆ Ω, and σ > 0 such that

(i) ‖u] − u∗‖L1(Ω) 6 δ, um] = um∗ , and H1(Ju] \ Ju∗) = 0;

(ii) H1(K4Ju]) = 0;

(iii) H1
(
K ∩Br(x)

)
> r/2 for every x ∈ K and every r ∈ (0, σ).

Proof. Step 1. Given a parameter λ > 1, we consider the class of maps

A :=
{
u ∈ Lg(Ω) : um = um∗ , H1(Ju \ Ju∗) = 0

}
,

and the functional Aλ : A → [0,∞) defined by

Aλ(u) := H1(Ju) + λ

∫
Ω

|u− u∗|2 dx .

We claim that Aλ admits at least one minimizer uλ ∈ A . Indeed, |∇u| =
∣∣∇(P(u∗)

∣∣ = |∇u∗|
for every u ∈ A , so that {∇u : u ∈ A } is bounded in Lp(Ω) for every p < 2. Obviously, if

{uk} ⊆ A is a minimizing sequence, then Aλ(uk) is bounded. By the compactness theorem for

SBV functions [AFP00, Theorem 4.7 & 4.8, and Remark 4.9], we can find uλ ∈ SBV (Ω) and a

subsequence such that uk → uλ in L1(Ω) and a.e. in Ω, and satisfying Aλ(uλ) 6 lim infk Aλ(uk).

From the pointwise convergence we infer that uλ is S1-valued, and umλ = um∗ . Moreover, the

sequence of positive measures {H1 Juk} weakly* converges towards H1 Juλ . Since H1 Juk 6

H1 Ju∗ , we have H1 Juλ(U) 6 lim infkH1 Juk(U) 6 H1 Ju∗(U) for every open set U ⊆ Ω.

By outer regularity, we deduce that H1 Juλ 6 H1 Ju∗ . Hence uλ ∈ A , and thus uλ is a

minimizer of Aλ.

Noticing that Aλ(uλ) 6 Aλ(u∗) and H1(Juλ) 6 H1(Ju∗), we now deduce that uλ → u∗ in L1(Ω)

as λ → ∞. Given δ > 0, we choose λ large enough so that (i) holds with u] := uλ. To complete

the proof, we have to find a compact set K and σ > 0 such that (ii) and (iii) hold. This is the

purpose of the next steps.

Step 2. Write curl j(um∗ ) =: µ = 2π
∑md
k=1 δxk , and set

σ := min

(
1

8λ
, dist(Ju∗ , ∂Ω) ,

1

2
min

{
|xk − xl| : 1 6 k < l 6 md

})
.

We claim that for H1-a.e. x ∈ Ju] , there holds

H1
(
Ju] ∩Br(x)

)
> r for every r ∈ (0, σ) . (3.36)

Let us first recall that for H1-a.e. x ∈ Ju] ,

H1
(
Ju] ∩Br(x)

)
> 0 for every r ∈ (0, σ) . (3.37)

Hence, it is enough to establish (3.36) at every x ∈ Ju] \sptµ such that (3.37) holds. Let us fix such

a point x and without loss of generality let us assume x0 = 0. Setting σ0 := min
(
σ, dist(0, sptµ)

)
,

we shall distinguish the two cases r ∈ (0, σ0] and r ∈ (σ0, σ).

Case 1: r ∈ (0, σ0]. Since Bσ0
⊆ Ω \ sptµ and um] = um∗ , we have curl j(u]) = 0 in D ′(Bσ0

) by

Lemma 2.3. Applying Lemma 2.6 in the ball Bσ0
(with u1 = 1 and u2 = u]), we obtain a function

ϕ ∈W 1,1(Bσ0) and a Caccioppoli partition {Ek}m−1
k=0 of the ball Bσ0 such that

u] =

(
m−1∑
k=0

akχEk

)
eiϕ in Bσ0 .

Since ϕ ∈W 1,1(Bσ0
), we have

Ju] ∩Bσ0
=

m−1⋃
k=0

∂Ek up to an H1-null set ,
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where ∂Ek denotes the reduced boundary of Ek in Bσ0
. Moreover (see [AFP00, Remark 4.22]),

H1(Ju] ∩Br) =
1

2

m−1∑
k=0

H1(∂Ek ∩Br) for every r ∈ (0, σ0) . (3.38)

Before going any further, let us recall a slicing property of sets of finite perimeter (see e.g.

[AFP00, Chapter 3, Section 3.11] for further details). For a Borel set E ⊆ R2, we first denote by

E1 the (Borel) set of points of density 1 for E, i.e.,

E1 :=

{
y ∈ R2 : lim

ρ↓0

|E ∩Bρ(y)|
πρ2

= 1

}
.

For r > 0, we write Er := E1∩∂Br, and we consider Er as a subset of ∂Br (in particular, ∂Er and

int(Er) denote the relative boundary and relative interior of Er in ∂Br, respectively). If E ⊆ R2

has a finite perimeter, then for a.e. r > 0 the following properties hold:

∂Er is finite and is equal to ∂E ∩ ∂Br . (3.39)

We point out that since {Ek} is a Caccioppoli partition of Bσ0 , by [AFP00, Theorem 4.17]

Bσ0
=

m−1⋃
k=0

E1
k ∪

m−1⋃
k=0

∂Ek up to an H1-null set . (3.40)

For almost all radii r ∈ (0, σ0), (3.39) holds for each Ek, k ∈ {0, . . . ,m− 1}. We claim that for

such radii
m−1∑
k=0

H0(∂Ek ∩ ∂Br) > 1. (3.41)

To prove (3.41), let us fix such a r and assume by contradiction that

∂Ek ∩ ∂Br = ∂(Ek)r = ∅ for every k ∈ {0, · · · ,m− 1} .

Then each (Ek)r is either equal to ∂Br or empty, in particular H1(Ek ∩ ∂Br) ∈ {0, 2πr}. Since

H1(∂Ek∩∂Br) = 0 for each k by (3.39), we infer from (3.40) that H1(Ekr ∩∂Br) = 2πr for exactly

one index kr ∈ {0, . . . ,m − 1}. Consequently, every point of ∂Br is a point of density 1 for Ekr ,

and of density 0 for Ek with k 6= kr. We then introduce the competitor

ũ := akreiϕ in Br , ũ := u] in Ω \Br .

By construction Jũ \ Br = Ju] \ Br and Jũ ∩ Br = ∅, so that ũ is an admissible competitor. By

optimality of u], we have Aλ(ũ) > Aλ(u]). Using that

|ũ− u∗|2 − |u] − u∗|2 = (|ũ− u∗|+ |u] − u∗|)
(
|ũ− u∗|2 − |u] − u∗|

)
≤ 4|ũ− u]|

(since |ũ| = |u∗| = |u]| = 1), we compute

0 6 Aλ(ũ)−Aλ(u]) = λ

∫
Br

|ũ− u∗|2 − |u] − u∗|2 dx−H1(Ju] ∩Br)

6 4λ

∫
Br

|ũ− u]| dx−H1(Ju] ∩Br)

= 4λ
∑
k 6=kr

|1− ak−kr ||Ek ∩Br| −
1

2

m−1∑
k=0

H1(∂Ek ∩Br)

6
1

2

∑
k 6=kr

{
16λ|Ek ∩Br| − H1(∂Ek ∩Br)

}
.

Since H1(∂Ek∩∂Br) = 0 and (Ek)1∩∂Br = ∅ for k 6= kr, we infer that Ek∩Br has finite perimeter

and ∂(Ek ∩Br) = ∂Ek ∩Br for k 6= kr. Therefore,∑
k 6=kr

{
16λ|Ek ∩Br| − H1

(
∂(Ek ∩Br)

)}
> 0 .
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By the (two dimensional) isoperimetric inequality, we have

|Ek ∩Br| 6
√
|Br|

√
|Ek ∩Br| 6

r

2
H1
(
∂(Ek ∩Br)

)
,

so that

(8λr − 1)
∑
k 6=kr

H1
(
∂(Ek ∩Br)

)
> 0 .

Since r < σ 6 (8λ)−1, the prefactor above is negative, and we deduce that H1(∂(Ek ∩Br)) = 0 for

each k 6= kr. As a consequence Br ⊆ E1
kr

, so that u] = ũ . In particular, H1(Ju] ∩ Br) = 0 which

contradicts (3.37), and (3.41) is proved.

By (3.41), we can now infer from the coarea formula (see [Mag12, Theorem II.7.7] for instance)

that r ∈ (0, σ0]

m−1∑
k=0

H1(∂Ek ∩Br) >
m−1∑
k=0

∫ r

0

H0(∂Ek ∩ ∂Bt) dt =

∫ r

0

m−1∑
k=0

H0(∂Ek ∩ ∂Bt) dt > r.

Combining this inequality with (3.38) yields (3.36) for every r ∈ (0, σ0].

Case 2: r ∈ (σ0, σ). In this case, we must have σ0 < σ, so that σ0 = dist(0, sptµ) and Bσ ∩
sptµ 6= ∅. Our choice of σ then implies that Bσ ∩ sptµ is reduced to a singleton, i.e., there exists

k0 ∈ {0, . . . ,m− 1} such that Bσ ∩ sptµ = {xk0}. Moreover, xk0 ∈ ∂Bσ0 .

By the definition of Lg(Ω) and the slicing properties of BV -functions (see e.g. [AFP00, Chap-

ter 3, Section 3.11] for details), for a.e. r ∈ (σ0, σ) we have sptµ∩ ∂Br = ∅, the trace ur := u]|∂Br
belongs to SBV 2(∂Br; S

1), and Jur = Ju] ∩ ∂Br is finite. We claim that for every such r,

H0(Jur ) > 1. (3.42)

Indeed, let r be such a radius and assume by contradiction that Jur = ∅. Then ur ∈W 1,2(∂Br,S
1)

and thus ur is continuous. In addition, the trace (um)r := um] |∂Br
belongs to W 1,2(∂Br,S

1) and it

satisfies (um] )r = (ur)
m. Hence the topological degree ` of (um] )r is equal to m times the topological

degree of ur. Moreover, we have um] (x) = eiψ(x − xk0
)/|x − xk0

| in Br for some ψ ∈ W 1,2(Br)

satisfying ψ|∂Br ∈W 1,2(∂Br). Hence ` = 1 which contradicts ` ∈ mZ, and (3.42) is proved.

By (3.42), we can infer again from the coarea formula that

H1
(
Ju] ∩ (Br \Bσ0)

)
>
∫ r

σ0

H0(Ju] ∩ ∂Bt) dt =

∫ r

σ0

H0(Jut) dt > r − σ0 for every r ∈ (σ0, σ) .

Since H1(Ju] ∩Bσ0
) > σ0 by Case 1, we deduce that

H1(Ju] ∩Br) = H1
(
Ju] ∩ (Br \Bσ0

)
)

+H1(Ju] ∩Bσ0
) > (r− σ0) + σ0 = r for every r ∈ (σ0, σ) ,

and (3.36) is proved for every r ∈ (σ0, σ).

Step 3. We define

K :=
{
x ∈ Ω : H1

(
Ju] ∩Br(x)

)
> r for every r ∈ (0, σ)

}
.

By definition, K is closed and since dist(Ju∗ , ∂Ω) > 0, it is a compact subset of Ω. On the one

hand, we can deduce from Step 2 that H1(Ju] \K) = 0. On the other hand,

lim
r↓0

H1(Ju] ∩Br(x))

r
= 0 for H1-a.e. x ∈ Ω \ Ju] ,

see e.g. [AFP00, Sect. 2.9, Theorem 2.56 and (2.42)]. In particular, H1(K \Ju]) = 0, and therefore

H1(K4Ju]) = 0. �
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3.4.2. Proof of Proposition 3.14.

Proof. Thanks to Lemma 3.15, Remark 3.16, and Lemma 3.17 and a diagonal argument, it is

enough to make the construction for a map u ∈ Lg(Ω) with um =: eiϕvµ and µ = 2π
∑md
k=1 δxk and

such that there exists σ > 0 and a compact set K ⊆ Ω such that

(a) dist(Ju, ∂Ω) > 2σ and u = g on ∂Ω;

(b) dist(sptµ, ∂Ω) > 2σ and |xk − xl| > 2σ for k 6= l;

(c) um(x) = ξk(x− xk)/|x− xk| in each Bσ(xk) for some ξk ∈ S1;

(d) H1(K4Ju) = 0;

(e) dist(K, ∂Ω) > 2σ and H1
(
K ∩Br(x)

)
> r for every x ∈ K and r ∈ (0, σ).

By a further diagonal argument, it is enough to fix δ > 0 and construct a sequence {(uh, ψh)} ⊆
Hg such that {uh} ⊆ Gg(Ω) ∩ L∞(Ω) with ‖uh‖L∞(Ω) 6 1, (uh, ψh) → (u, 1) in L1(Ω) as h → ∞,

p(uh)→ um strongly in W 1,p(Ω) for every p < 2, and

lim sup
h→∞

{
Eεh

(
P(uh)

)
− πd

m
| log εh|

}
6 E0(u) + δ , (3.43)

lim sup
h→∞

H1(Juh) 6 H1(Ju) , (3.44)

lim sup
h→∞

Iηh(ψh) 6 (1 + δ)H1(Ju) . (3.45)

First, by Corollary 3.11 we can find ε ∈ (0, 1), ũ ∈ SBV 2(B1) ∩ L∞(B1) with ‖ũ‖L∞(B1) 6 1, and

a closed smooth curve Σ ⊆ B1 such that p(ũ)(x) = x in a neighborhood of ∂B1, Jũ ⊆ Σ, and

Eε
(
P(ũ), B1

)
− π

m2
log

1

ε
6 γm +

δ

md
.

Then, for each k ∈ {1, . . . ,md} we select ζk ∈ S1 such that ζmk = ξk, and we set for εh ∈ (0, σε),

uh(x) :=

u(x) if x ∈ Ω \Bεh/ε(µ) ,

ζkũ
(
ε
εh

(x− xk)
)

if x ∈ Bεh/ε(xk) , k ∈ {1, · · · , dm} .

By construction, we have uh ∈ Gg(Ω) ∩ L∞(Ω) with ‖uh‖L∞(Ω) 6 1 (since |u| = 1), and

‖uh − u‖L1(Ω) 6 2πmd(εh/ε)
2 −→
h→∞

0 .

For p < 2, we estimate

‖p(uh)− um‖W 1,p(Ω) . ‖um‖W 1,p(Bεh/ε(µ)) + (εh/ε)
(2−p)/p‖p(ũ)‖W 1,p(B1) −→

h→∞
0 .

Next, changing variables, we have for each k ∈ {1, . . . ,md},

Eεh
(
P(uh);Bεh/ε(xk)

)
= Eε

(
P(ũ);B1

)
6

π

m2
log

1

ε
+ γm +

δ

md
.

Consequently,

Eεh
(
P(uh)

)
− πd

m
log

1

εh
6 Eεh

(
P(u),Ω \Bεh/ε(µ)

)
− πd

m
log

ε

εh
+mdγm + δ

=
1

2m2

∫
Ω\Bεh/ε(µ)

|∇(um)|2 dx− πd

m
log

ε

εh
+mdγm + δ ,

and (3.43) follows from Proposition 2.11.

By construction, we have

Juh ⊆ Kh := K ∪
(

sptµ+
εh
ε

(∂B1 ∪ Σ)
)

up to an H1-null set ,

so that

H1(Juh) 6 H1(K) +md
εh
ε

(
2π +H1(Σ)

)
.

Since H1(K) = H1(Ju), (3.44) follows letting h→∞ in the inequality above.
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To produce the sequence {ψh}, we argue in a way similar to [AT90, Sec. 5]. We start by

introducing a family of smooth profiles approximating the optimal profile ψ?(s) = 1 − e−|s| from

Lemma 3.12. For λ > 0 we define ψλ : [0,∞)→ [0, 1] as

ψλ(t) :=

1− exp

(
− λt

λ− t

)
if t < λ ,

1 otherwise .

Notice that 1 − ψλ and ψ′λ are supported on [0, λ]. Setting eλ(t) :=
(
ψ′λ(t)

)2
+
(
1 − ψλ(t)

)2
,

elementary computations yield

sλ :=

∫ λ

0

eλ(t) dt −→
λ→∞

1 .

Hence we can find λ > 0 such that sλ 6 1 + δ. Setting dh(x) := dist(x,Kh), we define ψh as

ψh(x) := ψλ

(
dh(x)

ηh

)
.

The function ψh is Lipschitz continuous and for εh ∈ (0, σε) we have dist(Kh, ∂Ω) > σ so that

ψh = 1 on ∂Ω whenever ηh ∈ (0, σ/λ). Since uh ∈W 1,2(Ω \Kh) and ψh = 0 on Kh, we infer that

(uh, ψh) ∈ Hg(Ω).

To estimate Iηh(ψh), we first notice that dh is 1-Lipschitz. This leads to

Iηh(ψh) 6
1

2ηh

∫
Ω

eλ
(
dh(x)/ηh

)
dx =

1

2ηh

∫
Kh+Bληh

eλ
(
dh(x)/ηh

)
dx .

We use Fubini’s theorem to obtain

∫
Kh+Bληh

eλ
(
dh(x)/ηh

)
dx = −

∫
Kh+Bληh

(∫ λ

dh(x)/ηh

e′λ(t) dt

)
dx = −

∫ λ

0

e′λ(t)|Kh +Btηh | dt .

Noticing that e′λ(t) 6 0 and

|Kh +Btηh | 6 |K +Btηh |+md
∣∣∣εh
ε

(∂B1 ∪ Σ) +Btηh

∣∣∣ ,
we derive

Iηh(ψh) 6 −
∫ λ

0

te′λ(t)
|K +Btηh |

2tηh
dt−md

∫ λ

0

te′λ(t)

∣∣ εh
ε (∂B1 ∪ Σ) +Btηh

∣∣
2tηh

dt =: J1
h + J2

h . (3.46)

By the Ahlfors regularity assumption on K stated in (e), we have (see e.g. [AFP00, Theorem 2.104])

lim
r↓0

|K +Br|
2r

= H1(K) .

Hence, by dominated convergence

lim
h→∞

J1
h = −H1(K)

∫ λ

0

te′λ(t) dt = sλH1(Ju) 6 (1 + δ)H1(Ju) . (3.47)

We now claim that

lim
h→∞

J2
h = 0 . (3.48)

To prove (3.48) we may argue on subsequences if necessary. We distinguish the two complementary

cases limh(εh/ηh) <∞ and limh(εh/ηh) =∞. If limh(εh/ηh) <∞, then we estimate for t ∈ (0, λ)∣∣∣εh
ε

(∂B1 ∪ Σ) +Btηh

∣∣∣ 6 ∣∣Btηh+εh/ε

∣∣ . t2η2
h + (εh/ε)

2 6 Cλ2η2
h ,

so that J2
h = O(ηh) as h→∞. We now assume that limh(εh/ηh) =∞, and we write for t > 0,∣∣ εh

ε (∂B1 ∪ Σ) +Btηh
∣∣

2tηh
=
(εh
ε

) ∣∣(∂B1 ∪ Σ) +Btεηh/εh
∣∣

2tεηh/εh
.
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By smoothness of ∂B1 and Σ, we have

lim
r↓0

|(∂B1 ∪ Σ) +Br|
2r

= H1(∂B1 ∪ Σ) ,

and we conclude that J2
h = O(εh) as h→∞. In both cases (3.48) holds true.

Eventually, putting together (3.46), (3.47), and (3.48) leads to (3.45). �

3.5. Proof of Theorem 3.2. The proof of Theorem 3.2 is very similar to the proof of Theorem

3.1 but we include a sketch of proof for the reader’s convenience. It is divided as usual into three

parts: compactness, the Γ-lim inf inequality, and the construction of recovery sequences. Concern-

ing recovery sequences, we note that they are actually provided by Proposition 3.14 since (3.6)

and (3.35) clearly lead to (3.10). We proceed with the proof of points (i) and (ii) of the theorem.

Compactness, proof of (i). For the compactness part, we argue as in the proof of Proposition 3.6

and apply in particular Theorem 2.10. We can argue in particular that {∇uh} is bounded in Lp(Ω)

and that H1(Juh) is bounded. Therefore, since we also know that ‖uh‖L∞(Ω) is bounded, we may

apply [AFP00, Theorem 4.8] to conclude the proof as in Theorem 2.8. �

The Γ-lim inf inequality, proof of (ii). Without loss of generality, we can assume that

lim inf
h→∞

F̃ 0
εh

(uh) = lim
h→∞

F̃ 0
εh

(uh) <∞ .

Moreover, the truncation argument in the proof of Theorem 2.8 together with (3.19) shows that

uh can be replaced by ûh defined in (2.9). Hence we can also assume that ‖uh‖L∞(Ω) 6 1, and the

proof of (i) above applies. In particular vh := p(uh) satisfies (2.18), and we reproduce verbatim

the proof of Theorem 3.1 to show that (3.2) holds.

Moreover, up to extending uh and u to a larger domain Ω̃ as in the proof of Theorem 2.8, we

may assume that H1({uh 6= g} ∩ ∂Ω) = H1({u 6= g} ∩ ∂Ω) = 0. We consider the sequence of non

negative finite measures on Ω

νh := H1 (Juh∩Ω) .

Since νh(Ω) = H1(Juh) is bounded, we can extract a further subsequence such that νh ⇀ ν∗
weakly* as measures for some non negative finite measure ν∗ on Ω. Since spt νh ⊆ Ω, we have

spt ν∗ ⊆ Ω and νh(Ω)→ ν∗(Ω).

We claim that

ν∗ > H1 (Ju ∩ Ω) . (3.49)

Before proving (3.49), we observe that it implies

lim
h→∞

H1(Juh) = lim
h→∞

νh(Ω) = ν∗(Ω) > H1(Ju) = H1(Ju) , (3.50)

which, combined with (3.2), leads to (3.8).

To prove (3.49), we fix an open set A ⊆ Ω. Consider an arbitrary compact set K ⊆ A, and

choose another open set B such that K ⊆ B ⊆ B ⊆ A. By the proof of (i) above, we can

apply [AFP00, Theorem 4.7] in the open set B to derive

ν∗(A) > ν∗(B) > lim inf
h→∞

νh(B) = lim inf
h→∞

H1(Juh ∩B) > H1(Ju ∩B) .

Hence ν∗(A) > H1(Ju ∩K), and by inner regularity it implies that ν∗(A) > H1(Ju ∩A). By outer

regularity, we conclude that (3.49) holds.

Let us now assume that F0(u) = limh F̂
0
ε (uh). In view of (3.2) and (3.50), we have

lim
h→∞

{
Gεh(vh)− πd

m
| log εh|

}
=

1

2m2

∫
Ω

|∇ϕ|2 dx+
1

m2
W(µ) +mdγm , (3.51)

and

ν∗(Ω) = lim
h→∞

H1(Juh) = H1(Ju) . (3.52)
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From (3.51), we can argue exactly as in the proof of Proposition 3.13, Step 3, to deduce that

vh → um strongly in W 1,p(Ω) for every p < 2 and strongly in W 1,2
loc (Ω\ sptµ), and that (3.4) holds.

Then, we infer from (3.49) and (3.52) that ν∗ ≡ H1 Ju. As a consequence, if A ⊆ R2 is an open

set such that ν∗(∂A) = 0, then

H1(Ju ∩A) = ν∗(A) = lim
h→∞

νh(A) = H1(Juh ∩A) ,

which proves (3.9) since ν∗(∂A) = H1(Ju ∩ ∂A). �

4. The limiting problem

The aim of this section is to study minimizers over Lg(Ω) of the limiting functional F0,g. To

avoid some technical issues (at the boundary), we shall assume for simplicity that Ω is a smooth

bounded convex set.

By Remark 3.5 and Lemma 2.3, minimizers of F0,g over Lg(Ω) coincide with solutions of

min

{
1

m2
W(µ) +H1(Ju) +H1

(
{u 6= g} ∩ ∂Ω) : u ∈ SBV (Ω; S1) ,

µ := m curl j(u) ∈ Ad and um = vµ

}
. (4.1)

In turn, (4.1) amounts to solve for each µ ∈ Ad,

L(µ) := min
{
H1(Ju) +H1

(
{u 6= g} ∩ ∂Ω

)
: u ∈ SBV (Ω,S1) , um = vµ

}
, (4.2)

and then minimize 1
m2W(·) + L(·) over Ad which is a finite dimensional optimization problem.

Let us however point out that since on the one hand Steiner type problems are usually very hard

to solve and since on the other hand, the minimization of W can be rarely explicitly done (see

[ILR00]), this finite dimensional problem does not seem easy to handle.

For the rest of this section we fix a measure µ ∈ Ad, and focus on problem (4.2). First,

we notice that existence of minimizers in (4.2) follows as in the proof of Lemma 3.17 (Step 1)

since |∇vµ| ∈ Lp(Ω) for every p < 2 and |∇u| = 1
m |∇vµ| for any admissible competitor u (see

Lemma 2.3). We will prove that minimizers of (4.2) are related to a variant of the Steiner problem

that we now describe.

Write µ =: 2π
∑md
k=1 δxk , and recall that the xk’s are distinct points of the domain Ω. We let

Λ(µ) := min
{
H1(Γ) : sptµ ⊆ Γ,

and for every connected component Σ of Γ, Card(Σ ∩ sptµ) ∈ mN} . (4.3)

Notice that since we can always remove connected components which do not contain any vortex xk,

we can reduce the above minimization problem to sets Γ with the property that every connected

component contains a positive number of vortices. Of course, this implies that Γ has at most d

connected components. Each of these connected components Σ is a competitor for the Steiner

problem related to sptµ ∩ Σ. This shows that minimizers of (4.3) exist and are made of (at most

d) Steiner trees i.e. finite union of segments meeting only at the vortices or at triple junctions (see

[Mor94, Prop. 2.2]).

Definition 4.1. A compact set Γ is said to be a Λ(µ)-minimizer if it solves (4.3).

Remark 4.2. Since we assumed that Ω is convex, any Λ(µ)-minimizer Γ is contained in the

convex hull of sptµ. More precisely, since projecting on convex sets reduces distances, if Σ is a

connected component of Γ, then Σ is contained in the convex hull of Σ ∩ sptµ. Since Σ is a tree,

we also infer the following property: if C ⊆ Σ is an open segment, such that C ∩ sptµ = ∅, then

Σ \ C is made of two connected components A and B satisfying Card(A ∩ sptµ) 6∈ mN \ {0} and
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Card(B ∩ sptµ) 6∈ mN \ {0}. Otherwise, Γ \ C would be an admissible competitor for Λ(µ) with

strictly lower length, contradicting minimality.

We are now ready to prove the main result of this section, which states that the jump set of

any minimizer of (4.2) is a Λ(µ)−minimizer.

Theorem 4.3. Assume that Ω is a smooth, bounded, and convex open set. For every µ ∈ Ad, it

holds

L(µ) = Λ(µ) . (4.4)

Moreover, if u is a minimizer of L(µ), then Ju is a Λ(µ)-minimizer, u ∈ C∞(Ω \ Ju), and u = g

on ∂Ω. Vice-versa, if Γ is a Λ(µ)-minimizer, then there exists u minimizing L(µ) with Ju = Γ.

Proof. Step 1. Let µ = 2π
∑md
k=1 δxk be fixed. We first prove that

L(µ) 6 Λ(µ) .

Consider Γ a Λ(µ)-minimizer. Treating each connected component of Γ separately, we may assume

without loss of generality that Γ is connected. Since R2 \ Γ is connected, we can find a smooth

injective curve with arc-length parameterization γ1 : [0,∞)→ R2 satisfying γ1(0) = x1, |γ1(t)| →
∞ as t → ∞, and γ1(0,∞) ∩ Γ = ∅. Setting D1 := γ1((0,∞)), we orient D1 according to its

parameterization γ1 (i.e., in the direction of increasing t’s). Since R2 \D1 is simply connected, we

can find a smooth map ϕ1 : R2\D1 → R which is smooth up to D1 from both sides, has a constant

(oriented, pointwise defined) jump across D1 equal to 2π, and such that eiϕ1(x) = (x−x1)/|x−x1|.
We then set u1 := eiϕ1/m.

Since Γ is a tree, for each k ∈ {2, . . . ,md} there is a unique injective polygonal curve γk :

[0, 1]→ Γ such that γk(0) = xk and γk(1) = x1. Setting Dk := γk((0, 1)), we orient Dk according

to the curve γk. Notice that for k 6= l, the orientation of Dk coincides with the orientation of Dl

on Dk ∩Dl. Moreover, one has Γ = ∪k>2Dk by minimality of Γ. As a consequence, Γ inherits the

orientation induced by the Dk’s.

Since R2 \ (D1 ∪Dk) is simply connected, we can find a smooth map ϕk : R2 \ (D1 ∪Dk)→ R,

smooth up to D1 ∪Dk from both sides, with a constant (oriented) jump across D1 ∪Dk equal to

2π, and such that eiϕk(x) = (x− xk)/|x− xk|. We consider

uΓ := exp

(
i

m

[
ϕµ +

md∑
k=1

ϕk

])
,

where ϕµ is the map defined in (2.14). By construction, we have uΓ ∈ SBV (Ω; S1) and umΓ = vµ,

i.e., uΓ is an admissible competitor for L(µ). In addition, uΓ is smooth outside Γ ∪ D1. Since
1
m

∑
k ϕk has a constant jump equal to 2πd across D1, we infer that uΓ is actually smooth in Ω\Γ,

and u = ajg on ∂Ω for some j ∈ {0, . . . ,m − 1}. Replacing uΓ by a−juΓ if necessary, we can

assume that uΓ = g on ∂Ω. Now consider an arbitrary point x ∈ Γ \ sptµ. By Remark 4.2, the

number of xk’s before x, according to the orientation of Γ, is not a multiple of m. This shows that

the jump of 1
m

∑
k ϕk across Γ at x is not a multiple of 2π, and consequently x ∈ JuΓ . Therefore

JuΓ
= Γ, and L(µ) 6 H1(JuΓ

) = Λ(µ).

Step 2. We now prove that

L(µ) ≥ Λ(µ). (4.5)

Let us consider an arbitrary minimizer u of L(µ), and assume without loss of generality that 0 ∈ Ω.

We shall first prove in this step that

u = g on ∂Ω , and dist(Ju, ∂Ω) > 0 . (4.6)

To show that (4.6) holds, we consider Γ a Λ(µ)-minimizer, and uΓ the map constructed in Step

1. We extend u and uΓ to R2 by setting ũ(x) = g ◦ Π(x) and ũΓ(x) = g ◦ Π(x) for x ∈ R2 \ Ω,

where Π denotes the orthogonal projection on the convex set Ω. Then, Jũ ⊆ Ω, JũΓ
⊆ Γ, and
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H1(Jũ) = H1(Ju) + H1
(
{u 6= g}

)
. We can thus from now on identify u (respectively uΓ) and ũ

(respectively ũΓ). We define

w := u/uΓ .

Since um = vµ = umΓ , we have w ∈ SBVloc(R2; Gm) with w = 1 in R2 \ Ω and we can find a

Caccioppoli partition {Ek}m−1
k=0 of R2 such that

w =

m−1∑
k=0

akχEk ,

with Ek ⊆ Ω for k = 1, . . . ,m, and R2 \ Ω ⊆ E0. Since uΓ is smooth in Ω \ Γ, we deduce that

Ju ∩ (R2 \ Γ) =

m−1⋃
k=0

∂Ek \ Γ up to an H1-null set . (4.7)

Let K be the convex envelope of sptµ. The set K is then a closed polygonal subset of Ω. By

an elementary geometric construction, we can find a strictly convex open set ω with C1-boundary

satisfying K ⊆ ω and ω ⊆ Ω, and such that the Hausdorff distance between K and ω is arbitrarily

small. Given such ω, we consider the mapping Φ : R2 → R2 defined by Φ(x) := 1
2 (x + Πω(x)),

where Πω denotes the orthogonal projection on ω. Then Φ is a (global) C1-diffeomorphism of R2

satisfying Φ(x) = x for every x ∈ ω.

Consider now the sets Êk := Φ(Ek) for k = 1, . . . ,m−1, so that {Êk}m−1
k=0 defines a Caccioppoli

partition of R2. As a consequence, the map

û :=

(
m−1∑
k=0

akχÊk

)
uΓ

is an admissible competitor for L(µ). By the chain rule formula for BV -functions and (4.7), we

have Jû \ ω = Φ(Ju \ ω) and Jû ∩ ω = Ju ∩ ω. The minimality of u together with the area formula

(see [AFP00, Theorem 2.91]) then leads to

H1(Ju \ ω) 6 H1(Jû \ ω) 6
∫
Ju\ω

|∇Φ| dH1 . (4.8)

Our assumption on ω implies that |∇Φ(x)| 6 1− cωdist(x, ω) for every x ∈ Ω and some constant

cω > 0 depending only on ω and Ω. Inserting this estimate in (4.8) shows that H1(Ju \ ω) = 0,

which clearly implies (4.6).

Step 3. In this final step we show (4.5). Let us fix an arbitrary ball B2r(y) ⊆ Ω \ sptµ. Since vµ
is smooth in B2r(y), we can find a smooth function ϕ on Br(y) such that vµ = eiϕ in Br(y). The

map u? := eiϕ/m is then smooth on Br(y), and satisfies um? = vµ in Br(y). Arguing as above, it

implies that any competitor ucomp for L(µ) can be written as

ucomp =

(
m∑
k=0

akχFk

)
u? in Br(y) ,

for some Caccioppoli partition {Fk}m−1
k=0 of Br(y), and

Jucomp ∩Br(y) =

m−1⋃
k=0

∂Fk ∩Br(y) up to an H1-null set .

In addition,

H1
(
Jucomp

∩Br(y)
)

=
1

2

m−1∑
k=0

H1
(
∂Fk ∩Br(y)

)
. (4.9)

As a consequence, the minimizer u of L(µ) that we consider can be written as u =
(∑

k akχEk
)
u?,

for some Caccioppoli partition {Ek}m−1
k=0 of Br(y) minimizing the right-hand side of (4.9). By

classical results on minimal planar clusters (see for instance [CLM15, Theorem 5.2]), ∪k∂Ek∩Br(y)
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is locally a finite union of segments meeting at triple junctions. Since u? is smooth in Br(y), it

implies that Ju ∩Br/2(y) = ∪k∂Ek ∩Br/2(y), and u ∈ C∞(Br/2(y) \ Ju).

We are now ready to prove that Ju is a Λ(µ)-minimizer. Let us fix for a moment σ > 0

such that Bσ(xk) ∩ Bσ(xl) = ∅ for k 6= l, and Bσ(µ) ⊆ Ω. By the discussion above, u ∈
C∞

(
Ω \ (Ju ∪ Bσ/2(µ))

)
, and Ju \ Bσ/2(µ) is a finite union of segments. Hence, Ju ∪ Bσ(µ) is a

compact subset of Ω. Since Ju ∪Bσ(µ) converges to Ju ∪ sptµ as σ → 0 in the Hausdorff distance,

we infer from Blaschke’s theorem that Ju ∪ sptµ is a compact subset of Ω. Moreover, we have

Ju ⊇ sptµ since um = vµ. Therefore Ju is a compact subset of Ω, and u ∈ C∞(Ω \ Ju). To

complete the proof, it now only remains to prove that any connected component of Ju contains a

multiple of m vortices (possibly equal to zero). Indeed, this would lead to L(µ) = H1(Ju) > Λ(µ),

and (4.5) would be proven. Furthermore, by Step 1, we would also obtain that Ju is a minimizer

of Λ(µ).

Let us consider Σ a connected component of Ju, and A ⊆ Ω a connected smooth open neighbor-

hood of Σ such that (Ju \Σ)∩A = ∅. We may write A = A0 \∪Nn=1An where the An are connected

and simply connected smooth open sets satisfying An ⊆ A0 for n = 1, . . . , N , and An are pairwise

disjoint. Since vµ and u are smooth on ∂An for n = 0, . . . , N , and um = vµ,

deg(vµ, ∂An) = mdeg(u, ∂An) ∈ mN

and thus

Card(Σ ∩ sptµ) = deg(vµ, ∂A0)−
N∑
n=1

deg(vµ, ∂An) ∈ mN,

concluding the proof. �

Remark 4.4. The proof of Theorem 4.3 shows that every L(µ)-minimizer u is smooth on both sides

of Ju away from sptµ. More precisely, one can find a radius r > 0 such that if Br(x) ⊆ Ω \ sptµ,

then Br(x) \ Ju is made of at most three connected sets and vµ = eiϕ in Br(x) for some smooth

function ϕ. In each connected region of Br(x)\Ju, we have u = akeiϕ/m for some k ∈ {0, . . . ,m−1}.

Remark 4.5. When Ω is simply connected but not convex, (4.4) still holds true if one adds the

condition Γ ⊆ Ω for the admissible sets for Λ(µ). For minimizers, the set Γ ∩ ∂Ω can then be

non-empty. The proof would follow the same lines as in the convex case using boundary regularity

of minimizers for the constrained Steiner and constrained minimal cluster problems.

Remark 4.6. Given a reference map u? which is an admissible competitor for L(µ), we have

seen that any other competitor u can be written as u = (
∑m−1
k=0 akχEk)u? for some Caccioppoli

partition {Ek}m−1
k=0 of Ω. This allows to rephrase the minimization problem defining L(µ) as an

optimal partition problem. Notice however that H1(Ju) does not coincide in general with the

boundary length of the partition plus H1(Ju?) since possible cancellations have to be taken into

account (see Figure 4).

4.1. Structure of Λ(µ)-minimizers. We now move on to the study of the Λ(µ)-minimizers.

In the case m = 2, it reduces to a variant of the classical minimal connection problem (see for

instance [BCL86]). We recall that if P := {p1, . . . , pd} and Q := {q1, . . . , qd} are two sets of given

points in R2, then the length of a minimal connection between P and Q is defined as

min
σ

d∑
k=1

|pk − qσ(k)| ,

where the minimum runs over all permutations σ of {1, . . . , d}.

Proposition 4.7. Assume that m = 2. Let µ ∈ Ad and Γ be a Λ(µ)-minimizer. Then, Γ is made

of exactly d disjoint segments Γ1, · · · ,Γd, and each Γk ∩ sptµ contains exactly two points {pk, qk}.
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E
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Ju?

Ju?

u?

u

Ju

Ju Ju

Figure 4. Cancellations in the case m = 2 (E1 = E, E0 = Ω \ E).

In particular, Γk = [pk, qk] for each k, and H1(Γ) is the length of a minimal connection between

P = {p1, · · · , pd} and Q = {n1, · · · , qd}.

Proof. Let Γ be a Λ(µ)-minimizer, and let us prove that every connected component Γk of Γ

contains exactly two points of sptµ. It would obviously imply that each Γk is a segment, and that

H1(Γ) is the length of minimal connection by the definition (4.3) of Λ(µ).

To prove the claim, we start with the following observation. By Theorem 4.3, we can find a map

u achieving L(µ) and such that Ju = Γ. Then, consider an arbitrary open ball B2r(x) ⊆ Ω \ sptµ.

Since vµ = u2 is smooth in that ball and deg(vµ, ∂B2r(r)) = 0, we can find u? ∈ C∞(B2r(x); S1)

such that u2
? = vµ. Arguing as in the proof of Theorem 4.3, we infer that u = (χE − χEc)u? in

Br(x) for some set E having a minimizing perimeter in Br(x). By minimality, ∂E ∩ Br/2(x) =

Ju ∩ Br/2(x) = Γ ∩ Br/2(x) is smooth, and thus Γ ∩ Br/2(x) does not contain triple junctions.

Hence Γ is a finite union of segments, only intersecting at points of sptµ.

Let us now consider Γk a connected component of Γ. Assume by contradiction that there is a

point x ∈ Γk∩sptµ such that J > 2 segments meet at x (if J = 1 for every point of Γk∩sptµ, then

there is nothing to prove). For j ∈ {1, . . . , J}, let Cj := [x, yj ] be the segments in Γk departing

from x. Denote by nj the number of points in sptµ belonging to the connected component of
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x y2C2

C1

y1

Figure 5. Construction of a competitor.

Γk \ {x} containing Cj \ {x}. Notice that each nj must be odd (otherwise one could remove

the corresponding segment Cj from Γ, thus contradicting minimality). Moreover, the cardinal of

sptµ∩Γk is even, and since it is equal to 1 +
∑J
j=1 nj , we deduce that J is odd. Hence J > 3, and

among the segments Cj , at least two of them are not collinear. Assume without loss of generality

that C1 and C2 are not collinear. Then we can replace C1 and C2 by the segment [y1, y2] to obtain

a competitor with strictly lower length than Γ (see Figure 5), which again contradicts minimality.

This establishes that J = 1, and concludes the proof. �

The case m > 3 is more involved, and it is no longer true that any Λ(µ)-minimizer is a disjoint

union of d Steiner trees.

Proposition 4.8. Assume that d ∈ {2, 3, 4} and m > d+ 1. There exists µ ∈ Ad such that every

Λ(µ)-minimizer is connected.

Proof. For clarity reason, we shall start by giving full details of the proof for d = 2 and m = 3. We

will then explain how to extend this construction to the other cases. Let Y1, Y2, and Y3 be three

equidistant points on the unit circle. The unique solution to the Steiner problem for connecting

these three points is given by the triple junction Σ. Given ε � 1, let {x1, . . . , x6} be such that

(see Figure 6)

|x1 − Y1| = |x2 − Y1| = |x3 − Y2| = |x4 − Y2| = |x5 − Y3| = |x6 − Y3| = ε .

Consider the measure µε := 2π
∑6
k=1 δxk , and let Γε be a Λ(µε)-minimizer. Set Σε to be the union

of Σ with the segments connecting each xj to the closest Yi. By minimality,

H1(Γε) 6 H1(Σε) 6 H1(Σ) + 6ε . (4.10)

If Γε is not connected, then it is has two connected components Γ1
ε and Γ2

ε, each of them containing

exactly three points among the xj ’s. Then, at least one of the pairs {x1, x2}, {x3, x4} and {x5, x6},
intersects both Γ1

ε and Γ2
ε, say {x1, x2}. Up to a subsequence, we have that each Γiε converges to

a connected set Γi with Γ := Γ1 ∪ Γ2 admissible for the Steiner problem related to Y1, Y2 and Y3.

Therefore, by (4.10)

H1(Σ) ≥ lim inf
ε→0

H1(Γε) ≥ H1(Γ) ≥ H1(Σ).
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Figure 6. An example of a connected minimizer with six vortices of degree 1/3.

Hence, the above inequalities are actually equalities and since

lim inf
ε→0

H1(Γε) = H1(Γ1) +H1(Γ2),

we have H1(Γ1 ∪ Γ2) = H1(Γ1) + H1(Γ2) so that Γ1 and Γ2 only intersect at Y1. We have thus

obtained a connected graph Γ containing Y1, Y2 and Y3 but for which the degree of Y1 is two. Since

Σ is the only minimizer of the Steiner problem for (Y1, Y2, Y3),

H1(Γ) > H1(Σ) ,

contradicting (4.10) for ε small enough.

Figure 7. Minimizers of the Steiner problem for the vertices of the square on the

left and of the regular pentagon on the right.

If now m > 3, we can repeat the same construction placing m−1 points close to Y1, m−1 close to

Y2 and two close to Y3 to construct an example where the minimizer is connected for 2m points.

For d = 3, 4 and m = d + 1, the construction is similar to the case d = 2. For this we

let (Y1, . . . , Ym) be the vertices of a regular m−gone1 inscribed in the unit circle and consider

(x1, . . . , xmd) points such that for every k ∈ [1,m], there are exactly d of these points at distance

1That is a square if m = 4 and a pentagon if m = 5.
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ε from Yk. Let Σ be the minimizer of the Steiner problem for (Y1, . . . , Ym). Then, as for the case

d = 2,

Λ(µ) 6 H1(Σ) +mdε . (4.11)

As above, let Γε be a minimizer for Λ(µ) and assume that it is not connected. Let Γ̂ε be the set

made of Γε and the union of the segments joining the points xj to the nearest Yk. Since every

connected component of Γε contains a multiple of m points among the points xj , it must also be

the same for the connected components of Γ̂ε. However, at the same time, it should also be a

multiple of m − 1 since each Yk is connected to the m − 1 closest points xj . Therefore, Γ̂ε must

be connected. Letting ε → 0, we obtain a set Γ̂ which is admissible for the Steiner problem for

(Y1, . . . , Ym) but for which at least one of the points Yk has degree at least two. Since all the points

Yk have degree one for the minimizer of the Steiner problem for the m−gone with m = 4, 5 (see for

instance [DHW87] and Figure 7), we reach a contradiction with (4.11). The extension to d = 4, 5

and m > d+ 1 is obtained as before by placing m− 1 points xj at distance ε from d points Yk and

d points xj at distance ε from the last Yk. �

Remark 4.9. For m > 6, the solution of the Steiner problem for the vertices of a regular m−gone

is known to be the m−gone itself minus one of its side [DHW87]. For this reason our construction

does not work for d > 5. It would be interesting to understand if it is possible to find another

construction which works for every d ∈ N.

In light of Proposition 4.8, one could conjecture that the maximum number of points that a

Λ(µ)-minimizer can carry is equal to m(m− 1). However, as the following example shows, this is

again not the case.

Proposition 4.10. Assume that m = d = 3. There exists µ ∈ Ad such that every Λ(µ)-minimizer

is connected.

Proof. The idea is to iterate the construction made above (see Figure 8). Let 1� ε� δ. We first

fix the points (Y1, Y2, Y3) as before and then choose the points (X1, X2, X3, X4) so that

|X1 − Y1| = |X2 − Y1| = |X3 − Y2| = |X4 − Y2| = ε ,

and that all the angles are of 120°. Let (x1, . . . , x8) be such that each Xk is at distance δ of exactly

two xj ’s and let finally x9 = Y3. Let Γ be a minimizer of the corresponding Λ(µ). As above, by

comparing with a connected competitor, it holds

H1(Γ) 6 3 + 4ε+ 8δ . (4.12)

If Γ is not connected, then it can have either two or three connected components. Arguing as

above, we see that the connected component containing x9 must also contain at least one of the

vortices close to Y1, say x1 and one of the vortices close to Y2 say x8. Let Γ1 be this connected

component. If Γ has three connected components, then each of them must contain exactly three

points. Up to relabeling, this means that Γ2 contains x2, x3 and x4 and Γ3 contains x5, x6 and x7.

Letting Σ1 be the triple junction connecting x9, X1 and X3 (see Figure 8), we obtain that,

H1(Γ) > H1(Σ1) + |X1 −X2|+ |X3 −X4|+O(δ) .

A simple computation gives |X1 −X2| = |X3 −X4| =
√

3ε and H1(Σ1) = 3 + ε so that H1(Γ) >

3 + (1 + 2
√

3)ε−O(δ), which contradicts (4.12) for δ and ε small enough. The cases when Σ1 must

be the triple junction connecting X2, x9 and X3 or X1, x9 and X3 can be treated analogously.

If now Γ is made of only two components, then Γ1 must contain six points and the other

connected component Γ2 must contain the remaining three points. Without loss of generality, we

can assume that {x1, x2, x3, x4, x8, x9} ⊆ Γ1 and {x5, x6, x7} ⊆ Γ2. Let Σ2 be the optimal Steiner

tree connecting X1, X2 x9 and X4 (see Figure 9). We then have

H1(Γ) > H1(Σ2) + |X4 −X3| −O(δ) .
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Figure 8. An example of a connected minimizer with nine vortices of degree 1/3.
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Figure 9. The set Σ2.

In order to compute H1(Σ2), we notice that since at first order, it must have length 3, it must

have at least one triple junction. If it has only one, then we are basically back to the situation of

Figure 8. Otherwise, it has exactly two triple junctions and we can obtain H1(Σ2) by constructing

the two equilateral triangles X1X2S1 and X4x9S2 (see Figure 9) and computing the distance

S1S2 (see [Pol78]). After some computations using for instance complex numbers, we find that

H1(Σ2) = 3 + 5
2ε+ o(ε) so that

H1(Γ) > 3 +

(
5

2
+
√

3

)
ε+ o(ε)−O(δ) ,

contradicting (4.12) again. �

Remark 4.11. In light of these examples, it would be interesting to understand what is the

maximal number of vortices which can be carried by a single tree, given m > 3.

5. Structure of minimizers at small ε > 0

The aim of this final section is to use the structure of the minimizers of the limiting functional

F0,g given by Theorem 4.3 to prove that minimizers of F 0
ε,g have the same structure for ε > 0

small enough. In turn, this gives an improved convergence result for minimizers as ε ↓ 0 (compare

to Corollary 3.4). Since we will use some tools developed for the analysis of the Mumford-Shah

functional, we will only focus on the sharp interface functional F 0
ε,g. It would be interesting to

understand if similar results can be obtained for the “phase field approximation” F ηε .
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As in the previous section, we shall assume that Ω is a convex domain. The main results of

this section can be summarized in the following theorem. We recall that the L1-convergence of

minimizers of F 0
εh,g

towards minimizers of F0,g is given by Corollary 3.4.

Theorem 5.1. Let εh → 0, and let uh be a minimizer of F 0
εh,g

over Gg(Ω). Assume that uh → u

in L1(Ω) as h→∞ for some minimizer u of F0,g. Setting µ := curl j(um), for every σ > 0 small

enough, and every h large enough, the following holds:

(i) Juh \Bσ(µ) is a compact subset of Ω \Bσ(µ) made of finitely many segments, meeting at

triple junctions.

(ii) uh ∈ C∞
(
Ω \ (Bσ(µ) ∪ Juh)

)
and uh = g on ∂Ω.

(iii) If Br(x) ⊆ Ω\Bσ(µ), then there exists φh ∈ BV (Br(x); Gm) such that uh/φh ∈ C∞(Br(x)).

In addition,

(iv) Juh converges in the Hausdorff distance to Ju.

(v) uh → u in Ckloc(Ω \ Ju) ∩ C1,α
loc (Ω \ Ju) for every k ∈ N and α ∈ (0, 1).

(vi) If Br(x) ⊆ Ω \ Bσ(µ), then there exists φ ∈ BV (Br(x); Gm) such that uh/φh → u/φ in

Ckloc(Br(x)) for every k ∈ N.

Remark 5.2. In the proof of Theorem 5.1, we are actually going to prove a stronger result on the

structure of uh (see Section 5.1). As a consequence, it solves in Ω \ Bσ(µ) the Ginzburg-Landau

system with free discontinuities


−∆uh =

1

ε2
h

(1− |uh|2)uh in Ω \ (Bσ(µ) ∪ Juh) ,

(u+
h )m = (u−h )m on Juh \Bσ(µ) ,

uh = g on ∂Ω .

Remark 5.3. As a consequence of items (iii) and (vi) above, we have p(uh) ∈ C∞(Ω \Bσ(µ)) for

h large enough, and p(uh)→ um in Ckloc(Ω \Bσ(µ)) ∩ C1,α(Ω \Bσ(µ)).

Remark 5.4. In the case m = 2, Ju is made of d disjoint segments connecting points of sptµ,

see Proposition 4.7. In particular, Ju contains no triple junctions. Concerning the minimizer uh
of F 0

ε,g, it implies that (for h large enough), the set Juh \ Bσ(µ) is made of d disjoint segments

connecting components of Bσ(µ).

Remark 5.5. Let us notice that in the case deg(g, ∂Ω) = 0, Theorem 5.1 shows that for ε small

enough, the minimizer of F 0
ε,g is unique and smooth, i.e. there is no jump set, and it coincides with

the unique minimizer of Eε over W 1,2
g (Ω) (see [YZ96]). For the classical Mumford-Shah functional,

similar results were obtained using calibration methods [ABDM03] (see also [Fus03, Th. 3.1] for a

simple proof originally due to Chambolle).

Remark 5.6. Theorem 5.1 does not provide regularity results near sptµ. Nevertheless, repeating

verbatim the proof of [BL14, Theorem 3.1], one can prove that for every ε > 0 and every minimizer

u of F 0
ε,g, the jump set is essentially closed, that is H1(Ju \ Ju) = 0. Since Ω ⊆ R2, the proof of

this result only requires the simplest forms of [BL14, Lemma 2.3 & Lemma 2.4].

Remark 5.7. It would be interesting to study the behavior of the minimizers uh close to the

vortices, i.e., in Bσ(µ). One could expect that there is only one point in each component of

Bσ(µ) where uh vanishes, and that the jump set of uh is a union of Steiner trees connecting those

zeroes in the spirit of the Λ(µ) minimization problem. In this direction, a first step may consist in
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understanding the optimal profile problem

γ#
m(ε,R) := min

{
Eε
(
P(u), BR

)
+H1(Ju ∩BR)− π

m2
log

R

ε
:

u ∈ G(BR) , P(u)(z) =
1

m

( z
|z|
,
√
m2 − 1

)
on ∂BR

}
.

Considering a solution u of this problem, one may ask if |u| is radial, increasing, vanishing at the

origin, and if Ju is just a segment joining the origin to the boundary. It seems to be a difficult

question since it combines both issues related to the presence of an expected singularity in the

jump set in the spirit of the so called crack tip (see for instance [Dav05]) for the Mumford-Shah

functional, with the fact that P(u) should have the same regularity as minimizing harmonic maps

with values into the singular cone N . Such harmonic maps satisfy non standard elliptic equations,

and are usually more singular than minimizing harmonic maps with values into a smooth target

[GS92, Lin89, HL93, AHL17]2.

5.1. Sketch of the proof of Theorem 5.1. Before starting the proof of Theorem 5.1, let us

explain the strategy. Away from sptµ, the limiting function vµ is smooth. Therefore, if we consider

a small enough ball Br(x) outside Bσ(µ), then the oscillation of vµ on this ball is very small. By

the strong convergence in W 1,2(Br(x)) of vh to vµ (recall Theorem 3.2), this will still be true for

vh on ∂Br(x) (actually, on ∂Bρh(x) for some ρh ∼ r). Hence3, we can find gh ∈ W 1,2(∂Br(x))

such that p(gh) = vh on ∂Br(x). Considering wh a solution of the Ginzburg-Landau equation{
−∆wh = 1

εh2 (1− |wh|2)wh in Br(x)

wh = gh in ∂Br(x),
(5.1)

we aim at proving that in Br(x), uh =
(∑m−1

k=0 akχEkh

)
wh where the Ekh are pairwise disjoint and

satisfy (up to a relabeling)

(i) if Br(x) ∩ Ju = ∅, then E0
h = Br(x) i.e. uh = wh in Br(x);

(ii) if Br(x)∩Ju is a segment then uh = (χE0
h

+ak(1−χE0
h
))wh for some k 6= 0 with ∂E0

h∩Br(x)

a segment;

(iii) if Br(x)∩Ju contains a triple point then uh = (χE0
h

+ak1χ
E
k1
h

+ak2χE2
h
)wh with 0 < k1 <

k2 6 m− 1 and ∂E0
h ∪ ∂E

k1

h ∪ ∂E
k2

h a triple junction in Br(x).

In order to show that indeed uh is of this form, a powerful tool that we introduce in the next

section is the Lassoued-Mironescu decomposition argument [LM99] which allows to conveniently

split the energy into a Ginzburg-Landau term and a Mumford-Shah type energy.

5.2. Ginzburg-Landau minimizers and energy splitting. In this section, we consider a radius

r > 0, a sequence εh → 0, and a sequence of boundary conditions {gh} ⊆ W 1,2(∂Br) ∩ L∞(∂Br)

satisfying

‖gh‖L∞(∂Br) 6 1 , (5.2)∫
∂Br

|∂τgh|2 +
1

ε2
h

(1− |gh|2)2 dH1 6 C , (5.3)

for some constant C > 0 independent of εh. We further assume that

gh → g? uniformly on ∂Br as h→∞ , (5.4)

for some g? ∈W 1,2(∂Br; S
1) satisfying

deg(g?, ∂Br) = 0 . (5.5)

2quoting [Lin89]: ”Unfortunately, the equations satisfied by s and u are so bad that no existing result can be

applied“.
3Notice that actually, some care is needed in the choice of gh to guarantee that no jump is created at the

boundary.
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From this last assumption, we can write g? = eiϕ? for some harmonic function ϕ? ∈ W 1,2(Br)

(which is unique up to a constant multiple of 2π). As in [BBH93], the map

w? := eiϕ? ∈W 1,2
g? (Br; S

1)

is the unique solution of the minimization problem

min
W 1,2
g? (Br;S1)

∫
Br

|∇w|2 dx . (5.6)

We are now interested in the minimization problem

min
w∈W 1,2

gh
(Br)

Eεh(w,Br) . (5.7)

We recall that minimizers of (5.7) are in particular solutions of (5.1). We shall make an essential use

of the following proposition. It constitutes a slight extension of [BBH93, Theorem 2] to the case of a

boundary condition which merely belongs to W 1,2(∂Br). Since the estimates obtained in [BBH93,

Theorem 2] only depend on the W 1,2(∂Br) bounds satisfied by gh, the proof of Proposition 5.8

readily follows from [BBH93, Theorem 2] together with an approximation argument (to regularize

the boundary condition).

Proposition 5.8. Assume that (5.2), (5.3), (5.4), and (5.5) hold. There exists {wh} ⊆W 1,2(Br)∩
C0(Br) ∩ C∞(Br) such that wh solves (5.7), and

wh → w? strongly in W 1,2(Br) ,

|wh| → 1 uniformly in Br ,

wh → w? in Ckloc(Br) for every k ∈ N .

For the rest of this subsection, we still denote by wh a solution of (5.7) obtained from Proposition5.8.

We continue with a very useful energy decomposition, originally introduced in [LM99].

Lemma 5.9. Let u ∈ G(Br) ∩ L∞(Br) be such that p(u) = p(gh) on ∂Br. For εh small enough,

we have u = whφ for some φ ∈ G(Br) ∩ L∞(Br) satisfying p(φ) = 1 on ∂Br,

Eεh
(
P(u), Br

)
= Eεh(wh, Br) +

1

2

∫
Br

|wh|2|∇φ|2 +
|wh|4

2ε2
h

(1− |φ|2)2 +
2

m
j(p(φ)) · j(wh) dx , (5.8)

and H1(Ju ∩Br) = H1(Jφ ∩Br).

Proof. By Proposition 5.8, we have |wh|2 > 1/2 for εh small enough. Setting φ := u/wh, we have

φ ∈ SBV 2(Br) ∩ L∞(Br) and P(φ) ∈ W 1,2(Br), thus φ ∈ G(Br) ∩ L∞(Br). Since |wh|2 and |φ|2

belong to W 1,2(Br), by chain rule we have

|∇u|2 = |φ|2|∇wh|2 + |wh|2|∇φ|2 +
1

2
∇(|φ|2) · ∇(|wh|2) + 2j(φ) · j(wh) a.e. in Br .

Recalling that mj(φ) = j(p(φ)) (see Lemma 2.3), and since |φ|2 = |p(φ)|2, we obtain∫
Br

|∇u|2 dx =

∫
Br

|p(φ)|2|∇wh|2 + |wh|2|∇φ|2 +
1

2
∇(|p(φ)|2) · ∇(|wh|2) +

2

m
j(p(φ)) · j(wh) dx .

(5.9)

Testing equation (5.1) with |p(φ)|2wh ∈W 1,2(Br), we derive∫
Br

|p(φ)|2|∇wh|2 +
1

2
∇(|p(φ)|2) · ∇(|wh|2) dx

=

∫
∂Br

∂νwh · wh dH1 +

∫
Br

1

ε2
h

(1− |wh|2)|wh|2|p(φ)|2 dx , (5.10)
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where the first integral in the right hand side is understood in the W−1/2,2 −W 1/2,2 sense. Here

we have also used the fact |p(φ)|2 = 1 on ∂Br (so that |p(φ)|2wh = wh on ∂Br). Testing now (5.1)

with wh yields ∫
∂Br

∂νwh · wh dH1 =

∫
Br

|∇wh|2 −
1

ε2
h

(1− |wh|2)|wh|2 dx .

Putting together this identity with (5.9) and (5.10) leads to∫
Br

|∇u|2 +
1

2ε2
h

(1− |u|2)2 dx =

∫
Br

|∇wh|2 + |wh|2|∇φ|2 +
2

m
j(p(φ)) · j(wh)

+
1

ε2
h

[
1

2
(1− |wh|2|p(φ)|2)2 − (1− |wh|2)|wh|2 + (1− |wh|2)|wh|2|p(φ)|2

]
dx .

In view of the algebraic identity

1

2
(1− a2b2)2 − (1− a2)a2 + (1− a2)a2b2 =

1

2
(1− a2)2 +

a4

2
(1− b2)2 for a, b > 0 ,

we have obtained

1

2

∫
Br

|∇u|2 +
1

2ε2
h

(1− |u|2)2 dx = Eεh(wh, Br)

+
1

2

∫
Br

{
|wh|2|∇φ|2 +

|wh|4

2ε2
h

(1− |φ|2)2 +
2

m
j(p(φ)) · j(wh)

}
dx .

Finally, since wh ∈W 1,2(Br) we have Ju∩Br = Jφ∩Br (up to an H1-null set), and the conclusion

follows. �

We now use Lemma 5.9 to derive a a lower bound on the energy. In particular, we want to be

able to control the last term in (5.8), which is the purpose of the following lemma.

Lemma 5.10. Assume that ∫
Br

|∇wh|2 dx 6 δ , (5.11)

and

r1/2

(∫
∂Br

|∂τgh|2 +
(1− |gh|2)2

2ε2
h

dH1

)1/2

6 δ , (5.12)

for some constant δ > 0. Then there exists a universal constant C? > 0 such that∣∣∣∣∫
Br

j(Φ) · j(wh) dx

∣∣∣∣ 6 C?δ ∫
Br

|∇Φ|2 dx

for every Φ ∈W 1,2(Br) satisfying Φ = 1 on ∂Br.

Proof. Rescaling variables we may assume that r = 1. Arguing by approximation as in Proposi-

tion 5.8, we may assume that wh is smooth.

First, using equation (5.1) we derive that div j(wh) = wh ∧∆wh = 0. By Hodge decomposition,

we can find a smooth scalar function H such that j(wh) = ∇⊥H. Notice that H is defined up to

an additive constant that we shall fix later on.

By approximation, we may assume that the test function Φ is smooth. Since Φ is constant

on ∂B1, the vector field j(Φ) satisfies j⊥(Φ) · ν = 0 on ∂B1. Since curl j(Φ) = 2 det∇Φ,∫
B1

j(Φ) · j(wh) dx = −
∫
B1

j⊥(Φ) · ∇H dx = −
∫
B1

2H det(∇Φ) dx .

We may now estimate∣∣∣∣∫
B1

j(Φ) · j(wh) dx

∣∣∣∣ 6 ∫
B1

|H||∇Φ|2 dx 6 ‖H‖L∞(B1)

∫
B1

|∇Φ|2 dx ,
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and we are left to prove that ‖H‖L∞(B1) is controlled by δ. We consider the function H1 solving{
∆H1 = 2 det(∇wh) in B1 ,

H1 = 0 on ∂B1 ,

and set H2 := H −H1. Then, H2 is harmonic in B1 since

∆H2 = −div j⊥(wh)− 2 det(∇wh) = curl j(wh)− 2 det(∇wh) = 0 .

In addition,

∂τH2 = ∂τH = −ν · j(wh) on ∂B1 . (5.13)

Thanks to Wente’s estimate (see [Wen69] or [BC84, Lemma A.1]), there exists a universal constant

C] > 0 such that

‖H1‖L∞(B1) 6 C]

∫
B1

|∇wh|2 dx 6 C]δ .

Moreover, by the maximum principle,

inf
B1

H2 = inf
∂B1

H2 and sup
B1

H2 = sup
∂B1

H2 .

We now fix the additive constant for H so that supB1
H2 + infB1 H2 = 0. This yields

‖H2‖L∞(B1) =
1

2

[
sup
∂B1

H2 − inf
∂B1

H2

]
6

1

4

∫
∂B1

|∂τH2| dH1 .

Recalling that |wh| 6 1, we have by (5.13) |∂τH2| 6 |wh||∂νwh| 6 |∂νwh|, so that by Cauchy-

Schwarz inequality,

‖H2‖L∞(B1) 6

√
2π

4

(∫
∂B1

|∂νwh|2 dH1

)1/2

.

Let us now recall that the Pohozaev identity applied to equation (5.1) (see e.g. [SS04, (5.2)]) leads

to ∫
B1

(1− |wh|2)2

ε2
h

dx =

∫
∂B1

|∂τwh|2 − |∂νwh|2 +
(1− |wh|2)2

2ε2
h

dH1 .

Hence, ∫
∂B1

|∂νwh|2 dH1 6
∫
∂B1

|∂τwh|2 +
(1− |wh|2)2

2ε2
h

dH1 ,

which then implies

‖H2‖L∞(B1) 6

√
2π

4

(∫
∂B1

|∂τwh|2 +
(1− |wh|2)2

2ε2
h

dH1

)1/2 (5.12)

6

√
2π

4
δ .

The conclusion now follows with C? := C] +
√

2π/4. �

Combining Lemma 5.9 and Lemma 5.10 yields the following lower bound for the energy.

Proposition 5.11. Let C? be the constant given by Proposition 5.10, and let δ > 0 be such that

C?δ 6 1
16m . For εh small enough, if wh satisfies (5.11) and (5.12), then

F 0
ε (u,Br) > Eεh(wh, Br) +

1

8

∫
Br

|∇φ|2 dx+H1(Jφ ∩Br) (5.14)

for every u ∈ G(Br)∩L∞(Br) satisfying p(u) = p(gh) on ∂Br, where φ := u/wh ∈ G(Br)∩L∞(Br).

Proof. By Proposition 5.8 and Lemma 5.9, identity (5.8) holds and |wh|2 > 1/2 for εh small

enough. Applying Lemma 5.10 with Φ := p(φ), we derive that

Eεh
(
P(u), Br

)
> Eεh(wh, Br) +

1

4

∫
Br

|∇φ|2 +
1

4ε2
h

(1− |φ|2)2 dx− 1

8m2

∫
Br

|∇p(φ)|2 dx .

By Lemma 2.3 we have

1

m2

∫
Br

|∇p(φ)|2 dx 6
∫
Br

|∇P(φ)|2 dx =

∫
Br

|∇φ|2 dx ,
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and the conclusion follows. �

Remark 5.12. Under the assumptions of Proposition 5.11, we can obtain that the minimizer of

(5.7) is unique. Indeed, any solution w̃h of (5.7) satisfies ‖w̃h‖L∞(Br) 6 1 by minimality. Applying

(5.14) to w̃h then yields

Eεh(w̃h, Br) > Eεh(wh, Br) +
1

8

∫
Br

|∇φ|2 dx

with φ := w̃h/wh. Since Eεh(w̃h, Br) = Eεh(wh, Br), we deduce that φ ≡ 1, that is w̃h = wh. A

similar idea was used in [FM13] to prove uniqueness results, extending those from [YZ96].

5.3. Proof of Theorem 5.1. This section is devoted to the proof of Theorem 5.1. We fix a

sequence εh → 0, and minimizers uh of F 0
εh,g

over Gg(Ω). We assume that uh → u strongly in

L1(Ω) as h → ∞, where u is a minimizer of F0,g over Lg(Ω). We recall that by Theorem 3.2

vh := p(uh) → um strongly in W 1,p(Ω) for every p < 2 and in W 1,2
loc (Ω \ sptµ), where µ :=

curl j(um) ∈ Ad. According to Section 4, the compact set Γ := Ju ⊆ Ω is a Λ(µ)-minimizer in

the sense of Definition 4.1, and thus a union of at most d Steiner trees. We denote by T ⊆ Ω the

(finite) set of Steiner points of Γ \ sptµ, i.e., the triple junctions of Γ away from sptµ. We finally

recall that u ∈ C∞(Ω \ Γ), u = g on ∂Ω, and that um = vµ ∈ C∞(Ω \ sptµ).

Writing sptµ =: {x1, . . . , xmd} and T := {y1, . . . , yq}, we now fix σ0 > 0 satisfying

σ0 <
1

2
min

{
min
k 6=l
|xk − xl| ,min

k 6=l
|yk − yl| ,dist(Γ, ∂Ω) ,dist(T, sptµ)

}
,

and we set for σ ∈ (0, σ0),

Kσ := ‖∇vµ‖L∞(Ω\Bσ/4(µ)) . (5.15)

Moreover we fix the positive constant δ to be

δ := min
{

1/(4
√
πm), 1/(16mC?)

}
,

C? being the constant given by Proposition 5.10. For σ ∈ (0, σ0), we finally set

rσ := min
{ σ

10
,

δ

8
√
πKσ

}
.

Theorem 5.1 is a consequence of a covering argument combined with Proposition 5.13, Proposi-

tion 5.16 and Proposition 5.18 which respectively give the structure of uh away from Γ, close to Γ

but away from the triple junctions and at the triple junctions.

5.3.1. Smoothness and convergence away from Γ.

Proposition 5.13. Let σ ∈ (0, σ0). For h large enough, uh ∈W 1,2
g (Ω \Bσ(Γ)) and uh minimizes

Eεh(·,Ω\Bσ(Γ)) under its own boundary condition. In addition, uh ∈ C∞(Ω\Bσ(Γ)) and uh → u

in C1,α(Ω \Bσ(Γ)) and Ckloc(Ω \Bσ(Γ)) for every α ∈ (0, 1) and k ∈ N.

The proof of Proposition 5.13 is a direct consequence of Lemma 5.14 and Lemma 5.15 below,

together with a suitable covering argument.

Lemma 5.14. For σ ∈ (0, σ0), let r ∈ (0, rσ) and x0 ∈ Ω be such that B2r(x0) ⊆ Ω \ Bσ(Γ).

For h large enough, uh ∈W 1,2(Br(x0)), and uh minimizes Eεh(·, Br(x0)) under its own boundary

condition. In addition, uh ∈ C∞(Br(x0)) and uh → u in Ckloc(Br(x0)) for every k ∈ N.

Proof. Step 1. Without loss of generality, we may assume that x0 = 0. Set

γh :=

∫
B2r

|∇vh −∇vµ|2 + |vh − vµ|2 dx+
1

2εh2

∫
B2r

(1− |uh|2)2 dx .

By Theorem 3.2 and Corollary 3.4, γh → 0 as h→∞. Since Γ ∩B2r = ∅, (3.9) shows that

H1(Juh ∩B2r) 6
r

2
(5.16)
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for h large enough. From now on, we assume that (5.16) holds.

By the coarea formula (see [Mag12, Theorem II.7.7]), we have∫ 2r

r

H0(Juh ∩ ∂Bt) dt 6 H1(Juh ∩B2r) 6
r

2
.

Setting

Ah :=
{
t ∈ (r, 2r) : Juh ∩ ∂Bt = ∅

}
,

we deduce that H1(Ah) > r/2. Notice that uh ∂Bt ∈W 1,2(∂Bt) for a.e. t ∈ Ah. Since∫
Ah

[∫
∂Bt

|∇vh −∇vµ|2 + |vh − vµ|2 +
1

2εh2
(1− |uh|2)2 dH1

]
dt 6 γh ,

we can find a radius ρh ∈ Ah such that uh ∂Bρh ∈W 1,2(∂Bρh ; C) and∫
∂Bρh

|∇vh −∇vµ|2 + |vh − vµ|2 +
1

2εh2
(1− |uh|2)2 dH1 6

2γh
r
. (5.17)

By definition of p, |∇uh| ≤ |∇vh| and thus∫
∂Bρh

|∇uh|2 dH1 6
∫
∂Bρh

|∇vh|2 dH1 6 2

∫
∂Bρh

|∇vh −∇vµ|2 dH1 + 4πρh‖∇vµ‖2L∞(B2r)

6
4γh
r

+ 8πrK2
σ ,

which leads to

ρ
1/2
h

(∫
∂Bρh

|∇uh|2 +
1

2εh2
(1− |uh|2)2 dH1

)1/2

6 δ (5.18)

for h large enough since ρh 6 2rσ.

Step 2. We select a subsequence such that ρh → ρ ∈ [r, 2r]. Define gh(x) := uh(ρhx) for x ∈ ∂B1.

Then gh ∈W 1,2(∂B1) ∩ L∞(B1) satisfies |gh| 6 1, and(∫
∂B1

|∂τgh|2 +
1

2ε̃2
h

(1− |gh|2)2 dH1

)1/2

6 δ , (5.19)

where ε̃h := εh/ρh. Extracting a further subsequence if necessary, we may thus assume that

gh → g? uniformly of ∂B1 for some g? ∈W 1,2(∂B1; S1). Estimate (5.17) yields

gm? (x) = lim
h→∞

p(gh)(x) = lim
h→∞

vh(ρhx) = vµ(ρx) ∀x ∈ ∂B1 . (5.20)

Since deg(vµ, ∂Bρ) = 0, we deduce that deg(g?, ∂B1) = 0. We are now in position to apply

Proposition 5.8 to produce minimizers wh of Eε̃h(·, B1) over W 1,2
gh

(B1). Then wh → w? strongly

in W 1,2(B1) where w? is the unique solution of (5.6). We claim that

wm? (x) = vµ(ρx) ∀x ∈ B1 .

Indeed, recalling (2.14), vµ(ρx) = eiψµ(x) for x ∈ B1 and a smooth harmonic function ψµ (which

is unique up to a constant multiple of 2π). Moreover, w? = eiϕ? for some harmonic function

ϕ? ∈W 1,2(B1). In view of (5.20), we have mϕ? = ψµ + 2kπ on ∂B1 for some constant k ∈ N. By

uniqueness of the harmonic extension, we infer that mϕ? = ψµ + 2kπ in B1, and the claim follows.

As a consequence of this last identity, we deduce that∫
B1

|∇w?|2 dx =
1

m2

∫
Bρh

|∇vµ|2 dx 6
4πr2K2

σ

m2
6
δ

2
.

Since wh → w? strongly in W 1,2(B1), we thus have for h large enough∫
B1

|∇wh|2 dx 6 δ . (5.21)
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Step 3. Let us define ŵh(x) := wh(x/ρh), and consider the competitor ûh ∈ Gg(Ω) given by

ûh :=

{
uh in Ω \Bρh ,
ŵh in Bρh .

By minimality we have F 0
εh,g

(uh) 6 F 0
εh,g

(ûh), and since Juh ∩ ∂Bρh = ∅, we deduce that

F 0
εh

(uh, Bρh) 6 Eεh(ŵh, Bρh) .

Setting ũh(x) := uh(ρhx) and rescaling variables, we obtain

Eε̃h
(
P(ũh), B1

)
+ ρhH1(Jũh ∩B1) 6 Eε̃h(wh, B1) . (5.22)

In view of (5.19) and (5.21) (and our choice of δ), we can apply Lemma 5.9 and Proposition 5.11

to derive that

Eε̃h
(
P(ũh), B1

)
+ ρhH1(Jũh ∩B1) > Eε̃h(wh, B1) +

1

8

∫
B1

|∇φh|2 dx+ ρhH1(Jφh ∩B1) (5.23)

for h large enough, where φh := ũh/wh satisfies φh = 1 on ∂B1. Putting (5.22) and (5.23) together

leads to
∫
B1
|∇φh|2 dx = 0 = H1(Jφh ∩B1), and thus φh ≡ 1. In other words, ũh ≡ wh for h large

enough.

Scaling back to the original variables (and recalling that uh → u in L1(Ω)), we conclude from

Proposition 5.8 that for h large enough, uh minimizes Eεh(·, Br) in W 1,2(Br) under its own bound-

ary condition, uh ∈ C∞(Br) and uh → u in Ckloc(Br) for every k ∈ N. Since the limit is unique, we

deduce that these facts actually hold for the full sequence (and not only for a subsequence). �

The next lemma is devoted to smoothness and convergence of uh near the boundary of Ω. Since

∂Ω is assumed to be smooth, we can find a radius rΩ > 0 such that

H1(∂Ω ∩Br(x)) 6 3r ∀r ∈ (0, rΩ) , ∀x ∈ ∂Ω . (5.24)

For the sake of variety, in the proof below, we do not use the energy splitting argument. Notice

that, either way, it could be possible to adapt this alternative argument to prove Lemma 5.14, or

to adapt the energy splitting approach to treat boundary points.

Lemma 5.15. For σ ∈ (0, σ0), let r ∈ (0,min{rσ, rΩ}) and x0 ∈ ∂Ω. For h large enough,

uh ∈ W 1,2(Br(x0) ∩ Ω) with uh = g on ∂Ω ∩ Br(x0) and uh minimizes Eεh(·, Br(x0) ∩ Ω) under

its own boundary conditions. In addition, uh ∈ C∞(Br(x0) ∩Ω) and uh → u in C1,α
loc (Br(x0) ∩Ω)

and Ckloc(Br(x0) ∩ Ω) for every α ∈ (0, 1) and k ∈ N.

Proof. Without loss of generality, we may assume that x0 = 0. As in the proof of Proposition 5.14,

it is enough to find ρh ∈ (r, 2r) such that (5.18) holds (with ∂Bρh ∩ Ω in place of ∂Bρh), Juh ∩
(Bρh ∩Ω) = ∅ (so that uh ∈W 1,2(Bρh ∩Ω)), and uh = g on ∂Ω∩Bρh , for h large enough. Indeed,

for any w ∈W 1,2
uh

(Bρh), one can consider the competitor ûh ∈ Gg(Ω) given by ûh = w in Bρh ∩ Ω,

and ûh = uh in Ω \Bρh . By minimality, F 0
εh,g

(uh) 6 F 0
εh,g

(ûh), which then leads to

Eεh(uh, Bρh ∩ Ω) = F 0
εh

(uh, Bρh ∩ Ω) 6 F 0
εh

(w,Bρh ∩ Ω) = Eεh(w;Bρh ∩ Ω) .

Hence uh minimizes Eεh(·, Bρh) in W 1,2(Bρh ∩ Ω) under its own boundary condition. Then the

remaining conclusions follow from [BBH93] (see also [BBH94, Theorem A.3]) together with the

fact that uh → u in L1(Ω).

We select the radius ρh by repeating the Fubini type argument used in Step 1 of the proof of

Proposition 5.14. The main additional point is to select ρh so that uh belongs to W 1,2(∂Bρh ∩Ω)

with uh = g on ∂Bρh ∩ ∂Ω. This is possible via the coarea formula since (3.9) implies that for h

large enough

H1(Juh ∩B2r ∩ Ω) +H1({uh 6= g} ∩ ∂Ω ∩B2r) 6
r

2
.
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By our choice of ρh, the map gh defined by gh := uh in ∂Bρh∩Ω, and gh := g in Bρh∩∂Ω, belongs

to W 1,2(∂(Bρh ∩Ω)). In view of (5.18), for h large enough we have |gh| > 1/2 on ∂(Bρh ∩Ω), and

osc
∂(Bρh∩Ω)

gh 6
(
H1(∂(Bρh ∩ Ω))

)1/2(∫
∂(Bρh∩Ω)

|∂τgh|2 dH1

)1/2

6
√

2πρh

(∫
Bρh∩∂Ω

|∂τg|2 dH1 +

∫
∂Bρh∩Ω

|∇uh|2 dH1

)1/2

(5.15),(5.24)&(5.18)

6
√

2πρh
(
3ρhK

2
σ + δ2/ρh

)1/2
6
√

2π
(
6r2K2

σ + δ2
)1/2

6
1

2m
.

Rotating coordinates in the image if necessary, we may assume that gh(0) = 1, which in turn yields

|p(gh(x))− 1| 6 1

2
∀x ∈ ∂(Bρh ∩ Ω) . (5.25)

We claim that

min
v∈W 1,2

p(gh)
(Bρh∩Ω)

Gεh(v,Bρh ∩ Ω) = min
u∈W 1,2

gh
(Bρh∩Ω)

Eεh(u,Bρh ∩ Ω) . (5.26)

Before proving this claim, let us show how (5.26) leads to the conclusion. By minimality of uh
(and our choice of ρh), we have

min
u∈W 1,2

gh
(Bρh∩Ω)

Eεh(u,Bρh ∩ Ω) = min
u∈W 1,2

gh
(Bρh∩Ω)

F 0
εh

(u,Bρh ∩ Ω)

> min
u∈Ggh (Bρh∩Ω)

{
F 0
εh

(u,Bρh ∩ Ω) +H1
(
{u 6= gh} ∩ ∂(Bρh ∩ Ω)

)}
= Gεh(vh, Bρh ∩ Ω) +H1(Juh ∩ (Bρh ∩ Ω))

+H1({uh 6= g} ∩ (∂Ω ∩Bρh))

> min
v∈W 1,2

p(gh)
(Bρh∩Ω)

Gεh(v,Bρh ∩ Ω) .

Then, (5.26) implies that all the inequalities above are in fact equalities and as a consequence

H1(Juh ∩ (Bρh ∩ Ω)) +H1({uh 6= g} ∩ (∂Ω ∩Bρh)) = 0 .

Hence Juh ∩ (Bρh ∩ Ω) is empty, and uh = g on ∂Ω ∩Bρh .

In view of the above chain of inequalities, to prove (5.26) it is enough to show that

min
v∈W 1,2

p(gh)
(Bρh∩Ω)

Gεh(v,Bρh ∩ Ω) > min
u∈W 1,2

gh
(Bρh∩Ω)

Eεh(u,Bρh ∩ Ω) . (5.27)

We consider v a minimizer of the left-hand side. To establish (5.27), it is enough to construct

u ∈W 1,2
gh

(Bρh ∩Ω) satisfying p(u) = v since, in this case, Gεh(v,Bρh ∩Ω) = Eεh(u,Bρh ∩Ω). Let

Π : C → C the map defined by Π(z) := |Re(z)| + iIm(z). By (5.25) we have Π(p(gh)) = p(gh)

and Π(v) ∈ W 1,2
p(gh)(Bρh ∩ Ω). In addition, Gεh(Π(v), Bρh ∩ Ω) = Gεh(v, , Bρh ∩ Ω). Replacing v

by Π(v) if necessary, we may thus assume that the real part of v is nonnegative in Bρh ∩Ω. Now,

let us introduce the map q : C ∩ {Re(z) > 0} → C defined by q(z) = |z|eiθ/m for z = |z|eiθ

with θ ∈ [−π/2, π/2]. Then, q is Lipschitz continuous left inverse of p. In view of (5.25) we have

q(p(gh)) = gh, and as a consequence u := q(v) ∈W 1,2
gh

(Bρh ∩ Ω) with p(u) = v. �
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5.3.2. Smoothness and convergence away from triple junctions. We continue our asymptotic anal-

ysis by considering the local behavior of uh near Γ, but away from T ∪ sptµ. In the statement

below, we understand the convergence of half spaces in the sense of local Hausdorff convergence.

Let us write

cm := |1− a|2.

Proposition 5.16. For σ ∈ (0, σ0), let r ∈ (0,min{rσ, cm/32}) and x0 ∈ Γ \Bσ(T ∪ sptµ). For h

large enough, there exist a half space Hh and k ∈ {1, . . . ,m− 1} such that uh =: (χHh + akχHch)wh
with wh ∈W 1,2(Br(x0)), and wh minimizes Eεh(·, Br(x0)) under its own boundary conditions. In

addition, wh ∈ C∞(Br(x0)), Hh → H for some half space H satisfying ∂H ∩Br(x0) = Γ∩Br(x0),

and wh → (χH + a−kχHc)u in C`loc(Br(x0)) for every ` ∈ N.

Proof. Step 1. Once again we may assume that x0 = 0. We follow the strategy used in the proof

of Lemma 5.14 considering

γh :=

∫
B5r

|∇vh −∇vµ|2 + |vh − vµ|2 dx+
1

2εh2

∫
B5r

(1− |uh|2)2 dx −→
h→∞

0 .

By Theorem 3.2 and Corollary 3.4 we have (3.9), and thus H1(Juh ∩ B5r) → H1(Γ ∩ B5r) = 10r.

As a consequence, H1(Juh ∩B5r) 6 11r for h large enough, which in turn leads to∫ 5r

r

H0(Juh ∩ ∂Bt) dt 6 H1(Juh ∩B5r) 6 11r . (5.28)

Setting

Ah := A0
h ∪A1

h ∪A2
h with Akh :=

{
t ∈ (r, 5r) : H0(Juh ∩ ∂Bt) = k

}
,

we infer from (5.28) that H1(Ah) > r/3 for h large enough. Notice that uh ∈ W 1,2(∂Bt) for a.e.

t ∈ A0
h, and uh ∈ SBV 2(∂Bt) for a.e. t ∈ A1

h ∪A2
h.

We claim thatH1(A0
h) 6 r/6 for h large enough. Indeed, assume by contradiction thatH1(A0

h) >

r/6 for some subsequence. Then, we could apply the proof of Lemma 5.14 (choosing a good radius

ρh ∈ A0
h) to infer that uh is smooth in Br for h large enough, and thus that Juh ∩ Br = ∅.

However (3.9) tells us that H1(Juh ∩ Br) → 2r as h → ∞, a contradiction. We have thus proved

that H1(A1
h ∪ A2

h) > r/6 for h large enough. Now we claim that for h even larger, we have

H1(A1
h) 6 r/12. By contradiction again, assume that H1(A1

h) > r/12 for some subsequence.

Then, we can find a good radius ρh ∈ A1
h such that uh ∈ SBV 2(∂Bρh) and∫

∂Bρh

|∇vh −∇vµ|2 + |vh − vµ|2 +
1

2εh2
(1− |uh|2)2 dH1 6

12γh
r

. (5.29)

By our choice of ρh, there is a single point xh ∈ ∂Bρh such that uh ∈W 1,2(∂Bρh \{xh}). Rescaling

variables if necessary, we may assume without too much loss of generality that the radius ρh = ρ

is independent of h. By (5.29), vh → vµ uniformly on ∂Bρ. As a consequence, |uh| = |vh| > 1/2

on ∂Bρ, and deg(vh, ∂Bρ) = 0 for h large enough. In particular, we can write uh = |uh|eiϕh
on ∂Bρb \ {xh} for some ϕh ∈ W 1,2(∂Bρb \ {xh}). Let ϕ±h be the traces of ϕh at xh. Since

vh = |uh|eimϕh ∈W 1,2(∂Bρ), we have m(ϕ+
h −ϕ

−
h ) = 2πdeg(vh, ∂Bρ) = 0. Hence ϕ+

h = ϕ−h , which

yields ϕh ∈W 1,2(∂Bρ). We obtain that uh ∈W 1,2(∂Bρ) contradicting our choice ρ ∈ A1
h.

We may now assume that h is sufficiently large so that H1(A2
h) > r/12. Arguing as in the

proof of Lemma 5.14, we select a good radius ρh ∈ A2
h so that uh ∈ SBV 2(∂Bρh) and (5.18)

holds together with (5.29). Here again we shall assume for simplicity ρh = ρ is independent of h

(otherwise we rescale variables as in the proof of Lemma 5.14). We write {xh, yh} := Juh ∩ ∂Bρ,
and then Ch1 and Ch2 the two (open) arcs in ∂Bρ joining xh and yh. As above, we infer from (5.29)

that |uh| = |vh| > 1/2 on ∂Bρ, and deg(vh, ∂Bρ) = 0 for h large enough. Since uh ∈ W 1,2(Chj ) for

j = 1, 2, we deduce that there exist ϕjh ∈W 1,2(Chj ) such that uh = |uh|eiϕ
j
h on Chj . Denote by ϕj,1h
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the trace of ϕjh at xh, and ϕj,2h the trace of ϕjh at yh. Since vh ∈ W 1,2(∂Bρ), and vh = |uh|eimϕ
j
h

on Chj , we obtain the relation

m(ϕ2,1
h − ϕ

1,1
h ) = 2πkh1 and m(ϕ2,2

h − ϕ
1,2
h ) = 2πkh2

for some kh1 , k
h
2 ∈ Z\{0}. Define kh ∈ {1, . . . ,m−1} to be such that akh = e2iπkh2 /m, and consider

the map

gh :=

{
uh in Ch1 ,
a−khuh in Ch2 .

By construction we have p(gh) = vh and gh ∈W 1,2(∂Bρ \{xh}). However, since deg(vh, ∂Bρ) = 0,

we can argue as above (when proving that H1(A1
h) 6 r/12) to show that gh ∈ W 1,2(∂Bρ). In

addition, (5.18) yields

ρ1/2

(∫
∂Bρ

|∂τgh|2 +
(1− |gh|2)2

2ε2
h

dH1

)1/2

6 δ . (5.30)

We also notice that ‖gh‖L∞(Bρ) 6 1 since |uh| 6 1.

Step 2. Define Hh to be the half space containing Ch1 and such that xh, yh ∈ ∂Hh. We claim that

kh = k ∈ {1, . . . ,m−1} is independent of h for h sufficiently large, that Hh → H for some half space

H such that Γ∩ ∂Bρ = ∂H ∩ ∂Bρ, and that gh → g? uniformly on ∂Bρ where g? ∈W 1,2(∂Bρ; S
1)

is given by

g? :=

{
u in ∂Bρ ∩H ,

a−ku in ∂Bρ \H .
(5.31)

First observe that lim infh |xh−yh| > 0. Indeed, if for some subsequence we have |xh−yh| → 0, then

either χHh → 0 in L1(∂Bρ) or χHch → 0 in L1(∂Bρ). Assume that χHch → 0 in L1(∂Bρ) (the other

case being analogous). From Proposition 5.13, we infer that uh → u in L1(∂Bρ), so that gh → u

in L1(∂Bρ). In view of (5.30), we deduce that u belongs to W 1,2(∂Bρ), a contradiction. Next, by

Proposition 5.13 again, uh → u in C0
loc(∂Bρ \ Γ), which now implies that {xh, yh} → Γ ∩ ∂Bρ as

h→∞. Writing Γ∩Bρ =: {x?, y?}, we may assume that xh → x? and yh → y?. In the same way,

we may assume that Ch1 → C1 where C1 is an arc of ∂Bρ joining x? and y?. This clearly implies

that Hh → H where H is the half space containing C1 and such that x?, y? ∈ ∂H. In view of

Remark 4.4, there exists a unique k ∈ {1, . . . ,m− 1} such that the map defined in (5.31) belongs

to W 1,2(∂Bρ). Combining this fact with (5.30) and the convergence of uh toward u in L1(∂Bρ),

we deduce that gh → g? uniformly in ∂Bρ, and that kh = k for h large enough.

Since gm? = um = vµ on ∂Bρ, and deg(vµ, ∂Bρ) = 0, we derive that deg(g?, ∂Bρ) = 0. We

can now apply Proposition 5.8 to produce minimizers wh of Eεh(·, Bρ) over W 1,2
gh

(Bρ). Then

wh → w? strongly in W 1,2(B1) where w? is the unique solution of (5.6). Arguing as in the proof

of Lemma 5.14 (Step 2), we obtain that wm? = vµ in Bρ, which leads for h large enough to∫
Bρ

|∇wh|2 dx 6 δ . (5.32)

Step 3. Consider the competitor ûh ∈ Gg(Ω) given by

ûh :=

{
uh in Ω \Bρ ,
(χHh + akχHch)wh in Bρ .

By minimality we have F 0
εh,g

(uh) 6 F 0
εh,g

(ûh), and since Juh ∩ ∂Bρ = {xh, yh}, we deduce that

F 0
εh

(uh, Bρ) 6 F
0
εh

(ûh, Bρ) = Eεh(wh, Bρ) + Lh , (5.33)
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where Lh := |xh − yh|. Since p(uh) = p(gh) on ∂Bρ, and in view of (5.30) and (5.32) (and our

choice of δ), we can apply Lemma 5.9 and Proposition 5.11 to derive that

F 0
εh

(uh, Bρ) > Eεh(wh, Bρ) +
1

8

∫
Bρ

|∇φh|2 dx+H1(Jφh ∩Bρ) , (5.34)

where φh := uh/wh satisfies φh = χHh + akχHch on ∂Bρ (and thus p(φh) = 1 on ∂Bρ). Putting

(5.33) and (5.34) together leads to

Lh >
1

8

∫
Bρ

|∇φh|2 dx+H1(Jφh ∩Bρ) . (5.35)

Let us now prove that

H1(Jφh ∩Bρ) = Lh . (5.36)

Up to a rotation, we assume that xh = (a, t) and yh = (b, t) with b − a = Lh. For s ∈ (a, b), we

write Vs := {s} ×R. Now, assume by contradiction that H1(Jφh ∩ Bρ) = Lh − γ for some γ > 0.

Then we infer from the coarea formula [Mag12, Theorem II.7.7] that

Lh − γ = H1(Jφh ∩Bρ) >
∫ b

a

H0(Jφh ∩Bρ ∩ Vs) ds . (5.37)

Set Ãh :=
{
s ∈ (a, b) : Jφh ∩ Bρ ∩ Vs = ∅

}
, and recall that φh ∈ W 1,2(Bρ ∩ Vs) for a.e. s ∈ Ãh.

From (5.37) we deduce that H1(Ãh) > γ. Since, φh = χHh + akχHch on ∂Bρ, we have φh = 1 on

Ch1 ∩ Vs and φh = ak on Ch2 ∩ Vs for a.e. s ∈ (a, b). Therefore,∫
Bρ∩Vs

|∂τφh|2 dH1 >
|1− ak|2

2ρ
>

cm
10r

for a.e. s ∈ (a, b) .

Integrating with respect to s (and recalling that r < cm/80) yields

1

8

∫
Bρ

|∇φh|2 dx+H1(Jφh ∩Bρ) >
1

8

∫
Ãh

∫
Bρ∩Vs

|∂τφh|2 dH1 dx+ Lh − γ

> Lh +
( cm

80r
− 1
)
γ > Lh ,

which contradicts (5.35).

By combining (5.35) and (5.36) we deduce that |∇p(φh)| 6 m|∇φh| = 0 in Bρ. Since p(φh) = 1

on ∂Bρ, we conclude that p(φh) = 1 in Bρ. In other words, φh takes values in Gm. Hence, there

is a Caccioppoli partition {Ej}m−1
j=0 of Bρ such that

φh =

m−1∑
j=0

ajχEj .

Recalling [AFP00, Section 4.4], we have

Lh = H1(Jφh ∩Bρ) = H1(∂E0 ∩Bρ) +
1

2

m−1∑
j,`=1, j 6=`

H1(∂Ej ∩ ∂E` ∩Bρ) . (5.38)

Using that χE0
= χHh on ∂Bρ, we have that H1(∂E0 ∩ Bρ) > Lh with equality if and only if

E0 = Hh ∩ Bρ. Therefore E0 = Hh ∩ Bρ and the sum on the right-hand side of (5.38) vanishes.

Since χEk = χHch on ∂Bρ, we conclude that Ek = Hc
h ∩ Bρ and Ej = ∅ for j 6∈ {0, k}. In other

words, φh = χHh + akχHch in Bρ, and thus uh = (χHh + akχHch)wh in Bρ.

To conclude, we observe that wh = (χHh + a−kχHch)uh. Since uh → u in L1(Ω) and Hh → H,

Proposition 5.8 tells us that wh → (χH? + a−kχHc?)u in C`loc(Bρ) for every ` ∈ N. �

Remark 5.17. In order to prove (5.36) one could also use a calibration argument (see [ABDM03,

Mor02]). However since our proof is elementary, we have decided to keep it this way.
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5.3.3. Smoothness and convergence near triple junctions. We now focus on the behavior of uh near

the points of T , i.e., triple junctions. It will be convenient to describe a triple junction in the

following way. First write for j = 0, 1, 2, Y jref :=
{
z ∈ C \ {0} : arg(z) ∈ (2jπ/3, 2(j + 1)π/3)

}
.

We say that an ordered triplet of open sets (Y 0, Y 1, Y 2) is a triple junction if there are x0 ∈ C

and θ ∈ [0, 2π) such that Y j = x0 + eiθY jref for j = 0, 1, 2. Then, we say that x0 is the center of

the triple junction (Y 0, Y 1, Y 2). In the statement below, we understand the convergence of triple

junctions in the sense of local Hausdorff convergence.

Proposition 5.18. For σ ∈ (0, σ0), let r ∈ (0,min{rσ, cm/128}) and x0 ∈ T . For h large enough,

there exist a triple junction (Y 0
h , Y

1
h , Y

2
h ) and distinct k1, k2 ∈ {1, . . . ,m − 1} such that uh =:

(χY 0
h

+ ak1χY 1
h

+ ak2χY 2
h

)wh with wh ∈W 1,2(Br(x0)), and wh minimizes Eεh(·, Br(x0)) under its

own boundary conditions. In addition, wh ∈ C∞(Br(x0)), (Y 0
h , Y

1
h , Y

2
h ) → (Y 0, Y 1, Y 2) for some

triple junction satisfying ∪j∂Y j ∩ Br(x0) = Γ ∩ Br(x0), and wh → (χY 0
h

+ a−k1χY 1
h

+ a−k2χY 2
h

)u

in C`loc(Br(x0)) for every ` ∈ N.

Proof. Step 1. Without loss of generality, we may assume that x0 = 0. From Remark 4.4, we infer

that there exist a triple junction (Y 0, Y 1, Y 2) centered in 0 and distinct k1, k2 ∈ {1, . . . ,m − 1}
such that the map (χY 0 + a−k1χY 1 + a−k2χY 2)u is smooth in B2r, and ∪j∂Y j ∩ B2r = Γ ∩ B2r.

Since the values of k1 and k2 play no role we will assume that k1 = 1 and k2 = 2 to keep notation

simpler. We write {a} := ∂Y 2∩∂Y 0∩∂Br, {b} := ∂Y 0∩∂Y 1∩∂Br, and {c} := ∂Y 1∩∂Y 2∩∂Br.
Choosing a sufficiently small radius 0 < κ < r/2, we can apply Proposition 5.16 in the balls

B2κ(a), B2κ(b), and B2κ(c), and infer that there exist half spaces H0
h, H1

h, and H2
h such that

H0
h ∩B2κ(a)→ Y 0 ∩B2κ(a), H1

h ∩B2κ(b)→ Y 1 ∩B2κ(b), H2
h ∩B2κ(c)→ Y 2 ∩B2κ(c), and

(χH0
h

+ a−2χ(H0
h)c)uh → (χY 0 + a−2χY 2)u in Ckloc(B2κ(a)) , (5.39)

(χ(H1
h)c + a−1χH1

h
)uh → (χY 0 + a−1χY 1)u in Ckloc(B2κ(b)) , (5.40)

(a−1χ(H2
h)c + a−2χH2

h
)uh → (a−1χY 1 + a−2χY 2)u in Ckloc(B2κ(c)) . (5.41)

In view of Proposition 5.13, we deduce that for h large enough, Juh ∩ (Br+κ \ Br−κ) is made of

three (disjoint) segments, each of them intersecting ∂Bt almost orthogonally (in particular at a

single point) for every t ∈ (r−κ, r+κ). As a consequence, for h large enough the open set (Br+κ \
Br−κ) \Juh has three connected components Z0

h, Z1
h, and Z2

h satisfying Zjh → (Br+κ \Br−κ)∩Y j .
Combining (5.39)-(5.40)-(5.41) with Proposition 5.16, we derive that

(χZ0
h

+ a−1χZ1
h

+ a−2χZ2
h
)uh → (χY 0 + a−1χY 1 + a−2χY 2)u in Ckloc(Br+κ \Br−κ) .

Step 2. Arguing as the proof of Lemma 5.14 (Step 1), we find a good radius ρh ∈ (r, r+ κ/2) such

that (5.18) holds (for h even larger). Rescaling variables if necessary, we may assume without too

much loss of generality that ρh = ρ is independent of h. To simplify, we will further assume that

actually ρ = r. Setting

gh := (χZ0
h

+ a−1χZ1
h

+ a−2χZ2
h
)uh ∈ C∞(∂Br) ,

estimate (5.30) holds, ‖gh‖L∞(Br) 6 1, and gh → g? := (χY 0 + a−1χY 1 + a−2χY 2)u uniformly on

∂Br. Once again, since gm? = vµ we have deg(g?, ∂Br) = 0. Then, we apply Proposition 5.8 to

produce minimizers wh of Eεh(·, Br) over W 1,2
gh

(Br), and wh → w? strongly in W 1,2(Br) where

w? is the unique solution of (5.6). Again, as in the proof of Lemma 5.14 (Step 2), we obtain that

wm? = vµ in Br, which leads to (5.32) for h large enough.

Step 3. By Step 1, we have Juh ∩ ∂Br = {xh, yh, zh} for h large enough, with xh → a, yh → b, and

zh → c. For h large enough, we can then find a triple junction (Y 0
h , Y

1
h , Y

2
h ) (which might not be

centered at the origin) such that {xh} = ∂Y 2
h ∩ ∂Y 0

h ∩ ∂Br, {yh} = ∂Y 0
h ∩ ∂Y 1

h ∩ ∂Br, and {zh} :=

∂Y 1
h ∩∂Y 2

h ∩∂Br. Obviously, Y jh → Y j as h→∞. Notice also that gh = (χY 0
h

+a−1χY 1
h

+a−2χY 2
h

)uh
on ∂Br.
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Next, we consider the competitor ûh ∈ Gg(Ω) given by

ûh :=

{
uh in Ω \Br ,
(χY 0

h
+ aχY 1

h
+ a2χY 2

h
)wh in Br .

By minimality we have F 0
εh,g

(uh) 6 F 0
εh,g

(ûh), and since Juh ∩ ∂Br = {xh, yh, zh}, we deduce that

F 0
εh

(uh, Br) 6 F
0
εh

(ûh, Br) = Eεh(wh, Br) +H1(Yh ∩Br) , (5.42)

where we have set Yh := ∪j∂Y jh . Once again p(uh) = p(gh) on ∂Br, and by (5.30) and (5.32), we

can apply Lemma 5.9 and Proposition 5.11 to derive that (5.34) holds, where φh := uh/wh satisfies

φh = χY 0
h

+ ak1χY 1
h

+ ak2χY 2
h

on ∂Br (and p(φh) = 1 on ∂Br). Combining (5.34) with (5.42) leads

to

H1(Yh ∩Br) >
1

8

∫
Br

|∇φh|2 dx+H1(Jφh ∩Br) . (5.43)

Our choice of r (small compare to cm) allows us to use the calibration in [Mor02, Example 5.4]

(with α = 16) to deduce that for h large enough the map χY 0
h

+ aχY 1
h

+ a2χY 2
h

is a Dirichlet

minimizer of the Mumford-Shah functional 4 [Mor02, Definition 3.1)]. As a consequence,

1

16

∫
Br

|∇φh|2 dx+H1(Jφh ∩Br) > H1(Yh ∩Br) . (5.44)

Putting together (5.43) and (5.44) yields∫
Br

|∇φh|2 dx = 0 and H1(Jφh ∩Br) = H1(Yh ∩Br) .

Arguing as in the proof of Proposition 5.16 (Step 3), we deduce that

φh =

m−1∑
k=0

akχEk

for a Caccioppoli partition {Ek}m−1
k=0 of Br satisfying

E0 ∩ (Br \Br−κ) = Zh0 ∩Br , E1 ∩ (Br \Br−κ) = Zh1 ∩Br , E2 ∩ (Br \Br−κ) = Zh2 ∩Br , (5.45)

and Ek ⊆ Br−κ for k 6∈ {0, 1, 2}.
Let us now consider an arbitrary Caccioppoli partition {Fk}m−1

k=0 of Br such that each Fk4Ek
is compactly contained in Br, and define the competitor ũh ∈ Gg(Ω) by

ũh :=

{
uh in Ω \Br ,
φwh in Br ,

with φ :=

m−1∑
k=0

akχFk .

By minimality F 0
εh,g

(uh) 6 F 0
εh,g

(ũh), which leads as before to

H1(Jφh ∩Br) 6 H1(Jφ ∩Br) .

As in the proof of Theorem 4.3 (Step 3), it implies that {Ek}m−1
k=0 is a minimal partition of Br,

so that Jφh ∩Br = ∪k∂Ek ∩Br is locally a finite union of segments (see [CLM15, Theorem 5.2]).

Since we already know that Jφh is made of three segments in a neighborhood of ∂Br, we conclude

that ∪k∂Ek ∩Br is made of finitely many segments with ∪k∂Ek ∩ ∂Br = {xh, yh, zh}5 . In view of

(5.45), we have {xh, yh} ⊆ ∂E0 ∩Br, and the connected component of ∂E0 ∩Br containing xh is a

polygonal curve joining xh to yh. Similarly, ∂E2 ∩Br contains a polygonal curve connecting xh to

zh. Set Γh to be the union of these two curves. Then Γh is a connected set containing {xh, yh, zh},
and contained in Jφh ∩Br. Since Yh ∩ Br is the unique solution of the Steiner problem relative

to the points {xh, yh, zh}, we have

H1(Yh ∩Br) = H1(Jφh ∩Br) > H1(Γh) > H1(Yh ∩Br) ,

4Even though the calibrations defined in [Mor02] (see also [ABDM03]) are given for centered triple junctions, we

can consider restrictions to Br of calibrations defined on a larger ball centered at the center of Yh.
5Here and in the rest of the proof, by an abuse of notation we identify ∂Ek ∩Br and ∂Ek ∩Br.
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and it follows that Jφh ∩Br = Γh ∩Br = Yh ∩Br. From (5.45) we conclude that

φh = χY 0
h

+ aχY 1
h

+ a2χY 2
h
,

that is uh = (χY 0
h

+ aχY 1
h

+ a2χY 2
h

)wh in Br.

Since uh → u in L1(Ω) and Y jh → Y j , Proposition 5.8 implies that wh → (χY 0 + a−1χY 1 +

a−2χY 2)u in Ckloc(Br) for every k ∈ N, and the proof is complete. �
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