BENO Michael Goldman 
  
Î T Merlet 
  
Vincent Millot 
email: millot@math.univ-paris-diderot.fr
  
  
  
A GINZBURG-LANDAU MODEL WITH TOPOLOGICALLY INDUCED FREE DISCONTINUITIES

We study a variational model which combines features of the Ginzburg-Landau model in 2D and of the Mumford-Shah functional. As in the classical Ginzburg-Landau theory, a prescribed number of point vortices appear in the small energy regime; the model allows for discontinuities, and the energy penalizes their length. The novel phenomenon here is that the vortices have a fractional degree 1/m with m 2 prescribed. Those vortices must be connected by line discontinuities to form clusters of total integer degrees. The vortices and line discontinuities are therefore coupled through a topological constraint. As in the Ginzburg-Landau model, the energy is parameterized by a small length scale ε > 0. We perform a complete Γ-convergence analysis of the model as ε ↓ 0 in the small energy regime. We then study the structure of minimizers of the limit problem. In particular, we show that the line discontinuities of a minimizer solve a variant of the Steiner problem. We finally prove that for small ε > 0, the minimizers of the original problem have the same structure away from the limiting vortices. Contents 1. Introduction 1 2. Preliminaries 7 3. The Γ-convergence results 18 4. The limiting problem 37 5. Structure of minimizers at small ε > 0 45

Introduction

The purpose of this article is to study the asymptotic behavior of a family of functionals combining aspects of both Ginzburg-Landau [START_REF] Bethuel | Progress in Nonlinear Differential Equations and their Applications[END_REF][START_REF] Serfaty | Vortices for Ginzburg-Landau equations: with magnetic field versus without[END_REF] and Mumford-Shah [AFP00, [START_REF] Fusco | An overview of the Mumford-Shah problem[END_REF][START_REF] Lemenant | A selective review on Mumford-Shah minimizers[END_REF] functionals in dimension two. Those extend the standard Ginzburg-Landau energy, and give rise to the formation of vortex points connected by line defects in the small energy regime. Interestingly, vortices and line defects are coupled through topological constraints.

To be more specific, let us introduce the mathematical context. We consider for m ∈ N, m 2, the group of m-th roots of unity G m = 1, a, a 2 , . . . , a m-1 with a := e 2iπ/m . We are interested in maps taking values in the quotient space C/G m . We identify C/G m with the round cone The map P induces an isometry between C/G m and N , and restricted to C \ {0} it defines a covering map of N \ {0} of degree m. For a given open set Ω and p ≥ 1 we can thus say that u ∈ W 1,p (Ω, C/G m ) if P(u) ∈ W 1,p (Ω, N ) (where we say that a map v ∈ W 1,p (Ω, N ) if v takes values in N and v ∈ W 1,p (Ω, R 3 )). For a simply connected smooth bounded domain Ω ⊆ R 2 and a "small" parameter ε > 0, the standard Ginzburg-Landau energy over Ω of a vector valued W 1,2 -map reads

N := (z, t) ∈ C × R : t = |z| m 2 -1 ⊆ R 3
E ε (u) := 1 2 Ω |∇u| 2 + 1 2ε 2 (1 -|u| 2 ) 2 dx .
Here, the main functional under investigation is defined for u ∈ SBV 2 (Ω) satisfying the constraint P(u) ∈ W 1,2 (Ω; N ) by

F 0 ε (u) := E ε P(u) , +H 1 (J u ) , (1.1) 
where J u denotes the jump set of u (see [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF] and Section 2.3 below). We stress that F 0 ε extends E ε , that is F 0 ε (u) = E ε (u) whenever u ∈ W 1,2 (Ω), which comes from the isometric character of P. In the same way F 0 ε appears as a Mumford-Shah type functional since

F 0 ε (u) = 1 2 Ω |∇u| 2 + 1 2ε 2 (1 -|u| 2 ) 2 dx + H 1 (J u ) ,
where ∇u denotes the absolutely continuous part of the measure Du. The constraint P(u) ∈ W 1,2 (Ω; N ) rephrases the fact that the functional is restricted to the class u ∈ SBV 2 (Ω) : u + /u -∈ G m on J u . In particular, only specific discontinuities in the orientation are allowed.

The case m = 2, which consists in identifying u and -u, is of special interest as it appears in many physical models, see Section 1.2 below.

We also consider an Ambrosio-Tortorelli regularization of (1.1) where the jump set J u is (formally) replaced by the zero set {ψ ∼ 0} of some scalar phase field function ψ, and the length H 1 (J u ) by a suitable energy of ψ. We introduce a second small parameter η and consider for u ∈ L 2 (Ω) and ψ ∈ W 1,2 (Ω; [0, 1]) satisfying P(u) ∈ W 1,2 (Ω; N ) and uψ ∈ W 1,2 (Ω), the functional

F η ε (u, ψ) := E ε P(u) + 1 2 Ω η|∇ψ| 2 + 1 η (1 -ψ) 2 dx . (1.2)
Compared to the original Ambrosio-Tortorelli functional [AT90, AT92], u and ψ are only coupled through the constraint uψ ∈ W 1,2 (Ω), and not in the functional itself. As for F 0 ε , the functional F η ε extends E ε in the sense that F η ε (u, 1) = E ε (u) whenever u ∈ W 1,2 (Ω). We aim to study low energy states (in particular minimizers) of the functionals F 0 ε and F η ε under Dirichlet boundary conditions of the form u = g on ∂Ω for a prescribed smooth g ∈ C ∞ (∂Ω; S 1 ). Concerning F 0 ε , we work in the class G g (Ω) of maps satisfying P(u) = P(g) on ∂Ω. Then, we penalize possible deviations from g on ∂Ω by considering the modified energy F 0 ε,g (u) := F 0 ε (u) + H 1 {u = g} ∩ ∂Ω . Notice that such a penalization is necessary in order to have lower semi-continuity of the functional (see for instance [START_REF] Giaquinta | Functionals with linear growth in the calculus of variations[END_REF]). For the functional F η ε , we restrict ourselves to admissible pairs (u, ψ)

satisfying uψ = g and ψ = 1 on ∂Ω, and write H g (Ω) the corresponding class. In this setting, the functionals F 0 ε,g and F η ε still extend E ε restricted to W 1,2 g (Ω), so that min

Gg(Ω) F 0 ε,g min W 1,2 g (Ω)
E ε and min

Hg(Ω) F η ε,g min W 1,2 g (Ω) E ε . (1.3)
As in the classical Ginzburg-Landau theory [START_REF] Bethuel | Progress in Nonlinear Differential Equations and their Applications[END_REF], we assume that the winding number (or degree) is strictly positive, i.e., d := deg(g, ∂Ω) > 0 .

In this way, g does not admit a continuous S 1 -valued extension to Ω. This topological obstruction is responsible for the formation of vortices (point singularities) in any configuration of small energy E ε as ε → 0, and the minimum value of E ε over W 1,2 g is given by πd| log ε| at first order. In view of (1.3), creating discontinuities in the orientation may lead to configurations of smaller energy. Indeed, direct constructions of competitors show that the minimum value of F 0 ε,g or F η ε is less than πd m | log ε| at first order, and thus (almost) minimizers must have line singularities (or "diffuse" line singularities for F η ε ), at least for ε (and η) small enough.

1.1. Heuristics. The starting point is the identity

E ε P(u) = 1 m 2 E ε p(u) + m 2 -1 m 2 E ε |p(u)| .
Following the standard theory of the Ginzburg-Landau functional [START_REF] Bethuel | Progress in Nonlinear Differential Equations and their Applications[END_REF][START_REF] Serfaty | Vortices for Ginzburg-Landau equations: with magnetic field versus without[END_REF], one may expect that for configurations u of small energy, the leading term is 1 m 2 E ε p(u) , and that p(u) has (classical) Ginzburg-Landau energy E ε close to the one of the minimizers under the boundary condition p(u) = p(g) on ∂Ω. Since p(g) = g m , its topological degree equals md, and p(u) should have md distinct vortices of degree +1, i.e., md distinct points x k in Ω such that p(u)(x k ) = 0 and

p(u)(x) ∼ α k x -x k |x -x k | for ε |x -x k | 1 and some constant α k ∈ S 1 .
In terms of E ε , the energetic cost of each vortex is π| log ε| at leading order, and therefore E ε P(u) should be less than πd m | log ε|, again at leading order. This discussion led us to consider the energy regimes for u ∈ G g (Ω) or (u, ψ) ∈ H g (Ω), respectively. Once again, it corresponds to the energy regime of md vortices of degree +1 in the variable p(u). By an elementary topological argument, one can see that any pre-image by p of x-x k |x-x k | must have at least one discontinuity line departing from x k , and has a (formal) winding number around x k equal to 1/m (in other words, the phase has a jump of 2π/m around x k ). For this reason, any configuration u satisfying (1.4) must be discontinuous. In the sharp interface case (1.1), we actually expect that each connected component of the jump set J u connects mk vortices for some k ∈ {1, • • • , d}, since the winding number around any such connected component must be an integer. A similar picture should hold in the diffuse case (1.2) with J u replaced by the zero set {ψ = 0}. The energy associated with discontinuities is their length (or diffuse length), and there should be a competition between this term which favors clustered vortices and the so-called renormalized energy from Ginzburg-Landau theory which is a repulsive (logarithmic) point interaction.

F 0 ε,g (u 
1.2. Motivation. Our original motivation for studying the functionals (1.2) and (1.1) stemmed from the analysis of the defect patterns observed in the so-called ripple or P β phase in biological membranes such as lipid bilayers [Sac95, BFL91, LS07, LM93, RS83]. In this phase, which is intermediate between the gel and the liquid phase, periodic corrugations are observed at the surface of the membranes (see [START_REF] Ruppel | On defects in different phases of two-dimensional lipid bilayers[END_REF] for instance). Two different kinds of periodic sawtooth profiles are observed. A symmetric one and an asymmetric one respectively called Λ and Λ/2-phases (see Figure 2 for a schematic representation of a cross-section). In the asymmetric phase, only defects of integer degree are allowed while in the symmetric phase half integer degree vortices are also permitted. Since two vortices of degree 1/2 have an energetic cost of order π 2 | log ε| (where ε is the lengthscale of the vortex) while a vortex of degree 1 has a cost of order π| log ε|, it is expected that even in the regime where the Λ/2-phase is favored (which happens for nearly flat membranes), a phase transition occurs around the defects with the nucleation of a small island of Λ-phase leading to the formation of two vortices of degree 1/2 (see Figure 3). In the model proposed by [START_REF] Belaya | Theory of the ripple phase coexistance[END_REF], the order parameter is given by f (ϕ), where f is a fixed profile (corresponding to the one on the right part of Figure 2) and ϕ is the phase modulation. Their functional corresponds to F η ε , for ε = η, m = 2 and u = ∇ϕ (so that u represents the local speed at which the profile f is modulated). In [START_REF] Belaya | Theory of the ripple phase coexistance[END_REF], the authors further argue that the constraint of u being a gradient can be relaxed so that we recover completely our model.

We also point out that (1.1) and (1.2) have connections with many other models appearing in the literature. As an example, we can mention the issue of orientability of Sobolev vector fields into RP 1 , see [START_REF] Ball | Orientability and energy minimization in liquid crystal models[END_REF]. More generally, our functionals resemble the ones suggested recently to model liquid crystals where both points and lines singularities appear, see [START_REF] Bedford | Function spaces for liquid crystals[END_REF]. Similarly to [START_REF] Ball | Orientability and energy minimization in liquid crystal models[END_REF], a central issue here is to find square roots (and more generally m-th roots) of W 1,pfunctions into S 1 (see [START_REF] Ignat | Lifting of RP d-1 -valued maps in bv[END_REF]), and this is intimately related to the question of lifting of Sobolev functions into S 1 , see [START_REF] Bourgain | Lifting in Sobolev spaces[END_REF][START_REF] Demengel | Une caractérisation des applications de W 1,p (B N , S 1 ) qui peuvent être approchées par des fonctions régulières[END_REF][START_REF] Brezis | W 1,1 -maps with values into S 1 . In Geometric analysis of PDE and several complex variables[END_REF][START_REF] Merlet | Two remarks on liftings of maps with values into S 1[END_REF][START_REF] Dávila | Lifting of BV functions with values in S 1[END_REF].

While completing this article, we have been aware of the work [START_REF] Badal | Γ-convergence analysis of a generalized XY model: fractional vortices and string defects[END_REF], where the authors perform an analogous Γ-convergence analysis for a discrete model, obtaining in the continuous limit almost the same functional as ours. These authors were motivated by applications to liquid crystals, micromagnetics, and crystal plasticity, and we refer to their introduction for more references on the physical literature.

1.3. Main results. Our first main theorem is a Γ-convergence result in the energy regime (1.4) (we refer to [START_REF] Maso | An introduction to Γ-convergence[END_REF][START_REF] Braides | Γ-convergence for beginners[END_REF] for a complete exposition on Γ-convergence theory). To describe the limiting functional, we need to introduce the following objects. First, set A d to be the family of all atomic measures of the form µ = 2π md k=1 δ x k , for some md distinct points x k ∈ Ω. To µ ∈ A d , we associate the so-called canonical harmonic map v µ defined by

v µ (x) := e iϕµ(x) md k=1 x -x k |x -x k | with ∆ϕ µ = 0 in Ω , v µ = g m on ∂Ω .
In turn, the renormalized energy W(µ) can be defined as the finite part of the energy of v µ , i.e.,

W(µ) := lim r↓0 1 2 Ω\Br(µ) |∇v µ | 2 dx -πmd| log r| ,
and we refer to (2.15) for its explicit expression.

We provide below a concise version of the Γ-convergence result, complete statements can be found in Theorem 3.1 and Theorem 3.2.

Theorem 1.1. The functionals {F 0 ε,g -πd m | log ε|} and {F η ε -πd m | log ε|} (respectively restricted to G g (Ω) and H g (Ω)) Γ-converge in the strong L 1 -topology as ε → 0 and η → 0 to the functional

F 0,g (u) := 1 2m 2 Ω |∇ϕ| 2 dx + 1 m 2 W(µ) + mdγ m + H 1 J u ) + H 1 ({u = g} ∩ ∂Ω
defined for u ∈ SBV (Ω; S 1 ) such that u m = e iϕ v µ for some µ ∈ A d and ϕ ∈ W 1,2 (Ω) satisfying e iϕ = 1 on ∂Ω. The constant γ m , referred to as core energy (see (3.1)), only depends on m.

We point out that there is of course a compactness result companion to Theorem 1.1. Namely, if a sequence {u ε } satisfies the energy bound (1.4), and is uniformly bounded in L ∞ (Ω), then {u ε } converges up to a subsequence in L 1 (Ω), and {p(u ε )} converges (again up to a subsequence) in the weak W 1,p -topology for every p < 2. As can be expected, the proof of Theorem 1.1 combines ideas coming from the study of the Ginzburg-Landau functional [BBH94, SS04, CJ99, AP14, LX99, JS02], together with ideas from free discontinuities problems [AFP00, Bra98, BCS07, AT92]. Concerning the compactness part, we have included complete proofs to provide a rather selfcontained exposition. Although some estimates (such as the W 1,p bound, see Lemma 2.12) are certainly known to the Ginzburg-Landau community (see for instance [START_REF] Colliander | Ginzburg-Landau vortices: weak stability and Schrödinger equation dynamics[END_REF][START_REF] Lin | On the incompressible fluid limit and the vortex motion law of the nonlinear Schrödinger equation[END_REF]), they have never been used in the context of Γ-convergence. The Γ-lim inf inequality is a relatively standard combination of techniques developed in [CJ99, AP14, BCS07], while the construction of recovery sequences is a much more delicate issue. The main difficulty comes from the the constraint u m = e iϕ v µ , which prevents us to apply directly the existing approximation results by functions with a smooth jump set, see e.g. [CT99, BCP96, DPFP17, BCG14]). Our approach uses a (new) regularization technique (see Lemma 3.17) which is somehow reminiscent of [START_REF] Ambrosio | Approximation of functionals depending on jumps by elliptic functionals via Γ-convergence[END_REF] and could be of independent interest. Another difficulty comes from the optimal profile problem defining the core energy γ m . The underlying minimization problem involves the Ginzburg-Landau energy of N -valued maps, and one has to find almost minimizers which can be lifted into C-valued maps in SBV 2 , see Section 3.2.

The Γ-convergence result applies to minimizers of either F 0 ε,g or F η ε (whose existence is proven in Theorems 2.7 & 2.8). It shows that they converge in L 1 (Ω) to a minimizer u of F 0,g . Our second main result deals with the characterization of such minimizer u. It is based on the following observations. First, from the explicit form of F 0,g , it follows that ϕ = 0 in the representation u m = e iϕ v µ . In particular, u can be characterized as a solution of the minimization problem

min 1 m 2 W(µ) + H 1 J u ) + H 1 ({u = g} ∩ ∂Ω : u ∈ SBV (Ω; S 1 ) , u m = v µ for some µ ∈ A d .
In turn, this later can be equivalently rewritten as

min µ∈A d min 1 m 2 W(µ) + H 1 J u ) + H 1 ({u = g} ∩ ∂Ω : u ∈ SBV (Ω; S 1 ) , u m = v µ .
As a consequence, fixing µ ∈ A d and solving

L(µ) := min H 1 J u ) + H 1 ({u = g} ∩ ∂Ω : u ∈ SBV (Ω; S 1 ) , u m = v µ ,
we are left with a finite dimensional problem to recover the minimizers of F 0,g . Given µ ∈ A d , we compare in Theorem 1.2 below the minimization problem L(µ) with the following variant of the Steiner problem (see e.g. [START_REF] Gilbert | Steiner minimal trees[END_REF]):

Λ(µ) := min H 1 (Γ) : Γ ⊆ Ω compact with spt µ ⊆ Γ and every connected component Σ satisfies Card(Σ ∩ spt µ) ∈ mN .
We shall see that any minimizer Γ of Λ(µ) is made of at most d disjoint Steiner trees, i.e., connected trees made of a finite union of segments meeting either at points of spt µ, or at triple junction making a 120 • angle. From now on, when talking about triple junctions we always implicitly include this condition on the angles.

Our second main result is the following theorem, in which we assume Ω to be convex (to avoid issues at the boundary).

Theorem 1.2. Assume that Ω is convex. For every µ ∈ A d , L(µ) = Λ(µ). Moreover, if u is a minimizer for L(µ), then its jump set J u is a minimizer for Λ(µ), u ∈ C ∞ (Ω \ J u ), and u = g on ∂Ω. Vice-versa, if Γ is a minimizer for Λ(µ), then there exists a minimizer u for L(µ) such that J u = Γ.

To complete the picture, we shall give several examples illustrating the fact that the geometry of minimizers for Λ(µ) strongly depends on m, d, and the location of spt µ. In the case m = 2, a minimizer for Λ(µ) is always given by a disjoint union of d segments connecting the points of spt µ (see Proposition 4.7). However, for m 3 and d 2, minimizers are not always the disjoint union of d Steiner trees containing exactly m vortices (see Proposition 4.8 and Proposition 4.10).

In our third and last main result, we use the characterization of the minimizers of F 0,g provided by Theorem 1.2 to show that for ε > 0 small enough, minimizers of F 0 ε,g have essentially the same structure away from the limiting vortices.

Theorem 1.3. Assume that Ω is convex. Let ε h → 0, and let u h be a minimizer of F 0 ε h ,g over G g (Ω). Assume that u h → u in L 1 (Ω) as h → ∞ for some minimizer u of F 0,g . Setting µ := curl j(u m ), for every σ > 0 small enough and every h large enough, the following holds:

(i) J u h \ B σ (µ) is a compact subset of Ω \ B σ (µ)
made of finitely many segments, meeting by three at an angle of 120 • (i.e., triple junctions).

(ii

) u h ∈ C ∞ Ω \ (B σ (µ) ∪ J u h ) and u h = g on ∂Ω.
In addition, (iv) J u h converges in the Hausdorff distance to J u .

(v) u h → u in C k loc (Ω \ J u ) ∩ C 1,α loc (Ω \ J u )
for every k ∈ N and α ∈ (0, 1).

In proving Theorem 1.3, we actually show a stronger result that we now briefly describe (see Theorem 5.1, Remark 5.2, and Section 5.1). In each (sufficiently small) ball B r (x) ⊆ Ω \ B σ (µ) and ε small enough, u ε is bounded away from zero, and it can be decomposed as u ε = φ ε w ε where φ ε ∈ SBV 2 (B r (x)) and w ε is minimizing the classical Ginzburg-Landau energy E ε (•, B r (x)) with respect to its own boundary condition (and as a consequence, w ε is smooth). The proof of this decomposition relies on the energy splitting discovered by Lassoued & Mironescu [START_REF] Lassoued | Ginzburg-Landau type energy with discontinuous constraint[END_REF]. Combined with the classical Wente estimate [START_REF] Wente | An existence theorem for surfaces of constant mean curvature[END_REF][START_REF] Brezis | Multiple solutions of H-systems and Rellich's conjecture[END_REF], it leads to a lower expansion of the energy of the form

F 0 ε (u ε , B r (x)) E ε (w ε , B r (x)) + 1 α Br(x) |∇φ ε | 2 dx + αH 1 J φε ∩ B r (x) ,
for some constant α > 0 (see Proposition 5.11). Using suitable competitors, we deduce that φ ε is a Dirichlet minimizer the Mumford-Shah functional in B r (x). Applying the calibration results of [START_REF] Alberti | The calibration method for the Mumford-Shah functional and free-discontinuity problems[END_REF][START_REF] Mora | The calibration method for free-discontinuity problems on vector-valued maps[END_REF], we infer that φ ε takes values into the finite set G m , reducing the problem to a minimal partition problem in B r (x). The classical regularity results on two dimensional minimal clusters then yields the announced geometry of the jump set.

The paper is organized as follows. Section 2 is devoted to a full set of preliminary results. First, we present some fine properties of the BV -functions under investigation, and then we prove existence of minimizers for F η ε and F 0 ε,g . In a third part, we provide all the material and results concerning the Ginzburg-Landau energy that we shall use. The Γ-convergence result of Theorem 1.1 is the object of Section 3. In Section 4, we prove Theorem 1.2 and give the aforementioned examples of Λ(µ)-minimizers. In the last Section 5, we return to the analysis of minimizers of F 0 ε,g , and prove Theorem 1.3.

Preliminaries

2.1. Conventions and notation. Throughout the paper we identify the complex plane C with R 2 . We say that a property holds a.e. if it holds outside a set of Lebesgue measure zero.

• For a, b ∈ R 2 , we write a ∧ b := det(a, b); • For a ∈ R 2 and M = (b 1 , . . . , b n ) ∈ M 2×n (R), we write a ∧ M := t (a ∧ b 1 , . . . , a ∧ b n ) ∈ R n ; • For M ∈ M d×n (R), we write |M | := |tr(M t M )| 1/2 ; • For a = (a 1 , a 2 ) ∈ R 2 we let a ⊥ := (-a 2 , a 1 )
• for a set Ω ⊆ R 2 , we call ν its external normal and τ its tangent chosen so that (ν, τ ) is a direct basis (in particular ν ⊥ = τ and ∂Ω is oriented counterclockwise); • The distributional derivative is denoted by Df ;

• For v ∈ R n , we let ∂ v f := Df (v) be the partial derivative of f in the direction v and if v = e l is a vector of the canonical basis of R n then we simply write ∂ l f := ∂ e l f ; • ∇f = (∂ l f k ) k,l
is the Jacobian matrix of the vector valued function f ; • For j = (j 1 , j 2 ), we denote by curl j := ∂ 1 j 2 -∂ 2 j 1 the rotational of j; • For A ⊆ R n , we denote by B r (A) the tubular neighborhood of A of radius r. For a measure µ, we simply write B r (µ) := B r (spt µ); • In most of the paper, we work with Ω a given bounded open and simply connected set.

Nevertheless, since in sections 4 and 5 we will require that Ω is convex, we will repeat at the beginning of each section the hypothesis we are making on Ω; • We shall not relabel subsequences if no confusion arises. 2.2. Finite subgroups of S 1 and isometric cones. Given an integer m 2, we denote by G m the subgroup of S 1 made of all m-th roots of unity, i.e., G m = 1, a, a 2 , . . . , a m-1 with a := e 2iπ/m .

We consider the quotient space C/G m endowed with the canonical distance In this way we identify C/G m with the round cone of R 3 ,

dist [z 1 ], [z 2 ] := min z1∈[z1], z2∈[z2] |z 1 -z 2 | = min k=0,...,m-1 |z 1 -a k z 2 | , where [z] is the equivalence class of z ∈ C. We note that C/G m is isometrically embedded into R 3 C × R
N := P(C) = (x, t) ∈ R 2 × R : t = |x| m 2 -1 ,
and one has dist [z 1 ], [z 2 ] = d N P(z 1 ), P(z 2 ) for every z 1 , z 2 ∈ C, where d N denotes the geodesic distance on N induced by the Euclidean metric (in particular, |P(z)| = |z| for every z ∈ C). Similarly, S 1 /G m coincides with the horizontal circle

S := (x, t) ∈ N : |x| = 1/m, t = 1 -1/m 2 = P(S 1 ) .
Note that in the case m = 2, S S 1 /{±1} is the real projective line RP 1 . Finally, we point out that P is smooth away from the origin, and since P is isometric,

|∇P(z)v| = |v| for every v ∈ R 2 and every z ∈ C \ {0} , (2.1)
where ∇P(z) ∈ M 3×2 (R) is the differential of P at z represented in real coordinates. Similarly, we write ∇p(z) ∈ M 2×2 (R) for the differential of p at z.

2.3.

BV and SBV functions, weak Jacobians. Concerning functions of bounded variations, their fine properties, and standard notations, we refer to [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF]. Let us briefly introduce the main properties and definitions used in the paper. For an open subset Ω of R 2 , we first recall that BV (Ω, R q ) is the space of functions of bounded variation in Ω, i.e., functions u ∈ L 1 (Ω, R q ) for which the distributional derivative Du is a finite (matrix valued) Radon measure on Ω. We recall that for a function u ∈ BV (Ω, R q ), we have the following decomposition

Du = ∇udx + D j u + D c u ,
where

D j u := (u + -u -) ⊗ ν u H 1 J u . (2.2)
The functions u ± denote the traces of u on the jump set J u which is a countably H 1 -rectifiable set. Since all the properties we will consider are oblivious to modifications of J u on sets of zero H 1 measure, we shall not distinguish between J u and the singular set of u (usually denoted as S u ).

In particular, when J u is regular or a finite union of polygonal curves, we will also not distinguish between J u and its closure so that we shall often consider it as a compact set. Analogously, for sets E of finite perimeter, i.e., such that χ E ∈ BV (Ω), we simply denote by ∂E the reduced boundary.

The space SBV (Ω, R q ) is defined as the subspace of BV (Ω, R q ) made of functions u satisfying D c u ≡ 0. For a finite exponent p 1, the subspace SBV p (Ω, R q ) ⊆ SBV (Ω, R q ) is defined as

SBV p (Ω, R q ) := u ∈ SBV (Ω, R q ) : ∇u ∈ L p (Ω) and H 1 (J u ) < ∞ .
Remark 2.1 (pre-Jacobian). For a smooth function u, we define the pre-Jacobian of u as j(u) := u ∧ ∇u = 2 det(∇u), which also writes j(u) = Re(iu∇ū) in complex notation. Notice that if u = ρe iθ for some smooth functions ρ and θ, then j(u) = ρ 2 ∇θ so that j(u) measures the variation of the phase. In particular, if Ω is simply connected and u takes values into S 1 , then curl j(u) = 0 and we can write j(u) = ∇θ, hence recovering the phase θ.

To our purposes, we need to extend the notion of pre-Jacobian to BV -maps. Definition 2.2. For u ∈ BV (Ω), we define the pre-Jacobian of u to be the measurable vector field j(u) := u ∧ ∇u , where ∇u is the absolutely continuous part of Du.

It belongs to L 1 (Ω) whenever u ∈ L ∞ (Ω) or ∇u ∈ L 2 (Ω) (since BV (Ω) is continuously embedded in L 2 (Ω)).
Lemma 2.3. Let u ∈ BV (Ω). Then V := P(u) and v := p(u) are of bounded variation in Ω, and

(i) V (x) ∈ N for a.e. x ∈ Ω; (ii) J V ⊆ J u ; (iii) V + , V -, ν V = P(u + ), P(u -), ν u on J V ; (iv) P u + (x) = P u -(x) for every x ∈ J u \ J V ; (v) |∇V | = |∇u| a.e. in Ω; (vi) |D c V | = |D c u|; (vii) j(v) = mj(u) a.e. in Ω.
Proof. The fact that V ∈ BV (Ω; R 3 ), as well as items (i), (ii), (iii), and (iv), is a direct consequence of the 1-Lipschitz property of P, see [ 

Z u := x ∈ Ω \ J u : u(x) = 0 .
For k ∈ N, we set

A 0 := x ∈ Ω \ J u : |u(x)| > 1 , A k := x ∈ Ω \ J u : 2 -k < |u(x)| 2 -k+1 , so that Ω \ Z u = ∪ k A k
with a disjoint union. Then, for each k ∈ N, we consider P k ∈ C 1 (C; R 3 ) such that P k (z) = P(z) whenever |z| > 2 -k . Using the chain-rule formula in BV (see [AFP00, Theorem 3.96]), for P k (u) and the locality of the derivative of a BV function (see [AFP00, Remark 3.93]), we readily obtain (v) and (vi).

To prove (vii), we first notice that for z ∈ C \ {0} and X ∈ R 2 , we have

p(z) ∧ (∇p(z)X) = mz ∧ X .
Therefore, if x ∈ Ω \ Z u is a Lebesgue point for ∇u and ∇V , we have for each l ∈ {1, 2},

v(x) ∧ ∂ l v(x) = p(u(x)) ∧ ∇p(u(x))∂ l u(x) = mu(x) ∧ ∂ l u(x) ,
and the proof is complete.

Corollary 2.4. If u ∈ BV (Ω) is such that P(u) ∈ W 1,p (Ω; N ) for some p 1, then u ∈ SBV (Ω)
and ∇u ∈ L p (Ω). Moreover, u ± (x) = 0 for every x ∈ J u , and

u + (x)/u -(x) ∈ G m . If, in addition, |u| δ a.e.
in Ω for some δ > 0, then u ∈ SBV p (Ω) and |D j u| δ|a -1|H 1 J u .

Proof. The fact that u ∈ SBV (Ω) and ∇u ∈ L p (Ω) is a direct consequence of (vi) and (v) in Lemma 2.3, respectively. Next, assume that u + (x) = 0 for some x ∈ J u . Then (iv) in Lemma 2.3 yields u -(x) = 0, so that x ∈ J u . Hence u ± does not vanish on J u . Moreover from (iv) in Lemma 2.3, we directly infer that u + /u -∈ G m \ {1} on J u . Finally, if |u| δ > 0 a.e. in Ω, then |u ± | δ on J u . Therefore, for every x ∈ J u we have

|u + (x) -u -(x)| δ|u + (x)/u -(x) -1| δ min k=1,...,m-1 |a k -1| = δ|a -1| ,
and thus |D j u| δ|a -1|H 1 J u by (2.2). In particular, H 1 (J u ) < ∞ and u ∈ SBV p (Ω).

Definition 2.5 (weak Jacobian). For an open set Ω ⊆ R 2 and u ∈ BV (Ω) such that j(u) ∈ L 1 (Ω), the weak Jacobian of u is defined as the distributional curl in Ω of the vector field j(u). It belongs to (C 0,1 0 (Ω)) * , and its action on a Lipschitz function φ ∈ C 0,1 0 (Ω) that vanishes on the boundary is

curl j(u), φ = - Ω j(u) • ∇ ⊥ φ dx .
Lemma 2.6. Assume that Ω ⊆ R 2 is simply connected. Let u 1 , u 2 ∈ SBV (Ω; S 1 ) be such that p(u k ) ∈ W 1,1 (Ω; S 1 ) for k = 1, 2. Then, the following properties are equivalent (i) curl j(u 1 ) = curl j(u 2 ) in D (Ω);

(ii) there exist ϕ ∈ W 

u 2 = m k=1 a k χ E k e iϕ u 1 .
(2.3)

In addition, if P(u 1 ) = P(u 2 ) and (i) holds, then ϕ is a multiple constant of 2π/m.

Proof. Define u := u 2 u 1 ∈ SBV (Ω; S 1 ) and v := p( u) ∈ W 1,1 (Ω; S 1 ). By Corollary 2.4, we have H 1 (J u ) < ∞. Then Lemma 2.3, together with the fact that p(ũ) = p(u 2 )p(u 1 ), leads to

j( v) = j p(u 2 ) p(u 1 ) = j(p(u 2 )) -j(p(u 1 )) = m j(u 2 ) -j(u 1 ) .
If (i) holds, then curl j( v) = 0 in D (Ω). By [START_REF] Demengel | Une caractérisation des applications de W 1,p (B N , S 1 ) qui peuvent être approchées par des fonctions régulières[END_REF] (see also [START_REF] Brezis | W 1,1 -maps with values into S 1 . In Geometric analysis of PDE and several complex variables[END_REF]Theorem 7]) there exists ϕ ∈ W 1,1 (Ω) such that v = e imϕ . Consequently, p(e -iϕ u) = 1 and thus e -iϕ u ∈ BV (Ω; G m ), so that e -iϕ u = m-1 k=0 a k χ E k for some Caccioppoli partition {E k } m-1 k=0 of Ω. This proves (2.3). When p(u 1 ) = p(u 2 ), then v = 1, and we infer that ϕ(x) ∈ 2π m Z for a.e. x ∈ Ω. Since ϕ ∈ W 1,1 (Ω) we conclude that ϕ is constant.

If (ii) holds, then for each l ∈ {1, 2},

∂ l u 2 = m-1 k=0 a k χ E k e iϕ ∂ l u 1 + i∂ l ϕu 1 a.e. in Ω .
Consequently, j(u 2 ) = j(u 1 ) + ∇ϕ a.e. in Ω, and (ii) follows.

2.4. Energies, functional classes, and existence of minimizers. Throughout this section, we assume that Ω ⊆ R 2 is a smooth, bounded, and simply connected domain. For q ∈ {2, 3} and ε > 0, we consider the Ginzburg-Landau functional

E ε : W 1,2 (Ω; R q ) → [0, ∞) defined by E ε (u) := 1 2 Ω |∇u| 2 dx + 1 4ε 2 Ω (1 -|u| 2 ) 2 dx .
For any Borel set A ⊆ Ω, we let

E ε (u, A) := 1 2 A |∇u| 2 dx + 1 4ε 2 A (1 -|u| 2 ) 2 dx .
We shall use the analogous notation for the localized version of most of the energies under consideration.

For u ∈ SBV 2 (Ω) such that v := p(u) = u m /|u| m-1 ∈ W 1,2 (Ω), we have (by Lemma 2.3)

E ε (P(u)) = 1 m 2 E ε (v) + m 2 -1 m 2 E ε (|v|) =: G ε (v) .
(2.4)

Equivalently, the functional G ε : W 1,2 (Ω) → [0, ∞) can be defined by

G ε (v) = 1 2m 2 Ω |∇v| 2 + (m 2 -1) ∇|v| 2 dx + 1 4ε 2 Ω (1 -|v| 2 ) 2 dx .
(2.5)

For the phase field we consider the functionals I η : W 1,2 (Ω; [0, 1]) → [0, ∞) defined for η > 0 as

I η (ψ) := η 2 Ω |∇ψ| 2 dx + 1 2η Ω (1 -ψ) 2 dx .
The classes of functions we are interested in are the following

H(Ω) := (u, ψ) ∈ L 2 (Ω) × W 1,2 (Ω; [0, 1]) : P(u) ∈ W 1,2 (Ω; N ) and ψu ∈ W 1,2 (Ω) , and 
G(Ω) := u ∈ SBV 2 (Ω) : P(u) ∈ W 1,2 (Ω; N ) .
Notice that in the definition of H(Ω), the condition ψu ∈ W 1,2 (Ω) degenerates on the set {ψ = 0} allowing for discontinuities of u. Typically, u may jump through lines where ψ vanishes and (since P(u) does not jump) the jump satisfies formally the constraint P(u + ) = P(u -) in the spirit of Lemma 2.3 (iv).

On the classes H(Ω) and G(Ω), we define the functionals

F η ε : H(Ω) → [0, ∞) and F 0 ε : G(Ω) → [0, ∞) by F η ε (u, ψ) := E ε P(u) + I η (ψ) and F 0 ε (u) := E ε P(u) + H 1 (J u ) .
(2.6)

Note that F 0 ε is a functional of the type "Mumford-Shah". Indeed, by Lemma 2.3 we have

F 0 ε (u) = 1 2 Ω |∇u| 2 + 1 2ε 2 (1 -|u| 2 ) 2 dx + H 1 (J u ) .
As already pointed out in the introduction, F η ε can be seen as an "Ambrosio-Tortorelli" regularization of F 0 ε (with a coupling between u and ψ in the class H(Ω) rather than in the functional itself).

We aim to minimize F η ε and F 0 ε under a given Dirichlet condition on the boundary. We fix a smooth map g : ∂Ω S 1 → S 1 of topological degree d 0. Accordingly, we introduce the subclasses H g (Ω) := (u, ψ) ∈ H(Ω) : ψ = 1 and ψu = g on ∂Ω ,

(2.7) and G g (Ω) := u ∈ G(Ω) : P(u) = P(g) on ∂Ω .

Note that in G g (Ω) we do not impose the condition u = g on ∂Ω. Instead we penalize deviations from g minimizing over G g (Ω) the functional

F 0 ε,g (u) := F 0 ε (u) + H 1 {u = g} ∩ ∂Ω (2.8)
in place of F 0 ε . As already mentioned in the introduction, this penalization is necessary to ensure lower semi-continuity (since F 0 ε,g is precisely the L 1 (Ω)-relaxation of F 0 ε ). As a warm-up, let us prove that the functionals F η ε and F 0 ε,g admit minimizers.

Theorem 2.7. The functional F η ε admits a minimizing pair (u ε , ψ ε ) in H g (Ω). In addition, any such minimizer satisfies u ε L ∞ (Ω) 1.

Theorem 2.8. The functional F 0 ε,g has a minimizer u ε in G g (Ω). In addition, any such minimizer satisfies u ε L ∞ (Ω) 1.

The proof of Theorem 2.7 rests on the following compactness result. Proposition 2.9. Let Ω be a bounded open subset of R 2 . Let {(u h , ψ h )} h∈N ⊆ H(Ω) be such that

sup h u h L ∞ (Ω) + ∇ψ h L 2 (Ω) + ∇(P(u h )) L 2 (Ω) < ∞ .
Then, there exist a subsequence and (u, ψ) ∈ H(Ω) such that ψ h , ψ h u h , P(u h ) ψ, ψu, P(u) weakly in W 1,2 (Ω) .

Proof. Set φ h := ψ h u h , V h := P(u h ), and notice that P(φ h ) = ψ h V h . Therefore,

∇(P(φ h )) = ψ h ∇V h + ∇ψ h ⊗ V h .
By (2.1), |∇φ h | = ∇(P(φ h )) a.e. in Ω, and since 0 ψ h 1, we infer that

Ω |∇φ h | 2 dx 2 Ω |∇V h | 2 dx + 2 u h 2 L ∞ (Ω) Ω |∇ψ h | 2 dx .
Hence {ψ h }, {V h }, and {φ h } are bounded in W 1,2 (Ω). Thus, we can find a subsequence such that (ψ h , φ h , V h ) (ψ, φ, V ) weakly in W 1,2 (Ω) and a.e. in Ω, for some (ψ, φ, V ) ∈ W 1,2 (Ω; [0, 1]) × W 1,2 (Ω) × W 1,2 (Ω; N ). On the one hand, since {u h } is bounded in L ∞ (Ω), the sequence {u h (x)} is bounded for a.e. x ∈ Ω, and we deduce that φ(x) = lim h ψ h (x)u h (x) = 0 for a.e. x ∈ {ψ = 0}. On the other hand, one has lim h u h (x) = φ(x)/ψ(x) and V (x) = lim h V h (x) = P(φ(x)/ψ(x)) for a.e. x ∈ {ψ = 0}. Now, we define u ∈ L ∞ (Ω) by setting

u := φ ψ χ {ψ =0} + α(V )χ {ψ=0} ,
where α : N → C is the "unrolling map" of the cone N , i.e.,

α(z, t) := m|z|e iθ/m for z = |z|e iθ ∈ C \ {0} with θ ∈ [0, 2π) , 0 otherwise .
By construction, we have φ = ψu and V = P(u), and the proof is complete.

Proof of Theorem 2.7. Let {(u h , ψ h )} ⊆ H g (Ω) be a minimizing sequence for F η ε in H g (Ω). Since P(u h ) ∈ W 1,2 (Ω; R 3 ), we have |u h | ∈ W 1,2 (Ω) and thus also [max(1, |u h |)] -1 ∈ W 1,2 (Ω) ∩ L ∞ (Ω). Since ψ h = 1 and ψ h u h = g on ∂Ω, we have |u h | = 1 on ∂Ω and then also [max(1, |u h |)] -1 = 1 on ∂Ω. Consequently, setting u h := u h max(1, |u h |) , (2.9) 
we have ψ h u h ∈ W 1,2 (Ω), ψ h u h = g on ∂Ω, and u h L ∞ (Ω) 1. Since also, 

P( u h ) = P(u h ) max(1, |u h |) = P(u h ) max(1, |P(u h )|) ∈ W 1,
F η ε in H g (Ω). Since u h L ∞ (Ω)
1, we can apply Proposition 2.9 to find a subsequence such that (ψ h , ψ h u h , P(

u h )) (ψ ε , ψ ε u ε , P(u ε )) weakly in W 1,2 (Ω) for some (u ε , ψ ε ) ∈ H(Ω) with |P(u ε )| = |u ε | 1 a.e. in Ω.
From the continuity of the trace operator, we deduce that ψ ε = 1 and ψ ε u ε = g on ∂Ω, that is (u ε , ψ ε ) ∈ H g (Ω). Finally, the functional F η ε being clearly lower semi-continuous with respect to the weak convergence in W 1,2 (Ω), we conclude that (u ε , ψ ε ) minimizes F η ε over H g (Ω). Since the truncation argument above shows that any minimizer satisfies the announced L ∞ bound, the proof is complete.

Proof of Theorem 2.8. The truncation argument is identical to the one above so we may reduce ourselves to the class of functions u satisfying u L ∞ (Ω) ≤ 1. Let {u h } ⊆ G g (Ω) be a minimizing sequence for F 0 ε,g . We fix some r 0 > 0 small enough in such a way that

Ω := x ∈ R 2 : dist(x, Ω) < r 0 (2.11)
defines a smooth domain, and that the nearest point projection on ∂Ω, denoted by Π, is well defined and smooth in x ∈ R 2 : dist(x, ∂Ω) < 2r 0 . We extend each u h to Ω by setting u h (x) = g Π(x)

for x ∈ Ω \ Ω. Then we have J u h ∩ Ω = (J u h ∩ Ω) ∪ ({u h = g} ∩ ∂Ω), so that F 0 ε (u h , Ω) = F 0 ε,g (u h ) + C g ,
for a constant C g depending only on g, r 0 , and Ω. Since |∇u h | = |∇(P(u h ))| by Lemma 2.3, we deduce that {∇u h } is bounded in L 2 ( Ω). Hence we can apply [AFP00, Theorem 4.7 & 4.8] to find a subsequence such that u h u ε weakly* in BV ( Ω) and a.e. in Ω to some u ε ∈ SBV 2 ( Ω). From the a.e. convergence, we deduce that u ε (x) = g Π(x) for x ∈ Ω \ Ω. Then, still by [AFP00, Theorem 4.7],

lim inf h→∞ H 1 (J u h ∩ Ω) + H 1 {u h = g} ∩ ∂Ω = lim inf h→∞ H 1 (J u h ∩ Ω) H 1 (J uε ∩ Ω) = H 1 (J uε ∩ Ω) + H 1 {u ε = g} ∩ ∂Ω . (2.12)
Since {P(u h )} is bounded in W 1,2 (Ω) and P(u h ) → P(u ε ) a.e. in Ω, we infer that P(u h ) P(u ε ) weakly in W 1,2 (Ω). As a consequence, u ε ∈ G g (Ω). Finally, the lower semi-continuity of E ε with respect to the weak W 1,2 -convergence, together with (2.12), leads to

F 0 ε,g (u ε ) lim inf h F 0 ε,g (u h ). Hence u ε is a minimizer of F 0 ε,g in G g (Ω).
2.5. Asymptotic for the Ginzburg-Landau functional. The aim of this subsection is to recall some classical facts about the asymptotic limit as ε ↓ 0 of low energy states for the Ginzburg-Landau functional E ε . In this section we still assume that Ω ⊆ R 2 is a smooth, bounded, and simply connected domain. Some of the material below can be found with greater details in [BBH94, SS04, AP14] and the references therein. We start with the notion of renormalized energy originally introduced in [BBH94]. for some md distinct points {x 1 , . . . , x md } ⊆ Ω. Given µ ∈ A d , the canonical harmonic map v µ : Ω \ spt µ → C associated to µ is the map defined by

v µ (x) := e iϕµ(x) md k=1 x -x k |x -x k | , (2.14) 
with

∆ϕ µ = 0 in Ω , v µ = g m on ∂Ω .
Note that ϕ µ is a smooth function in Ω uniquely determined up to constant multiple of 2π. The canonical map v µ is a smooth harmonic map from Ω \ spt µ into S 1 . It satisfies

div j(v µ ) = 0 curl j(v µ ) = µ in D (Ω) .
It turns out that v µ ∈ W 1,p (Ω) for every p ∈ [1, 2), but fails to be in W 1,2 (Ω). However, the Dirichlet energy of v µ still have a well defined finite part called the renormalized energy given by

W(µ) := -π k =l log |x k -x l | + 1 2 ∂Ω g m ∧ ∂(g m ) ∂τ Φ µ dH 1 -π md k=1 R µ (x k ) , (2.15)
where Φ µ is the solution of

               ∆Φ µ = µ in Ω , ∂Φ µ ∂ν = g m ∧ ∂(g m ) ∂τ on ∂Ω , ∂Ω Φ µ dH 1 = 0 , and R µ (x) := Φ µ (x) -k log |x -x k | .
Note that R µ is an harmonic function in Ω, smooth up to ∂Ω. The function Φ µ is related to the harmonic map v µ through the relation Theorem 2.10. For a sequence

j(v µ ) = ∇ ⊥ Φ µ , ( 
ε h ↓ 0, let {v h } ⊆ W 1,2 g m (Ω) be such that {v h } is bounded in L ∞ (Ω), and E ε h (v h ) πmd| log ε h | + O(1) as h → ∞ . (2.18)
There exist a subsequence, a measure µ ∈ A d , and a phase ϕ ∈ W 1,2 (Ω) such that (i) v h e iϕ v µ weakly in W 1,p (Ω) for every p ∈ [1, 2);

(ii) v h e iϕ v µ weakly in W 1,2 loc (Ω \ spt µ); (iii) e iϕ = 1 on ∂Ω; (iv) for r > 0 small enough,

lim inf h→∞ E ε h v h , B r (µ) -πmd log r ε h C * , (2.19)
for a constant C * independent of r, and

lim inf r↓0 lim inf h→∞ 1 2 Ω\Br(µ) |∇v h | 2 dx -πmd| log r| 1 2 Ω |∇ϕ| 2 dx + W(µ) .
Moreover, µ h := curl j(v h ) ∈ L 1 (Ω) converges to µ = curl j(e iϕ v µ ) in the weak* topology of (C 0,1 0 (Ω)) * .

The proof of this theorem relies on the following two auxiliary results. In particular, Lemma 2.12 provides an a priori W 1,p -bound for sequences of low Ginzburg-Landau energy. We believe that Proposition 2.11 and Lemma 2.12 are already well known to experts (see in particular [CJ99, Theorem 1.4.4]). Since we did not find clear statements and proofs in the existing literature, we have decided to provide here (mostly) self-contained proofs.

Proposition 2.11. Let v ∈ W 1,1 (Ω; S 1 ) and µ ∈ A d be such that

curl j(v) = µ in D (Ω) , v = g m on ∂Ω . If v ∈ W 1,2 loc (Ω \ spt µ) and lim inf r↓0 1 2 Ω\Br(µ) |∇v| 2 dx -πmd| log r| < ∞ , (2.20) 
then v = e iϕ v µ for some ϕ ∈ W 1,2 (Ω) such that e iϕ = 1 on ∂Ω. In addition,

lim r↓0 1 2 Ω\Br(µ) |∇v| 2 dx -πmd| log r| = 1 2 Ω |∇ϕ| 2 dx + W(µ) .
Proof. The fact that v = e iϕ v µ for some ϕ ∈ W 1,1 (Ω) with e iϕ = 1 on ∂Ω follows as in the proof of Lemma 2.6. Moreover, v ∈ W 1,2 loc (Ω \ spt µ; S 1 ) yields ϕ ∈ W 1,2 loc (Ω \ spt µ). Let us prove that in fact ϕ ∈ W 1,2 (Ω). First notice that

|∇v| 2 = |j(v)| 2 = |∇ϕ| 2 + |j(v µ )| 2 + 2∇ϕ • j(v µ ) = |∇ϕ| 2 + |∇v µ | 2 + 2∇ϕ • ∇ ⊥ Φ µ , (2.21)
where the last identity follows from (2.16).

For each k ∈ {1, . . . , md}, we set

R k µ (x) := Φ µ (x) -log |x -x k | , so that R k µ is a smooth harmonic function in Ω \ ∪ l =k {x l }.
Notice in particular that

∂ τ Φ µ = ∂ τ R k µ on ∂B r (x k ).
Integrating by parts (2.21) in Ω r := Ω \ B r (µ) with r > 0 small enough, leads to

Ωr |∇v| 2 dx = Ωr |∇ϕ| 2 dx + Ωr |∇v µ | 2 dx + 2 md k=1 ∂Br(x k ) ϕ∂ τ Φ µ dH 1 = Ωr |∇ϕ| 2 dx + Ωr |∇v µ | 2 dx + 2 md k=1 ∂Br(x k ) ϕ∂ τ R k µ dH 1 . (2.22)
By the boundary trace theorem for BV functions [AFP00, Theorem 3.87], and the embedding of

W 1,1 into L 2 , ∂Br(x k ) |ϕ| dH 1 Br(x k ) |∇ϕ| + 1 r |ϕ| dx Br(x k ) |∇ϕ|dx + Br(x k ) |ϕ| 2 dx 1/2 -→ r→0 0 . (2.23)
Using the smoothness of R k µ near x k , we can combine (2.17), (2.20), (2.22), and (2.23) to deduce that Ωr |∇ϕ| 2 dx = O(1) as r → 0 .

Therefore ϕ ∈ W 1,2 (Ω). Going back to (2.22), we subtract πmd| log r| from both sides of this identity, and we let r → 0 to reach the conclusion.

Lemma 2.12. For a sequence

ε h ↓ 0, let {v h } ⊆ W 1,2 g m (Ω, C) be such that {v h } is bounded in L ∞ (Ω), (2.

18) holds, and for which µ

h := j(v h ) weakly* converges in (C 0,1 0 (Ω)) * to some measure µ ∈ A d as h → ∞. Then {v h } is bounded in W 1,p (Ω) for every 1 p < 2.
The proof of Lemma 2.12 rests on the so-called 'ball construction" in [SS04, Theorem 4.1] that we now recall.

Theorem 2.13 ([SS04]

). For any α ∈ (0, 1) there exists ε 0 (α) > 0 such that, for any ε ∈ (0, ε 0 (α)) and any v ∈ C ∞ (Ω) satisfying E ε (v) ε α-1 , the following holds for some universal constants c 0 , c 1 , and c 2 : for any r ∈ c 0 ε α/2 , 1 there exists a finite collection B r = B j j∈J of disjoint closed balls such that

(i) r = j r j ; (ii) setting Ω ε := x ∈ Ω : dist(x, ∂Ω) > ε and V ε r := Ω ε ∩ ∪ j B j , x ∈ Ω ε : |v(x)| -1 ε α/4 ⊆ V ε r ; (iii) setting d j = deg(v, ∂B j ) if B j ⊆ Ω ε , and d j = 0 otherwise, E ε (v, V ε r ) πD r log r D r ε -c 1 (2.24)
whenever D r := j |d j | = 0;

(iv) the following estimate holds

D r c 2 E ε (v) α| log ε| .
(2.25)

Finally, if r 1 < r 2 , then every ball of B r1 is contained in a ball of B r2 .
Proof of Lemma 2.12. Since Ω is a smooth bounded domain and g is smooth, any map in

W 1,2 g m (Ω)∩ L ∞ (Ω) can be (strongly) approximated in the W 1,2 -sense by a sequence in {v ∈ C ∞ (Ω) : v = g m on ∂Ω} which also remains bounded in L ∞ (Ω). Hence, we can assume v h ∈ C ∞ (Ω) for each h. Recall that µ writes µ = 2π md k=1 δ x k . Setting σ 0 := 1 4 min 1, min k dist(x k , ∂Ω), min k =l |x k -x l | ,
we may assume without loss of generality that σ 0 = 1. We choose α = 1/2 in Theorem 2.13 (this choice of α is arbitrary). By (2.18), we have

E ε h (v h ) ε -1/2 h
for ε h small enough, and we can therefore apply Theorem 2.13 to v h .

We claim that for ε h sufficiently small, D r md for every r ∈ c 0 ε

1/4 h , 1/6 . (2.26)
Let us introduce the modified function

v h := min |v h | 1 -ε 1/8 h , 1 v h |v h | ∈ W 1,2 (Ω) .
Noticing that

j( v h ) = min 1 1 -ε 1/8 h 2 , 1 |v h | 2 j(v h ) ,
and setting µ h := curl j( v h ), we estimate

µ h -µ h (C 0,1 0 (Ω)) * = sup φ C 0,1 0 (Ω)) ≤1 Ω min 1 1 -ε 1/8 h 2 , 1 |v h | 2 -1 j(v h ) • ∇ ⊥ φdx ≤ Ω min 1 1 -ε 1/8 h 2 , 1 |v h | 2 -1 |j(v h )|dx ε 1/8 h j(v h ) L 1 (Ω) -→ h→∞ 0 , (2.27)
where in the last step we have used that since

j(v h ) = v h ∧ ∇v h , j(v h ) L 1 (Ω) v h L ∞ (Ω) ∇v h L ∞ (Ω) v h L ∞ (Ω) E 1/2 ε h (v h ) (2.18) v h L ∞ (Ω) | log ε h | 1/2 . Given r ∈ c 0 ε 1/4 h , 1/6 , we set A ε h r := t ∈ [1/2, 1 -r] : ∂B t (µ) ∩ V ε h r = ∅ . By item (i) in Theorem 2.13, we have |A ε h r | 1/2 -2r 1/6. Then, for each k = 1, . . . , md, we define a function ζ k ∈ C 0,1 (Ω) compactly supported in Ω by setting ζ k (x) := 1 min(1,|x-x k |) χ A ε h r (t) dt . Notice that ζ k C 0,1 (Ω) 2. Since µ h → µ in (C 0,1 0 (Ω)) * by (2.27), we have µ h -µ (C 0,1 0 (Ω)) *
π/12 for ε h small enough. Consequently, by definition of σ 0 and for ε h small,

µ h , ζ k µ, ζ k -2 µ h -µ (C 0,1 0 (Ω)) * 2π|A ε h r | -π/6 π/6 ,
for each k = 1, . . . , md. Moreover, using that for

t ∈ A ε h r and x ∈ ∂B t (x k ), v h = v h |v h | , we have µ h , ζ k = - B1(x k ) j( v h ) • ∇ ⊥ ζ k dx = 1 0 χ A ε h r (t) ∂Bt(x k ) j( v h ) • τ dH 1 dt = A ε h r ∂Bt(x k ) j v h |v h | • τ dH 1 dt = 2π A ε h r deg v h , ∂B t (x k ) dt ,
and we conclude that for ε h sufficiently small (independently of r),

A ε h r deg v h , ∂B t (x k ) dt 1/12 for each k = 1, . . . , md .
Hence, for each k = 1, . . . , md, there exists a radius

ρ k h ∈ A ε h r such that deg v h , ∂B ρ k h (x k ) = 0 whenever ε h is small enough (independently of r). In turn, it implies the existence, for each k = 1, . . . , md, of an element B k h (r) ∈ B r such that B k h (r) ⊆ B ρ k h (x k ) ⊆ Ω ε h and deg v h , ∂B k h (r) = 0,
whenever ε h is small. By the very definition of D r , we infer that (2.26) holds for ε h small (independently of r).

Combining (2.18) and (2.25), we deduce that D r C for some constant C independent of ε h and r. Then, (2.24) yields for ε h small enough,

E ε h (v h , V ε h r ) πmd log r ε h -C for every r ∈ c 0 ε 1/4 h , 1/6 ,
where C is still a constant independent of r and ε h . In view of (2.18), we thus have

E ε h (v h , Ω \ V ε h r ) πmd| log r| + C for every r ∈ c 0 ε 1/4 h , 1/6 . (2.28) Now we define on the set {|v h | > 0} the map v h := v h /|v h |. Given r ∈ c 0 ε 1/4 h , 1/12 , we have |v h | -1 ε 1/8 h on V ε h 2r \ V ε h
r , and we can apply [SS04, Proposition 4.2] to deduce that for ε h sufficiently small (independently of r),

1 2 V ε h 2r \V ε h r |∇ v h | 2 dx md k=1 1 2 B k h (2r)\V ε h r |∇ v h | 2 dx πmd log 2 . Therefore, if ε h is small, using that |∇v h | 2 = |∇|v h || 2 + |v h | 2 |∇ v h | 2 ≥ |v h | 2 |∇ v h | 2 ; we obtain 1 2 V ε h 2r \V ε h r |∇v h | 2 dx 1 2 V ε h 2r \V ε h r |v h | 2 |∇ v h | 2 dx πmd log 2 -Cε 1/8 h , (2.29) 
for some constant C independent of r and ε h . Then set for j ∈ N, r j := 2 -j /6 and define

J h := max j ∈ N : r j c 0 ε 1/4 h . Using the fact that V ε h rj+1 ⊆ V ε h rj , estimate (2.28) leads to J h -1 j=0 1 2 V ε h r j \V ε h r j+1 |∇v h | 2 dx E ε h (v h , Ω \ V ε h r J h ) πmd log 2 J h + C . (2.30) Since J h = O(| log ε h |),
we infer from (2.29) and (2.30) that

V ε h r j \V ε h r j+1 |∇v h | 2 dx C(1 + J h ε 1/8 h ) C for every j = 0, . . . , J h -1 , (2.31) for a constant C independent of ε h . Finally, fix an arbitrary p ∈ [1, 2). Noticing that |V ε h rj | = O(r 2 j )
, we estimate by means of (2.28), (2.31), and Hölder's inequality,

Ω\V ε h r J h |∇v h | p dx Ω\V ε h r 0 |∇v h | p dx + J h -1 k=0 V ε h r j \V ε h r j+1 |∇v h | p dx C   1 + J h -1 k=0 r 2-p j V ε h r j \V ε h r j+1 |∇v h | 2 dx p/2   C 2 2-p -1 ,
for some constant C independent of ε h (and p). Since,

V ε h r J h |∇v h | p dx Cr 2-p J h Ω |∇v h | 2 dx p/2 Cε h 2-p 4 | log ε h | p/2 C , we conclude that {v h } is indeed bounded in W 1,p (Ω).
Proof of Theorem 2.10. In view of (2.18), we can apply [AP14, Theorem 6.1] to find a subsequence such that µ h * µ weakly* in (C 0,1 0 (Ω)) * for some measure µ = 2π

md k=1 δ x k ∈ A d . Moreover, for a radius r satisfying 0 < r σ 0 := 1 4 min 1, min k dist(x k , ∂Ω), min k =l |x k -x l | , estimate (2.19) holds by [AP14, Theorem 4.1]. Consequently, E ε h v h , Ω \ B r (µ) πmd| log r| + C , (2.32) 
for a constant C independent of r and ε h . As a consequence of (2.32), we can extract a further subsequence such that

v h v 0 weakly in W 1,2 loc (Ω \ spt µ) for some v 0 ∈ W 1,2 loc (Ω \ spt µ; S 1 ). By lower semi-continuity we have lim inf h→∞ E ε h v h , Ω \ B r (µ) 1 2 Ω\Br(µ) |∇v 0 | 2 dx .
(2.33)

In addition, from the continuity of the trace operator we deduce that v 0 = g m on ∂Ω. Thanks to Lemma 2.12, {v h } is also bounded in W 1,p (Ω) for every 1 ≤ p < 2 so that v h v 0 weakly in W 1,p (Ω) for every p ∈ [1, 2). From this convergence, we easily derive

µ h , ζ = - Ω j(v h ) • ∇ ⊥ ζ dx -→ h→∞ - Ω j(v 0 ) • ∇ ⊥ ζ dx = curl j(v 0 ), ζ , for every ζ ∈ D(Ω), and thus curl j(v 0 ) = µ in D (Ω). Combining (2.32) with (2.33) yields lim sup r↓0 1 2 Ω\Br(µ) |∇v 0 | 2 dx -πmd| log r| < ∞ .
Hence, we are now in position to apply Proposition 2.11 to conclude that v 0 = e iϕ v µ for some ϕ ∈ W 1,2 (Ω) satisfying e iϕ = 1 on ∂Ω, and the proof is complete.

The Γ-convergence results

In this section, our main objective is to determine the Γ-limit of the functional F η ε defined in (2.6) as η ↓ 0 and ε ↓ 0. We introduce

F η ε : L 1 (Ω) × L 1 (Ω) → (-∞, ∞] given as F η ε (u, ψ) :=    F η ε (u, ψ) - πd m | log ε| if (u, ψ) ∈ H g (Ω) , ∞ otherwise ,
where F η ε and the class H g (Ω) are defined in (2.6),(2.7) respectively. Throughout this section Ω ⊆ R 2 denotes a smooth, bounded, and simply connected domain.

In a first part, we shall prove that the domain of the Γ-limit is determined by the class of functions

L g (Ω) := u ∈ SBV (Ω; S 1 ) : u m = e iϕ v µ for some µ ∈ A d and ϕ ∈ W 1,2 (Ω) satisfying e iϕ = 1 on ∂Ω ,
where A d is the family of measures defined in (2.13), and v µ is the canonical harmonic map associated to µ through (2.14). We emphasize that L g (Ω) ⊆ SBV p (Ω; S 1 ) for every p ∈ [1, 2) by Corollary 2.4. In turn, the Γ-limit is given by the functional F 0,g : L g (Ω) → R defined by

F 0,g (u) := E 0 (u) + H 1 (J u ) + H 1 {u = g} ∩ ∂Ω ,
where we have set for u m =:

e iϕ v µ , E 0 (u) := 1 2m 2 Ω |∇ϕ| 2 dx + 1 m 2 W(µ) + mdγ m .
In the expression above, γ m is a structural constant which is usually interpreted as the core energy of a singularity. In our context, it is defined as

γ m := lim R→∞ min E 1 (w, B R ) - π m 2 log R : w ∈ W 1,2 (B R ; N ) , w(z) = 1 m z |z| , m 2 -1 on ∂B R . (3.1)
Existence and finiteness of this limit follows from a classical comparison argument (see Lemma 3.9, and [BBH94, Lemma III.1]). We also note that the value of F 0,g (u) only depends on u and not on a particular representation u m = e iϕ v µ . Indeed, one always has µ = curl j(u m ) and

|∇ϕ| = |∇(v µ u m )|.
To properly state the Γ-convergence result, it is now convenient to introduce

F 0 : L 1 (Ω) × L 1 (Ω) → (-∞, ∞] given by F 0 (u, ψ) := F 0,g (u) if u ∈ L g (Ω) and ψ ≡ 1 , ∞ otherwise .
Theorem 3.1. Let ε h ↓ 0 and η h ↓ 0 be arbitrary sequences. The sequence of functionals

F η h ε h Γ-converges in the strong L 1 (Ω) 2 -topology to F 0 as h → ∞. More precisely: (i) If {(u h , ψ h )} ⊆ H g (Ω), {u h } is bounded in L ∞ (Ω), and sup h F η h ε h (u h , ψ h ) < ∞, then there exist a subsequence and u ∈ L g (Ω) with u m =: e iϕ v µ such that (u h , ψ h ) → (u, 1) in L 1 (Ω), v h := p(u h )
u m weakly in W 1,p (Ω) for every p < 2 and weakly in W 1,2 loc (Ω \ spt µ), and the measures µ h := curl j(v h ) weakly* converge to µ = curl j(u m ) in the (C 0,1 0 (Ω)) * topology.

(ii) Under the conclusions of (i),

lim inf h→∞ E ε h P(u h ) - πd m | log ε h | E 0 (u) , (3.2) and lim inf h→∞ I η h (ψ h ) H 1 (J u ) + H 1 {u = g} ∩ ∂Ω . (3.3) Moreover, if F 0 (u, 1) = lim h F η h ε h (u h , ψ h ) < ∞, then p(u h ) → u m strongly in W 1,p (Ω) for every p < 2 and strongly in W 1,2 loc (Ω \ spt µ), lim h→∞ E ε h P(u h ), Ω \ B r (µ) = 1 2m 2 Ω\Br(µ) |∇(u m )| 2 dx for every r > 0 , (3.4) 
and

lim h→∞ I η h ψ h = H 1 (J u ) + H 1 {u = g} ∩ ∂Ω . (3.5) (iii) For every u ∈ L g (Ω), there exists a sequence {(u h , ψ h )} ⊆ H g (Ω) such that u h = g on ∂Ω, (u h , ψ h ) → (u, 1) in L 1 (Ω), p(u h ) → u m strongly in W 1,p (Ω)
for every p < 2 and strongly in W 1,2 loc (Ω \ spt µ), and satisfying

lim h→∞ E ε h P(u h ) - πd m | log ε h | = E 0 (u) , (3.6) lim h→∞ I η h (ψ h ) = H 1 (J u ) + H 1 {u = g} ∩ Ω . (3.7)
We can proceed analogously with the sharp interface functionals F 0 ε,g defined in (2.8), and introduce

F 0 ε : L 1 (Ω) → (-∞, ∞] and F 0 : L 1 (Ω) → (-∞, ∞] defined as F 0 ε (u) :=      F 0 ε,g (u) - πd m | log ε| if u ∈ G g (Ω) , ∞ otherwise , F 0 (u) := F 0,g (u) if u ∈ L g (Ω) , ∞ otherwise .
Theorem 3.2. Let ε h ↓ 0 be an arbitrary sequence. The sequence of functionals

F 0 ε h h∈N Γ- converges in the strong L 1 (Ω)-topology to F 0 as h → ∞. More precisely: (i) If {u h } ⊆ G g (Ω), {u h } is bounded in L ∞ (Ω), and sup h F 0 ε h (u h ) < ∞, then there exist a subsequence and u ∈ L g (Ω) with u m =: e iϕ v µ such that u h → u in L 1 (Ω), v h := p(u h ) u m weakly in W 1,p ( 
Ω) for every p < 2 and weakly in W 1,2 loc (Ω \ spt µ), and the measures

µ h := curl j(v h ) weakly* converge to µ = curl j(u m ) in the (C 0,1 0 (Ω)) * topology. (ii) If {u h } ⊆ G g (Ω) is such that u h → u in L 1 (Ω), then lim inf h→∞ F 0 ε h (u h ) F 0 (u) . (3.8) Moreover, if F 0 (u) = lim h F 0 ε h (u h ) < ∞, then p(u h ) → u m strongly in W 1,p ( 
Ω) for every p < 2 and strongly in W 1,2 loc (Ω \ spt µ), identity (3.4) holds, and for every open set

A ⊆ R 2 such that H 1 J u ∩ (Ω ∩ ∂A) + H 1 {u = g} ∩ ∂Ω ∩ ∂A = 0, lim h→∞ H 1 J u h ∩ (Ω ∩ A) + H 1 {u h = g} ∩ ∂Ω ∩ A = H 1 J u ∩ (Ω ∩ A) + H 1 {u = g} ∩ ∂Ω ∩ A . (3.9) (iii) For every u ∈ L g (Ω), there exists a sequence {u h } ⊆ G g (Ω) such that u h → u in L 1 (Ω)
and

lim h→∞ F 0 ε h (u h ) = F 0 (u) . (3.10)
As a standard consequence of these Γ-convergence results, we have the following corollaries concerning the minimizers of F η ε and F 0 ε,g , whose existence was proved in Theorems 2.7 & 2.8 respectively (together with the uniform L ∞ -bound allowing for compactness).

Corollary 3.3. Let ε h ↓ 0 and η h ↓ 0 be arbitrary sequences. For each h ∈ N, let (u h , ψ h ) be a minimizer of

F η h ε h in H g (Ω)
. There exists a subsequence and a map u minimizing F 0,g over L g (Ω) such that (u h , ψ h ) → (u, 1) in L 1 (Ω), p(u h ) → u m strongly in W 1,p (Ω) for every p < 2 and strongly in W 1,2 loc (Ω \ spt µ) where µ := curl j(u m ). In addition,

F η h ε h (u h , ψ h ) = πd m | log ε h | + F 0,g (u) + o(1) as h → ∞ .
Corollary 3.4. Let ε h ↓ 0 be an arbitrary sequence. For each h ∈ N, let u h be a minimizer of

F 0 ε h ,g in G g (Ω)
. There exists a subsequence and a map u minimizing F 0,g over L g (Ω) such that

u h → u in L 1 (Ω), p(u h ) → u m strongly in W 1,p (Ω)
for every p < 2 and strongly in W 1,2 loc (Ω \ spt µ) where µ := curl j(u m ). In addition,

F 0 ε h ,g (u h ) = πd m | log ε h | + F 0,g (u) + o(1) as h → ∞ .
Remark 3.5. From the definition of F 0,g , any minimizer u of F 0,g over L g (Ω) satisfies u m = v µ where µ := curl j(u m ) (i.e., in any representation u m = e iϕ v µ , the phase ϕ is a constant multiple of 2π). As a consequence,

F 0,g (u) = 1 m 2 W(µ) + mdγ m + H 1 (J u ) + H 1 {u = g} ∩ ∂Ω .
The rest of this section if devoted to the proofs of Theorems 3.1 & 3.2. Starting with Theorem 3.1, compactness, Γ-lim inf, and Γ-lim sup parts are proved in Subsections 3.1, 3.3, and 3.4 respectively. The proof of Theorem 3.2 is the object of Subsection 3.5.

3.1. Proof of Theorem 3.1 (i): Compactness. Proposition 3.6. Let ε h ↓ 0 and η h ↓ 0 be arbitrary sequences. Let {(u h , ψ h )} ⊆ H g (Ω) be such that {u h } is bounded in L ∞ (Ω), and

sup h F η h ε h (u h , ψ h ) - πd m | log ε h | < ∞ . (3.11)
Then, there exist a subsequence and u ∈ L g (Ω) with u m =: e iϕ v µ such that

(i) (u h , ψ h ) → (u, 1) strongly in L 1 (Ω); (ii) v h := p(u h ) u m weakly in W 1,p (Ω) for every p ∈ [1, 2); (iii) v h u m weakly in W 1,2 loc (Ω \ spt µ) Moreover, µ h := curl j(v h ) ∈ L 1 (Ω) converges to µ = curl j(u m ) in the weak* topology of (C 0,1 0 (Ω)) * .
The proposition above partially rests on the following preliminary lemma.

Lemma 3.7. Let {(u h , ψ h )} ⊆ H(Ω) be such that ψ h → 1 a.e. in Ω. Assume that for some p ∈ (1, 2],

sup h u h L ∞ (Ω) + ψ h -1 L 2 (Ω) ∇ψ h L 2 (Ω) + ∇p(u h ) L p (Ω) < ∞ .
Then there exist a subsequence and u ∈ SBV p (Ω) such that P(u) ∈ W 1,p (Ω; N ), u h → u strongly in L 1 (Ω), and P(u h ) P(u) weakly in W 1,p (Ω).

Proof. By assumption and Cauchy-Schwarz inequality, we have

Ω (1 -ψ h )|∇ψ h | dx C ,
for some constant C independent of h. According to the co-area formula (see [AFP00, Theorem 3.40]),

Ω (1 -ψ h )|∇ψ h | dx = 1 0 (1 -t)H 1 ∂{ψ h < t} ∩ Ω dt 3/4 1/4 (1 -t)H 1 ∂{ψ h < t} ∩ Ω dt .
Therefore, we can find a level t h ∈ (1/4, 3/4) such that

Ω (1 -ψ h )|∇ψ h | dx 1 4 H 1 (∂E h ∩ Ω) , with E h := {ψ h < t h } . Notice that |E h | → 0 since ψ h → 1 a.e. in Ω.
Let us now define

u h := (1 -χ E h )u h .
With our choice of E h , we have that (1

-χ E h )/ψ h ∈ SBV p (Ω) ∩ L ∞ (Ω). Since ψ h u h ∈ W 1,2 (Ω) ∩ L ∞ (Ω), we deduce that u h = (ψ h u h )(1 -χ E h )/ψ n ∈ SBV p (Ω) ∩ L ∞ (Ω) with J u h ⊆ ∂E h . Since P( u h ) = (1 -χ E h )P(u h ) ∈ SBV (Ω; R 3 ), we infer that |∇ u h | = ∇(P( u h )) = (1 -χ E h ) ∇(P(u h )) ∇(P(u h )) a.e. in Ω .

Consequently, sup

h u h L ∞ (Ω) + ∇ u h L p (Ω) + H 1 (J u h ) < ∞ . (3.12)
Now select a subsequence such that P(u h ) w weakly in W 1,p (Ω). In view of (3.12), we can apply Ambrosio's compactness theorem in SBV (see e.g. [AFP00, Theorem 4.8 & Remark 4.9]) to find a further subsequence such that

u h → u strongly in L 1 (Ω) for some u ∈ SBV p (Ω) ∩ L ∞ (Ω). Then, u h -u L 1 (Ω) u h -u L 1 (Ω) + u h L ∞ (Ω) |E h | -→ h→∞ 0 . Since P is 1-Lipschitz, we have P(u h ) -P(u) L 1 (Ω) u h -u L 1 (Ω)
, and thus w = P(u).

Proof of Proposition 3.6. Let us first recall (2.4), that is

E ε h (P(u h )) = G ε h (v h ) with v h := p(u h ).
In view of (2.4), assumption (3.11) implies

E ε h (v h ) πmd| log ε h | + C , (3.13)
that is (2.18) holds. In turn, we deduce from (3.11) that

ψ h -1 L 2 (Ω) ∇ψ h L 2 (Ω) η 2 Ω |∇ψ h | 2 dx + 1 2η Ω (1 -ψ h ) 2 dx = I η h (ψ h ) C ,
for a constant C independent of η h . Clearly, it implies that ψ h → 1 a.e. Ω, at least for a suitable subsequence. We are thus in position to apply first Theorem 2.10 to {v h }, and then Lemma 3.7 to {(u h , ψ h )} to conclude the proof.

Remark 3.8. We emphasize that, in addition to the conclusions of Proposition 3.6, assumption (3.11) implies sup h I η h (ψ h ) < ∞.

3.2.

Optimal profiles and the constant γ m . In this subsection, we first study the core energy associated with one vortex in the Ginzburg-Landau energies {E ε }. We consider for R > 0 and ε > 0, the minimum value

γ m (ε, R) := min E ε (w, B R ) - π m 2 log R ε : w ∈ W 1,2 (B R ; N ) , w(z) = 1 m z |z| , m 2 -1 on ∂B R . (3.14)
In view of identity (2.5) defining the functional G ε , the value γ m (ε, R) can be written as

γ m (ε, R) = min G ε (v, B R ) - π m 2 log R ε : v ∈ W 1,2 (B R ) , v(z) = z |z| on ∂B R .
Notice that, by homogeneity,

γ m (ε, R) = γ m (1, R/ε) =: γ m (R/ε) . (3.15)
We start by proving that γ m admits a limit as R → ∞. This will be needed for the lower bounds (3.2) and (3.8).

Lemma 3.9. The function R → γ m (R) is non increasing and the limit

γ m := lim R→∞ γ m (R) (3.16) is finite.
Proof. The proof of this lemma closely follows the proof of [BBH94, Lemma III.1]. Let us first show that γ m is non increasing. Let 0 < R 1 < R 2 , and consider an admissible competitor w for the minimization problem defining γ m (R 1 ). We extend w by 0-homogeneity in the annulus B R2 \ B R1 , i.e., w(x) = w(R 1 x/|x|) for x ∈ B R2 \ B R1 . By construction w ∈ W 1,2 (B R2 ; N ), and it is an admissible competitor for γ m (R 2 ). Elementary computations then yield

E 1 (w, B R2 ) = E 1 (w; B R1 ) + π m 2 log R 2 R 1 . Hence, γ m (R 2 ) E 1 (w; B R1 ) -π m 2 log R 1 .
Taking the infimum with respect to w yields γ m (R 2 ) γ m (R 1 ), so that γ m is indeed non increasing. Next, for an arbitrary

w ∈ W 1,2 (B 1 ; N ) satisfy- ing w(x) = (1/m)(x, √ m 2 -1) on ∂B 1 , we have w = (1/m)(v, √ m 2 -1|v|) with v ∈ W 1,2 (B 1 ) satisfying v(x) = x on ∂B 1 . Consequently, for ε > 0 we have E ε (w, B 1 ) = G ε (v, B 1 ) 1 m 2 E ε (v, B 1 ) π m 2 log 1 ε -C ,
for some universal constant C by [START_REF] Bethuel | Progress in Nonlinear Differential Equations and their Applications[END_REF]. In view of (3.15), we infer that γ m (1/ε) is bounded from below, and thus γ m > -∞.

The following lemma and its subsequent corollary will allow us to construct a recovery sequence close to the vortices.

Lemma 3.10. For every v ∈ W 1,2 (B 1 ) satisfying v(x) = x on ∂B 1 , there exists a sequence {u k } ⊆ SBV 2 (B 1 ) such that (i) p(u k ) ∈ W 1,2 (B 1 ) and p(u k )(x) = x in a neighborhood of ∂B 1 ; (ii) J u k ⊆ Σ k where Σ k is a smooth simple curve (i.e., a smooth image of [0, 1]) contained in B 1 ; (iii) p(u k ) → v strongly in W 1,2 (B 1 ). Proof. Step 1. Since the function v : z → v(x) -x belongs to W 1,2 0 (B 1 ), for each k ∈ N we can find φ k ∈ C ∞ c (B 1 ) such that v -φ k W 1,2 (B1) 2 -k
. Implicitly, we extend φ k by 0 outside B 1 . Then, we select a sequence of radii {r k } ⊆ (3/4, 1) such that r k → 1 as k → ∞, and spt φ k ⊆ B r k . By Morse-Sard Theorem, we can find

{c k } ⊆ C with |c k | < (1 -r k ) 2 such that c k is a regular value of the mapping x → x + φ k (x) for each k ∈ N. Next, we consider for each k ∈ N a cut-off function χ k ∈ C ∞ (R 2 ; [0, 1]) satisfying χ k (x) = 1 for |x| r k , χ k (x) = 0 for |x| (1 + r k )/2, and (1 -r k )|∇χ k | C for a constant C independent of k. Now we define the smooth function v k (x) := x + φ k (x) -c k χ k (x) , which satisfies v k (x) = x in a neighborhood of ∂B 1 . We estimate v k -v W 1,2 (B1) v -φ k W 1,2 (B1) + |c k | χ k W 1,2 (B1) 2 -k + C(1 -r k ) . Therefore v k → v strongly in W 1,2 (B 1 ) as k → ∞.
Step 2. Let us fix an index k ∈ N. To complete the proof, we shall produce a map u k ∈ SBV 2 (B 1 ) such that p(u k ) = v k and J u k is contained in a closed and smooth simple curve. First notice that our choice of c k and the fact that

φ k = 0 on B 1 \ B r k imply that |v k | r k -|c k | 11/16 in B 1 \ B r k , so that {v k = 0} = {v k = 0} ∩ B r k = {x + φ k (x) = c k } ∩ B r k is a finite set. Hence we can find a smooth simple curve Σ k contained in B 1 such that Σ k ∩ ∂B 1 = {a k , b k } with a k , b k the distinct endpoints of Σ k , Σ k meets ∂B 1 orthogonally at a k and b k , and {v k = 0} ⊆ Σ k . In this way, B 1 \ Σ k = A 1 k ∪ A 2 k where A 1 k and A 2 k are disjoint
simply connected open sets with Lipschitz boundary. Since v k does not vanish in each A j k , it admits a smooth m-th square root u j k in each A j k , which is continuous up to ∂A j k . We define

u k (x) := u j k (x) if x ∈ A j k .
It is then elementary to check that u k ∈ SBV 2 (B 1 ). By construction, items (i), (ii), and (iii) hold.

Corollary 3.11. Let ε h ↓ 0 be an arbitrary sequence. There exist

{u h } ⊆ SBV 2 (B 1 ) ∩ L ∞ (Ω) with u h L ∞ (Ω)
1, and a sequence of smooth simple curves

{Σ h } ⊆ B 1 such that J u h ⊆ Σ h for every h ∈ N, p(u h ) ∈ W 1,2 (Ω), p(u h )(x) =
x in a neighborhood of ∂B 1 , and

lim h→∞ E ε h P(u h ), B 1 - π m 2 | log ε h | = γ m .
Proof. Let us fix an arbitrary h ∈ N. Consider w h ∈ W 1,2 (B 1 , N ) a solution of the minimization problem (3.14) defining γ m (ε h , 1) (existence easily follows from the direct method of calculus of variations), and write

w h = (1/m)(v h , |v h | √ m 2 -1) with v h ∈ W 1,2 (B 1
). We apply Lemma 3.10 to v h to produce a sequence {u k } and curves {Σ k }. The convergence property (iii) in Lemma 3.10 implies that

E ε h P(u k ) → E ε h (w h ) as k → ∞. Hence, we can find k h ∈ N such that, setting u h := u k h and Σ h := Σ k h , one has J u h ⊆ Σ h and E ε h P( u h ) E ε h (w h ) + ε h . Setting u h := u h / max 1, | u h | , we observe that u h ∈ SBV 2 (B 1 ), u h L ∞ (Ω)
1, and

J u h ⊆ J u h ⊆ Σ h . As in (2.10) we have p(u h ) = p( u h )/ max 1, |p( u h )| , and we infer that p(u h ) ∈ W 1,2 (Ω), p(u h )(x) = x in a neighborhood of ∂B 1 , and γ m (ε h , 1) E ε h P(u h ) E ε h P( u h ) E ε h (w h ) + ε h . Since E ε h (w h ) = γ m (ε h , 1) → γ m as h → ∞ by (3.15
) and Lemma 3.9, the conclusion follows.

To close this section, we characterize the optimal one dimensional profile related to the energy I η . This will be important to go from a recovery sequence for the sharp interface functional F 0 ε,g to a recovery sequence of the diffuse interface functional F η ε .

Lemma 3.12. For every η > 0, min

I 1D η (ψ) := η 2 R |ψ (s)| 2 ds + 1 2η R (1 -ψ(s)) 2 ds : ψ(0) = 0 = 1 .
The minimum is uniquely achieved by ψ η (s) := ψ (s/η) with ψ (s) = 1 -e -|s| .

Proof. By rescaling, we may assume without loss of generality that η = 1. Write

Φ(t) := (1 -|t|) 2 /2 = 1 |t| (1 -s) ds .
Let ψ : R → R be such that ψ(0) = 0 and I 1D 1 (ψ) < ∞. First, notice that the condition I 1D 1 (ψ) < ∞ implies that lim s→±∞ ψ(s) = 1. Then, by Cauchy-Schwarz and Young inequalities, we have

I 1D 1 (ψ) R |1 -ψ(s)| |ψ (s)| ds = 0 -∞ (Φ • ψ) ds + ∞ 0 (Φ • ψ) ds 2(Φ(0) -Φ(1)) = 1 .
We have equality in the above chain of inequalities if and only if |ψ | = |1 -ψ|. Using ψ(0) = 0 and the condition R |ψ | 2 ds < ∞ leads to the optimal profile ψ .

Proof of Theorem 3.1 (ii):

The Γ-lim inf inequality.

Proposition 3.13. Let ε h ↓ 0 and η h ↓ 0 be arbitrary sequences.

If {(u h , ψ h )} ⊆ H g (Ω) is such that (u h , ψ h ) → (u, ψ) in L 1 (Ω), then F 0 (u, ψ) lim inf h→∞ F η h ε h (u h , ψ h ) .
(3.17)

In addition, (i) if the liminf is finite, then u ∈ L g (Ω), ψ ≡ 1, and (3.2)-(3.3) hold;

(ii) if equality holds and the liminf is a finite limit, then p(u h ) converges to u m =: e iϕ v µ strongly in W 1,p (Ω) for every p < 2 and strongly in W 1,2 loc (Ω \ spt µ), and (3.4)-(3.5) hold.

Proof. Without loss of generality, we may assume that

lim inf h→∞ F η h ε h (u h , ψ h ) = lim h→∞ F η h ε h (u h , ψ h ) < ∞ . (3.18)
We may also assume that u h L ∞ (Ω) 1. Indeed, on the first hand (3.18) clearly implies that |u| = 1. On the other hand, the truncation argument used in the proof of Theorem 2.7 shows that replacing u h by u h given by (2.9) does not increase the energy. Moreover,

u h -u h L 1 (Ω) |u h | -1 L 1 (Ω) u h -u L 1 (Ω) , (3.19) 
so that u h → u in L 1 (Ω). Hence (u h , ψ h ) can be replaced by ( u h , ψ h ).

Next, we apply Theorem 3.6 to extract a further subsequence to obtain all the conclusions of that theorem. As a consequence, ψ = 1 and u ∈ L g (Ω) with u m = e iϕ v µ . We have to show that

F 0,g (u) lim h→∞ F η h ε h (u h , ψ h ) . (3.20)
We shall prove this inequality in several steps.

Step 1. We first claim that (3.3) holds. Notice that by Remark 3.8, sup h I η h (ψ h ) < ∞. We consider the larger domain Ω defined in (2.11), as

Ω := x ∈ R 2 : dist(x, Ω) < r 0 ,
for r 0 small enough and we recall that the nearest point projection Π on ∂Ω is well defined and smooth in Ω \ Ω. We extend (u h , ψ h ) and u to Ω by setting for x ∈ Ω \ Ω, ψ h (x) = 1, u h (x) = g Π(x) , and u(x) = g Π(x) . Then, it is elementary to check that (u h , ψ h ) ∈ H( Ω) and u ∈ SBV p ( Ω) for every p < 2. In addition, P(u h ) P(u) weakly in W 1,p ( Ω) for every p < 2, and

Ω (1 -ψ h )|∇ψ h | dx η h 2 Ω |∇ψ h | 2 dx + 1 2η h Ω (1 -ψ h ) 2 dx = I η h (ψ h ) C .
Next, consider some arbitrary δ ∈ (0, 1/2). Arguing as in the proof of Proposition 3.7,

1-δ δ (1 -t)H 1 ∂{ψ h < t} ∩ Ω dt I η h (ψ h ) ,
so that we can find a level t h ∈ (δ, 1 -δ) such that

1 -2δ 2 H 1 (∂E h ∩ Ω) I η h (ψ h ) with E h := {ψ h < t h } . (3.21)
Notice that E h ⊆ Ω, and

|E h | → 0 since ψ h → 1 in L 1 (Ω).
Fix some p ∈ (1, 2). Defining

u h := (1 -χ E h )u h ,
we argue as in the proof of Proposition 3.7 to show that

u h ∈ SBV p ( Ω) ∩ L ∞ ( Ω) with J u h ⊆ ∂E h , and that u h → u in L 1 ( Ω). Moreover, |∇ u h | ∇(P(u h )) a.e. in Ω, so that {∇ u h } is bounded in L p ( Ω). By [BCS07, Theorem 1], we have lim inf h→∞ δ Ω |∇ u h | p dx + 1 -2δ 2 H 1 (∂E h ∩ Ω) δ Ω |∇ u| p dx + (1 -2δ)H 1 (J u ∩ Ω) ,
and thus

H 1 (J u ∩ Ω) lim inf h→∞ 1 2 H 1 (∂E h ∩ Ω) + Cδ .
Inserting this inequality in (3.21) and letting δ ↓ 0, we conclude that lim inf h→∞

I η h (ψ h ) H 1 (J u ∩ Ω) . Since u = g • Π in Ω \ Ω, we have J u ⊆ Ω, and thus H 1 (J u ∩ Ω) = H 1 (J u ∩ Ω) + H 1 {u = g} ∩ ∂Ω ,
and inequality (3.3) follows.

Step 2. We now prove the lower bound (3.2). Note that putting (3.2) and (3. for the classical Ginzburg-Landau functional. We provide a quite detailed proof for the reader's convenience. Write µ = 2π md k=1 x k , and choose σ > 0 in such a way that the balls B σ (x k ) are contained inside Ω and are pairwise disjoint. Set

K := v α : C \ {0} → S 1 defined as v(z) = α z |z| : α ∈ S 1 .
For each k ∈ {1, . . . , md}, our aim is to prove that either v h is W 1,2 -close to K on ∂B σ (x k ), or it has "large" energy. We define for t ∈ (0, σ] and w ∈ W 1,2 (B t \ B t/2 ),

d t (w, K) := min w -v W 1,2 (Bt\B t/2 ) : v ∈ K .
It is proven in [START_REF] Alicandro | Ginzburg-Landau functionals and renormalized energy: a revised Γ-convergence approach[END_REF] that for a given δ ∈ (0, 1), there exists a constant c δ > 0 independent of t such that the condition lim inf

h d t (v h (• + x k ), K) δ implies lim inf h→∞ 1 2 Bt(x k )\B t/2 (x k ) |∇v h | 2 dx π log 2 + c δ . (3.22) Now let L ∈ N be such that Lc δ m 2 1 2m 2 Ω |∇ϕ| 2 dx + 1 m 2 W(µ) + mdγ m - πd m log σ - C * m 2 ,
where c δ is the constant from (3.22), and C * is the constant from (2.19). For l ∈ {1, . . . , L} we write

C l (x k ) := B 2 1-l σ (x k ) \ B 2 -l σ (x k ). By the weak W 1,2 loc (Ω \ sptµ) convergence of v h to u m = e iϕ v µ , we have for each k and l, lim inf h→∞ 1 2 C l (x k ) |∇v h | 2 dx 1 2 C l (x k ) |∇ϕ| 2 + |∇v µ | 2 dx π log 2 . (3.23)
We now have to distinguish two different cases.

Case 1: For h large enough, and for each 1 l L, there exists at least one k l ∈ {1, . . . , md} such that d 2 1-l σ (u h (• + x k l ), K) δ. Then, we estimate

E ε h P (u h ) - πd m | log ε h | 1 m 2 E ε h (v h ) - πd m | log ε h | 1 m 2 E ε h (v h , B 2 -L σ (µ)) -πdm| log ε h | + 1 m 2 L l=1 md k=1 1 2 C l (x k ) |∇v h | 2 dx .
Taking the liminf in h, and combining (2.19), (3.22), and (3.23) yields lim inf

h→∞ E ε h P (u h ) - πd m | log ε h | πd m log σ 2 L + C * m 2 + L m 2 (πdm log 2 + c δ ) = πd m log σ + C * m 2 + Lc δ m 2 1 2m 2 Ω |∇ϕ| 2 dx + 1 m 2 W(µ) + mdγ m , (3.24) 
and thus (3.2) holds.

Case 2: For a subsequence there exists l ∈ {1, . . . , L} such that, setting σ := 2 1-l σ, d σ (u h (• + x k ), K) < δ for every k ∈ {1, . . . , md}. Let us prove that for ε h small enough,

G ε h v h , B σ (µ) - πd m log σ ε h mdγ m (ε h , σ) -C σ δ , (3.25) 
where, here and below, C σ denotes a nonnegative number depending on σ but not on h or δ. To establish this inequality, we shall modify v h in B σ (µ) without increasing the energy too much, and in such a way that it is admissible for (3.16). We can proceed on each ball B σ (x k ) separately, and we may assume without loss of generality that x k = 0. Up to a rotation, we can even assume that

Bσ\B σ/2 ∇v h -∇(e iθ ) 2 dx δ 2 , (3.26)
where θ(x) denotes the argument of x/|x|. As (2.18) holds, we infer from (2.19) in Theorem 2.10 that

B 3σ/4 \B σ/2 |∇v h | 2 + 1 ε 2 h (1 -|v h | 2 ) 2 dx C σ .
Therefore, for every h we can find σ h ∈ [σ/2, 3σ/4] for which

∂B σ h |∇v h | 2 + 1 ε 2 h (1 -|v h | 2 ) 2 dH 1 C σ , (3.27) 
and

∂B σ h ∇v h -∇(e iθ ) 2 dH 1 C σ δ 2 .
(3.28)

From (3.28) we first derive

∂B σ h |∇v h | 2 dH 1 = ∂B σ h ∇v h -∇(e iθ ) + ∇(e iθ ) 2 dH 1 1 + δ δ ∂B σ h ∇v h -∇(e iθ ) 2 dH 1 + (1 + δ) ∂B σ h ∇(e iθ ) 2 dH 1 C σ δ + 2π σ h (1 + δ) ≤ C σ δ + 2π σ h . (3.29)
Next, by a scaling argument, one obtains

|u| -1 2 L ∞ (∂Br) Cε h ∂Br |∇u| 2 + 1 ε 2 h (1 -|u| 2 ) 2 dH 1
for every ε h ≤ r and u ∈ W 1,2 (∂B r ). Hence, (3.27) yields

|v h | -1 L ∞ (∂B σ h ) C σ ε 1/2 h . (3.30)
We can thus write v h = ρ h e iθ h on ∂B σ h . Moreover, we have deg(v h , ∂B σ h ) = 1 by (3.28), so that θ h -θ can be chosen to be single valued. Let us extend ρ h and θ h by zero homogeneity outside B σ h . For ε h small enough, we set σh := σ h + ε 1/2 h , and we define v h in B σh as

v h (x) :=      v h (x) in B σ h , ρ h (x) σh -|x| σh -σ h + |x| -σ h σh -σ h e iθ h (x) in B σh \ B σ h .
From (3.27) and (3.30) we infer that

G ε h ( v h , B σh \ B σ h ) C σ ε 1/2 h . (3.31)
In turn, (3.29) and (3.30) yield, for ε h small enough,

∂B σh |∇ v h | 2 dH 1 C σ δ + 2π σh . (3.32) We now are left to define v h in B σ \ B σh . We define for x ∈ B σ \ B σh , θh (x) := σ -|x| σ -σh θ h + |x| -σh σ -σh θ ,
i.e., the linear interpolation between θ h (x) and θ(x). Setting v h (x) := e i θh (x) in B σ \ B σh , it can be proven by means of (3.32) and elementary computations (see [CJ99, Lemma 4.1.1]) that

Bσ\B σh |∇ v h | 2 dx 2π log σ σh + C σ δ .
Combining this last inequality with (3.31), we first derive

G ε h (v h , B σ ) = G ε h ( v h , B σ ) + G ε h (v h , B σ \ B σ h ) -G ε h ( v h , B σ \ B σ h ) G ε h ( v h , B σ ) + 1 2m 2 Bσ\B σh |∇v h | 2 -|∇ v h | 2 dx -G ε h ( v h , B σh \ B σ h ) G ε h ( v h , B σ ) + 1 2m 2 Bσ\B σh |∇v h | 2 dx -2π log σ σh -C σ (δ + ε 1/2 h ) .
From (3.26) we then obtain

Bσ\B σh |∇v h | 2 dx Bσ\B σh ∇(e iθ ) 2 dx + Bσ\B σh ∇v h -∇(e iθ ) 2 dx -2 Bσ\B σh ∇(e iθ ) 2 dx 1/2 Bσ\B σh ∇v h -∇(e iθ ) 2 dx 1/2 2π log σ σh -C σ δ ,
and we deduce that for ε h small enough,

G ε h (v h , B σ ) G ε h ( v h , B σ ) -C σ (δ + ε 1/2 h ) .
By the definition of γ m (ε, σ) (see (3.14)), we conclude that for ε h small,

G ε h (v h , B σ ) - π m 2 log σ ε h γ m (ε h , σ) -C σ (δ + ε 1/2 h ) ,
which proves (3.25).

We can now complete the proof of (3.2). Indeed, by (3.25) and the convergence of v h towards e iϕ v µ in the weak W 1,2 loc (Ω \ sptµ) topology,

lim inf h→∞ G ε h (v h ) - πd m | log ε h | = lim inf h→∞ G ε h v h , Ω \ B σ (µ) - πd m | log σ| + G ε h (v h , B σ (µ)) - πd m log σ ε h lim inf h→∞ G ε h v h , Ω \ B σ (µ) - πd m | log σ| + md lim h→∞ γ m (ε h , σ) -C σ δ 1 2m 2 Ω\Bσ(µ) |∇(e iϕ v µ )| 2 dx - πd m | log σ| + mdγ m -C σ δ , (3.33)
where the last inequality follows from (3.15) and Lemma 3.9. In view of Proposition 2.11, letting first δ ↓ 0 and then σ ↓ 0 leads to (3.2).

Step 3. In order to complete the proof, let us show that if equality holds in (3.17), then (3.4) and (3.5) hold. Note that (3.4) rewrites as

lim h→∞ G ε h v h , Ω \ B r (µ) = 1 2m 2 Ω\Br(µ)
|∇(e iϕ v µ )| 2 dx ∀r > 0 , (3.34) which, combined with the weak convergence of {v h } in W 1,2 loc (Ω \ spt µ) to e iϕ v µ , classically leads to its strong convergence in W 1,2 loc (Ω \ spt µ). From (3.2) and (3.3) we first infer that

lim h→∞ I η h (ψ h ) = H 1 (J u ) + H 1 {u = g} ∩ ∂Ω , and lim h→∞ G ε h (v h ) - πd m | log ε h | = 1 2m 2 Ω |∇ϕ| 2 dx + 1 m 2 W(µ) + mdγ m .
In view of (3.24), Case 2 in Step 2 above must hold. We argue by contradiction assuming that (3.34) does not hold. Then we can find a subsequence, σ 0 > 0, and

η 0 > 0 such that lim inf h→∞ G ε h v h , Ω \ B σ0 (µ) 1 2m 2 Ω\Bσ 0 (µ)
|∇(e iϕ v µ )| 2 dx + η 0 .

By lower semi-continuity of the Dirichlet energy, the same inequality holds for every σ ∈ (0, σ 0 ). Then, for σ and δ small enough, we have by (3.33),

1 2m 2 Ω |∇ϕ| 2 dx + 1 m 2 W(µ) + mdγ m = lim h→∞ G ε h (v h ) - πd m | log ε h | 1 2m 2 Ω\Bσ(µ) |∇(e iϕ v µ )| 2 dx - πd m | log σ| + mdγ m -C σ δ + η 0 ,
where σ is determined from σ as in Case 2 above. Using Proposition 2.11 again, we let δ → 0 and then σ → 0 to reach a contradiction.

To conclude, it only remains to prove that v h → e iϕ v µ strongly in W 1,p (Ω) for every p < 2. Fix an arbitrary p ∈ (1, 2). Since {|∇v h | p } is bounded in L 1 (Ω), we can extract a further subsequence such that |∇v h | p

|∇(e iϕ v µ )| p + ν * weakly* as measures for some non negative finite measure ν * on Ω. From the strong convergence of v h in W 1,2 loc (Ω \ spt µ), we infer that spt ν * ⊆ spt µ. Since {∇v h } is also bounded in L q (Ω) for every q ∈ (p, 2), we have by Hölder's inequality

ν * (Ω) lim inf h→∞ Br(µ)
|∇v h | p dx Cr 2(1-p/q) for every r > 0 and q ∈ (p, 2) .

Letting r ↓ 0 we deduce that ν * ≡ 0 which together with the weak convergence in W 1,p (Ω) of v h towards e iϕ v µ concludes the proof.

3.4. Proof of Theorem 3.1 (iii): Construction of recovery sequences. In this section we prove the Γ-limsup inequality.

Proposition 3.14. Let ε h ↓ 0 and η h ↓ 0 be arbitrary sequences. For every u ∈ L g (Ω) with u m =: e iϕ v µ , there exists a sequence {(u h , ψ h )} ⊆ H g (Ω) such that {u h } ⊆ SBV 2 (Ω), and

(i) (u h , ψ h ) → (u, 1) strongly in L 1 (Ω); (ii) p(u h ) → u m strongly in W 1,2 loc (Ω \ spt µ)
and W 1,p (Ω) for every p < 2; (iii) (3.6) and (3.7) hold.

Moreover, we can choose u h such that

lim h→∞ H 1 (J u h ) = H 1 (J u ) + H 1 {u = g} ∩ ∂Ω .
(3.35)

The proof of Proposition 3.14 relies on a suitable approximation procedure showing that maps in L g (Ω) having a compact jump set lying at a positive distance from the boundary are dense in energy. This is the purpose of the following section. The proof of Proposition 3.14 is then performed in Section 3.4.2. 

) = µ; (ii) u m * (x) = ξ k x -x k |x -x k | in a neighborhood of x k for each k ∈ {1, • • • , md}; (iii) u -u * L 1 (Ω) < δ and E 0 (u * ) < E 0 (u) + δ; (iv) H 1 (J u * ) < H 1 (J u ) + H 1 ({u = g} ∩ ∂Ω) + δ.
Remark 3.16. If one considers δ k ↓ 0 and {u k } ⊆ L g (Ω) the corresponding sequence provided by Lemma 3.15, then u m k → u m strongly in W 1,p (Ω) for every p < 2. Indeed, writing u m k = e iϕ k v µ , item (iii) implies the strong convergence of {∇ϕ k } in L 2 (Ω), which in turn yields the strong convergence of {u m k } in W 1,p (Ω).

Proof of Lemma 3.15.

Step 1. We start by modifying u in such a way that (i), (iii), and (iv) hold. We proceed as follows. We consider the larger domain Ω defined in (2.11), and we recall that the nearest point projection Π on ∂Ω is well defined and smooth in {x : dist(x, ∂Ω) < 2r 0 }. Denote by d Ω : R 2 → R the signed distance to ∂Ω, i.e., d Ω (x) := dist(x, ∂Ω) for x ∈ R 2 \ Ω, and d Ω (x) := -dist(x, ∂Ω) for x ∈ Ω. Note that d Ω is smooth in {x : dist(x, ∂Ω) < 2r 0 }. Next we consider a smooth vector field X ∈ C ∞ c ( Ω \ spt µ; R 2 ) satisfying X = ∇d Ω in {x : dist(x, ∂Ω) < r 0 /2}, and we fix σ ∈ (0, r 0 /2) such that spt X ⊆ Ω \ B σ (µ). We denote by {φ t } t∈R the integral flow on R 2 generated by X. Then spt(φ t -id) ⊆ Ω \ B σ (µ) for every t ∈ R, so that {φ t } t∈R defines a one parameter family of smooth diffeomorphisms from Ω \ B σ (µ) onto Ω \ B σ (µ).

We extend u to Ω by setting u(x) := g Π(x) for x ∈ Ω \ Ω. Then we set u t := u • φ t , and we consider the restriction of u t to Ω. By construction, for every t > 0 we have u t ∈ L g (Ω), u t = g on ∂Ω, u t = u in B σ (µ), and dist(J ut , ∂Ω) > 0. Moreover, as t ↓ 0, we have u t → u weakly* in BV (Ω), ∇u t → ∇u strongly in L 2 (Ω \ B σ (µ)), and

H 1 (J ut ) → H 1 (J u ) + H 1 ({u = g} ∩ ∂Ω) .
Given δ > 0, we can then choose t > 0 small enough so that u t satisfies (i), (iii), and (iv) of Lemma 3.15.

Step 2. To complete the proof, we shall modify further u t in B σ (µ) to achieve property

(ii). Fix σ ∈ (0, σ) such that 2σ < min{|x k -x l | : 1 k < l md}. From the specific form of v µ (see (2.14)), for each k ∈ {1, • • • , dm} there exists ψ k ∈ W 1,2 (B σ (x k )) such that u m (x) = e imψ k (x) x -x k |x -x k | for x ∈ B σ (x k ) .
For ρ 0 and θ ∈ [0, 2π) we set q m (ρe iθ ) := ρe iθ/m , and define ϑ k (x) := q m ((x -x k )/|x -x k |) for x ∈ B σ (x k ). Since curl j(ϑ m k ) = µ = curl j(u m ) in B σ (x k ) and p(ϑ k ) = p(u), we can invoke Lemma 2.6 to infer that there exists

u k ∈ SBV (B σ (x k ), G m ) such that u = u k ϑ k e iψ k in B σ (x k ) .
We now fix a cut-off function χ ∈ C ∞ c (B 1 , [0, 1]) such that, χ ≡ 1 in B 1/2 , and we set χ k,r (x) := χ((x -x k )/r) for r > 0. We define for k ∈ {1, • • • , md} and r ∈ (0, σ ),

u k,r (x) := u k (x)ϑ k (x) exp iψ k (x) + iχ k,r (x) ψ k,r -ψ k (x) for x ∈ B σ (x k ) ,
where ψ k,r denotes the mean value

ψ k,r := 1 πr 2 Br(x k ) ψ k (x) dx .
By construction, we have

u m k,r (x) = ξ k,r x -x k |x -x k | for x ∈ B r/2 (x k ) ,
with ξ k,r := exp(imψ k,r ), and

u k,r = u = u t in B σ (x k ) \ B r (x k ). Finally, we set u * (x) := u k,r (x) if x ∈ B σ (x k ) , u t (x) if x ∈ Ω \ B σ (µ) .

By means of Poincaré's inequality (and

Step 1), it is standard to check that for r small enough, u * complies to all the requirements of the lemma.

Now we show that we can substitute to u * a mapping u with a compact jump set.

Lemma 3.17. Let u * ∈ L g (Ω) be such that dist(J u * , ∂Ω) > 0. For every δ > 0, there exist u ∈ L g (Ω), a compact set K ⊆ Ω, and σ > 0 such that

(i) u -u * L 1 (Ω) δ, u m = u m * , and H 1 (J u \ J u * ) = 0; (ii) H 1 (K J u ) = 0; (iii) H 1 K ∩ B r (x)
r/2 for every x ∈ K and every r ∈ (0, σ).

Proof.

Step 1. Given a parameter λ 1, we consider the class of maps

A := u ∈ L g (Ω) : u m = u m * , H 1 (J u \ J u * ) = 0 ,
and the functional A λ : A → [0, ∞) defined by

A λ (u) := H 1 (J u ) + λ Ω |u -u * | 2 dx .
We claim that A λ admits at least one minimizer u λ ∈ A . Indeed, |∇u| = ∇(P(u * ) = |∇u * | for every u ∈ A , so that {∇u : u ∈ A } is bounded in L p (Ω) for every p < 2. Obviously, if {u k } ⊆ A is a minimizing sequence, then A λ (u k ) is bounded. By the compactness theorem for SBV functions [AFP00, Theorem 4.7 & 4.8, and Remark 4.9], we can find u λ ∈ SBV (Ω) and a subsequence such that u k → u λ in L 1 (Ω) and a.e. in Ω, and satisfying

A λ (u λ ) lim inf k A λ (u k ).
From the pointwise convergence we infer that u λ is S 1 -valued, and u m λ = u m * . Moreover, the sequence of positive measures {H 1 J u k } weakly* converges towards

H 1 J u λ . Since H 1 J u k H 1 J u * , we have H 1 J u λ (U ) lim inf k H 1 J u k (U ) H 1 J u * (U ) for every open set U ⊆ Ω.
By outer regularity, we deduce that H 1 J u λ H 1 J u * . Hence u λ ∈ A , and thus u λ is a minimizer of A λ .

Noticing that A λ (u λ ) A λ (u * ) and H 1 (J u λ ) H 1 (J u * ), we now deduce that u λ → u * in L 1 (Ω) as λ → ∞. Given δ > 0, we choose λ large enough so that (i) holds with u := u λ . To complete the proof, we have to find a compact set K and σ > 0 such that (ii) and (iii) hold. This is the purpose of the next steps.

Step 2. Write curl j(u m * ) =: µ = 2π md k=1 δ x k , and set

σ := min 1 8λ , dist(J u * , ∂Ω) , 1 2 min |x k -x l | : 1 k < l md .
We claim that for H 1 -a.e. x ∈ J u , there holds

H 1 J u ∩ B r (x)
r for every r ∈ (0, σ) .

(3.36)

Let us first recall that for H 1 -a.e. x ∈ J u ,

H 1 J u ∩ B r (x) > 0 for every r ∈ (0, σ) . (3.37)
Hence, it is enough to establish (3.36) at every x ∈ J u \spt µ such that (3.37) holds. Let us fix such a point x and without loss of generality let us assume x 0 = 0. Setting σ 0 := min σ, dist(0, sptµ) , we shall distinguish the two cases r ∈ (0, σ 0 ] and r ∈ (σ 0 , σ).

Case 1: r ∈ (0, σ 0 ]. Since B σ0 ⊆ Ω \ spt µ and u m = u m * , we have curl j(u ) = 0 in D (B σ0 ) by Lemma 2.3. Applying Lemma 2.6 in the ball B σ0 (with u 1 = 1 and u 2 = u ), we obtain a function ϕ ∈ W 1,1 (B σ0 ) and a Caccioppoli partition {E k } m-1 k=0 of the ball B σ0 such that

u = m-1 k=0 a k χ E k e iϕ in B σ0 .
Since ϕ ∈ W 1,1 (B σ0 ), we have

J u ∩ B σ0 = m-1 k=0 ∂E k up to an H 1 -null set ,
where ∂E k denotes the reduced boundary of E k in B σ0 . Moreover (see [AFP00, Remark 4.22]),

H 1 (J u ∩ B r ) = 1 2 m-1 k=0 H 1 (∂E k ∩ B r ) for every r ∈ (0, σ 0 ) . (3.38)
Before going any further, let us recall a slicing property of sets of finite perimeter (see e.g. [AFP00, Chapter 3, Section 3.11] for further details). For a Borel set E ⊆ R 2 , we first denote by E 1 the (Borel) set of points of density 1 for E, i.e.,

E 1 := y ∈ R 2 : lim ρ↓0 |E ∩ B ρ (y)| πρ 2 = 1 .
For r > 0, we write E r := E 1 ∩ ∂B r , and we consider E r as a subset of ∂B r (in particular, ∂E r and int(E r ) denote the relative boundary and relative interior of E r in ∂B r , respectively). If E ⊆ R 2 has a finite perimeter, then for a.e. r > 0 the following properties hold:

∂E r is finite and is equal to ∂E ∩ ∂B r .

(3.39)

We point out that since {E k } is a Caccioppoli partition of B σ0 , by [AFP00, Theorem 4.17]

B σ0 = m-1 k=0 E 1 k ∪ m-1 k=0 ∂E k up to an H 1 -null set . (3.40)
For almost all radii r ∈ (0, σ 0 ), (3.39) holds for each E k , k ∈ {0, . . . , m -1}. We claim that for such radii

m-1 k=0 H 0 (∂E k ∩ ∂B r ) 1.
(3.41)

To prove (3.41), let us fix such a r and assume by contradiction that

∂E k ∩ ∂B r = ∂(E k ) r = ∅ for every k ∈ {0, • • • , m -1} .
Then each (E k ) r is either equal to ∂B r or empty, in particular H 1 (E k ∩ ∂B r ) ∈ {0, 2πr}. Since H 1 (∂E k ∩ ∂B r ) = 0 for each k by (3.39), we infer from (3.40) that H 1 (E kr ∩ ∂B r ) = 2πr for exactly one index k r ∈ {0, . . . , m -1}. Consequently, every point of ∂B r is a point of density 1 for E kr , and of density 0 for E k with k = k r . We then introduce the competitor u := a kr e iϕ in B r , u := u in Ω \ B r .

By construction J u \ B r = J u \ B r and J u ∩ B r = ∅, so that ũ is an admissible competitor. By optimality of u , we have A λ ( u) A λ (u ). Using that

| u -u * | 2 -|u -u * | 2 = (| u -u * | + |u -u * |) | u -u * | 2 -|u -u * | ≤ 4| u -u | (since | u| = |u * | = |u | = 1), we compute 0 A λ ( u) -A λ (u ) = λ Br | u -u * | 2 -|u -u * | 2 dx -H 1 (J u ∩ B r ) 4λ Br | u -u | dx -H 1 (J u ∩ B r ) = 4λ k =kr |1 -a k-kr ||E k ∩ B r | - 1 2 m-1 k=0 H 1 (∂E k ∩ B r ) 1 2 k =kr 16λ|E k ∩ B r | -H 1 (∂E k ∩ B r ) .
Since H 1 (∂E k ∩∂B r ) = 0 and (E k ) 1 ∩∂B r = ∅ for k = k r , we infer that E k ∩B r has finite perimeter and

∂(E k ∩ B r ) = ∂E k ∩ B r for k = k r . Therefore, k =kr 16λ|E k ∩ B r | -H 1 ∂(E k ∩ B r ) 0 .
By the (two dimensional) isoperimetric inequality, we have

|E k ∩ B r | |B r | |E k ∩ B r | r 2 H 1 ∂(E k ∩ B r ) , so that (8λr -1) k =kr H 1 ∂(E k ∩ B r ) 0 .
Since r < σ (8λ) -1 , the prefactor above is negative, and we deduce that H 1 (∂(E k ∩ B r )) = 0 for each k = k r . As a consequence B r ⊆ E 1 kr , so that u = u . In particular, H 1 (J u ∩ B r ) = 0 which contradicts (3.37), and (3.41) is proved.

By (3.41), we can now infer from the coarea formula (see [Mag12, Theorem II.7.7] for instance) that r ∈ (0,

σ 0 ] m-1 k=0 H 1 (∂E k ∩ B r ) m-1 k=0 r 0 H 0 (∂E k ∩ ∂B t ) dt = r 0 m-1 k=0 H 0 (∂E k ∩ ∂B t ) dt r.
Combining this inequality with (3.38) yields (3.36) for every r ∈ (0, σ 0 ].

Case 2: r ∈ (σ 0 , σ). In this case, we must have σ 0 < σ, so that σ 0 = dist(0, spt µ) and B σ ∩ spt µ = ∅. Our choice of σ then implies that B σ ∩ spt µ is reduced to a singleton, i.e., there exists

k 0 ∈ {0, . . . , m -1} such that B σ ∩ spt µ = {x k0 }. Moreover, x k0 ∈ ∂B σ0 .
By the definition of L g (Ω) and the slicing properties of BV -functions (see e.g. [AFP00, Chapter 3, Section 3.11] for details), for a.e. r ∈ (σ 0 , σ) we have spt µ ∩ ∂B r = ∅, the trace u r := u |∂Br belongs to SBV 2 (∂B r ; S 1 ), and J ur = J u ∩ ∂B r is finite. We claim that for every such r, H 0 (J ur ) 1.

(3.42) Indeed, let r be such a radius and assume by contradiction that J ur = ∅. Then u r ∈ W 1,2 (∂B r , S 1 ) and thus u r is continuous. In addition, the trace (u m ) r := u m |∂Br belongs to W 1,2 (∂B r , S 1 ) and it satisfies (u m ) r = (u r ) m . Hence the topological degree of (u m ) r is equal to m times the topological degree of u r . Moreover, we have u m (x) = e iψ (x -x k0 )/|x -x k0 | in B r for some ψ ∈ W 1,2 (B r ) satisfying ψ |∂Br ∈ W 1,2 (∂B r ). Hence = 1 which contradicts ∈ mZ, and (3.42) is proved.

By (3.42), we can infer again from the coarea formula that

H 1 J u ∩ (B r \ B σ0 ) r σ0 H 0 (J u ∩ ∂B t ) dt = r σ0
H 0 (J ut ) dt r -σ 0 for every r ∈ (σ 0 , σ) .

Since H 1 (J u ∩ B σ0 ) σ 0 by Case 1, we deduce that

H 1 (J u ∩ B r ) = H 1 J u ∩ (B r \ B σ0 ) + H 1 (J u ∩ B σ0 ) (r -σ 0 ) + σ 0 = r for every r ∈ (σ 0 , σ) ,
and (3.36) is proved for every r ∈ (σ 0 , σ).

Step 3. We define

K := x ∈ Ω : H 1 J u ∩ B r (x)
r for every r ∈ (0, σ) .

By definition, K is closed and since dist(J u * , ∂Ω) > 0, it is a compact subset of Ω. On the one hand, we can deduce from Step 2 that H 1 (J u \ K) = 0. On the other hand,

lim r↓0 H 1 (J u ∩ B r (x)) r = 0 for H 1 -a.e. x ∈ Ω \ J u ,
see e.g. [AFP00, Sect. 2.9, Theorem 2.56 and (2.42)]. In particular, H 1 (K \ J u ) = 0, and therefore H 1 (K J u ) = 0.

3.4.2. Proof of Proposition 3.14.

Proof. Thanks to Lemma 3.15, Remark 3.16, and Lemma 3.17 and a diagonal argument, it is enough to make the construction for a map u ∈ L g (Ω) with u m =: e iϕ v µ and µ = 2π md k=1 δ x k and such that there exists σ > 0 and a compact set K ⊆ Ω such that (a) dist(J u , ∂Ω) 2σ and u = g on ∂Ω;

(b) dist(spt µ, ∂Ω) 2σ and |x k -x l | 2σ for k = l;

(c) u m (x) = ξ k (x -x k )/|x -x k | in each B σ (x k ) for some ξ k ∈ S 1 ; (d) H 1 (K J u ) = 0; (e) dist(K, ∂Ω) 2σ and H 1 K ∩ B r (x)
r for every x ∈ K and r ∈ (0, σ).

By a further diagonal argument, it is enough to fix δ > 0 and construct a sequence

{(u h , ψ h )} ⊆ H g such that {u h } ⊆ G g (Ω) ∩ L ∞ (Ω) with u h L ∞ (Ω) 1, (u h , ψ h ) → (u, 1) in L 1 (Ω) as h → ∞, p(u h ) → u m strongly in W 1,p (Ω) for every p < 2, and lim sup h→∞ E ε h P(u h ) - πd m | log ε h | E 0 (u) + δ , (3.43) lim sup h→∞ H 1 (J u h ) H 1 (J u ) , (3.44) lim sup h→∞ I η h (ψ h ) (1 + δ)H 1 (J u ) . (3.45)
First, by Corollary 3.11 we can find ε ∈ (0, 1), u ∈ SBV 2 (B 1 ) ∩ L ∞ (B 1 ) with u L ∞ (B1) 1, and a closed smooth curve Σ ⊆ B 1 such that p( u)(x) = x in a neighborhood of ∂B 1 , J u ⊆ Σ, and

E ε P( u), B 1 - π m 2 log 1 ε γ m + δ md .
Then, for each k ∈ {1, . . . , md} we select ζ k ∈ S 1 such that ζ m k = ξ k , and we set for ε h ∈ (0, σε),

u h (x) :=    u(x) if x ∈ Ω \ B ε h /ε (µ) , ζ k u ε ε h (x -x k ) if x ∈ B ε h /ε (x k ) , k ∈ {1, • • • , dm} .
By construction, we have u h ∈ G g (Ω) ∩ L ∞ (Ω) with u h L ∞ (Ω) 1 (since |u| = 1), and

u h -u L 1 (Ω) 2πmd(ε h /ε) 2 -→ h→∞ 0 .
For p < 2, we estimate

p(u h ) -u m W 1,p (Ω) u m W 1,p (B ε h /ε (µ)) + (ε h /ε) (2-p)/p p( u) W 1,p (B1) -→ h→∞ 0 .
Next, changing variables, we have for each k ∈ {1, . . . , md},

E ε h P(u h ); B ε h /ε (x k ) = E ε P( u); B 1 π m 2 log 1 ε + γ m + δ md .
Consequently,

E ε h P(u h ) - πd m log 1 ε h E ε h P(u), Ω \ B ε h /ε (µ) - πd m log ε ε h + mdγ m + δ = 1 2m 2 Ω\B ε h /ε (µ) |∇(u m )| 2 dx - πd m log ε ε h + mdγ m + δ ,
and (3.43) follows from Proposition 2.11. By construction, we have

J u h ⊆ K h := K ∪ spt µ + ε h ε (∂B 1 ∪ Σ) up to an H 1 -null set , so that H 1 (J u h ) H 1 (K) + md ε h ε 2π + H 1 (Σ) .
Since H 1 (K) = H 1 (J u ), (3.44) follows letting h → ∞ in the inequality above.

To produce the sequence {ψ h }, we argue in a way similar to [AT90, Sec. 5]. We start by introducing a family of smooth profiles approximating the optimal profile ψ (s) = 1 -e -|s| from Lemma 3.12. For λ > 0 we define ψ λ : [0, ∞) → [0, 1] as

ψ λ (t) :=      1 -exp - λt λ -t if t < λ , 1 otherwise .
Notice that 1 -ψ λ and ψ λ are supported on [0, λ]. Setting e λ (t) := ψ λ (t) 2 + 1 -ψ λ (t) 2 , elementary computations yield

s λ := λ 0 e λ (t) dt -→ λ→∞ 1 .
Hence we can find λ > 0 such that s λ 1 + δ. Setting d h (x) := dist(x, K h ), we define ψ h as

ψ h (x) := ψ λ d h (x) η h .
The function ψ h is Lipschitz continuous and for ε h ∈ (0, σε) we have dist(K h , ∂Ω) > σ so that ψ h = 1 on ∂Ω whenever η h ∈ (0, σ/λ). Since u h ∈ W 1,2 (Ω \ K h ) and ψ h = 0 on K h , we infer that (u h , ψ h ) ∈ H g (Ω).

To estimate I η h (ψ h ), we first notice that d h is 1-Lipschitz. This leads to

I η h (ψ h ) 1 2η h Ω e λ d h (x)/η h dx = 1 2η h K h +B λη h e λ d h (x)/η h dx .
We use Fubini's theorem to obtain

K h +B λη h e λ d h (x)/η h dx = - K h +B λη h λ d h (x)/η h e λ (t) dt dx = - λ 0 e λ (t)|K h + B tη h | dt .
Noticing that e λ (t) 0 and

|K h + B tη h | |K + B tη h | + md ε h ε (∂B 1 ∪ Σ) + B tη h ,
we derive

I η h (ψ h ) - λ 0 te λ (t) |K + B tη h | 2tη h dt -md λ 0 te λ (t) ε h ε (∂B 1 ∪ Σ) + B tη h 2tη h dt =: J 1 h + J 2 h . (3.46)
By the Ahlfors regularity assumption on K stated in (e), we have (see e.g. [AFP00, Theorem 2.104])

lim r↓0 |K + B r | 2r = H 1 (K) .
Hence, by dominated convergence

lim h→∞ J 1 h = -H 1 (K) λ 0 te λ (t) dt = s λ H 1 (J u ) (1 + δ)H 1 (J u ) . (3.47) We now claim that lim h→∞ J 2 h = 0 . (3.48)
To prove (3.48) we may argue on subsequences if necessary. We distinguish the two complementary cases lim

h (ε h /η h ) < ∞ and lim h (ε h /η h ) = ∞. If lim h (ε h /η h ) < ∞, then we estimate for t ∈ (0, λ) ε h ε (∂B 1 ∪ Σ) + B tη h B tη h +ε h /ε t 2 η 2 h + (ε h /ε) 2 Cλ 2 η 2 h , so that J 2 h = O(η h ) as h → ∞.
We now assume that lim h (ε h /η h ) = ∞, and we write for t > 0,

ε h ε (∂B 1 ∪ Σ) + B tη h 2tη h = ε h ε (∂B 1 ∪ Σ) + B tεη h /ε h 2tεη h /ε h .
By smoothness of ∂B 1 and Σ, we have

lim r↓0 |(∂B 1 ∪ Σ) + B r | 2r = H 1 (∂B 1 ∪ Σ) ,
and we conclude that J 2 h = O(ε h ) as h → ∞. In both cases (3.48) holds true. Eventually, putting together (3.46), (3.47), and (3.48) leads to (3.45).

3.5. Proof of Theorem 3.2. The proof of Theorem 3.2 is very similar to the proof of Theorem 3.1 but we include a sketch of proof for the reader's convenience. It is divided as usual into three parts: compactness, the Γ-lim inf inequality, and the construction of recovery sequences. Concerning recovery sequences, we note that they are actually provided by Proposition 3.14 since (3.6) and (3.35) clearly lead to (3.10). We proceed with the proof of points (i) and (ii) of the theorem.

Compactness, proof of (i). For the compactness part, we argue as in the proof of Proposition 3.6 and apply in particular Theorem 2.10. We can argue in particular that {∇u h } is bounded in L p (Ω) and that H 1 (J u h ) is bounded. Therefore, since we also know that u h L ∞ (Ω) is bounded, we may apply [AFP00, Theorem 4.8] to conclude the proof as in Theorem 2.8.

The Γ-lim inf inequality, proof of (ii). Without loss of generality, we can assume that lim inf

h→∞ F 0 ε h (u h ) = lim h→∞ F 0 ε h (u h ) < ∞ .
Moreover, the truncation argument in the proof of Theorem 2.8 together with (3.19) shows that u h can be replaced by u h defined in (2.9). Hence we can also assume that u h L ∞ (Ω) 1, and the proof of (i) above applies. In particular v h := p(u h ) satisfies (2.18), and we reproduce verbatim the proof of Theorem 3.1 to show that (3.2) holds. Moreover, up to extending u h and u to a larger domain Ω as in the proof of Theorem 2.8, we may assume that H 1 ({u h = g} ∩ ∂Ω) = H 1 ({u = g} ∩ ∂Ω) = 0. We consider the sequence of non negative finite measures on Ω ν h := H 1 (J u h ∩Ω ) .

Since ν h (Ω) = H 1 (J u h ) is bounded, we can extract a further subsequence such that ν h ν * weakly* as measures for some non negative finite measure ν * on Ω. Since spt ν h ⊆ Ω, we have spt ν * ⊆ Ω and ν h (Ω) → ν * (Ω). We claim that ν * H 1 (J u ∩ Ω) .

(3.49)

Before proving (3.49), we observe that it implies 

lim h→∞ H 1 (J u h ) = lim h→∞ ν h (Ω) = ν * (Ω) H 1 (J u ) = H 1 (J u ) , ( 3 
ν * (A) ν * (B) lim inf h→∞ ν h (B) = lim inf h→∞ H 1 (J u h ∩ B) H 1 (J u ∩ B) .
Hence ν * (A) H 1 (J u ∩ K), and by inner regularity it implies that ν * (A) H 1 (J u ∩ A). By outer regularity, we conclude that (3.49) holds.

Let us now assume that F 0 (u) = lim h F 0 ε (u h ). In view of (3.2) and (3.50), we have

lim h→∞ G ε h (v h ) - πd m | log ε h | = 1 2m 2 Ω |∇ϕ| 2 dx + 1 m 2 W(µ) + mdγ m , (3.51) and ν * (Ω) = lim h→∞ H 1 (J u h ) = H 1 (J u ) . (3.52)
From (3.51), we can argue exactly as in the proof of Proposition 3.13, Step 3, to deduce that v h → u m strongly in W 1,p (Ω) for every p < 2 and strongly in W 1,2 loc (Ω \ spt µ), and that (3.4) holds. Then, we infer from (3.49) and (3.52) that ν * ≡ H 1 J u . As a consequence, if A ⊆ R 2 is an open set such that ν * (∂A) = 0, then

H 1 (J u ∩ A) = ν * (A) = lim h→∞ ν h (A) = H 1 (J u h ∩ A) ,
which proves (3.9) since ν * (∂A) = H 1 (J u ∩ ∂A).

The limiting problem

The aim of this section is to study minimizers over L g (Ω) of the limiting functional F 0,g . To avoid some technical issues (at the boundary), we shall assume for simplicity that Ω is a smooth bounded convex set.

By Remark 3.5 and Lemma 2.3, minimizers of F 0,g over L g (Ω) coincide with solutions of

min 1 m 2 W(µ) + H 1 (J u ) + H 1 {u = g} ∩ ∂Ω) : u ∈ SBV (Ω; S 1 ) , µ := m curl j(u) ∈ A d and u m = v µ . (4.1)
In turn, (4.1) amounts to solve for each µ ∈ A d ,

L(µ) := min H 1 (J u ) + H 1 {u = g} ∩ ∂Ω : u ∈ SBV (Ω, S 1 ) , u m = v µ , (4.2) 
and then minimize 1 m 2 W(•) + L(•) over A d which is a finite dimensional optimization problem. Let us however point out that since on the one hand Steiner type problems are usually very hard to solve and since on the other hand, the minimization of W can be rarely explicitly done (see [START_REF] Ignat | Minimization of the renormalized energy in the unit ball of R 2[END_REF]), this finite dimensional problem does not seem easy to handle.

For the rest of this section we fix a measure µ ∈ A d , and focus on problem (4.2). First, we notice that existence of minimizers in (4.2) follows as in the proof of Lemma 3.17 Notice that since we can always remove connected components which do not contain any vortex x k , we can reduce the above minimization problem to sets Γ with the property that every connected component contains a positive number of vortices. Of course, this implies that Γ has at most d connected components. Each of these connected components Σ is a competitor for the Steiner problem related to sptµ ∩ Σ. This shows that minimizers of (4.3) exist and are made of (at most d) Steiner trees i.e. finite union of segments meeting only at the vortices or at triple junctions (see [Mor94, Prop. 2.2]). Definition 4.1. A compact set Γ is said to be a Λ(µ)-minimizer if it solves (4.3).

Remark 4.2. Since we assumed that Ω is convex, any Λ(µ)-minimizer Γ is contained in the convex hull of spt µ. More precisely, since projecting on convex sets reduces distances, if Σ is a connected component of Γ, then Σ is contained in the convex hull of Σ ∩ spt µ. Since Σ is a tree, we also infer the following property: if C ⊆ Σ is an open segment, such that C ∩ spt µ = ∅, then Σ \ C is made of two connected components A and B satisfying Card(A ∩ spt µ) ∈ mN \ {0} and Card(B ∩ spt µ) ∈ mN \ {0}. Otherwise, Γ \ C would be an admissible competitor for Λ(µ) with strictly lower length, contradicting minimality.

We are now ready to prove the main result of this section, which states that the jump set of any minimizer of (4.2) is a Λ(µ)-minimizer. Moreover, if u is a minimizer of L(µ), then J u is a Λ(µ)-minimizer, u ∈ C ∞ (Ω \ J u ), and u = g on ∂Ω. Vice-versa, if Γ is a Λ(µ)-minimizer, then there exists u minimizing L(µ) with J u = Γ.

Proof.

Step 1. Let µ = 2π md k=1 δ x k be fixed. We first prove that L(µ) Λ(µ) .

Consider Γ a Λ(µ)-minimizer. Treating each connected component of Γ separately, we may assume without loss of generality that Γ is connected. Since R 2 \ Γ is connected, we can find a smooth injective curve with arc-length parameterization

γ 1 : [0, ∞) → R 2 satisfying γ 1 (0) = x , |γ 1 (t)| → ∞ as t → ∞, and γ 1 (0, ∞) ∩ Γ = ∅.
Setting D 1 := γ 1 ((0, ∞)), we orient D 1 according to its parameterization γ 1 (i.e., in the direction of increasing t's). Since R 2 \ D 1 is simply connected, we can find a smooth map ϕ 1 : R 2 \D 1 → R which is smooth up to D 1 from both sides, has a constant (oriented, pointwise defined) jump across D 1 equal to 2π, and such that e iϕ1(x) = (x -x 1 )/|x -x 1 |.

We then set u 1 := e iϕ1/m . Since Γ is a tree, for each k ∈ {2, . . . , md} there is a unique injective polygonal curve 

γ k : [0, 1] → Γ such that γ k (0) = x k and γ k (1) = x 1 . Setting D k := γ k ((0, 1)),
u Γ := exp i m ϕ µ + md k=1 ϕ k ,
where ϕ µ is the map defined in (2.14). By construction, we have u Γ ∈ SBV (Ω; S 1 ) and u m Γ = v µ , i.e., u Γ is an admissible competitor for L(µ). In addition, u Γ is smooth outside Γ ∪ D 1 . Since 1 m k ϕ k has a constant jump equal to 2πd across D 1 , we infer that u Γ is actually smooth in Ω \ Γ, and u = a j g on ∂Ω for some j ∈ {0, . . . , m -1}. Replacing u Γ by a -j u Γ if necessary, we can assume that u Γ = g on ∂Ω. Now consider an arbitrary point x ∈ Γ \ spt µ. By Remark 4.2, the number of x k 's before x, according to the orientation of Γ, is not a multiple of m. This shows that the jump of 1 m k ϕ k across Γ at x is not a multiple of 2π, and consequently x ∈ J uΓ . Therefore J uΓ = Γ, and L(µ) H 1 (J uΓ ) = Λ(µ).

Step 2. We now prove that L(µ) ≥ Λ(µ). (4.5)

Let us consider an arbitrary minimizer u of L(µ), and assume without loss of generality that 0 ∈ Ω. We shall first prove in this step that u = g on ∂Ω , and dist(J u , ∂Ω) > 0 .

(4.6)

To show that (4.6) holds, we consider Γ a Λ(µ)-minimizer, and u Γ the map constructed in Step 1. We extend u and u Γ to R 2 by setting u(x) = g • Π(x) and u Γ (x) = g • Π(x) for x ∈ R 2 \ Ω, where Π denotes the orthogonal projection on the convex set Ω. Then, J u ⊆ Ω, J uΓ ⊆ Γ, and H 1 (J u ) = H 1 (J u ) + H 1 {u = g} . We can thus from now on identify u (respectively u Γ ) and u (respectively u Γ ). We define w := u/u Γ .

Since

u m = v µ = u m Γ , we have w ∈ SBV loc (R 2 ; G m ) with w = 1 in R 2 \ Ω and we can find a Caccioppoli partition {E k } m-1 k=0 of R 2 such that w = m-1 k=0 a k χ E k , with E k ⊆ Ω for k = 1, . . . , m, and R 2 \ Ω ⊆ E 0 . Since u Γ is smooth in Ω \ Γ, we deduce that J u ∩ (R 2 \ Γ) = m-1 k=0 ∂E k \ Γ up to an H 1 -null set . (4.7)
Let K be the convex envelope of spt µ. The set K is then a closed polygonal subset of Ω. By an elementary geometric construction, we can find a strictly convex open set ω with C 1 -boundary satisfying K ⊆ ω and ω ⊆ Ω, and such that the Hausdorff distance between K and ω is arbitrarily small. Given such ω, we consider the mapping Φ : R 2 → R 2 defined by Φ(x) := 1 2 (x + Π ω (x)), where Π ω denotes the orthogonal projection on ω. Then Φ is a (global) C 1 -diffeomorphism of R 2 satisfying Φ(x) = x for every x ∈ ω.

Consider now the sets

E k := Φ(E k ) for k = 1, . . . , m -1, so that { E k } m-1 k=0 defines a Caccioppoli partition of R 2 . As a consequence, the map u := m-1 k=0 a k χ E k u Γ
is an admissible competitor for L(µ). By the chain rule formula for BV -functions and (4.7), we have J u \ ω = Φ(J u \ ω) and J u ∩ ω = J u ∩ ω. The minimality of u together with the area formula (see [AFP00, Theorem 2.91]) then leads to

H 1 (J u \ ω) H 1 (J u \ ω) Ju\ω |∇Φ| dH 1 .
(4.8)

Our assumption on ω implies that |∇Φ(x)| 1 -c ω dist(x, ω) for every x ∈ Ω and some constant c ω > 0 depending only on ω and Ω. Inserting this estimate in (4.8) shows that H 1 (J u \ ω) = 0, which clearly implies (4.6).

Step 3. In this final step we show (4.5). Let us fix an arbitrary ball B 2r (y) ⊆ Ω \ spt µ. Since v µ is smooth in B 2r (y), we can find a smooth function ϕ on B r (y) such that v µ = e iϕ in B r (y). The map u := e iϕ/m is then smooth on B r (y), and satisfies u m = v µ in B r (y). Arguing as above, it implies that any competitor u comp for L(µ) can be written as

u comp = m k=0 a k χ F k u in B r (y) ,
for some Caccioppoli partition {F k } m-1 k=0 of B r (y), and

J ucomp ∩ B r (y) = m-1 k=0 ∂F k ∩ B r (y) up to an H 1 -null set .
In addition,

H 1 J ucomp ∩ B r (y) = 1 2 m-1 k=0 H 1 ∂F k ∩ B r (y) . (4.9)
As a consequence, the minimizer u of L(µ) that we consider can be written as u = k a k χ E k u , for some Caccioppoli partition {E k } m-1 k=0 of B r (y) minimizing the right-hand side of (4.9). By classical results on minimal planar clusters (see for instance [CLM15, Theorem 5.2]), ∪ k ∂E k ∩B r (y) is locally a finite union of segments meeting at triple junctions. Since u is smooth in B r (y), it implies that J u ∩ B r/2 (y) = ∪ k ∂E k ∩ B r/2 (y), and u ∈ C ∞ (B r/2 (y) \ J u ).

We are now ready to prove that J u is a Λ(µ)-minimizer. Let us fix for a moment σ > 0 such that B σ (x k ) ∩ B σ (x l ) = ∅ for k = l, and B σ (µ) ⊆ Ω. By the discussion above, u ∈ C ∞ Ω \ (J u ∪ B σ/2 (µ)) , and J u \ B σ/2 (µ) is a finite union of segments. Hence, J u ∪ B σ (µ) is a compact subset of Ω. Since J u ∪ B σ (µ) converges to J u ∪ spt µ as σ → 0 in the Hausdorff distance, we infer from Blaschke's theorem that J u ∪ spt µ is a compact subset of Ω. Moreover, we have J u ⊇ spt µ since u m = v µ . Therefore J u is a compact subset of Ω, and u ∈ C ∞ (Ω \ J u ). To complete the proof, it now only remains to prove that any connected component of J u contains a multiple of m vortices (possibly equal to zero). Indeed, this would lead to L(µ) = H 1 (J u ) Λ(µ), and (4.5) would be proven. Furthermore, by Step 1, we would also obtain that J u is a minimizer of Λ(µ).

Let us consider Σ a connected component of J u , and A ⊆ Ω a connected smooth open neighborhood of Σ such that (J u \ Σ) ∩ A = ∅. We may write A = A 0 \ ∪ N n=1 A n where the A n are connected and simply connected smooth open sets satisfying A n ⊆ A 0 for n = 1, . . . , N , and A n are pairwise disjoint. Since v µ and u are smooth on ∂A n for n = 0, . . . , N , and

u m = v µ , deg(v µ , ∂A n ) = mdeg(u, ∂A n ) ∈ mN and thus Card(Σ ∩ spt µ) = deg(v µ , ∂A 0 ) - N n=1 deg(v µ , ∂A n ) ∈ mN, concluding the proof.
Remark 4.4. The proof of Theorem 4.3 shows that every L(µ)-minimizer u is smooth on both sides of J u away from spt µ. More precisely, one can find a radius r > 0 such that if B r (x) ⊆ Ω \ spt µ, then B r (x) \ J u is made of at most three connected sets and v µ = e iϕ in B r (x) for some smooth function ϕ. In each connected region of B r (x)\J u , we have u = a k e iϕ/m for some k ∈ {0, . . . , m-1}.

Remark 4.5. When Ω is simply connected but not convex, (4.4) still holds true if one adds the condition Γ ⊆ Ω for the admissible sets for Λ(µ). For minimizers, the set Γ ∩ ∂Ω can then be non-empty. The proof would follow the same lines as in the convex case using boundary regularity of minimizers for the constrained Steiner and constrained minimal cluster problems.

Remark 4.6. Given a reference map u which is an admissible competitor for L(µ), we have seen that any other competitor u can be written as u = (

m-1 k=0 a k χ E k )u for some Caccioppoli partition {E k } m-1 k=0
of Ω. This allows to rephrase the minimization problem defining L(µ) as an optimal partition problem. Notice however that H 1 (J u ) does not coincide in general with the boundary length of the partition plus H 1 (J u ) since possible cancellations have to be taken into account (see Figure 4). 4.1. Structure of Λ(µ)-minimizers. We now move on to the study of the Λ(µ)-minimizers. In the case m = 2, it reduces to a variant of the classical minimal connection problem (see for instance [START_REF] Brezis | Harmonic maps with defects[END_REF]). We recall that if P := {p 1 , . . . , p d } and Q := {q 1 , . . . , q d } are two sets of given points in R 2 , then the length of a minimal connection between P and Q is defined as

min σ d k=1 |p k -q σ(k) | ,
where the minimum runs over all permutations σ of {1, . . . , d}.

Proposition 4.7. Assume that m = 2. Let µ ∈ A d and Γ be a Λ(µ)-minimizer. Then, Γ is made of exactly d disjoint segments Γ 1 , • • • , Γ d , and each Γ k ∩ spt µ contains exactly two points {p k , q k }.

E E J u J u u u J u J u J u Figure 4. Cancellations in the case m = 2 (E 1 = E, E 0 = Ω \ E).
In particular, Γ k = [p k , q k ] for each k, and H 1 (Γ) is the length of a minimal connection between

P = {p 1 , • • • , p d } and Q = {n 1 , • • • , q d }.
Proof. Let Γ be a Λ(µ)-minimizer, and let us prove that every connected component Γ k of Γ contains exactly two points of spt µ. It would obviously imply that each Γ k is a segment, and that H 1 (Γ) is the length of minimal connection by the definition (4.3) of Λ(µ).

To prove the claim, we start with the following observation. By Theorem 4.3, we can find a map u achieving L(µ) and such that J u = Γ. Then, consider an arbitrary open ball B 2r (x) ⊆ Ω \ spt µ. Since v µ = u 2 is smooth in that ball and deg(v µ , ∂B 2r (r)) = 0, we can find u ∈ C ∞ (B 2r (x); S 1 ) such that u 2 = v µ . Arguing as in the proof of Theorem 4.3, we infer that u = (χ E -χ E c )u in B r (x) for some set E having a minimizing perimeter in B r (x). By minimality, ∂E ∩ B r/2 (x) = J u ∩ B r/2 (x) = Γ ∩ B r/2 (x) is smooth, and thus Γ ∩ B r/2 (x) does not contain triple junctions. Hence Γ is a finite union of segments, only intersecting at points of spt µ.

Let us now consider Γ k a connected component of Γ. Assume by contradiction that there is a point x ∈ Γ k ∩ spt µ such that J 2 segments meet at x (if J = 1 for every point of Γ k ∩ spt µ, then there is nothing to prove). For j ∈ {1, . . . , J}, let C j := [x, y j ] be the segments in Γ k departing from x. Denote by n j the number of points in spt µ belonging to the connected component of Γ k \ {x} containing C j \ {x}. Notice that each n j must be odd (otherwise one could remove the corresponding segment C j from Γ, thus contradicting minimality). Moreover, the cardinal of spt µ ∩ Γ k is even, and since it is equal to 1 + J j=1 n j , we deduce that J is odd. Hence J 3, and among the segments C j , at least two of them are not collinear. Assume without loss of generality that C 1 and C 2 are not collinear. Then we can replace C 1 and C 2 by the segment [y 1 , y 2 ] to obtain a competitor with strictly lower length than Γ (see Figure 5), which again contradicts minimality. This establishes that J = 1, and concludes the proof.

The case m 3 is more involved, and it is no longer true that any Λ(µ)-minimizer is a disjoint union of d Steiner trees.

Proposition 4.8. Assume that d ∈ {2, 3, 4} and m d + 1. There exists µ ∈ A d such that every Λ(µ)-minimizer is connected.

Proof. For clarity reason, we shall start by giving full details of the proof for d = 2 and m = 3. We will then explain how to extend this construction to the other cases. Let Y 1 , Y 2 , and Y 3 be three equidistant points on the unit circle. The unique solution to the Steiner problem for connecting these three points is given by the triple junction Σ. Given ε 1, let {x 1 , . . . , x 6 } be such that (see Figure 6)

|x 1 -Y 1 | = |x 2 -Y 1 | = |x 3 -Y 2 | = |x 4 -Y 2 | = |x 5 -Y 3 | = |x 6 -Y 3 | = ε .
Consider the measure µ ε := 2π 6 k=1 δ x k , and let Γ ε be a Λ(µ ε )-minimizer. Set Σ ε to be the union of Σ with the segments connecting each x j to the closest Y i . By minimality,

H 1 (Γ ε ) H 1 (Σ ε ) H 1 (Σ) + 6ε . (4.10)
If Γ ε is not connected, then it is has two connected components Γ 1 ε and Γ 2 ε , each of them containing exactly three points among the x j 's. Then, at least one of the pairs {x 1 , x 2 }, {x 3 , x 4 } and {x 5 , x 6 }, intersects both Γ 1 ε and Γ 2 ε , say {x 1 , x 2 }. Up to a subsequence, we have that each Γ i ε converges to a connected set Γ i with Γ := Γ 1 ∪ Γ 2 admissible for the Steiner problem related to Y 1 , Y 2 and Y 3 . Therefore, by (4.10)

H 1 (Σ) ≥ lim inf ε→0 H 1 (Γ ε ) ≥ H 1 (Γ) ≥ H 1 (Σ). Y 1 x 2 x 1 x 6 Y 3 x 5 Y 2 x 4 x 3 Γ 1 ε Γ 2 ε x 2 x 1 x 6 x 5 x 4
x 3 Figure 6. An example of a connected minimizer with six vortices of degree 1/3. Hence, the above inequalities are actually equalities and since

lim inf ε→0 H 1 (Γ ε ) = H 1 (Γ 1 ) + H 1 (Γ 2 ), we have H 1 (Γ 1 ∪ Γ 2 ) = H 1 (Γ 1 ) + H 1 (Γ 2 ) so that Γ 1 and Γ 2 only intersect at Y 1 . We have thus obtained a connected graph Γ containing Y 1 , Y 2 and Y 3 but for which the degree of Y 1 is two. Since Σ is the only minimizer of the Steiner problem for (Y 1 , Y 2 , Y 3 ), H 1 (Γ) > H 1 (Σ) ,
contradicting (4.10) for ε small enough. If now m 3, we can repeat the same construction placing m -1 points close to Y 1 , m -1 close to Y 2 and two close to Y 3 to construct an example where the minimizer is connected for 2m points.

For d = 3, 4 and m = d + 1, the construction is similar to the case d = 2. For this we let (Y 1 , . . . , Y m ) be the vertices of a regular m-gone 1 inscribed in the unit circle and consider (x 1 , . . . , x md ) points such that for every k ∈ [1, m], there are exactly d of these points at distance 1 That is a square if m = 4 and a pentagon if m = 5. ε from Y k . Let Σ be the minimizer of the Steiner problem for (Y 1 , . . . , Y m ). Then, as for the case d = 2, Λ(µ) H 1 (Σ) + mdε . (4.11)

As above, let Γ ε be a minimizer for Λ(µ) and assume that it is not connected. Let Γ ε be the set made of Γ ε and the union of the segments joining the points x j to the nearest Y k . Since every connected component of Γ ε contains a multiple of m points among the points x j , it must also be the same for the connected components of Γ ε . However, at the same time, it should also be a multiple of m -1 since each Y k is connected to the m -1 closest points x j . Therefore, Γ ε must be connected. Letting ε → 0, we obtain a set Γ which is admissible for the Steiner problem for (Y 1 , . . . , Y m ) but for which at least one of the points Y k has degree at least two. Since all the points Y k have degree one for the minimizer of the Steiner problem for the m-gone with m = 4, 5 (see for instance [START_REF] Du | Steiner minimal trees for regular polygons[END_REF] and Figure 7), we reach a contradiction with (4.11). The extension to d = 4, 5 and m > d + 1 is obtained as before by placing m -1 points x j at distance ε from d points Y k and d points x j at distance ε from the last Y k .

Remark 4.9. For m 6, the solution of the Steiner problem for the vertices of a regular m-gone is known to be the m-gone itself minus one of its side [START_REF] Du | Steiner minimal trees for regular polygons[END_REF]. For this reason our construction does not work for d 5. It would be interesting to understand if it is possible to find another construction which works for every d ∈ N.

In light of Proposition 4.8, one could conjecture that the maximum number of points that a Λ(µ)-minimizer can carry is equal to m(m -1). However, as the following example shows, this is again not the case.

Proposition 4.10. Assume that m = d = 3. There exists µ ∈ A d such that every Λ(µ)-minimizer is connected.

Proof. The idea is to iterate the construction made above (see Figure 8). Let 1 ε δ. We first fix the points (Y 1 , Y 2 , Y 3 ) as before and then choose the points (X 1 , X 2 , X 3 , X 4 ) so that

|X 1 -Y 1 | = |X 2 -Y 1 | = |X 3 -Y 2 | = |X 4 -Y 2 | = ε ,
and that all the angles are of 120°. Let (x 1 , . . . , x 8 ) be such that each X k is at distance δ of exactly two x j 's and let finally x 9 = Y 3 . Let Γ be a minimizer of the corresponding Λ(µ). As above, by comparing with a connected competitor, it holds H 1 (Γ) 3 + 4ε + 8δ .

(4.12)

If Γ is not connected, then it can have either two or three connected components. Arguing as above, we see that the connected component containing x 9 must also contain at least one of the vortices close to Y 1 , say x 1 and one of the vortices close to Y 2 say x 8 . Let Γ 1 be this connected component. If Γ has three connected components, then each of them must contain exactly three points. Up to relabeling, this means that Γ 2 contains x 2 , x 3 and x 4 and Γ 3 contains x 5 , x 6 and x 7 .

Letting Σ 1 be the triple junction connecting x 9 , X 1 and X 3 (see Figure 8), we obtain that,

H 1 (Γ) H 1 (Σ 1 ) + |X 1 -X 2 | + |X 3 -X 4 | + O(δ) . A simple computation gives |X 1 -X 2 | = |X 3 -X 4 | = √ 3ε and H 1 (Σ 1 ) = 3 + ε so that H 1 (Γ) 3 + (1 + 2 √ 3)ε -O(δ)
, which contradicts (4.12) for δ and ε small enough. The cases when Σ 1 must be the triple junction connecting X 2 , x 9 and X 3 or X 1 , x 9 and X 3 can be treated analogously.

If now Γ is made of only two components, then Γ 1 must contain six points and the other connected component Γ 2 must contain the remaining three points. Without loss of generality, we can assume that {x 1 , x 2 , x 3 , x 4 , x 8 , x 9 } ⊆ Γ 1 and {x 5 , x 6 , x 7 } ⊆ Γ 2 . Let Σ 2 be the optimal Steiner tree connecting X 1 , X 2 x 9 and X 4 (see Figure 9). We then have In order to compute H 1 (Σ 2 ), we notice that since at first order, it must have length 3, it must have at least one triple junction. If it has only one, then we are basically back to the situation of Figure 8. Otherwise, it has exactly two triple junctions and we can obtain H 1 (Σ 2 ) by constructing the two equilateral triangles X 1 X 2 S 1 and X 4 x 9 S 2 (see Figure 9) and computing the distance S 1 S 2 (see [START_REF] Pollak | Some remarks on the Steiner problem[END_REF]). After some computations using for instance complex numbers, we find that

H 1 (Γ) H 1 (Σ 2 ) + |X 4 -X 3 | -O(δ) . x 9 X 2 x 3 x 1 x 4 Y 1 x 2 X 1 x 5 X 4 x 6 x 7 X 3 Y 2 x 8 x 9 Σ 1 X 2 X 1 X 3 X 4
H 1 (Σ 2 ) = 3 + 5 2 ε + o(ε) so that H 1 (Γ) 3 + 5 2 + √ 3 ε + o(ε) -O(δ) ,
contradicting (4.12) again.

Remark 4.11. In light of these examples, it would be interesting to understand what is the maximal number of vortices which can be carried by a single tree, given m 3.

5.

Structure of minimizers at small ε > 0

The aim of this final section is to use the structure of the minimizers of the limiting functional F 0,g given by Theorem 4.3 to prove that minimizers of F 0 ε,g have the same structure for ε > 0 small enough. In turn, this gives an improved convergence result for minimizers as ε ↓ 0 (compare to Corollary 3.4). Since we will use some tools developed for the analysis of the Mumford-Shah functional, we will only focus on the sharp interface functional F 0 ε,g . It would be interesting to understand if similar results can be obtained for the "phase field approximation" F η ε .

As in the previous section, we shall assume that Ω is a convex domain. The main results of this section can be summarized in the following theorem. We recall that the L 1 -convergence of minimizers of F 0 ε h ,g towards minimizers of F 0,g is given by Corollary 3.4.

Theorem 5.1. Let ε h → 0, and let u h be a minimizer of F 0 ε h ,g over G g (Ω). Assume that u h → u in L 1 (Ω) as h → ∞ for some minimizer u of F 0,g . Setting µ := curl j(u m ), for every σ > 0 small enough, and every h large enough, the following holds:

(i) J u h \ B σ (µ) is a compact subset of Ω \ B σ (µ) made of finitely many segments, meeting at triple junctions.

(ii) u h ∈ C ∞ Ω \ (B σ (µ) ∪ J u h ) and u h = g on ∂Ω.

(iii) If B r (x) ⊆ Ω\B σ (µ), then there exists

φ h ∈ BV (B r (x); G m ) such that u h /φ h ∈ C ∞ (B r (x)).
In addition, (iv) J u h converges in the Hausdorff distance to J u .

(v) u h → u in C k loc (Ω \ J u ) ∩ C 1,α loc (Ω \ J u ) for every k ∈ N and α ∈ (0, 1). (vi) If B r (x) ⊆ Ω \ B σ (µ), then there exists φ ∈ BV (B r (x); G m ) such that u h /φ h → u/φ in C k loc (B r (x)) for every k ∈ N.
Remark 5.2. In the proof of Theorem 5.1, we are actually going to prove a stronger result on the structure of u h (see Section 5.1). As a consequence, it solves in Ω \ B σ (µ) the Ginzburg-Landau system with free discontinuities

           -∆u h = 1 ε 2 h (1 -|u h | 2 )u h in Ω \ (B σ (µ) ∪ J u h ) , (u + h ) m = (u - h ) m on J u h \ B σ (µ) , u h = g on ∂Ω .
Remark 5.3. As a consequence of items (iii) and (vi) above, we have p(u h ) ∈ C ∞ (Ω \ B σ (µ)) for h large enough, and p(u

h ) → u m in C k loc (Ω \ B σ (µ)) ∩ C 1,α (Ω \ B σ (µ)
). Remark 5.4. In the case m = 2, J u is made of d disjoint segments connecting points of spt µ, see Proposition 4.7. In particular, J u contains no triple junctions. Concerning the minimizer u h of F 0 ε,g , it implies that (for h large enough), the set J u h \ B σ (µ) is made of d disjoint segments connecting components of B σ (µ).

Remark 5.5. Let us notice that in the case deg(g, ∂Ω) = 0, Theorem 5.1 shows that for ε small enough, the minimizer of F 0 ε,g is unique and smooth, i.e. there is no jump set, and it coincides with the unique minimizer of E ε over W 1,2 g (Ω) (see [START_REF] Ye | Uniqueness of solutions of the Ginzburg-Landau problem[END_REF]). For the classical Mumford-Shah functional, similar results were obtained using calibration methods [START_REF] Alberti | The calibration method for the Mumford-Shah functional and free-discontinuity problems[END_REF] (see also [START_REF] Fusco | An overview of the Mumford-Shah problem[END_REF]Th. 3.1] for a simple proof originally due to Chambolle).

Remark 5.6. Theorem 5.1 does not provide regularity results near spt µ. Nevertheless, repeating verbatim the proof of [BL14, Theorem 3.1], one can prove that for every ε > 0 and every minimizer u of F 0 ε,g , the jump set is essentially closed, that is H 1 (J u \ J u ) = 0. Since Ω ⊆ R 2 , the proof of this result only requires the simplest forms of [BL14, Lemma 2.3 & Lemma 2.4].

Remark 5.7. It would be interesting to study the behavior of the minimizers u h close to the vortices, i.e., in B σ (µ). One could expect that there is only one point in each component of B σ (µ) where u h vanishes, and that the jump set of u h is a union of Steiner trees connecting those zeroes in the spirit of the Λ(µ) minimization problem. In this direction, a first step may consist in understanding the optimal profile problem

γ # m (ε, R) := min E ε P(u), B R + H 1 (J u ∩ B R ) - π m 2 log R ε : u ∈ G(B R ) , P(u)(z) = 1 m z |z| , m 2 -1 on ∂B R .
Considering a solution u of this problem, one may ask if |u| is radial, increasing, vanishing at the origin, and if J u is just a segment joining the origin to the boundary. It seems to be a difficult question since it combines both issues related to the presence of an expected singularity in the jump set in the spirit of the so called crack tip (see for instance [START_REF] David | Singular sets of minimizers for the Mumford-Shah functional[END_REF]) for the Mumford-Shah functional, with the fact that P(u) should have the same regularity as minimizing harmonic maps with values into the singular cone N . Such harmonic maps satisfy non standard elliptic equations, and are usually more singular than minimizing harmonic maps with values into a smooth target [GS92, Lin89, HL93, AHL17] 2 .

5.1. Sketch of the proof of Theorem 5.1. Before starting the proof of Theorem 5.1, let us explain the strategy. Away from sptµ, the limiting function v µ is smooth. Therefore, if we consider a small enough ball B r (x) outside B σ (µ), then the oscillation of v µ on this ball is very small. By the strong convergence in W 1,2 (B r (x)) of v h to v µ (recall Theorem 3.2), this will still be true for v h on ∂B r (x) (actually, on ∂B ρ h (x) for some ρ h ∼ r). Hence 3 , we can find g h ∈ W 1,2 (∂B r (x)) such that p(g h ) = v h on ∂B r (x). Considering w h a solution of the Ginzburg-Landau equation

-∆w h = 1 ε h 2 (1 -|w h | 2 )w h in B r (x) w h = g h in ∂B r (x), (5.1) 
we aim at proving that in B r (x),

u h = m-1 k=0 a k χ E k h w h
where the E k h are pairwise disjoint and satisfy (up to a relabeling)

(i) if B r (x) ∩ J u = ∅, then E 0 h = B r (x) i.e. u h = w h in B r (x); (ii) if B r (x)∩J u is a segment then u h = (χ E 0 h +a k (1-χ E 0 h ))w h for some k = 0 with ∂E 0 h ∩B r (x) a segment; (iii) if B r (x) ∩ J u contains a triple point then u h = (χ E 0 h + a k1 χ E k 1 h + a k2 χ E 2 h )w h with 0 < k 1 < k 2 m -1 and ∂E 0 h ∪ ∂E k1 h ∪ ∂E k2
h a triple junction in B r (x). In order to show that indeed u h is of this form, a powerful tool that we introduce in the next section is the Lassoued-Mironescu decomposition argument [START_REF] Lassoued | Ginzburg-Landau type energy with discontinuous constraint[END_REF] which allows to conveniently split the energy into a Ginzburg-Landau term and a Mumford-Shah type energy. 5.2. Ginzburg-Landau minimizers and energy splitting. In this section, we consider a radius r > 0, a sequence ε h → 0, and a sequence of boundary conditions

{g h } ⊆ W 1,2 (∂B r ) ∩ L ∞ (∂B r ) satisfying g h L ∞ (∂B r ) 1 , (5.2) ∂Br |∂ τ g h | 2 + 1 ε 2 h (1 -|g h | 2 ) 2 dH 1 C , (5.3) 
for some constant C > 0 independent of ε h . We further assume that g h → g uniformly on ∂B r as h → ∞ , (5.4) for some g ∈ W 1,2 (∂B r ; S 1 ) satisfying deg(g , ∂B r ) = 0 .

(5.5)

2 quoting [START_REF] Lin | Nonlinear theory of defects in nematic liquid crystals; phase transition and flow phenomena[END_REF]: "Unfortunately, the equations satisfied by s and u are so bad that no existing result can be applied".

3 Notice that actually, some care is needed in the choice of g h to guarantee that no jump is created at the boundary.

From this last assumption, we can write g = e iϕ for some harmonic function ϕ ∈ W 1,2 (B r ) (which is unique up to a constant multiple of 2π). As in [START_REF] Bethuel | Asymptotics for the minimization of a Ginzburg-Landau functional[END_REF], the map

w := e iϕ ∈ W 1,2 g (B r ; S 1 )
is the unique solution of the minimization problem min W 1,2 g (Br;S 1 ) Br |∇w| 2 dx .

(5.6)

We are now interested in the minimization problem min w∈W 1,2 g h (Br)

E ε h (w, B r ) .
(5.7)

We recall that minimizers of (5.7) are in particular solutions of (5.1). We shall make an essential use of the following proposition. It constitutes a slight extension of [BBH93, Theorem 2] to the case of a boundary condition which merely belongs to W 1,2 (∂B r ). Since the estimates obtained in [BBH93,

Theorem 2] only depend on the W 1,2 (∂B r ) bounds satisfied by g h , the proof of Proposition 5.8 readily follows from [BBH93, Theorem 2] together with an approximation argument (to regularize the boundary condition).

Proposition 5.8. Assume that (5.2), (5.3), (5.4), and (5.5) hold. There exists

{w h } ⊆ W 1,2 (B r )∩ C 0 (B r ) ∩ C ∞ (B r
) such that w h solves (5.7), and

w h → w strongly in W 1,2 (B r ) , |w h | → 1 uniformly in B r , w h → w in C k loc (B r ) for every k ∈ N .
For the rest of this subsection, we still denote by w h a solution of (5.7) obtained from Proposition5.8. We continue with a very useful energy decomposition, originally introduced in [LM99].

Lemma 5.9. Let u ∈ G(B r ) ∩ L ∞ (B r ) be such that p(u) = p(g h ) on ∂B r . For ε h small enough, we have u = w h φ for some φ ∈ G(B r ) ∩ L ∞ (B r ) satisfying p(φ) = 1 on ∂B r ,

E ε h P(u), B r = E ε h (w h , B r ) + 1 2 Br |w h | 2 |∇φ| 2 + |w h | 4 2ε 2 h (1 -|φ| 2 ) 2 + 2 m j(p(φ)) • j(w h ) dx , (5.8) and H 1 (J u ∩ B r ) = H 1 (J φ ∩ B r ).
Proof. By Proposition 5.8, we have |w h | 2 1/2 for ε h small enough. Setting φ := u/w h , we have

φ ∈ SBV 2 (B r ) ∩ L ∞ (B r ) and P(φ) ∈ W 1,2 (B r ), thus φ ∈ G(B r ) ∩ L ∞ (B r ). Since |w h | 2 and |φ| 2 belong to W 1,2 (B r )
, by chain rule we have

|∇u| 2 = |φ| 2 |∇w h | 2 + |w h | 2 |∇φ| 2 + 1 2 ∇(|φ| 2 ) • ∇(|w h | 2 ) + 2j(φ) • j(w h ) a.e. in B r .
Recalling that mj(φ) = j(p(φ)) (see Lemma 2.3), and since |φ| 2 = |p(φ)| 2 , we obtain

Br |∇u| 2 dx = Br |p(φ)| 2 |∇w h | 2 + |w h | 2 |∇φ| 2 + 1 2 ∇(|p(φ)| 2 ) • ∇(|w h | 2 ) + 2 m j(p(φ)) • j(w h ) dx .
(5.9) Testing equation (5.1) with |p(φ)| 2 w h ∈ W 1,2 (B r ), we derive

Br |p(φ)| 2 |∇w h | 2 + 1 2 ∇(|p(φ)| 2 ) • ∇(|w h | 2 ) dx = ∂Br ∂ ν w h • w h dH 1 + Br 1 ε 2 h (1 -|w h | 2 )|w h | 2 |p(φ)| 2 dx , (5.10)
where the first integral in the right hand side is understood in the W -1/2,2 -W 1/2,2 sense. Here we have also used the fact |p(φ)| 2 = 1 on ∂B r (so that |p(φ)| 2 w h = w h on ∂B r ). Testing now (5.1) with w h yields ∂Br

∂ ν w h • w h dH 1 = Br |∇w h | 2 - 1 ε 2 h (1 -|w h | 2 )|w h | 2 dx .
Putting together this identity with (5.9) and (5.10) leads to

Br |∇u| 2 + 1 2ε 2 h (1 -|u| 2 ) 2 dx = Br |∇w h | 2 + |w h | 2 |∇φ| 2 + 2 m j(p(φ)) • j(w h ) + 1 ε 2 h 1 2 (1 -|w h | 2 |p(φ)| 2 ) 2 -(1 -|w h | 2 )|w h | 2 + (1 -|w h | 2 )|w h | 2 |p(φ)| 2 dx .
In view of the algebraic identity

1 2 (1 -a 2 b 2 ) 2 -(1 -a 2 )a 2 + (1 -a 2 )a 2 b 2 = 1 2 (1 -a 2 ) 2 + a 4 2 (1 -b 2 ) 2 for a, b 0 , we have obtained 1 2 Br |∇u| 2 + 1 2ε 2 h (1 -|u| 2 ) 2 dx = E ε h (w h , B r ) + 1 2 Br |w h | 2 |∇φ| 2 + |w h | 4 2ε 2 h (1 -|φ| 2 ) 2 + 2 m j(p(φ)) • j(w h ) dx .
Finally, since w h ∈ W 1,2 (B r ) we have J u ∩ B r = J φ ∩ B r (up to an H 1 -null set), and the conclusion follows.

We now use Lemma 5.9 to derive a a lower bound on the energy. In particular, we want to be able to control the last term in (5.8), which is the purpose of the following lemma. 

|∂ τ g h | 2 + (1 -|g h | 2 ) 2 2ε 2 h dH 1 1/2 δ , (5.12) 
for some constant δ > 0. Then there exists a universal constant C > 0 such that

Br j(Φ) • j(w h ) dx C δ Br |∇Φ| 2 dx for every Φ ∈ W 1,2 (B r ) satisfying Φ = 1 on ∂B r .
Proof. Rescaling variables we may assume that r = 1. Arguing by approximation as in Proposition 5.8, we may assume that w h is smooth. First, using equation (5.1) we derive that div j(w h ) = w h ∧ ∆w h = 0. By Hodge decomposition, we can find a smooth scalar function H such that j(w h ) = ∇ ⊥ H. Notice that H is defined up to an additive constant that we shall fix later on.

By approximation, we may assume that the test function Φ is smooth. Since Φ is constant on ∂B 1 , the vector field j(Φ) satisfies j ⊥ (Φ) • ν = 0 on ∂B 1 . Since curl j(Φ) = 2 det ∇Φ,

B1 j(Φ) • j(w h ) dx = - B1 j ⊥ (Φ) • ∇H dx = - B1 2H det(∇Φ) dx .
We may now estimate

B1 j(Φ) • j(w h ) dx B1 |H||∇Φ| 2 dx H L ∞ (B1)

B1

|∇Φ| 2 dx , and we are left to prove that H L ∞ (B1) is controlled by δ. We consider the function H 1 solving

∆H 1 = 2 det(∇w h ) in B 1 , H 1 = 0 on ∂B 1 ,
and set

H 2 := H -H 1 . Then, H 2 is harmonic in B 1 since ∆H 2 = -div j ⊥ (w h ) -2 det(∇w h ) = curl j(w h ) -2 det(∇w h ) = 0 .
In addition,

∂ τ H 2 = ∂ τ H = -ν • j(w h ) on ∂B 1 .
(5.13) Thanks to Wente's estimate (see [START_REF] Wente | An existence theorem for surfaces of constant mean curvature[END_REF] or [BC84, Lemma A.1]), there exists a universal constant C > 0 such that

H 1 L ∞ (B1) C B1 |∇w h | 2 dx C δ .
Moreover, by the maximum principle, inf

B1 H 2 = inf ∂B1 H 2 and sup B1 H 2 = sup ∂B1 H 2 .
We now fix the additive constant for H so that sup B1 H 2 + inf B1 H 2 = 0. This yields

H 2 L ∞ (B1) = 1 2 sup ∂B1 H 2 -inf ∂B1 H 2 1 4 ∂B1 |∂ τ H 2 | dH 1 .
Recalling that |w h | 1, we have by (5.13

) |∂ τ H 2 | |w h ||∂ ν w h | |∂ ν w h |, so that by Cauchy- Schwarz inequality, H 2 L ∞ (B1) √ 2π 4 ∂B1 |∂ ν w h | 2 dH 1 1/2 .
Let us now recall that the Pohozaev identity applied to equation (5.1) (see e.g. [SS04, (5.2)]) leads to

B1 (1 -|w h | 2 ) 2 ε 2 h dx = ∂B1 |∂ τ w h | 2 -|∂ ν w h | 2 + (1 -|w h | 2 ) 2 2ε 2 h dH 1 .
Hence,

∂B1 |∂ ν w h | 2 dH 1 ∂B1 |∂ τ w h | 2 + (1 -|w h | 2 ) 2 2ε 2 h dH 1 ,
which then implies

H 2 L ∞ (B1) √ 2π 4 ∂B1 |∂ τ w h | 2 + (1 -|w h | 2 ) 2 2ε 2 h dH 1 1/2 (5.12) √ 2π 4 δ .
The conclusion now follows with C := C + √ 2π/4.

Combining Lemma 5.9 and Lemma 5.10 yields the following lower bound for the energy.

Proposition 5.11. Let C be the constant given by Proposition 5.10, and let δ > 0 be such that C δ 1 16m . For ε h small enough, if w h satisfies (5.11) and (5.12), then

F 0 ε (u, B r ) E ε h (w h , B r ) + 1 8 Br |∇φ| 2 dx + H 1 (J φ ∩ B r ) (5.14) for every u ∈ G(B r )∩L ∞ (B r ) satisfying p(u) = p(g h ) on ∂B r , where φ := u/w h ∈ G(B r )∩L ∞ (B r ).
Proof. By Proposition 5.8 and Lemma 5.9, identity (5.8) holds and |w h | 2 1/2 for ε h small enough. Applying Lemma 5.10 with Φ := p(φ), we derive that 

E ε h P(u), B r E ε h (w h , B r ) + 1 4 Br |∇φ| 2 + 1 4ε 2 h (1 -|φ| 2 ) 2 dx - 1 8m 2 
(J u h ∩ ∂B t ) dt H 1 (J u h ∩ B 2r ) r 2 . Setting A h := t ∈ (r, 2r) : J u h ∩ ∂B t = ∅ , we deduce that H 1 (A h ) r/2. Notice that u h ∂B t ∈ W 1,2 (∂B t ) for a.e. t ∈ A h . Since A h ∂Bt |∇v h -∇v µ | 2 + |v h -v µ | 2 + 1 2ε h 2 (1 -|u h | 2 ) 2 dH 1 dt γ h , we can find a radius ρ h ∈ A h such that u h ∂B ρ h ∈ W 1,2 (∂B ρ h ; C) and ∂Bρ h |∇v h -∇v µ | 2 + |v h -v µ | 2 + 1 2ε h 2 (1 -|u h | 2 ) 2 dH 1 2γ h r .
(5.17)

By definition of p, |∇u h | ≤ |∇v h | and thus

∂Bρ h |∇u h | 2 dH 1 ∂Bρ h |∇v h | 2 dH 1 2 ∂Bρ h |∇v h -∇v µ | 2 dH 1 + 4πρ h ∇v µ 2 L ∞ (B2r) 4γ h r + 8πrK 2 σ , which leads to ρ 1/2 h ∂Bρ h |∇u h | 2 + 1 2ε h 2 (1 -|u h | 2 ) 2 dH 1 1/2 δ (5.18)
for h large enough since ρ h 2r σ .

Step 2. We select a subsequence such that

ρ h → ρ ∈ [r, 2r]. Define g h (x) := u h (ρ h x) for x ∈ ∂B 1 . Then g h ∈ W 1,2 (∂B 1 ) ∩ L ∞ (B 1 ) satisfies |g h | 1, and ∂B1 |∂ τ g h | 2 + 1 2 ε 2 h (1 -|g h | 2 ) 2 dH 1 1/2 δ , (5.19) 
where ε h := ε h /ρ h . Extracting a further subsequence if necessary, we may thus assume that g h → g uniformly of ∂B 1 for some g ∈ W 1,2 (∂B 1 ; S 1 ). Estimate (5.17) yields

g m (x) = lim h→∞ p(g h )(x) = lim h→∞ v h (ρ h x) = v µ (ρx) ∀x ∈ ∂B 1 .
(5.20)

Since deg(v µ , ∂B ρ ) = 0, we deduce that deg(g , ∂B 1 ) = 0. We are now in position to apply Proposition 5.8 to produce minimizers w h of E ε h (•, B 1 ) over W 1,2 g h (B 1 ). Then w h → w strongly in W 1,2 (B 1 ) where w is the unique solution of (5.6). We claim that

w m (x) = v µ (ρx) ∀x ∈ B 1 .
Indeed, recalling (2.14), v µ (ρx) = e iψµ(x) for x ∈ B 1 and a smooth harmonic function ψ µ (which is unique up to a constant multiple of 2π). Moreover, w = e iϕ for some harmonic function ϕ ∈ W 1,2 (B 1 ). In view of (5.20), we have mϕ = ψ µ + 2kπ on ∂B 1 for some constant k ∈ N. By uniqueness of the harmonic extension, we infer that mϕ = ψ µ + 2kπ in B 1 , and the claim follows.

As a consequence of this last identity, we deduce that

B1 |∇w | 2 dx = 1 m 2 Bρ h |∇v µ | 2 dx 4πr 2 K 2 σ m 2 δ 2 .
Since w h → w strongly in W 1,2 (B 1 ), we thus have for h large enough

B1 |∇w h | 2 dx δ .
(5.21)

Step 3. Let us define w h (x) := w h (x/ρ h ), and consider the competitor u h ∈ G g (Ω) given by

u h := u h in Ω \ B ρ h , w h in B ρ h .
By minimality we have F 0 ε h ,g (u h ) F 0 ε h ,g ( u h ), and since J u h ∩ ∂B ρ h = ∅, we deduce that

F 0 ε h (u h , B ρ h ) E ε h ( w h , B ρ h ) .
Setting u h (x) := u h (ρ h x) and rescaling variables, we obtain

E ε h P( u h ), B 1 + ρ h H 1 (J u h ∩ B 1 ) E ε h (w h , B 1 ) . (5.22)
In view of (5.19) and (5.21) (and our choice of δ), we can apply Lemma 5.9 and Proposition 5.11 to derive that

E ε h P( u h ), B 1 + ρ h H 1 (J u h ∩ B 1 ) E ε h (w h , B 1 ) + 1 8 B1 |∇φ h | 2 dx + ρ h H 1 (J φ h ∩ B 1 ) (5.23)
for h large enough, where φ h := u h /w h satisfies φ h = 1 on ∂B 1 . Putting (5.22) and (5.23) together leads to B1 |∇φ h | 2 dx = 0 = H 1 (J φ h ∩ B 1 ), and thus φ h ≡ 1. In other words, u h ≡ w h for h large enough.

Scaling back to the original variables (and recalling that u h → u in L 1 (Ω)), we conclude from Proposition 5.8 that for h large enough,

u h minimizes E ε h (•, B r ) in W 1,2 (B r ) under its own bound- ary condition, u h ∈ C ∞ (B r ) and u h → u in C k loc (B r
) for every k ∈ N. Since the limit is unique, we deduce that these facts actually hold for the full sequence (and not only for a subsequence).

The next lemma is devoted to smoothness and convergence of u h near the boundary of Ω. Since ∂Ω is assumed to be smooth, we can find a radius r Ω > 0 such that H 1 (∂Ω ∩ B r (x)) 3r ∀r ∈ (0, r Ω ) , ∀x ∈ ∂Ω .

(5.24)

For the sake of variety, in the proof below, we do not use the energy splitting argument. Notice that, either way, it could be possible to adapt this alternative argument to prove Lemma 5.14, or to adapt the energy splitting approach to treat boundary points.

Lemma 5.15. For σ ∈ (0, σ 0 ), let r ∈ (0, min{r σ , r Ω }) and x 0 ∈ ∂Ω. For h large enough,

u h ∈ W 1,2 (B r (x 0 ) ∩ Ω) with u h = g on ∂Ω ∩ B r (x 0 ) and u h minimizes E ε h (•, B r (x 0 ) ∩ Ω) under its own boundary conditions. In addition, u h ∈ C ∞ (B r (x 0 ) ∩ Ω) and u h → u in C 1,α loc (B r (x 0 ) ∩ Ω) and C k loc (B r (x 0 ) ∩ Ω)
for every α ∈ (0, 1) and k ∈ N.

Proof. Without loss of generality, we may assume that x 0 = 0. As in the proof of Proposition 5.14, it is enough to find ρ h ∈ (r, 2r) such that (5.18) holds (with

∂B ρ h ∩ Ω in place of ∂B ρ h ), J u h ∩ (B ρ h ∩ Ω) = ∅ (so that u h ∈ W 1,2 (B ρ h ∩ Ω)), and u h = g on ∂Ω ∩ B ρ h , for h large enough. Indeed, for any w ∈ W 1,2 u h (B ρ h ), one can consider the competitor u h ∈ G g (Ω) given by u h = w in B ρ h ∩ Ω, and u h = u h in Ω \ B ρ h . By minimality, F 0 ε h ,g (u h ) F 0 ε h ,g ( u h ), which then leads to E ε h (u h , B ρ h ∩ Ω) = F 0 ε h (u h , B ρ h ∩ Ω) F 0 ε h (w, B ρ h ∩ Ω) = E ε h (w; B ρ h ∩ Ω) . Hence u h minimizes E ε h (•, B ρ h ) in W 1,2 (B ρ h ∩ Ω)
under its own boundary condition. Then the remaining conclusions follow from [START_REF] Bethuel | Asymptotics for the minimization of a Ginzburg-Landau functional[END_REF] (see also [BBH94, Theorem A.3]) together with the fact that u h → u in L 1 (Ω). We select the radius ρ h by repeating the Fubini type argument used in Step 1 of the proof of Proposition 5.14. The main additional point is to select ρ h so that u h belongs to W 1,2 (∂B ρ h ∩ Ω) with u h = g on ∂B ρ h ∩ ∂Ω. This is possible via the coarea formula since (3.9) implies that for h large enough

H 1 (J u h ∩ B 2r ∩ Ω) + H 1 ({u h = g} ∩ ∂Ω ∩ B 2r ) r 2 .
By our choice of ρ h , the map g h defined by g h := u h in ∂B ρ h ∩Ω, and g h := g in B ρ h ∩∂Ω, belongs to W 1,2 (∂(B ρ h ∩ Ω)). In view of (5.18), for h large enough we have |g h | 1/2 on ∂(B ρ h ∩ Ω), and osc

∂(Bρ h ∩Ω) g h H 1 (∂(B ρ h ∩ Ω)) 1/2 ∂(Bρ h ∩Ω) |∂ τ g h | 2 dH 1 1/2 2πρ h Bρ h ∩∂Ω |∂ τ g| 2 dH 1 + ∂Bρ h ∩Ω |∇u h | 2 dH 1 1/2
(5.15),(5.24)&(5.18)

2πρ h 3ρ h K 2 σ + δ 2 /ρ h 1/2 √ 2π 6r 2 K 2 σ + δ 2 1/2 1 2m .
Rotating coordinates in the image if necessary, we may assume that g h (0) = 1, which in turn yields

|p(g h (x)) -1| 1 2 ∀x ∈ ∂(B ρ h ∩ Ω) . (5.25) We claim that min v∈W 1,2 p(g h ) (Bρ h ∩Ω) G ε h (v, B ρ h ∩ Ω) = min u∈W 1,2 g h (Bρ h ∩Ω) E ε h (u, B ρ h ∩ Ω) . (5.26) 
Before proving this claim, let us show how (5.26) leads to the conclusion. By minimality of u h (and our choice of ρ h ), we have

min u∈W 1,2 g h (Bρ h ∩Ω) E ε h (u, B ρ h ∩ Ω) = min u∈W 1,2 g h (Bρ h ∩Ω) F 0 ε h (u, B ρ h ∩ Ω) min u∈Gg h (Bρ h ∩Ω) F 0 ε h (u, B ρ h ∩ Ω) + H 1 {u = g h } ∩ ∂(B ρ h ∩ Ω) = G ε h (v h , B ρ h ∩ Ω) + H 1 (J u h ∩ (B ρ h ∩ Ω)) + H 1 ({u h = g} ∩ (∂Ω ∩ B ρ h )) min v∈W 1,2 p(g h ) (Bρ h ∩Ω) G ε h (v, B ρ h ∩ Ω) .
Then, (5.26) implies that all the inequalities above are in fact equalities and as a consequence

H 1 (J u h ∩ (B ρ h ∩ Ω)) + H 1 ({u h = g} ∩ (∂Ω ∩ B ρ h )) = 0 . Hence J u h ∩ (B ρ h ∩ Ω) is empty, and u h = g on ∂Ω ∩ B ρ h .
In view of the above chain of inequalities, to prove (5.26) it is enough to show that min

v∈W 1,2 p(g h ) (Bρ h ∩Ω) G ε h (v, B ρ h ∩ Ω) min u∈W 1,2 g h (Bρ h ∩Ω) E ε h (u, B ρ h ∩ Ω) .
(5.27)

We consider v a minimizer of the left-hand side. To establish (5.27), it is enough to construct

u ∈ W 1,2 g h (B ρ h ∩ Ω) satisfying p(u) = v since, in this case, G ε h (v, B ρ h ∩ Ω) = E ε h (u, B ρ h ∩ Ω). Let Π : C → C the map defined by Π(z) := |Re(z)| + iIm(z). By (5.25) we have Π(p(g h )) = p(g h ) and Π(v) ∈ W 1,2 p(g h ) (B ρ h ∩ Ω). In addition, G ε h (Π(v), B ρ h ∩ Ω) = G ε h (v, , B ρ h ∩ Ω).
Replacing v by Π(v) if necessary, we may thus assume that the real part of v is nonnegative in B ρ h ∩ Ω. Now, let us introduce the map q : C ∩ {Re(z) 0} → C defined by q(z) = |z|e iθ/m for z = |z|e iθ with θ ∈ [-π/2, π/2]. Then, q is Lipschitz continuous left inverse of p. In view of (5.25) we have q(p(g h )) = g h , and as a consequence u := q(v) ∈ W 1,2 g h (B ρ h ∩ Ω) with p(u) = v.

5.3.2. Smoothness and convergence away from triple junctions. We continue our asymptotic analysis by considering the local behavior of u h near Γ, but away from T ∪ spt µ. In the statement below, we understand the convergence of half spaces in the sense of local Hausdorff convergence. Let us write c m := |1 -a| 2 .

Proposition 5.16. For σ ∈ (0, σ 0 ), let r ∈ (0, min{r σ , c m /32}) and x 0 ∈ Γ \ B σ (T ∪ spt µ). For h large enough, there exist a half space H h and k ∈ {1, . . . , m -1} such that u h =: (χ H h + a k χ H c h )w h with w h ∈ W 1,2 (B r (x 0 )), and w h minimizes E ε h (•, B r (x 0 )) under its own boundary conditions. In addition,

w h ∈ C ∞ (B r (x 0 )), H h → H for some half space H satisfying ∂H ∩ B r (x 0 ) = Γ ∩ B r (x 0 ), and w h → (χ H + a -k χ H c )u in C loc (B r (x 0 )) for every ∈ N. Proof.
Step 1. Once again we may assume that x 0 = 0. We follow the strategy used in the proof of Lemma 5.14 considering

γ h := B5r |∇v h -∇v µ | 2 + |v h -v µ | 2 dx + 1 2ε h 2 B5r (1 -|u h | 2 ) 2 dx -→ h→∞ 0 .
By Theorem 3.2 and Corollary 3.4 we have (3.9), and thus

H 1 (J u h ∩ B 5r ) → H 1 (Γ ∩ B 5r ) = 10r. As a consequence, H 1 (J u h ∩ B 5r ) 11r for h large enough, which in turn leads to 5r r H 0 (J u h ∩ ∂B t ) dt H 1 (J u h ∩ B 5r ) 11r .
(5.28)

Setting

A h := A 0 h ∪ A 1 h ∪ A 2 h with A k h := t ∈ (r, 5r) : H 0 (J u h ∩ ∂B t ) = k ,
we infer from (5.28) that H 1 (A h ) r/3 for h large enough. Notice that u h ∈ W 1,2 (∂B t ) for a.e. t ∈ A 0 h , and u h ∈ SBV 2 (∂B t ) for a.e. t ∈ A 1 h ∪ A 2 h . We claim that H 1 (A 0 h ) r/6 for h large enough. Indeed, assume by contradiction that H 1 (A 0 h ) r/6 for some subsequence. Then, we could apply the proof of Lemma 5.14 (choosing a good radius ρ h ∈ A 0 h ) to infer that u h is smooth in B r for h large enough, and thus that J u h ∩ B r = ∅. However (3.9) tells us that H 1 (J u h ∩ B r ) → 2r as h → ∞, a contradiction. We have thus proved that H 1 (A 1 h ∪ A 2 h ) r/6 for h large enough. Now we claim that for h even larger, we have H 1 (A 1 h ) r/12. By contradiction again, assume that H 1 (A 1 h ) r/12 for some subsequence. Then, we can find a good radius ρ h ∈ A 1 h such that u h ∈ SBV 2 (∂B ρ h ) and 

∂Bρ h |∇v h -∇v µ | 2 + |v h -v µ | 2 + 1 2ε h 2 (1 -|u h | 2 ) 2 dH 1 12γ h r . ( 5 
= |u h |e iϕ h on ∂B ρ b \ {x h } for some ϕ h ∈ W 1,2 (∂B ρ b \ {x h }). Let ϕ ± h be the traces of ϕ h at x h . Since v h = |u h |e imϕ h ∈ W 1,2 (∂B ρ ), we have m(ϕ + h -ϕ - h ) = 2πdeg(v h , ∂B ρ ) = 0. Hence ϕ + h = ϕ - h , which yields ϕ h ∈ W 1,2 (∂B ρ ). We obtain that u h ∈ W 1,2 (∂B ρ ) contradicting our choice ρ ∈ A 1
h . We may now assume that h is sufficiently large so that H 1 (A 2 h ) r/12. Arguing as in the proof of Lemma 5.14, we select a good radius ρ h ∈ A 2 h so that u h ∈ SBV 2 (∂B ρ h ) and (5.18) holds together with (5.29). Here again we shall assume for simplicity ρ h = ρ is independent of h (otherwise we rescale variables as in the proof of Lemma 5.14). We write {x h , y h } := J u h ∩ ∂B ρ , and then C h 1 and C h 2 the two (open) arcs in ∂B ρ joining x h and y h . As above, we infer from (5.29) that |u h | = |v h | 1/2 on ∂B ρ , and deg(v h , ∂B ρ ) = 0 for h large enough. Since u h ∈ W 1,2 (C h j ) for j = 1, 2, we deduce that there exist ϕ j h ∈ W 1,2 (C h j ) such that u h = |u h |e iϕ j h on C h j . Denote by ϕ j,1 h the trace of ϕ j h at x h , and ϕ j,2 h the trace of ϕ j h at y h . Since v h ∈ W 1,2 (∂B ρ ), and v h = |u h |e imϕ j h on C h j , we obtain the relation

m(ϕ 2,1 h -ϕ 1,1 h ) = 2πk h 1 and m(ϕ 2,2 h -ϕ 1,2 h ) = 2πk h 2 for some k h 1 , k h 2 ∈ Z \ {0}. Define k h ∈ {1, .
. . , m -1} to be such that a k h = e 2iπk h 2 /m , and consider the map

g h := u h in C h 1 , a -k h u h in C h 2 .
By construction we have p(g h ) = v h and g h ∈ W 1,2 (∂B ρ \ {x h }). However, since deg(v h , ∂B ρ ) = 0, we can argue as above (when proving that H 1 (A 1 h ) r/12) to show that g h ∈ W 1,2 (∂B ρ ). In addition, (5.18) yields

ρ 1/2 ∂Bρ |∂ τ g h | 2 + (1 -|g h | 2 ) 2 2ε 2 h dH 1 1/2
δ .

(5.30)

We also notice that g h L ∞ (Bρ) 1 since |u h | 1.

Step 2. Define H h to be the half space containing C h 1 and such that x h , y h ∈ ∂H h . We claim that k h = k ∈ {1, . . . , m-1} is independent of h for h sufficiently large, that H h → H for some half space H such that Γ ∩ ∂B ρ = ∂H ∩ ∂B ρ , and that g h → g uniformly on ∂B ρ where g ∈ W 1,2 (∂B ρ ; S 1 ) is given by

g := u in ∂B ρ ∩ H , a -k u in ∂B ρ \ H .
(5.31)

First observe that lim inf h |x h -y h | > 0. Indeed, if for some subsequence we have |x h -y h | → 0, then either χ H h → 0 in L 1 (∂B ρ ) or χ H c h → 0 in L 1 (∂B ρ ). Assume that χ H c h → 0 in L 1 (∂B ρ ) (the other case being analogous). From Proposition 5.13, we infer that u h → u in L 1 (∂B ρ ), so that g h → u in L 1 (∂B ρ ). In view of (5.30), we deduce that u belongs to W 1,2 (∂B ρ ), a contradiction. Next, by Proposition 5.13 again, u h → u in C 0 loc (∂B ρ \ Γ), which now implies that {x h , y h } → Γ ∩ ∂B ρ as h → ∞. Writing Γ ∩ B ρ =: {x , y }, we may assume that x h → x and y h → y . In the same way, we may assume that C h 1 → C 1 where C 1 is an arc of ∂B ρ joining x and y . This clearly implies that H h → H where H is the half space containing C 1 and such that x , y ∈ ∂H. In view of Remark 4.4, there exists a unique k ∈ {1, . . . , m -1} such that the map defined in (5.31) belongs to W 1,2 (∂B ρ ). Combining this fact with (5.30) and the convergence of u h toward u in L 1 (∂B ρ ), we deduce that g h → g uniformly in ∂B ρ , and that k h = k for h large enough.

Since g m = u m = v µ on ∂B ρ , and deg(v µ , ∂B ρ ) = 0, we derive that deg(g , ∂B ρ ) = 0. We can now apply Proposition 5.8 to produce minimizers w h of E ε h (•, B ρ ) over W 1,2 g h (B ρ ). Then w h → w strongly in W 1,2 (B 1 ) where w is the unique solution of (5.6). Arguing as in the proof of Lemma 5.14 (Step 2), we obtain that w m = v µ in B ρ , which leads for h large enough to Bρ |∇w h | 2 dx δ .

(5.32)

Step 3. Consider the competitor u h ∈ G g (Ω) given by

u h := u h in Ω \ B ρ , (χ H h + a k χ H c h )w h in B ρ .
By minimality we have F 0 ε h ,g (u h ) F 0 ε h ,g ( u h ), and since J u h ∩ ∂B ρ = {x h , y h }, we deduce that

F 0 ε h (u h , B ρ ) F 0 ε h ( u h , B ρ ) = E ε h (w h , B ρ ) + L h , (5.33) 
where L h := |x h -y h |. Since p(u h ) = p(g h ) on ∂B ρ , and in view of (5.30) and (5.32) (and our choice of δ), we can apply Lemma 5.9 and Proposition 5.11 to derive that Let us now prove that

F 0 ε h (u h , B ρ ) E ε h (
H 1 (J φ h ∩ B ρ ) = L h .
(5.36)

Up to a rotation, we assume that x h = (a, t) and y h = (b, t) with b -a = L h . For s ∈ (a, b), we write V s := {s} × R. Now, assume by contradiction that H 1 (J φ h ∩ B ρ ) = L h -γ for some γ > 0.

Then we infer from the coarea formula [Mag12, Theorem II.7.7] that

L h -γ = H 1 (J φ h ∩ B ρ ) b a H 0 (J φ h ∩ B ρ ∩ V s ) ds .
(5.37) 

Set A h := s ∈ (a, b) : J φ h ∩ B ρ ∩ V s = ∅ ,
φ h = m-1 j=0 a j χ Ej .
Recalling [AFP00, Section 4.4], we have

L h = H 1 (J φ h ∩ B ρ ) = H 1 (∂E 0 ∩ B ρ ) + 1 2 m-1 j, =1, j = H 1 (∂E j ∩ ∂E ∩ B ρ ) .
(5.38)

Using that χ E0 = χ H h on ∂B ρ , we have that H 1 (∂E 0 ∩ B ρ ) L h with equality if and only if E 0 = H h ∩ B ρ . Therefore E 0 = H h ∩ B ρ and the sum on the right-hand side of (5.38) vanishes. Since χ E k = χ H c h on ∂B ρ , we conclude that E k = H c h ∩ B ρ and E j = ∅ for j ∈ {0, k}. In other words, φ h = χ H h + a k χ H c h in B ρ , and thus u h = (χ H h + a k χ H c h )w h in B ρ . To conclude, we observe that w h = (χ H h + a -k χ H c h )u h . Since u h → u in L 1 (Ω) and H h → H, Proposition 5.8 tells us that w h → (χ H + a -k χ H c )u in C loc (B ρ ) for every ∈ N.

Remark 5.17. In order to prove (5.36) one could also use a calibration argument (see [START_REF] Alberti | The calibration method for the Mumford-Shah functional and free-discontinuity problems[END_REF][START_REF] Mora | The calibration method for free-discontinuity problems on vector-valued maps[END_REF]). However since our proof is elementary, we have decided to keep it this way. 5.3.3. Smoothness and convergence near triple junctions. We now focus on the behavior of u h near the points of T , i.e., triple junctions. It will be convenient to describe a triple junction in the following way. First write for j = 0, 1, 2, Y j ref := z ∈ C \ {0} : arg(z) ∈ (2jπ/3, 2(j + 1)π/3) . We say that an ordered triplet of open sets (Y 0 , Y 1 , Y 2 ) is a triple junction if there are x 0 ∈ C and θ ∈ [0, 2π) such that Y j = x 0 + e iθ Y j ref for j = 0, 1, 2. Then, we say that x 0 is the center of the triple junction (Y 0 , Y 1 , Y 2 ). In the statement below, we understand the convergence of triple junctions in the sense of local Hausdorff convergence.

Proposition 5.18. For σ ∈ (0, σ 0 ), let r ∈ (0, min{r σ , c m /128}) and x 0 ∈ T . For h large enough, there exist a triple junction (Y 0 h , Y 1 h , Y 2 h ) and distinct k 1 , k 2 ∈ {1, . . . , m -1} such that u h =: (χ Y 0 h + a k1 χ Y 1 h + a k2 χ Y 2 h )w h with w h ∈ W 1,2 (B r (x 0 )), and w h minimizes E ε h (•, B r (x 0 )) under its own boundary conditions. In addition, w h ∈ C ∞ (B r (x 0 )), (Y 0 h , Y 1 h , Y 2 h ) → (Y 0 , Y 1 , Y 2 ) for some triple junction satisfying ∪ j ∂Y j ∩ B r (x 0 ) = Γ ∩ B r (x 0 ), and w h → (χ Y 0 h + a -k1 χ Y 1 h + a -k2 χ Y 2 h )u in C loc (B r (x 0 )) for every ∈ N.

Proof. Step 1. Without loss of generality, we may assume that x 0 = 0. From Remark 4.4, we infer that there exist a triple junction (Y 0 , Y 1 , Y 2 ) centered in 0 and distinct k 1 , k 2 ∈ {1, . . . , m -1} such that the map (χ Y 0 + a -k1 χ Y 1 + a -k2 χ Y 2 )u is smooth in B 2r , and ∪ j ∂Y j ∩ B 2r = Γ ∩ B 2r . Since the values of k 1 and k 2 play no role we will assume that k 1 = 1 and k 2 = 2 to keep notation simpler. We write {a} := ∂Y 2 ∩ ∂Y 0 ∩ ∂B r , {b} := ∂Y 0 ∩ ∂Y 1 ∩ ∂B r , and {c} := ∂Y 1 ∩ ∂Y 2 ∩ ∂B r .

Choosing a sufficiently small radius 0 < κ < r/2, we can apply Proposition 5.16 in the balls B 2κ (a), B 2κ (b), and B 2κ (c), and infer that there exist half spaces H 0 h , H 1 h , and H 2 h such that

H 0 h ∩ B 2κ (a) → Y 0 ∩ B 2κ (a), H 1 h ∩ B 2κ (b) → Y 1 ∩ B 2κ (b), H 2 h ∩ B 2κ (c) → Y 2 ∩ B 2κ (c), and (χ H 0 h + a -2 χ (H 0 h ) c )u h → (χ Y 0 + a -2 χ Y 2 )u in C k loc (B 2κ (a)) , (5.39) 
(χ (H 1 h ) c + a -1 χ H 1 h )u h → (χ Y 0 + a -1 χ Y 1 )u in C k loc (B 2κ (b)) , (5.40) 
(a -1 χ (H 2 h ) c + a -2 χ H 2 h )u h → (a -1 χ Y 1 + a -2 χ Y 2 )u in C k loc (B 2κ (c)) .

(5.41)

In view of Proposition 5.13, we deduce that for h large enough, J u h ∩ (B r+κ \ B r-κ ) is made of three (disjoint) segments, each of them intersecting ∂B t almost orthogonally (in particular at a single point) for every t ∈ (r -κ, r + κ). As a consequence, for h large enough the open set (B r+κ \ B r-κ ) \ J u h has three connected components Z 0 h , Z 1 h , and Z 2 h satisfying Z j h → (B r+κ \ B r-κ ) ∩ Y j . Combining (5.39)-(5.40)-(5.41) with Proposition 5.16, we derive that

(χ Z 0 h + a -1 χ Z 1 h + a -2 χ Z 2 h )u h → (χ Y 0 + a -1 χ Y 1 + a -2 χ Y 2 )u in C k loc (B r+κ \ B r-κ ) .
Step 2. Arguing as the proof of Lemma 5.14 (Step 1), we find a good radius ρ h ∈ (r, r + κ/2) such that (5.18) holds (for h even larger). Rescaling variables if necessary, we may assume without too much loss of generality that ρ h = ρ is independent of h. To simplify, we will further assume that actually ρ = r. Setting

g h := (χ Z 0 h + a -1 χ Z 1 h + a -2 χ Z 2 h )u h ∈ C ∞ (∂B r
) , estimate (5.30) holds, g h L ∞ (Br) 1, and g h → g := (χ Y 0 + a -1 χ Y 1 + a -2 χ Y 2 )u uniformly on ∂B r . Once again, since g m = v µ we have deg(g , ∂B r ) = 0. Then, we apply Proposition 5.8 to produce minimizers w h of E ε h (•, B r ) over W 1,2 g h (B r ), and w h → w strongly in W 1,2 (B r ) where w is the unique solution of (5.6). Again, as in the proof of Lemma 5.14 (Step 2), we obtain that w m = v µ in B r , which leads to (5.32) for h large enough.

Step 3. By Step 1, we have J u h ∩ ∂B r = {x h , y h , z h } for h large enough, with x h → a, y h → b, and z h → c. For h large enough, we can then find a triple junction (Y 0 h , Y 1 h , Y 2 h ) (which might not be centered at the origin) such that {x h } = ∂Y 2 h ∩ ∂Y 0 h ∩ ∂B r , {y h } = ∂Y 0 h ∩ ∂Y 1 h ∩ ∂B r , and {z h } := ∂Y 1 h ∩∂Y 2 h ∩∂B r . Obviously, Y j h → Y j as h → ∞. Notice also that g h = (χ Y 0 h +a -1 χ Y 1 h +a -2 χ Y 2 h )u h on ∂B r .

Next, we consider the competitor u h ∈ G g (Ω) given by

u h := u h in Ω \ B r , (χ Y 0 h + aχ Y 1 h + a 2 χ Y 2 h )w h in B r
. By minimality we have F 0 ε h ,g (u h ) F 0 ε h ,g ( u h ), and since J u h ∩ ∂B r = {x h , y h , z h }, we deduce that

F 0 ε h (u h , B r ) F 0 ε h ( u h , B r ) = E ε h (w h , B r ) + H 1 (Y h ∩ B r ) , (5.42) 
where we have set Y h := ∪ j ∂Y j h . Once again p(u h ) = p(g h ) on ∂B r , and by (5.30) and (5.32), we can apply Lemma 5.9 and Proposition 5.11 to derive that (5.34) holds, where φ h := u h /w h satisfies 

φ h = χ Y 0 h + a k1 χ Y 1 h + a k2 χ
(J φ h ∩ B r ) = H 1 (Y h ∩ B r ) .
Arguing as in the proof of Proposition 5.16 (Step 3), we deduce that By minimality F 0 ε h ,g (u h ) F 0 ε h ,g ( u h ), which leads as before to

φ h = m-1 k=0 a k χ E k
H 1 (J φ h ∩ B r ) H 1 (J φ ∩ B r ) .
As in the proof of Theorem 4.3 (Step 3), it implies that {E k } m-1 k=0 is a minimal partition of B r , so that J φ h ∩ B r = ∪ k ∂E k ∩ B r is locally a finite union of segments (see [CLM15, Theorem 5.2]). Since we already know that J φ h is made of three segments in a neighborhood of ∂B r , we conclude that ∪ k ∂E k ∩ B r is made of finitely many segments with ∪ k ∂E k ∩ ∂B r = {x h , y h , z h } 5 . In view of (5.45), we have {x h , y h } ⊆ ∂E 0 ∩ B r , and the connected component of ∂E 0 ∩ B r containing x h is a polygonal curve joining x h to y h . Similarly, ∂E 2 ∩ B r contains a polygonal curve connecting x h to z h . Set Γ h to be the union of these two curves. Then Γ h is a connected set containing {x h , y h , z h }, and contained in J φ h ∩ B r . Since Y h ∩ B r is the unique solution of the Steiner problem relative to the points {x h , y h , z h }, we have

H 1 (Y h ∩ B r ) = H 1 (J φ h ∩ B r ) H 1 (Γ h ) H 1 (Y h ∩ B r ) ,
4 Even though the calibrations defined in [START_REF] Mora | The calibration method for free-discontinuity problems on vector-valued maps[END_REF] (see also [START_REF] Alberti | The calibration method for the Mumford-Shah functional and free-discontinuity problems[END_REF]) are given for centered triple junctions, we can consider restrictions to Br of calibrations defined on a larger ball centered at the center of Y h .

5 Here and in the rest of the proof, by an abuse of notation we identify ∂E k ∩ Br and ∂E k ∩ Br.

and it follows that J φ h ∩ B r = Γ h ∩ B r = Y h ∩ B r . From (5.45) we conclude that

φ h = χ Y 0 h + aχ Y 1 h + a 2 χ Y 2 h , that is u h = (χ Y 0 h + aχ Y 1 h + a 2 χ Y 2 h
)w h in B r . Since u h → u in L 1 (Ω) and Y j h → Y j , Proposition 5.8 implies that w h → (χ Y 0 + a -1 χ Y 1 + a -2 χ Y 2 )u in C k loc (B r ) for every k ∈ N, and the proof is complete.
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  by means of the Lipschitz mapping P : C → R 3 given by P(z) := 1 m p(z), |z| m 2 -1 where p(z) := z m |z| m-1 .

2.5. 1 .

 1 The renormalized energy and canonical harmonic maps. Let us denote by A d the set of all finite positive measures µ of the form

  3) together leads to (3.20). First, we recall that (3.18) implies (2.18) with v h := p(u h ) (by means of (2.4)). Then the proof of (3.2) follows very closely the ones of [AP14, Theorem 5.3] and[START_REF] Colliander | Ginzburg-Landau vortices: weak stability and Schrödinger equation dynamics[END_REF] Lemma 4.1.1] 

3.4. 1 .

 1 Some density results. Lemma 3.15. Let u ∈ L g (Ω) with u m =: e iϕ v µ and µ = 2π md k=1 δ x k . For every δ > 0, there exists u * ∈ L g (Ω) and constants ξ 1 , • • • , ξ md ∈ S 1 such that (i) dist(J u * , ∂Ω) > 0, u * = g on ∂Ω, and curl j(u m *

  .50) which, combined with (3.2), leads to (3.8). To prove (3.49), we fix an open set A ⊆ Ω. Consider an arbitrary compact set K ⊆ A, and choose another open set B such that K ⊆ B ⊆ B ⊆ A. By the proof of (i) above, we can apply [AFP00, Theorem 4.7] in the open set B to derive

  (Step 1) since |∇v µ | ∈ L p (Ω) for every p < 2 and |∇u| = 1 m |∇v µ | for any admissible competitor u (see Lemma 2.3). We will prove that minimizers of (4.2) are related to a variant of the Steiner problem that we now describe.Write µ =: 2π md k=1 δ x k , and recall that the x k 's are distinct points of the domain Ω. We let Λ(µ) := min H 1 (Γ) : sptµ ⊆ Γ, and for every connected component Σ of Γ, Card(Σ ∩ spt µ) ∈ mN} . (4.3)

Theorem 4. 3 .

 3 Assume that Ω is a smooth, bounded, and convex open set. For every µ ∈ A d , it holds L(µ) = Λ(µ) . (4.4)

  we orient D k according to the curve γ k . Notice that for k = l, the orientation of D k coincides with the orientation of D l on D k ∩ D l . Moreover, one has Γ = ∪ k 2 D k by minimality of Γ. As a consequence, Γ inherits the orientation induced by the D k 's. Since R 2 \ (D 1 ∪ D k ) is simply connected, we can find a smooth map ϕ k : R 2 \ (D 1 ∪ D k ) → R, smooth up to D 1 ∪ D k from both sides, with a constant (oriented) jump across D 1 ∪ D k equal to 2π, and such that e iϕ k (x) = (x -x k )/|x -x k |. We consider

Figure 5 .

 5 Figure 5. Construction of a competitor.
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 7 Figure 7. Minimizers of the Steiner problem for the vertices of the square on the left and of the regular pentagon on the right.
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 8 Figure 8. An example of a connected minimizer with nine vortices of degree 1/3.
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 9 Figure 9. The set Σ 2 .

  for a Caccioppoli partition {E k } m-1 k=0 of B r satisfying E 0 ∩ (B r \ B r-κ ) = Z h 0 ∩ B r , E 1 ∩ (B r \ B r-κ ) = Z h 1 ∩ B r , E 2 ∩ (B r \ B r-κ ) = Z h 2 ∩ B r , (5.45) and E k ⊆ B r-κ for k ∈ {0, 1, 2}.Let us now consider an arbitrary Caccioppoli partition {F k } m-1 k=0 of B r such that each F k E k is compactly contained in B r , and define the competitor u h ∈ G g (Ω) byu h := u h in Ω \ B r , φw h in B r , with φ := m-1 k=0 a k χ F k .

  AFP00, proof of Theorem 3.96]. Moreover, |DV | |Du|. It now remains to prove (v), (vi), and (vii). Recall that, by [AFP00, Proposition 3.92], we have |Du|(Z u ) = 0 where

  for h large enough. From now on, we assume that (5.16) holds.By the coarea formula (see [Mag12, Theorem II.7.7]), we have

		2r
			H 0
		r	
	By Lemma 2.3 we have		
	1 m 2	Br	|∇p(φ)| 2 dx

Br |∇p(φ)| 2 dx . Br |∇P(φ)| 2 dx = Br |∇φ| 2 dx ,

  .29) By our choice of ρ h , there is a single pointx h ∈ ∂B ρ h such that u h ∈ W 1,2 (∂B ρ h \ {x h }).Rescaling variables if necessary, we may assume without too much loss of generality that the radius ρ h = ρ is independent of h. By (5.29), v h → v µ uniformly on ∂B ρ . As a consequence, |u h | = |v h | 1/2 on ∂B ρ , and deg(v h , ∂B ρ ) = 0 for h large enough. In particular, we can write u h

  w h , B ρ ) + 1 8 Bρ |∇φ h | 2 dx + H 1 (J φ h ∩ B ρ ) ,(5.34)where φ h := u h /w h satisfies φ h = χ H h + a k χ H c h on ∂B ρ (and thus p(φ h ) = 1 on ∂B ρ ). Putting (5.33) and (5.34) together leads to Bρ |∇φ h | 2 dx + H 1 (J φ h ∩ B ρ ) .

	L h	1 8 (5.35)

  and recall that φ h ∈ W 1,2 (B ρ ∩ V s ) for a.e. s ∈ A h . From (5.37) we deduce thatH 1 ( A h ) γ. Since, φ h = χ H h + a k χ H c h on ∂B ρ , we have φ h = 1 on C h 1 ∩ V s and φ h = a k on C h 2 ∩ V s for a.e. s ∈ (a, b). Therefore, Bρ |∇φ h | 2 dx + H 1 (J φ h ∩ B ρ ) 1 8 A h Bρ∩Vs |∂ τ φ h | 2 dH 1 dx + L h -γBy combining (5.35) and (5.36) we deduce that |∇p(φ h )| m|∇φ h | = 0 in B ρ . Since p(φ h ) = 1 on ∂B ρ , we conclude that p(φ h ) = 1 in B ρ . In other words, φ h takes values in G m . Hence, there is a Caccioppoli partition {E j } m-1 j=0 of B ρ such that

	L h +	c m 80r	-1 γ > L h ,
	which contradicts (5.35).		

Bρ∩Vs |∂ τ φ h | 2 dH 1 |1 -a k | 2 2ρ c m 10r for a.e. s ∈ (a, b) .

Integrating with respect to s (and recalling that r < c m /80) yields 1 8

  Y 2 h on ∂B r (and p(φ h ) = 1 on ∂B r ). Combining (5.34) with (5.42) leads toH 1 (Y h ∩ B r ) 1 8 Br |∇φ h | 2 dx + H 1 (J φ h ∩ B r ) . (5.43) Our choice of r (small compare to c m ) allows us to use the calibration in [Mor02, Example 5.4] (with α = 16) to deduce that for h large enough the map χ Y 0 h + aχ Y 1 h + a 2 χ Y 2 h is a Dirichlet minimizer of the Mumford-Shah functional 4 [Mor02, Definition 3.1)]. As a consequence, 1 16 Br |∇φ h | 2 dx + H 1 (J φ h ∩ B r ) H 1 (Y h ∩ B r ) .

	(5.44)
	Putting together (5.43) and (5.44) yields

Br

|∇φ h | 2 dx = 0 and H 1
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and the conclusion follows.

Remark 5.12. Under the assumptions of Proposition 5.11, we can obtain that the minimizer of (5.7) is unique. Indeed, any solution w h of (5.7) satisfies w h L ∞ (Br) 1 by minimality. Applying (5.14) to w h then yields

), we deduce that φ ≡ 1, that is w h = w h . A similar idea was used in [START_REF] Farina | Uniqueness of vortexless Ginzburg-Landau type minimizers in two dimensions[END_REF] to prove uniqueness results, extending those from [START_REF] Ye | Uniqueness of solutions of the Ginzburg-Landau problem[END_REF].

5.3. Proof of Theorem 5.1. This section is devoted to the proof of Theorem 5.1. We fix a sequence ε h → 0, and minimizers u h of F 0 ε h ,g over G g (Ω). We assume that u h → u strongly in L 1 (Ω) as h → ∞, where u is a minimizer of F 0,g over L g (Ω). We recall that by Theorem 3.2 v h := p(u h ) → u m strongly in W 1,p (Ω) for every p < 2 and in W 1,2 loc (Ω \ spt µ), where µ := curl j(u m ) ∈ A d . According to Section 4, the compact set Γ := J u ⊆ Ω is a Λ(µ)-minimizer in the sense of Definition 4.1, and thus a union of at most d Steiner trees. We denote by T ⊆ Ω the (finite) set of Steiner points of Γ \ spt µ, i.e., the triple junctions of Γ away from spt µ. We finally recall that u ∈ C ∞ (Ω \ Γ), u = g on ∂Ω, and that

Writing spt µ =: {x 1 , . . . , x md } and T := {y 1 , . . . , y q }, we now fix σ 0 > 0 satisfying

and we set for σ ∈ (0, σ 0 ),

(5.15)

Moreover we fix the positive constant δ to be δ := min 1/(4 √ πm), 1/(16mC ) , C being the constant given by Proposition 5.10. For σ ∈ (0, σ 0 ), we finally set

Theorem 5.1 is a consequence of a covering argument combined with Proposition 5.13, Proposition 5.16 and Proposition 5.18 which respectively give the structure of u h away from Γ, close to Γ but away from the triple junctions and at the triple junctions.

5.3.1. Smoothness and convergence away from Γ.

Proposition 5.13. Let σ ∈ (0, σ 0 ). For h large enough,

for every α ∈ (0, 1) and k ∈ N.

The proof of Proposition 5.13 is a direct consequence of Lemma 5.14 and Lemma 5.15 below, together with a suitable covering argument.

Lemma 5.14. For σ ∈ (0, σ 0 ), let r ∈ (0, r σ ) and x 0 ∈ Ω be such that B 2r (x 0 ) ⊆ Ω \ B σ (Γ). For h large enough, u h ∈ W 1,2 (B r (x 0 )), and u h minimizes E ε h (•, B r (x 0 )) under its own boundary condition. In addition, u h ∈ C ∞ (B r (x 0 )) and u h → u in C k loc (B r (x 0 )) for every k ∈ N.

Proof.

Step 1. Without loss of generality, we may assume that x 0 = 0. Set

By Theorem 3.2 and Corollary 3.4, γ h → 0 as h → ∞. Since Γ ∩ B 2r = ∅, (3.9) shows that H 1 (J u h ∩ B 2r ) r 2 (5.16)