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Predicting how much mixing occurs when a given amount of energy is injected
into a Boussinesq fluid is a long-standing problem in stratified turbulence. The
huge number of degrees of freedom involved in these processes renders extremely
difficult a deterministic approach to the problem. Here we present a statistical
mechanics approach yielding a prediction for a cumulative, global mixing efficiency
as a function of a global Richardson number and the background buoyancy profile.
Assuming random evolution through turbulent stirring, the theory predicts that the
inviscid, adiabatic dynamics is attracted irreversibly towards an equilibrium state
characterised by a smooth, stable buoyancy profile at a coarse-grained level, upon
which are fine-scale fluctuations of velocity and buoyancy. The convergence towards
a coarse-grained buoyancy profile different from the initial one corresponds to an
irreversible increase of potential energy, and the efficiency of mixing is quantified as
the ratio of this potential energy increase to the total energy injected into the system.
The remaining part of the energy is lost into small-scale fluctuations. We show that
for sufficiently large Richardson number, there is equipartition between potential and
kinetic energy, provided that the background buoyancy profile is strictly monotonic.
This yields a mixing efficiency of 0.25, which provides statistical mechanics support
for previous predictions based on phenomenological kinematics arguments. In the
general case, the cumulative, global mixing efficiency predicted by the equilibrium
theory can be computed using an algorithm based on a maximum entropy production
principle. It is shown in particular that the variation of mixing efficiency with the
Richardson number strongly depends on the background buoyancy profile. This
approach could be useful to the understanding of mixing in stratified turbulence in
the limit of large Reynolds and Péclet numbers.

Key words: stratified flows, turbulence modelling, turbulent mixing

1. Introduction
The large-scale stratification and dynamics of the oceans depend crucially on

localised turbulent mixing events (Wunsch & Ferrari 2004; Thorpe 2005). These
mixing processes occur on temporal and spatial scales much smaller than the current
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resolutions of general circulation models and must therefore be parameterised (Large,
McWilliams & Doney 1994). It is essential for that purpose to know how much
mixing occurs when stratification is stirred by a turbulent flow (Hopfinger 1987;
Fernando 1991; Staquet & Sommeria 2002; Peltier & Caulfield 2003; Ivey, Winters
& Koseff 2008). More precisely, which fraction of the injected energy is lost through
a direct turbulent kinetic energy cascade and viscous dissipation, which fraction
contributes to modifying the background stratification and what is the resulting
vertical buoyancy profile? Here we propose to use statistical mechanics as a guideline
for the understanding of turbulent stirring and mixing in a stratified fluid.

Equilibrium statistical mechanics counts the available states of the system with
given constraints based on conservation laws. Under random evolution, the system
is expected to reach the macroscopic state, which corresponds to the maximum
number of microscopic configurations. In this paper, the macroscopic quantity to
be determined by the theory is the partition between kinetic and potential energy,
as well as the corresponding mean (coarse-grained) vertical buoyancy profile. The
microscopic configurations will consists of the set of all possible buoyancy fields
and non-divergent velocity fields, and the constraints will be provided by dynamical
invariants of the inviscid and adiabatic fluid.

The application of equilibrium statistical mechanics theory to systems described
by continuous fields is however problematic; see e.g. Pomeau (1994). Indeed, such
systems are characterised by an infinite number of degrees of freedom, which can lead
to an accumulation of energy at small scales, whose divergence can only be avoided
by an artificial truncation in Fourier space. Kraichnan (1967) has however explained
the energy cascade toward small scales as a trend of the system to approach such an
equilibrium. By contrast, in two-dimensional turbulence, statistical equilibrium rather
accumulates energy at large scales, which Kraichnan has related to the occurrence of
an inverse energy cascade. The statistical equilibrium therefore reveals the trend of
the evolution for the actual irreversible turbulent system in the limit of small viscosity.
We here follow a similar idea to study mixing in stratified fluids, using however a
significantly different statistical mechanics approach.

Instead of considering Galerkin-truncated flows, Onsager (1949) modelled the
fluid continuum by a very large but finite set of singular point vortices to explain
the self-organisation of two-dimensional turbulent flows as a tendency to reach
an equilibrium state, see also Eyink & Sreenivasan (2006). Extensions of those
ideas to the continuous two-dimensional Euler and quasi-geostrophic dynamics have
been developed independently by Miller (1990) and Robert & Sommeria (1991)
(MRS hereafter). A similar theory had been previously applied to the Vlasov
equations by Lynden-Bell (1967) in order to predict self-organisation in plasma and
self-gravitating systems, see e.g. Chavanis (2002). Subsequent work on the theoretical
foundations of the approach, as well as on the analytical and numerical computation
of equilibrium states, is reviewed in Sommeria (2001), Majda & Wang (2006),
Bouchet & Venaille (2012). The theory introduces a truncation for the vorticity field,
leading to unrealistic vorticity fluctuations at small scales, but it provides quantitative
predictions for the mean velocity field at large scales. In the geophysical context,
the theory has been used to explain some features of the structure of the Great
Red Spot of Jupiter (Turkington et al. 2001; Bouchet & Sommeria 2002), oceanic
rings and jets (Weichman 2006; Venaille & Bouchet 2011), bottom-trapped oceanic
recirculations (Venaille 2012), the stratospheric polar vortex (Prieto & Schubert
2001), the vertical structure of geostrophic turbulence in stratified quasi-geostrophic
turbulence (Merryfield 1998; Schecter 2003; Venaille, Vallis & Griffies 2012) and the
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556 A. Venaille, L. Gostiaux and J. Sommeria

structure of the thermocline in the global oceanic circulation (Salmon 2012). One
should however keep in mind that statistical equilibrium theory strictly applies to
freely evolving flows, while most geophysical situations involve forcing and friction.
The equilibrium theory can be relevant to describe the large-scale flow when forcing
and dissipation are sufficiently weak (Majda & Wang 2006; Bouchet & Simonnet
2009), but the values of conserved quantities are then set by the global balance
between forcing and dissipation rather than from initial conditions.

The equilibrium theory has already been derived for several flow systems that permit
the existence of a direct energy cascade, such as three-dimensional axisymmetric Euler
flows (Naso et al. 2010; Thalabard, Dubrulle & Bouchet 2014; Thalabard et al. 2015).
The theory yields in this case predictions for the energy partition between toroidal and
poloidal modes (Thalabard et al. 2014). Similarly, equilibrium theory has been used
to predict the energy partition between inertia–gravity waves and vortical modes in
shallow water models (Warn 1986; Weichman & Petrich 2001; Renaud, Venaille &
Bouchet 2016). Here we apply a similar approach to a non-rotating, density-stratified
Boussinesq fluid in order to predict the partition between kinetic and potential energy
for a given amount of energy injected into the system. Tabak & Tal (2004) computed
the most probable buoyancy field of a two-layer fluid with a prescribed total energy,
assuming that the kinetic energy is constant at each height. Our contributions are
twofold. First, we generalise their result to arbitrary buoyancy profiles, and obtain
the kinetic energy profile as the output of the statistical theory. Second, we use these
results to obtain predictions for mixing efficiency in decaying configurations.

How to infer the efficiency of mixing in forced-dissipative or decaying experiments
has been carefully addressed in previous studies; see e.g. Winters et al. (1995), Peltier
& Caulfield (2003), Davis Wykes, Hughes & Dalziel (2015), Salehipour & Peltier
(2015) and references therein. The traditional approach involves direct analyses of
the diffusive destruction of small-scale density variance as the experiment proceeds,
which in turn requires a separation of the influence of stirring from that of irreversible
mixing through application of the Lorenz concept of available potential energy that
can be converted into kinetic energy and a base-state potential energy which cannot.
It has been demonstrated that the diffusive destruction of small-scale density variance
may be represented by the time derivative M of base-state potential energy plus
a small correction due to the action of molecular diffusion on the initial density
stratification, a correction that becomes negligible in the limit of high Reynolds
number (Winters et al. 1995). The time-dependent efficiency of turbulent mixing may
be then computed from the direct numerical simulations as ηt =M/(M+ ε) where
ε is the rate of viscous kinetic energy dissipation in the fluid domain (Peltier &
Caulfield 2003; Salehipour & Peltier 2015). This definition of mixing efficiency is
global in space since the computation of the base-state potential energy requires a
rearrangement of the fluid particle at the domain scale. Using a number of additional
assumptions, it may be related to a local mixing efficiency that is often used in
oceanography to model an effective diffusivity for diapycnal mixing (Osborn 1980;
Hopfinger 1987; Tailleux 2009). In decaying experiments, it is also convenient to
define a cumulative mixing efficiency ηtot =

∫ +∞
0 dtM/

∫ +∞
0 dt(M + ε), which

measures how much of the total injected energy has been used to irreversibly raise
the potential energy of the system in the experiment. In practice, this quantity can
easily be inferred in laboratory experiments by measuring the buoyancy profile once
all dissipative effects have died out, assuming the initial background stratification and
the initial injected energy are known.
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Although the traditional approach to mixing efficiency in stratified turbulence
emphasises the role of molecular diffusivity, we argue in this paper that irreversible
mixing in decaying configurations can also be addressed within the framework of
an inviscid, adiabatic Boussinesq flow model. Indeed, we will see that even if
the background buoyancy field remains constant in time, the system is irreversibly
attracted towards a state characterised by small-scale buoyancy fluctuations and a
concomitant irreversible increase of available potential energy, assuming ergodicity.
This irreversibility is due to the fact that an overwhelming number of microscopic
configurations are close the most probable state, according to the equilibrium theory.
The available potential energy of the equilibrium state could in principle be transferred
back into kinetic energy, but this would correspond to the highly improbable escape
from the equilibrium state. More precisely, we will show that the probability to
observe a state different than the equilibrium state is vanishingly small (it tends
to zero as the number of fluid particles tends to infinity). In other words, the
so-called available potential energy of the system is statistically not available when
the equilibrium state is reached, and we argue that a statistical mixing efficiency
can be defined without reference to the molecular diffusion of buoyancy levels.
Our working hypothesis is that this statistical mixing efficiency is equivalent to the
traditional definition of mixing efficiency in the limit of weak molecular diffusivity.

Applying the statistical mechanics programs to Boussinesq dynamics is done in
three steps. The first step is to find relevant phase-space variables. These variables
must satisfy a Liouville theorem, and we show in this paper (appendix A) that this
is the case of the velocity and buoyancy fields. This ensures that the dynamics is
non-divergent in phase space, so that the probability densities expressed in these
variables remain constant during the time evolution of the system. The fundamental
postulate of equal probability for each microscopic configuration is then consistent
with the dynamical evolution. Second, we need to introduce a discretisation of
the continuous fields describing the system. This technical step is classical when
computing equilibrium states of systems described by deterministic partial differential
equations. Once the discrete approximation of the fields is introduced, one can count
the microscopic configurations, and the computation of the equilibrium states is
rigorous. The third step is to introduce a macroscopic description of the system, and
to find the most probable macrostates among all those that satisfy a set of constraints
provided by dynamical invariants. Using the equilibrium theory to describe the
long-time behaviour of the system finally requires the assumption of ergodicity, i.e.
that the system evenly explores phase space. Even if the ergodic assumption may not
be fulfilled in actual turbulent flow, computing the equilibria is at least a useful and
necessary first step before addressing the out of equilibrium behaviour of the system
in more comprehensive studies.

Denoting H the height of the flow domain, 1b the typical variations of the
background buoyancy profile, (U, Lt) the typical velocity and length scale of
turbulence and (ν, κ) the molecular viscosity and diffusivity, the efficiency of mixing
depends a priori on four non-dimensional parameters in laboratory or numerical
experiments on stratified turbulence: a global Richardson number based on the
domain scale Ri = H1b/U2, the Reynolds number Re = ULt/ν, the Péclet number
Pe=ULt/κ and the ratio Lt/H which depends on the energy injection mechanism.

The equilibrium statistical mechanics theory applies to the freely evolving inviscid
adiabatic dynamics. Considering such an approach to describe actual stratified
turbulence amounts to assuming that the Reynolds number Re and the Péclet number
Pe are sufficiently large, and that the typical time scale to approach the equilibrium
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state is smaller than the typical time scale for the dissipation of energy and buoyancy
fluctuations. Independently from statistical mechanics arguments, neglecting molecular
effects is a natural assumption in the large Reynolds number limit, which has
been proven useful in previous studies on three-dimensional turbulence (Eyink &
Sreenivasan 2006), in which case the observed dissipation rate of energy ε becomes
independent from viscosity; see e.g. Vassilicos (2015) and references therein.

Similarly, the independence of the dissipation rate of scalar fluctuations on the
molecular diffusivity is a standard hypothesis in turbulence theory, coming back to
the generalisation of Kolmogorov arguments by Obukhov (1949) and Corrsin (1951).
In the case of a passive scalar, this hypothesis has been supported by experiments
(Sreenivasan 1996; Warhaft 2000) and theoretical results (Shraiman & Siggia 2000;
Falkovich, Gawȩdzki & Vergassola 2001).

Within the framework of the equilibrium theory, we assume conservation of the
total energy and of the global distribution of buoyancy, but we show that part of the
energy and that part of the buoyancy fluctuations are irreversibly transferred to small
scales once the equilibrium state is reached. Since the amount of kinetic energy and
buoyancy fluctuations that are irreversibly transferred to small scales can be computed
explicitly within the equilibrium statistical mechanics framework, we argue that the
theory makes possible a prediction for the cumulative mixing efficiency, even in the
absence of viscosity or molecular dissipation in the model. Our working hypothesis
is that those small-scale fluctuations will be smoothed out by molecular effects over
a time scale much larger than the relaxation time towards equilibrium.

The paper is organised as follows. The equilibrium statistical mechanics theory
is introduced and discussed in the second section. The actual computation of the
equilibrium states is discussed in a third section. Application of the theory to predict
mixing efficiency in freely evolving flow (decaying turbulence) is discussed in a
fourth section. We conclude and summarise the main results in the fifth section.
Technical results on the Liouville theorem, on the computation of the macrostate
entropy and on the numerical algorithm used to compute the equilibria are presented
in two appendices.

2. Equilibrium statistical mechanics of non-rotating, density-stratified Boussinesq
fluids

2.1. Dynamical system and invariants
We consider an inviscid Boussinesq fluid that evolves in a three-dimensional domain
Vx of volume V , see e.g. Vallis (2006). Spatial coordinates are denoted x= (x, y, z),
with ez the vertical unit vector pointing in the upward direction. At each time t
the system is described by the buoyancy field b = g(%0 − %)/%0, where %(x, y, z, t)
is the fluid density, g gravity and %0 a reference density, and by the velocity field
u= (u, v,w), which is non-divergent:

∇ · u= 0. (2.1)

In the absence of diffusivity, the buoyancy field is purely advected by the velocity
field

∂tb+ u · ∇b= 0, (2.2)

and the dynamics of the velocity field is coupled to the buoyancy field through the
momentum equation

∂tu+ u · ∇u=− 1
%0
∇P+ bez. (2.3)
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Equation (2.2) describes the Lagrangian conservation of the buoyancy. It implies the
conservation of the global distribution (i.e. histogram) of buoyancy levels

G(σ )= 1
V

∫
Vx

dxδ(b− σ) (2.4)

expressed as dG/dt = 0. The conservation of G(σ ) is equivalent to the conservation
of all the Casimir functionals F[b] = ∫ dxf (b), with f any arbitrary function; see
e.g. Potters, Vaillant & Bouchet (2013). This conservation law is also equivalent to
the conservation of the background (or sorted) buoyancy profile bs(s) defined as the
buoyancy profile with minimal potential energy using

G(bs) dbs = 1
2H

dz. (2.5)

Similarly, using (2.1), (2.2) and (2.3) one can show that the total energy of the flow

E=
∫
Vx

dx
(

1
2

u2 − bz
)
+
∫
Vx

dxzbs (2.6)

is another dynamical invariant: dE/dt= 0. Note that the total energy is defined up to
a constant, but we have chosen this constant such that the energy vanishes when there
is no motion and when the buoyancy field is sorted (E= 0 when u= 0 and b= bs).

The Boussinesq equations are characterised by additional dynamical invariants
related to the conservation of Ertel potential vorticity, see e.g. Salmon (1998).
These invariants are essential to explain the occurrence of inverse cascade and
self-organisation of the velocity field occurring in the presence of sufficiently large
rotation. However various theoretical and numerical studies indicate that stratified
turbulence in the absence of rotation is not influenced significantly by these
invariants (Bartello 1995; Waite & Bartello 2004; Lindborg 2005, 2006; Herbert,
Pouquet & Marino 2014). We will therefore not consider the constraints related
to the conservation of Ertel potential vorticity in the remaining of this paper. In the
context of equilibrium statistical mechanics, this amounts to assuming that the entropy
maxima obtained with and without these constraints are the same.

2.2. Microscopic configurations, macroscopic description and variational problem
For an isolated system, the fundamental postulate of equilibrium statistical mechanics
is the equiprobability of the microscopic configurations corresponding to the same
values of the dynamical invariants.

The first step is to define what are the relevant phase-space variables describing
these microscopic configurations. Those variables must satisfy Liouville’s theorem,
which means that the flow in phase space is non-divergent. This ensures that
microscopic configurations remain equiprobable during the time evolution of the
system. We show in appendix A that the quadruplet of fields (b, u) satisfy such a
Liouville theorem, and are therefore relevant phase-space variables.

The second step is to identify the relevant dynamical invariants, which are here the
total energy and the global distribution of buoyancy levels, defined in (2.6) and in
(2.4), respectively. The ensemble of microscopic configurations characterised by the
same dynamical invariants is called the microcanonical ensemble. This is the relevant
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560 A. Venaille, L. Gostiaux and J. Sommeria

ensemble to consider for an isolated system such as the unforced, inviscid, adiabatic
Boussinesq system.

The third step is to identify relevant macrostates, which describe an ensemble of
microscopic configurations. We introduce for that purpose the probability ρ(x, σ , v)
of finding the buoyancy level σ and the velocity level v in the vicinity of point x. It
is normalised at each point:

∀x ∈ Vx, Nx[ρ] =
∫
Vv

dv

∫
Vσ

dσρ(x, σ , v)= 1, (2.7a,b)

where the integral bounds are

Vv = [−∞,+∞]3, Vσ = [−∞,+∞]. (2.8a,b)

Each microscopic state (b(x), u(x)) is described at a macroscopic level by the
probability distribution function (PDF) ρ(x, σ ,v), and many microscopic configurations
are in general associated with a given PDF ρ(x, σ , v), which is called a Young
measure in mathematics; see e.g. Robert & Sommeria (1991).

Let us define more precisely how to compute the macroscopic state ρ(x, σ , v) from
a given microscopic configuration (b(x), u(x)), which will be useful to count the
number of microscopic configurations associated with a given macrostate. For that
purpose, we follow a procedure which is standard in the framework of equilibrium
statistical mechanics of fluid systems, using a discrete approximation of the continuous
fields. We consider a uniform coarse-grained grid containing N macrocells, and a
fine-grained grid obtained by dividing each macrocell of the coarse-grained grid
into a uniform grid containing M fluid particles, see figure 1. On the one hand,
discretisation of the microscopic field b(x) and u(x) are defined on the fine-grained
grid, which contains MN fluid particles. This procedure also requires a discretisation
of the buoyancy and velocity levels carried by the fluid particles, which is further
discussed in appendix B. On the other hand, the discrete approximation of the PDF
ρ is defined on the coarse-grained grid.

For a given microscopic configuration, one can compute within each macrocell of
the coarse-grained grid the frequency of occurrence of buoyancy and velocity levels (a
normalised histogram). In the limit M→+∞, for a prescribed value of N, the discrete
approximations of the microscopic configurations tend to the continuous ones, and the
discrete approximation of the PDF ρ is equivalent to the frequency of occurrence
of buoyancy and velocity levels within each macrocell. In other words, the discrete
approximation of the PDF ρ can be interpreted as the volume proportion of fluid
particles carrying the buoyancy level σ and velocity level v inside each macrocell.
The continuous PDF field ρ is then recovered by considering the limit N → +∞,
which corresponds to the limit of infinitesimal macrocells. Several useful macroscopic
quantities can be deduced from ρ, such as the macroscopic buoyancy field

b(x)=
∫
Vσ

dσ
∫
Vv

dvρσ, (2.9)

and the local eddy kinetic energy field

1
2

u2(x)=
∫
Vσ

dσ
∫
Vv

dv
1
2
ρv2. (2.10)

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/jfm.2016.721
Downloaded from http:/www.cambridge.org/core. Ecole Centrale de Lyon, on 04 Jan 2017 at 11:33:27, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/jfm.2016.721
http:/www.cambridge.org/core


A statistical mechanics approach to mixing in stratified fluids 561
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FIGURE 1. (Colour online) (a) A microscopic configuration of the discretised buoyancy
field b(x). The discretised buoyancy field is defined on a uniform fine-grained grid
containing M × N elements, where N is the number of grid points of the uniform
coarse-grained grid (red colour). (b) Zoom on a single macrocell, containing M microcells.
Each microcell contains one fluid particle. Here we consider the case of a two-level
system: the buoyancy carried by each fluid particle is b=±1b/2. (c) The macroscopic
buoyancy field b(x) is defined on the uniform coarse-grained grid (red colour), and is
computed in the limit M→+∞ by averaging the microscopic buoyancy field within each
macrocell, see e.g. Miller (1990), Tabak & Tal (2004).

Within the framework of the discrete approximation depicted in figure 1, those
macroscopic quantities correspond to averages over macrocells, i.e. to a spatial
coarse graining at the scale of a macrocell ∼N−1/3. Importantly, the small-scale
fluctuations described by the macroscopic states are confined at spatial scales below
this coarse-graining scale, which tends to zero in the limit N→+∞.

The advantage of considering the probability field ρ rather than only the coarse-
grained fields such as b for a macroscopic description of the system is that global
constraints provided by dynamical invariants can be expressed in terms of ρ. The
global constraints are given by the energy and the global distribution of buoyancy
levels, which are defined as functional of phase-space variables (u, b) in (2.6) and
(2.4), respectively. Considering the discrete approximation described in the previous
paragraph, decomposing the spatial integrals appearing in (2.6) and (2.4) as a sum
of spatial integrals over each macrocells, remembering then that the PDF ρ is the
frequency of occurrence of buoyancy and velocity levels within a given macrocell, and
taking finally the limit M→+∞, N→+∞, the energy and the global distribution
of buoyancy levels can be expressed as functionals of the PDF ρ:

E[ρ] =
∫
Vx

dx
∫
Vv

dv

∫
Vσ

dσρ
(

v2

2
− σ z

)
+
∫
Vx

dxzbs, (2.11)

Gσ [ρ] =
∫
Vx

dx
∫
Vv

dvρ. (2.12)

The microcanonical ensemble is defined by the ensemble of microstates characterised
by the same energy E and global distribution of buoyancy levels G(σ ). This ensemble
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contains therefore all the macroscopic states that satisfy the dynamical constraints
E[ρ] = E and Gσ [ρ] =G(σ ).

The last step is to count how many microscopic configurations are associated with
a given macrostate. Considering our discrete approximation of the fields, it is shown
in appendix B that within the microcanonical ensemble, an overwhelming number of
the microscopic configurations is concentrated close to the most probable macrostate,
which maximises the macrostate entropy

S =−
∫
Vx

dx
∫
Vv

dv

∫
Vσ

dσρ log ρ. (2.13)

The expression of the macrostate entropy given in (2.13) is a classical one, especially
in the context of two-dimensional turbulence (Miller 1990; Robert & Sommeria 1991).
A rigorous derivation of such macrostate entropy requires the use of large deviation
theory; see e.g. Touchette (2009) for an introduction to those tools. A key difficulty
in deriving rigorously this macrostate entropy from the usual Boltzmann entropy is
that the microstates are continuous fields which contain an infinite number of degrees
of freedom, and which are constrained by an infinite number of dynamical invariants.
Several discretisation procedures have been proposed to bypass this difficulty, see
e.g. Michel & Robert (1994), Boucher, Ellis & Turkington (2000), Bouchet &
Corvellec (2010), Potters et al. (2013), Renaud et al. (2016). A similar formula
has been derived previously by Tabak & Tal (2004) in the context of non-rotating,
density stratified Boussinesq fluids, in the particular case of a two-level buoyancy
configuration. Here we have generalised this result to arbitrary buoyancy distribution,
and more importantly, we have included the velocity field in the description of the
microstate, which is essential to account for energy conservation.

2.3. Computation of the most probable macrostate and general properties of the
equilibrium states

The first step to find the equilibrium state is to compute critical points of the
variational problem given by the equilibrium theory, i.e. to find the field ρ such that
first variations of the macrostate entropy (2.13) around this state vanish, given the
constraints of the problem given by E[ρ] = E, Gσ [ρ] = G(σ ), Nx[ρ] = 1, where E
is the energy defined in (2.11), Gσ is the global distribution of buoyancy defined in
(2.12) and Nx the local normalization of the PDF expressed in (2.7). One needs for
that purpose to introduce the Lagrange multipliers βt, γ (σ ), ξ(x) associated with
those constraints. Computing first variations with respect to the probability field ρ

yields

δS − βtδE +
∫
Vσ

dσγ (σ )δGσ +
∫
Vx

dxξ(x)δNx = 0. (2.14)

Using the expression of the entropy, of the energy, of the global distribution of
buoyancy and of the normalisation constraints given respectively in (2.13), (2.11),
(2.12) and (2.7), (2.14) yields∫

Vx

dx
∫
Vv

dv

∫
Vσ

dσ
(
(1+ log ρ)+ βt

(
v2

2
− σ z

)
− γ (σ )− ξ(x)

)
δρ = 0. (2.15)
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This equality is true for any δρ, which, using the normalisation constraint in (2.7),
yields the following necessary and sufficient condition for ρ to be a critical point of
the variational problem:

ρ(x, σ , v)=
(
βt

2π

)3/2

e−βt(v
2/2)ρb(z, σ ), (2.16)

with

ρb(z, σ )≡ eβtσ z+γ (σ )

Z(z)
, Z(z)≡

∫
Vσ

dσeβtσ z+γ (σ ). (2.17a,b)

The values of the Lagrange multipliers βt and γ (σ ) are implicitly determined by
the expression of the constraints E[ρ] = E and Gσ [ρ] = G(σ ), given by (2.11) and
(2.12), respectively.

The probability density field (2.16) is expressed as a product of the probabilities for
buoyancy and velocity, which means that b and u are two independent quantities at
equilibrium. The predicted velocity distribution is Gaussian, with zero mean (u= 0),
isotropic and homogeneous in space. It is therefore fully characterised by the local
eddy kinetic energy

ec ≡ 1
2

u2 = 3
2

1
βt
. (2.18)

The inverse of βt defines an effective ‘temperature’ of the turbulent field, corresponding
to the turbulent agitation of fluid particles. Remarkably, the three-dimensional nature
of the flow appears only in this equation and nowhere else. A two-dimensional
case would just have a different relation between kinetic energy and this effective
temperature.

The predicted buoyancy distribution ρb depends only on the height coordinate z.
The equilibrium theory predicts therefore that the local fluctuations of buoyancy are
invariant in the horizontal. It means that in the remaining of this paper, the quantities
· can be interpreted either as a local coarse graining or as a horizontal average.
Similarly, the quantity ρb can be interpreted either as a local distribution of buoyancy
or as the distribution of buoyancy over an horizontal plane.

Equation (2.17) relates the mean buoyancy profile and its fluctuations to the
effective turbulent temperature. Buoyancy moments are defined at each height in
terms of ρb(z, t) as

bn(x)≡
∫
Vσ

dσσ nρb. (2.19)

From (2.17) we get the relations

b= 1
βt

d log Z
dz

, b2 − b
2 = 1

β2
t

d2 log Z
dz2

. (2.20a,b)

Using those expressions and (2.18), one gets finally an expression relating the mean
buoyancy profile to the ratio of the buoyancy fluctuations to the kinetic energy
fluctuations:

db
dz
= 3

b2 − b
2

2ec
. (2.21)
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564 A. Venaille, L. Gostiaux and J. Sommeria

In the case of a strong stratification, the local variance of buoyancy is proportional to
the small vertical displacement of fluid elements, so this relation can be interpreted as
an equipartition between kinetic and potential energy fluctuations, as further discussed
in § 4.3.

The equilibrium state has a peculiar spatial structure: the buoyancy field b is
characterised by a smooth coarse-grained buoyancy profile b(z) superimposed with
small-scale buoyancy fluctuations. More precisely, the theory predicts that when
performing a local coarse graining of the microscopic buoyancy and velocity fields
at a scale l (the scale of the macrocell within the framework of our discrete model
depicted in figure 1), the small-scale fluctuations are confined at scales smaller than
the coarse-graining scale l, no matter how small the coarse-graining length scale l.

In the case of a decaying experiment with weak molecular viscosity and diffusivity,
the subgrid-scale velocity fluctuations of the equilibrium state correspond to the
amount of kinetic energy that will be dissipated by viscosity during the whole decay,
the subgrid-scale buoyancy fluctuations of the equilibrium state correspond to the
amount of buoyancy fluctuations locally dissipated by diffusivity during the whole
decay. As a result, the equilibrium state b corresponds to the background buoyancy
profile that will be measured after a mixing event, once the system has reached a
state of rest in a decaying experiment. The underlying hypothesis is that the system
reaches the equilibrium states before molecular effects become important.

3. Computation of mean equilibrium buoyancy profiles
3.1. The two-level case

We discussed in the previous subsection the general case with a continuum of
buoyancy levels. In the particular case with a finite number of buoyancy levels
(say K levels σk with 1 6 k 6 K), the buoyancy field is described at a macroscopic
level by pk(x), which is the probability of measuring the level σk at point x with∑K

k=1 pk(x)= 1, see appendix B. The same arguments as in § 2.3 for the computation
of the equilibrium state then yield

pk(z)≡ eβtσkz+γk

K∑
k=1

eβtσkz+γk

, βt = 3
2ec
, (3.1)

where the values of the Lagrange multipliers βt and {γk}16k6K are implicitly
determined by the energy constraint and conservation of the total volume occupied
by each buoyancy level σk.

Let us restrict ourselves to the case of an initial state composed of two buoyancy
levels in equal proportion with

∀x ∈ Vx, b(x) ∈
{
−1b

2
,
1b
2

}
. (3.2)

The only dimensionless parameter of the problem within the statistical mechanics
framework is given by the global Richardson number based on the total height 2H,
buoyancy jump 1b and square of velocity fluctuations 2ec:

Ri≡ H1b
ec

. (3.3)
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A statistical mechanics approach to mixing in stratified fluids 565

This global Richardson number based on the domain height H is different from the
bulk Richardson number Rib=1bLt/ec= (Lt/H)Ri based on the turbulent length scale
Lt, which is commonly used in the context of turbulent mixing in stratified fluids; see
e.g. Fernando (1991). The statistical mechanics prediction depends only on the total
energy, not on its injection scale Lt. This point will be further discussed in § 4.4.

We denote p+(z) the probability of measuring 1b/2 at height z. According to the
notation used in (3.1), we get σ1 =−1b/2, σ2 =1b/2, p1 = 1− p+, p2 = p+, with

p+(z)= e(3Ri/4)(z/H)

e−(3Ri/4)(z/H) + e(3Ri/4)(z/H)
, (3.4)

where we have used the symmetry with respect to z= 0 (p+ (z)=−p(−z)) and the
fact that the two buoyancy levels are in equal proportions (

∫ +H
−H dzp+ =

∫ +H
−H dzp−) to

eliminate the Lagrange parameters γ1, γ2 in (3.1).
Equation (3.4) is reminiscent of the Fermi–Dirac distribution. Indeed, the conserva-

tion of buoyancy plays here the same role as the exclusion principle for the statistics
of fermions: within the framework of the discretised model depicted in figure 1, the
buoyancy carried by a fluid particle at a given grid point can only take one value
among −1b/2 and 1b/2. Following this analogy, the buoyancy field is a collection of
fluid particles carrying the potential energy ep =±1/2z1b, with a Fermi level εf = 0,
in thermal contact with a heat bath characterised by the inverse temperature βt.

Using (3.4) and (2.18), the mean density profile b= (1b/2)p+ −1b/2(1− p+) is
expressed as

b(z)= 1b
2

tanh
(

3Ri
4

z
H

)
. (3.5)

Large global Richardson numbers Ri� 1 correspond to sharp interfaces: the kinetic
energy is too small to allow for large excursion of fluid particles away from the
rest position. By contrast, small global Richardson numbers Ri� 1 correspond to a
homogenised buoyancy field: the total kinetic energy is much larger than the energy
required to mix the buoyancy field. This tanh profile was previously obtained by Tabak
& Tal (2004) using similar arguments, but without relating the effective temperature to
the kinetic energy of the flow in a consistent theory. Our approach allows for a direct
interpretation of the effective temperature of the flow as the local turbulent kinetic
energy, which will make possible quantitative estimate for mixing efficiency.

3.2. A relaxation equation towards the equilibrium states
The expression for the equilibrium state given in (2.17) requires the knowledge of
the Lagrange multipliers γ (σ ) and ec, which depend implicitly on the constraints
G(σ ) and E. This makes analytical computations of those equilibria very challenging.
Solutions may be obtained in particular cases, such as for the two-level configuration
analysed in § 3.1, but more generally it must be determined numerically.

We devise for that purpose an algorithm based on a maximum entropy production
principle, which was introduced by Robert & Sommeria (1992) in order to compute
equilibrium states of two-dimensional Euler flows. The idea of the algorithm is to
consider a time-dependent probability distribution function

ρ(σ , x, v, t)=
(

3
4πec(t)

)3/2

e−(3/2ec(t))(v2/2)ρb(z, σ , t), (3.6)
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where the PDF ρb(z, σ , t) and the local kinetic energy ec(t) depend on time, and can
be different from the pdf and the kinetic energy of the actual equilibrium state. We
derive in appendix C a dynamical equation for ρb that conserves the total energy and
the global distribution of buoyancy levels, while maximising the entropy production
at each time:

∂tρb = ∂z

[
D
(
∂zρb − 3

2ec
(σ − b)ρb

)]
, (3.7)

where D is an arbitrary positive diffusion coefficient. The kinetic energy ec defined in
(2.18) is expressed in terms of the total energy E and the buoyancy profile b(z, t) by
using (2.11):

ec = E
V
+ 1

2H

∫ +H

−H
dz(b− bs)z, (3.8)

with V the volume of the flow domain.
Maximising the entropy production ensures that the system relaxes towards an

equilibrium state. Indeed, using (2.17)–(2.18) and the first equality in (2.20), the
equilibrium states can be written as

ρb(σ , z)= ρb(σ , 0)e(3/2ec)(σ z−∫ z
0 dz′b(z′)), (3.9)

which is also the expression of any stationary solution of (3.7). According to equation
(3.7) the equilibrium state can be interpreted as the result of a compensation between
usual turbulent diffusion and a drift term corresponding to restratification of buoyancy
fluctuations. We stress that the convergence towards equilibrium depends on the
parameter D, but that the equilibrium itself does not depend on this parameter. This
is why it can be chosen arbitrarily.

Assuming that the initial energy E injected into the system and that the background
buoyancy profile bs(z) are known, one can then use the relaxation algorithm (3.7),
starting from the state

ρb(z, σ , 0)= δ(bs(z)− σ), ec(0)= E
V
. (3.10a,b)

Equation (3.7) is an integro–differential equation, because the local kinetic energy is a
functional of the macroscopic vertical buoyancy profile. Its numerical implementation
is much easier assuming that ec is a constant. One then loses energy conservation, but
the equation still conserves the global buoyancy distribution, assuming no buoyancy
fluxes at the upper and lower boundaries. It can be shown that this process minimises
the free-energy production defined as Ḟ =−Ṡ +βtĖ , where the upper dot stands for a
time derivative, and where βt=3/(2ec) can be interpreted as the inverse of an effective
turbulent temperature. Indeed, assuming constant local kinetic energy amounts to a
computation of the equilibrium state within the canonical ensemble where the ‘heat
bath’ is provided by turbulent agitation. In order to solve numerically (3.10) with
constant ec, we first assume a discretisation of the global buoyancy distribution into
Nσ buoyancy levels denoted σn with 16 n6Nσ . Denoting ρb,n(z, t) the probability to
measure the level σn in the vicinity of height z at time t, we obtain a system of one-
dimensional parabolic partial differential equations for {ρb,n(z, t)}16n6Nσ , which can be
solved using standard numerical procedures. This dynamical system is integrated in
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FIGURE 2. (Colour online) (a) Plain blue line: equilibrium state b(z) computed
numerically in the case Ri=10, where Ri=H1b/ec is the global Richardson number. Here
H = 1, 1b = 1. The dotted blue line: corresponding background buoyancy profile bs(z)
(here a two-layer case). Black circles: analytical expression from (3.5) for the equilibrium
state of the two-level system. The buoyancy increases from right to left on the horizontal
axis. (b) Compensation of the downgradient buoyancy flux with the restratification term
proportional to buoyancy fluctuations (with D= 1). The total buoyancy is the sum of those
two terms, which is zero at equilibrium. (c,d) Same as (a,b) in the case of an initial linear
background buoyancy profile (no analytical predictions in that case).

time until a steady state is reached. This steady state is the equilibrium state. Once the
equilibrium state associated with a given value of ec is computed, it is straightforward
to compute its total energy E using (2.11). One can then check that varying ec from
0 to +∞ amounts to varying E from 0 to +∞. This procedure therefore provides the
complete set of equilibria associated with any given background buoyancy profile.

We show in figure 2 two examples of equilibrium states computed by this
procedure, assuming no buoyancy fluxes at the upper and lower boundaries. Panels
(a,b) correspond to the two-level configuration. As expected from (3.5), the mean
equilibrium buoyancy profile is characterised by a tanh shape in that case. Panel (b)
confirms that this equilibrium state may be interpreted as the result of a balance
between a classical downgradient term −D∂zb modelling turbulent transport and a
term D(3/2ec)(b2 − b

2
) modelling restratification.
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Panels (c,d) correspond to the more complicated case of a linear profile for the
background buoyancy profile, for which no analytical results exist. Just as in the two-
layer case, we see enhanced buoyancy fluctuations in the domain bulk. This numerical
method can easily be applied to any background buoyancy profile, and will be applied
in next section to the computation of mixing efficiency.

4. Computation of mixing efficiency in decaying flows
4.1. Irreversibility and mixing efficiency

We argue in the following that the computation of the equilibrium states for the
inviscid, adiabatic system can be used to obtain quantitative predictions for the
efficiency of mixing in decaying stratified turbulence.

The first assumption is that molecular viscosity and diffusivity only play a
secondary role in the limit of large Reynolds and Péclet numbers. More precisely,
we assume that the time scale to reach the equilibrium state of the inviscid, adiabatic
dynamics is smaller than the typical time scale of dissipative effects. In other
words, inertial dynamics governs the amount of small-scale velocity and buoyancy
fluctuations that are created on a short time scale, and the only effect of viscosity
and diffusivity is to smooth out these fluctuations on a longer time scale.

The second assumption is that the flow system evenly explores phase space
through turbulent stirring, which is necessary to use statistical mechanics predictions.
According to the theory, the macroscopic buoyancy profile b and the local distribution
of small-scale fluctuations do not evolve in time anymore once the equilibrium state
is reached: the equilibrium state is an attractor for the dynamics. In that respect, the
purely inertial, inviscid and adiabatic dynamics is irreversible. In other words, even if
the process described by the equilibrium theory is pure stirring, it implies irreversible
mixing of the buoyancy field at a coarse-grained level. Assuming that this stationary
property of b persists in the presence of weak viscosity and weak dissipation, we see
from (2.21) that the rate of local small-scale kinetic energy dissipation d log ec/dt
should be equal to the rate of dissipation for the local variance of local buoyancy
fluctuations d log(b2 − b

2
)/dt.

Let us assume that a given amount of energy denoted Einj is injected in a fluid
initially at rest, characterised by a background buoyancy profile bs(z). The injected
energy may either be purely kinetic (through mechanical stirring) or purely potential
(for instance by turning the tank upside down into an unstable configuration). Once
the equilibrium state is reached, part of this energy is carried by small-scale velocity
fluctuations, and the remaining part is used to maintain the potential energy of
the system at a higher value than the potential energy of the background state.
The transfer of part of the initial energy present at a coarse-grained level into
subgrid-scale (fine-grained) fluctuations is very much similar to the effect of viscosity,
which transfers energy from the degrees of freedom of the fluid motion to these of
thermal fluctuations.

The total kinetic energy carried by the equilibrium state is denoted Ec = Vec with
ec the local kinetic energy density, homogeneous in space. This kinetic energy takes
the form of small-scale fluctuations, that will be eventually dissipated in a decaying
experiment with weak viscosity and the quantity Ec can then be interpreted as the
temporal integral of viscous dissipation.

Turbulent stirring implies rearrangements of fluid parcels, and such rearrangements
from bs(z) to b(x, y, z) are necessarily associated with an increase of potential energy

Ep =−
∫
Vx

dx(b− bs)z. (4.1)

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/jfm.2016.721
Downloaded from http:/www.cambridge.org/core. Ecole Centrale de Lyon, on 04 Jan 2017 at 11:33:27, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/jfm.2016.721
http:/www.cambridge.org/core


A statistical mechanics approach to mixing in stratified fluids 569

At equilibrium, this quantity can be expressed in terms of the macroscopic buoyancy
profile b which depends only on z:

Ep =− V
2H

∫ +H

−H
dz(b− bs)z. (4.2)

This definition is equivalent to the classical definition of the available potential energy.
However, as explained above, the convergence towards the equilibrium buoyancy
profile is irreversible. Once the equilibrium is reached, the available potential energy
Ep has been irreversibly transferred to smaller scales, and cannot be transferred
anymore into another form of energy. It would inescapably result into molecular
mixing in the presence of molecular diffusion. In that case, Ep would corresponds
to the increase of the background potential energy, which is consistent with Winters
et al. (1995).

We define the mixing efficiency as

η≡ Ep

Ep + Ec
, (4.3)

where Ep + Ec = Einj is the total energy injected into the system. This definition
of mixing efficiency is bounded between 0 and 1. Since Ec is the total amount of
kinetic energy lost at small scale, and since Ep corresponds to an irreversible increase
of potential energy according to statistical mechanics theory, our definition of η

is equivalent to the long time limit of the cumulative mixing efficiency (Peltier &
Caulfield 2003), or to the integrated flux Richardson number (Linden 1979).

We stress finally that the equilibrium theory does not predict a temporal evolution
for the system but just the final outcome of turbulent stirring under the assumption
of random evolution without forcing and dissipation. It provides therefore a global
(integrated over the whole domain) and cumulative (integrated over sufficiently large
time) prediction for the efficiency of mixing.

4.2. Numerical computation in the general case
We show in figure 3 how the mixing efficiency η varies with the global Richardson
number Ri=H1b/ec, with 1b= bs(H)− bs(−H). We consider two different buoyancy
profiles bs(z): case (a) is the two-level configuration corresponding to a background
profile with two homogeneous layers of equal depth, for which an analytical solution
exits; case (b) corresponds to a linear background buoyancy profile. Considering those
two cases allows us to show very different behaviour for the variations of mixing
efficiency as a function of the Richardson number Ri.

The kinetic energy ec appearing in the Richardson number is not a control
parameter, but one can check a posteriori that Ec = Vec is always of the same
order of magnitude as the injected energy Einj, which is a control parameter. In a
direct numerical simulations with non-zero viscosity, Ec would be the actual amount
of kinetic energy dissipated during the turbulent decay.

We see in figure 3 that whatever the background buoyancy profile, the equilibrium
buoyancy profile b can be considered as almost completely homogenised in the low
Richardson number limit Ri� 1. In that case, most of the injected energy is lost in
small-scale velocity fluctuations with Ec = Einj and the fluid is well mixed, so that b
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FIGURE 3. (Colour online) Variation of the mixing efficiency η = Ep/Einj with the
Richardson number Ri = H1b/ec (a) for a background buoyancy profile with two
homogeneous layers, (b) for an initial linear background buoyancy profile. The three insets
show the equilibrium buoyancy field b for Ri= 0.07, 7, 70.

is a constant, and (4.2) reduces to Ep = (V/2H)
∫ +H
−H bsz dz. The mixing efficiency is

then given by

η=Ri�1 RiΞ [bs] with Ξ [bs] ≡ 1
21bH2

∫ +H

−H
bsz dz when Ri� 1. (4.4)

The numerical coefficient Ξ [bs] is bounded in [0 1] and characteristic of the shape
of the background buoyancy profile, hence of the distribution of available densities. It
is equal to 0 for a homogeneous fluid, 1/6 for a linear stratification and 1/4 for a
two-layer system. Whatever this background buoyancy profile, the mixing efficiency
scales linearly with the Richardson number is the limit of weak Richardson numbers.

By contrast, we see in figure 3 that the large Richardson number behaviour of
the mixing efficiency depends drastically on the background buoyancy profile bs: the
mixing efficiency decreases to zero with increasing Richardson numbers in the two-
level case of figure 3(a), while it increases to an asymptotic value close to 0.25 in
the linearly stratified case of figure 3(b). We show analytically in the next subsection
that an asymptotic value of η = 0.25 is indeed expected in a low energy limit, as a
consequence of energy equipartition, provided that the stratification of the background
profile is always strictly positive (∂zbs > 0 for −H 6 z 6 H).

4.3. Energy equipartition and mixing efficiency for high Richardson numbers
The potential energy Ep defined in (4.1) is a linear functional of b − bs, which
is a priori sign indefinite. However, the conservation of the global distribution
of buoyancy levels (prescribed by bs) provides a strong constraint on admissible
buoyancy levels b, and hence on admissible values for Ep. A direct consequence of
these conservation laws it that the potential energy is strictly positive unless b = bs.
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Denoting Zs(bs) the height of fluid particles carrying buoyancy level bs in the
background buoyancy profile, using an asymptotic expansion in terms of b− bs and
assuming dbs/dz = b′s > 0, one can use the conservation laws related to buoyancy
(Casimir functionals) to obtain an explicit quadratic form for the potential energy in
a weak energy limit (Shepherd 1993):

Ep = 1
2

∫
Vx

dx
(b− bs)

2

b′s
+O(Z′′s (b− bs)

3). (4.5)

The quadratic part is also the classical expression of the potential energy for internal
gravity waves, derived for instance in Gill (1982).

Decomposing the spatial integral of (4.5) into a sum of integrals over each
macrocell of the discrete model depicted in figure 1 and taking the limit of an
infinite number of macrocells, the potential energy can be expressed in terms of the
local variance of buoyancy fluctuations:

Ep = V
4H

∫ +H

−H
dz

b2 − b
2

b′s
+O(Z′′s (b− bs)3). (4.6)

The variance of buoyancy fluctuations b2 − b
2

is related to the local kinetic energy
ec and the local buoyancy gradient db/dz though (2.21). Inserting this equation into
(4.6), using db/dz= b′s (which is valid for sufficiently large Richardson numbers) and
ec = Ec/V:

Ep = Ec

3
, (4.7)

which shows equipartition of the energy between the available potential energy and
the three degrees of freedom of the kinetic energy. A direct consequence of energy
equipartition is thus

η= 1
4 . (4.8)

This result is a direct consequence of the quadratic form of the energy obtained in
(4.6), which relies on the assumptions (i) that b′s is strictly positive and bounded, (ii)
that Z′′s is bounded, (iii) that b remains sufficiently close to bs.

Importantly, the hypotheses (i) and (ii) are not satisfied when the background
buoyancy profile contains homogeneous layers of fluids, as for instance in the case
depicted in figure 3(a). In order to evaluate when the assumption (iii) is valid, one
can estimate the typical value of b− bs at a given point as the root mean square of
local buoyancy fluctuations (b2 − b

2
)1/2. Using (2.21), ∂zb = ∂zbs and Ri ∼ H2b′s/ec

yields then (b− bs)∼ Ri−1/2.
We conclude that η = 0.25 is expected in the limit of large Richardson number,

when the background buoyancy profile is strictly increasing with height.

4.4. Comparison with previous studies of the efficiency of mixing
Despite the large number of numerical and experimental studies devoted to the
understanding of mixing efficiency, there are only few theoretical results yielding
predictions for the variations of mixing efficiency with the Richardson number. In the
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context of shear-stratified turbulence, dimensional analysis was used by Townsend
(1958) to model the variation of mixing efficiency with the gradient Richardson
number and upper bounds for the mixing efficiency have been derived rigorously by
Caulfield & Kerswell (2001).

A mixing efficiency η = 0.25 was obtained by a phenomenological model due
to McEwan (1983b), based on purely kinematic arguments. Those predictions were
found to be consistent with experimental observations of mixing efficiency following
an internal wave-breaking event (McEwan 1983a). The argument is the following:
take a continuously stratified fluid at rest, and exchange two particle fluids a and b of
volume δV with buoyancy difference 1b= bb− ba and height difference 1z= zb− za,
with δV/V �1z/H. Then consider the small displacement limit 1z→ 0, which, as
explained in previous sections, corresponds to a weak energy limit, or equivalently to
a large Richardson number limit, for which 1b = 1zdb/dz. Given that the injected
energy is under the form of available potential energy only, the initial kinetic energy
is zero, with Einj = b′s(1z)2δV . McEwan (1983b) then argued that the two displaced
fluid particles will be stirred and mix together until homogenisation of their buoyancy,
and that the two fluid particles carrying buoyancy (ba+ bb)/2 will ‘sediment’ to their
rest position z= (za + zb)/2. The available potential energy of the final state is then
Ep = b′s(1z/2)2δV , which corresponds to mixing efficiency η= 0.25.

Strikingly, several numerical studies have also reported convergence of mixing
efficiency towards η=0.25 at large Richardson numbers; see e.g. Maffioli, Brethouwer
& Lindborg (2016), Venayagamoorthy & Koseff (2016) and references therein.
(Maffioli et al. (2016) report a mixing coefficient Γ = η/(1 − η) = 0.33 in the
limit of small Froude numbers, which corresponds to η = 0.25 in the limit of large
Richardson numbers.) It is remarkable that the statistical mechanics theory in the
large Richardson number limit also yields η= 0.25, provided that the initial buoyancy
is strictly monotonic. We stress that the only assumption underlying the equilibrium
theory is that the system evenly explores the phase space: there is neither dynamics
nor kinematics involved in the derivation of this result. By contrast, the approach of
McEwan (1983b) relies on the choice of a peculiar kinematic model.

McEwan (1983b) also discussed the case of two homogeneous layers separated by
a linear pycnocline of thickness δ. He found that mixing efficiency vanishes when
considering first the limit δ→ 0 and second the limit of large Richardson numbers
Ri→ +∞. This is again fully consistent with the statistical mechanics predictions
for the mixing efficiency in the two-level case depicted in figure 3(a). Indeed, it
corresponds to the case of a background buoyancy profile with an infinity sharp
interface. The mixing efficiency vanishes in the limit of infinite Richardson numbers
because kinetic energy is spread equally over the whole domain at equilibrium, while
buoyancy mixing is confined to a thin layer surrounding the buoyancy interface, with
a thickness that decrease with the Richardson number, as explained in § 3.1.

We stress that the statistical theory makes possible predictions for global, cumulative
mixing efficiency in decaying turbulence whatever the Richardson number, and
whatever the background buoyancy profile. In particular, it predicts a bell shape for
η(Ri) in the two-layer case, with a maximum η = 0.15, and a monotonic increase
of η(Ri) in the linear case from η = 0 to η = 0.25, as shown in figure 3. The bell
shape for η(Ri) has been reported in decaying experiments performed by dropping
a grid in a two-layer stratified fluid (Linden 1980), but how to estimate the amount
of energy injected into the system in experiments continue to be debated, see e.g.
Huq & Britter (1995). The monotonic increase of cumulative mixing efficiency in the
case of a linear background buoyancy profile seems a robust result in laboratory and
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numerical experiments, see e.g. Stretch et al. (2010). However, the equilibrium theory
does not account for layering which is often observed in the strongly stratified regime
Ri� 1 (Rehmann & Koseff 2004). In any case, the statistical mechanics prediction
that mixing efficiency depends strongly on the global shape of the background
buoyancy profile, and not only on the local buoyancy gradient is consistent with
observations by Holford & Linden (1999).

There is however one result that does not depend on the shape of the buoyancy
profile: according to the equilibrium theory, the mixing efficiency should increase
linearly with the Richardson numbers in the limit of weak Richardson numbers.
This scaling law can be simply understood as a consequence of the fact that
buoyancy behaves as a passive tracer in this limit (Holford & Linden 1999). This
linear scaling has been also reported by Maffioli et al. (2016) in forced-dissipative
numerical experiments, who also provide complementary arguments based on cascade
phenomenology.

The observations mentioned in the above paragraphs provide support for the
statistical mechanics predictions. Other observations however point to limitations
of the theory. For instance, the predicted value of mixing efficiency in decaying
turbulence depends on the total energy injected into the system, but not on how
the energy is injected. Yet different values of mixing efficiency have been reported
in laboratory and numerical experiments performed with different energy injection
mechanism. A value η ≈ 0.2 was reported in decaying shear-stratified fluids with a
Richardson number of order one (Peltier & Caulfield 2003). This value is somewhat
larger than the cumulative mixing efficiency η = 0.11 observed in lock-exchange
experiments (Prastowo et al. 2008; Ilıcak 2014), and smaller than the cumulative
mixing efficiency η≈ 0.5 reported in the framework of Rayleigh–Taylor experiments
(Dalziel et al. 2008; Davis Wykes & Dalziel 2014). Importantly, these different values
for mixing efficiency do not depend only on the Richardson, Reynolds and Péclet
numbers. This suggests that the mechanism of injection plays an important role.

A heuristic way to discuss more precisely the role of the injection mechanism in
relation with the ergodicity hypothesis is to consider the parameter Lt/H, i.e. the
ratio of the energy injection length scale to the domain scale. In the context of
two-dimensional turbulence, this parameter has been proven useful to discuss the
relevance of the ergodic hypothesis underlying statistical mechanics theory (Pomeau
1994; Tabeling 2002; Venaille, Dauxois & Ruffo 2015). Denoting Ttran the typical
time scale to move a fluid particle from the top to the bottom of the tank through
turbulent transport, and calling Tdiss = Lt/U the typical time scale for the dissipation
rates for local buoyancy fluctuations through direct turbulent cascade, the system can
explores the phase space only if Ttrans < Tdiss. Modelling turbulent transport as an
effective eddy viscosity or eddy diffusivity ULt yields Ttrans =H2/(ULt) and then the
necessary condition H < Lt for ergodicity. Given that Lt cannot be larger than the
domain height, we see that the condition for sufficient mixing in phase space will
only be marginally satisfied when H = Lt, and will not be satisfied when Lt�H.

Finally, the equilibrium theory applies in principle to flow systems in the limit of
infinitely large Reynolds and Péclet numbers. Even if it is natural to expect that the
dissipation rate of buoyancy and kinetic energy become independent from the value
of molecular viscosity and diffusivity when they are sufficiently weak, numerical and
laboratory experiments are often performed in intermediate regimes for which those
parameters may influence the mixing efficiency, see e.g. Shih et al. (2005), Bouffard
& Boegman (2013), Lozovatsky & Fernando (2013), Salehipour & Peltier (2015).

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/jfm.2016.721
Downloaded from http:/www.cambridge.org/core. Ecole Centrale de Lyon, on 04 Jan 2017 at 11:33:27, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/jfm.2016.721
http:/www.cambridge.org/core


574 A. Venaille, L. Gostiaux and J. Sommeria

5. Conclusion

We have addressed the problem of mixing efficiency from the point of view of
equilibrium statistical mechanics. The theory predicts that the unforced, inviscid,
adiabatic dynamics is attracted towards a state characterised by small-scale velocity
fluctuations carrying kinetic energy, and by a smooth, monotonic buoyancy profile
upon which are small-scale buoyancy fluctuations. Although the whole dynamics is
adiabatic, the buoyancy field is irreversibly mixed at a coarse-grained level, no matter
how small the coarse-grained scale. In addition, the coarse-grained fields predicted by
the theory are stationary and characterised by a stable buoyancy profile. The theory
also predicts velocity fluctuations to be Gaussian, isotropic, homogeneous in space,
and that the buoyancy fluctuations are homogeneous on horizontal planes.

The input of the theory is the total energy injected initially into the system, and
the global distribution of buoyancy levels, or equivalently the background buoyancy
profile. The output of the theory is the probability to measure a given buoyancy
level at each height. We provide explicit computations of the equilibria in limiting
cases, and implement an algorithm based on a maximum entropy production which
determines the equilibrium state for any background buoyancy profile. This allows
us to compute a cumulative mixing efficiency defined as the ratio of the potential
energy gained by the system to the total energy injected into the system. Importantly,
the potential energy effectively gained by the system is the potential energy of the
coarse-grained buoyancy profile at equilibrium minus the potential energy of the
background buoyancy profile. The background potential energy remains constant
for the adiabatic dynamics, but the irreversible convergence of the system towards
the equilibrium state implies an irreversible increase of potential energy for the
system. Several results on the cumulative mixing efficiency are obtained within this
framework.

(1) The cumulative mixing efficiency increases in proportion to the Richardson
number in the limit of small Richardson number, whatever the background
buoyancy profile.

(2) The cumulative mixing efficiency tends to 0.25 in the limit of infinite Richardson
numbers, provided that the background buoyancy profile is strictly decreasing
with height (no homogeneous layer).

(3) The variations of the cumulative mixing efficiency with the Richardson number
depends strongly on the background buoyancy profile, and can be non-monotonic.
In the particular case of a fluid with two homogeneous layers of different
buoyancy, the theory predicts a bell shape for the cumulative mixing efficiency
as a function of the global Richardson number.

The application of equilibrium statistical mechanics to mixing in stratified fluids
however relies on two key hypotheses.

(i) The theory applies to inviscid, adiabatic Boussinesq fluids. It is expected to
describe mixing only in the limit of high Reynolds and Péclet numbers.

(ii) Equilibrium statistical mechanics relies on the counting of the available
microscopic states, and its predictive power depends on the capability of the
system to actually explore those available states. Such an ergodic behaviour is
favoured by stirring at the system scale H. By contrast turbulence forced at small
scale Lt with Lt/H < 1 is expected to produce local mixing before large-scale
stirring, leading to discrepancies of the statistical mechanics predictions.
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Note finally, the theory does not predict how the system converges towards
equilibrium. It does neither predict a turbulent diffusivity nor a turbulent viscosity
during the relaxation process, but only the final outcome of turbulent stirring. And it
does not account for energy fluxes in forced-dissipative configurations.

Equilibrium statistical mechanics therefore describes an ideal state of inviscid
stirring which is not fully reached in most cases. Turbulent stirring could be however
modelled locally as a trend to approach this equilibrium. This can be done by giving
a dynamical meaning to the relaxation equations used in this paper as an algorithm
to compute the equilibrium state. Indeed, those equations contain a classical term
modelling turbulent transport as an effective diffusion, with an additional drift term
describing restratification. We believe that this approach will be fruitful to model
relaminarisation after a mixing event, see e.g. Venaille & Sommeria (2010). This
would provide a complementary point of view to other statistical or stochastic
approaches that have long been used in the context of combustion (Pope 1985), and
adapted to the case of turbulent mixing in stratified fluids (Kerstein 1999). We hope
the present paper will motivate further studies in those directions.
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Appendix A. Liouville theorem
We show in this appendix that the quadruplet of fields (u, b) satisfy a Liouville

theorem, i.e. that trajectories of the system are non-divergent in a phase space
described by this quadruplet of fields. The fact that Fourier components of the
velocity field in each direction satisfy a detailed Liouville theorem is a classical
result for three-dimensional Euler dynamics (Lee 1952). Generalisation of this results
to the inviscid, adiabatic Boussinesq system is straightforward, but is reproduced here
for completeness. Let us for that purpose decompose both the velocity field and the
buoyancy field on Fourier modes:

u=
∑

k

ûk(t)eik·x, b=
∑

k

b̂k(t)eik·x. (A 1a,b)

Writing u= (u1, u2, u3) and projecting the equations of motion (2.1)–(2.3) on a mode
k yields

˙̂bk =−i
∑

p+q=k

(ûp · q)b̂q, (A 2)

˙̂uik =
∑

j,l

[(
δi3 − k3ki

k2

)
b̂k +

(
kikj

k2
− δij

) ∑
p+q=k

qlûlpûjq

]
. (A 3)

The pressure term has been eliminated from the momentum equation by using the
non-divergence condition. Deriving (A 2) by bk and (A 3) by uik allows us to show the
existence of a detailed Liouville theorem for the Fourier components of the buoyancy
field b, and for the Fourier components of the velocity field in each direction:

∀k, ∂ ḃk

∂ b̂k
+ ∂
˙̂b−k

∂ b̂−k
= 0, and ∀i, k

∂ ˙̂uik

∂ ûik
+ ∂
˙̂ui−k

∂ ûi−k
= 0. (A 4a,b)
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Using (u1, u2, u3) = (u, v, w), we conclude that the quadruplet of fields (u, v, w, b)
satisfies a Liouville theorem:∑

k

[
∂
˙̂bk

∂ b̂k
+ ∂
˙̂uk

∂ ûk
+ ∂
˙̂vk

∂v̂k
+ ∂
˙̂wk

∂ŵk

]
= 0. (A 5)

This Liouville theorem expresses the conservation of volume in the space of spectral
amplitudes. However the discrete approximation of the fields that we propose in this
paper relies on a uniform microscopic grid in physical space, and one needs to show
that the Liouville property is not broken by this discrete approximation. We note
for that purpose (i) that the Liouville property in (A 5) remains valid if the sum is
truncated at wavenumbers ki 6 N/2 for 1 6 i 6 3, whatever the value of N, and (ii)
that for a given truncation of the fields in Fourier space, the spectral amplitudes are
related to the values of the fields on a collocation grid uniform in physical space,
through a linear transformation that does not depend on the fields. The Jacobian of
the transformation is therefore an unimportant constant, as noted in Miller (1990). We
conclude that a Liouville theorem holds for the finite-dimensional approximation of
the buoyancy and velocity fields on a uniform grid.

Appendix B. From Boltzmann entropy to macrostate entropy
The aim of this appendix is to count the number of microscopic configurations

u(x), b(x) associated with a given macroscopic state ρ(x, σ , v). In order to simplify
the presentation, we show first how to count the number of microscopic configurations
b(x) associated with a given macroscopic state ρ(x, σ ). The first step is to introduce a
discrete approximation of the fields. The second step is a classical counting arguments
within each macrocell of the discrete model. The third step is to consider the limit
of an infinite number of grid point within each macrocell, which corresponds to the
continuous limit for the microscopic configurations. The last step is to consider the
limit of an infinite number of macrocells, which corresponds to the continuous limit
for the macroscopic states, or equivalently to the limit of a vanishing coarse-graining
length scale.

We assume that the domain Vx is divided into a uniform grid containing N
cubic macrocells indexed by 1 6 I 6 N, and that each macrocell is divided into
another uniform grid containing M sites, where each site contains one and only
one fluid particle indexed by 1 6 i 6 M, see figure 1. We also assume that the
buoyancy bI,i at site (I, i) can only take on a discrete number of values (say K),
with bI,i ∈ {σ1, ..., σK}, and that each of the resulting microstates is equiprobable. We
note that with this procedure, we count the fields that will not be differentiable when
taking the continuous limit, and we will see that the equilibrium state is actually
characterised by such states containing fluctuations of buoyancy at scale smaller than
a coarse-grained scale, no matter how small the coarse-grained scale is. For a given
discretised buoyancy field, we call MI,k the number of fluid particles carrying the
buoyancy level σk within the macrocell I, and MI,k/M is therefore the frequency of
occurrence of the level σk at site I for one realisation of the discretised field. The
system is described at a macroscopic level by the probability pI,k of measuring the
buoyancy level σk at site I.

Our aim is to count number of microscopic configurations associated with a
prescribed field pI,k. We use for that purpose the equivalence between probability and
frequency in the large M limit:

pI,k = lim
M→+∞

MI,k

M
. (B 1)
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In the large M limit, the number of microscopic discretised buoyancy fields
{bI,i}16I6N,16i6M associated with the macroscopic field {pI,k}16I6N,16k6K is

Ω =
N∏

I=1

(
M!∏K

k=1(MpI,k)!

)
. (B 2)

The Boltzmann entropy is defined as

SB = kB logΩ, (B 3)

where kB is a constant. In the large M limit, the Stirling formula (log M! =M log M)
leads at lowest order to

SB =−kBM
N∑

I=1

K∑
k=1

pI,k log pI,k, (B 4)

where we have kept only the dominant term, and removed an unimportant constant
depending on the grid size M.

It is important to note that for a given macrostate {pI,k}16I6N,16k6K , the number
of possible microscopic configurations Ω diverges exponentially with M, which a
coefficient given by −∑N

I=1

∑K
k=1 pI,k log pI,k. This means that among a set of different

macrostates, there will be an overwhelming number of microstates associated with
the one that maximises the coefficient −∑N

I=1

∑K
k=1 pI,k log pI,k. In other words, a

single microscopic configuration picked up at random has a very large probability
of being close to the macroscopic equilibrium state. A practical consequence of this
concentration property is that no particular average procedure is required to observe
the actual macroscopic equilibrium state.

In the limit N → +∞, the sum over I in (B 4), can be replaced by an integral
over the spatial coordinate x if the discretised probability field {pI,k}16I6N,16k6K is also
replaced by its continuous counterpart {pK(x)}16k6K:

SB =−kB
MN
V

∫
Vx

dx
K∑

k=1

pk(x) log pk(x). (B 5)

Note that the quantity pk(x) is normalised at each point x, with
∑K

k=1 pk(x) = 1. It
describes the local fluctuations of the (continuous) microscopic field b in the vicinity
of point x, and it is called a Young measure in mathematics.

A generalisation to the case of a continuum of buoyancy levels σ ∈Vσ = [σminσmax]
with probability density function ρ(σ , x) is less straightforward and requires the use
of Sanov’s theorem, see e.g. Touchette (2009). However, the result is easily inferred
from (B 5) by decomposing the interval [σminσmax] into K levels σk equally spaced
with interval 1σ , and by considering ρ(x, σk)= pk(x)/1σ . Taking the limit K→+∞
yields

SB =−kB
MN
V

∫
Vx

dx
∫
Vσ

dσρ(x, σ ) log ρ(x, σ ), (B 6)

up to an unimportant term depending on K. The quantity ρ(x, σ ) is now the
probability density function of measuring the buoyancy level b = σ at height z,
with the normalisation constraint

∫
Vσ dσρ(x, σ )= 1.
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We are now ready to generalise this result to the case where a fluid particle at point
x is carrying not only a buoyancy level b(x) = σ with σ ∈ Vσ , but also a velocity
(vector) level u(x)= v with v ∈ Vv = [−vmax, vmax]3. The same steps leading to (B 6)
can be applied to that case, which yields

SB =−kBMN
V

∫
Vx

dx
∫
Vσ

dσ
∫
Vv

dvρ(x, σ , v) log ρ(x, σ , v), (B 7)

where ρ(x, σ , v) is the probability density function for the buoyancy and velocity
at point x. Note that we have introduced a cutoff denoted vmax for the maximum
possible velocity. Anticipating that velocity fluctuations are bounded due to the energy
constraint, we expect that the results will not depend on vmax if it is chosen much
larger than the root mean square velocity of the equilibrium state, and we will
consider in the remaining of this paper vmax =+∞.

Finally, choosing kB = V/(NM) in (B 7), we recover SB = S[ρ], where S[ρ] is the
macrostate entropy defined in (2.13).

Appendix C. Relaxation equations from a maximum entropy production principle
The aim of this appendix is to provide an algorithm that makes possible numerical

computations of the equilibrium states for arbitrary energy E and global distribution of
buoyancy G(σ ). We consider for that purpose the ansatz (3.6) for the local distribution
of velocity and buoyancy levels, and we propose in the following a dynamical system
describing the temporal evolution of the quantities ρb(x, σ , t), ec(t) in such a way
that the total energy and the global distribution of buoyancy levels are conserved,
just as in the original Boussinesq system, and in such a way that the entropy
production is maximum at each time. This maximum entropy production principle
ensures convergence towards an entropy maximum for a given set of constraints E,
G(σ ). Since the effective temperature (i.e. the Lagrange parameter associated with the
energy) is positive, the entropy maximum is unique for a given set of constraints, and
the dynamical system will therefore relax towards the equilibrium state. We stress
that considering the temporal evolution of this dynamical system is a trick to find
the equilibrium state. The actual flow dynamics may follow a different path towards
equilibrium than the one maximizing the entropy production.

Since the dynamical system is fully described by ρb(x, σ , t) and ec(t), it will be
useful in the following to express the conservation of the global buoyancy distribution
and of the total energy in terms of those parameters. Inserting (3.6) in (2.12) and
(2.11) yields

G[ρb] = V
2H

∫ H

−H
dzρb, (C 1)

E[ρb](ec)= Vec + V
2H

∫ H

−H
dz
∫
Vσ

dσρbσ z. (C 2)

If the initial condition ρb(z, σ , 0) and the initial kinetic energy ec(0) are known, then
the global distribution of buoyancy levels and total energy can be computed using
(C 1) and (C 2), respectively.

Assuming that there is no source nor sink of density, recalling that the flow is non-
divergent, and anticipating that there is no mean flow, the temporal evolution of the
pdf ρb satisfies the general conservation law

∂tρb + ∂zJb = 0, (C 3)
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where we have introduced the turbulent flux of probability Jb(z, σ , t) directed along
z, with Jb = 0 at the upper and the lower boundary z=±H.

The temporal evolution of the system requires a model for the flux Jb and the
kinetic energy production ėc = dec/dt. The maximum entropy production principle
amounts to finding the flux Jb and the kinetic energy production ėc that maximise
the entropy production while satisfying the constraints of the problem.

Let us first compute the entropy and energy production. Injecting the ansatz (3.6)
in (2.13), the macrostate entropy can be expressed as

S =− V
2H

∫ +H

−H
dz
∫
Vσ

dσρb log ρb − 3
2

V log
3

2ec
. (C 4)

Taking the time derivative of (C 4) and using (C 3), the entropy production can be
expressed as

Ṡ = V
2H

∫ +H

−H
dz
∫
Vσ

dσJb∂z(log ρb)− 3
2

V
ėc

ec
. (C 5)

The constraints of the problem are given by

(i) the conservation of the local normalisation (2.7), implying

∀z ∈ [−HH],
∫
Vσ

dσJb = 0, (C 6)

which ensures the local normalization
∫
Vσ dσρb = 1,

(ii) the energy conservation, which can be expressed as Ė = 0. Taking the temporal
derivative of (C 2) yields

Ė = Vėc + V
2H

∫ +H

−H
dz
∫
Vσ

dσσJb. (C 7)

(iii) Finally, the fluxes of probability must be finite to be dynamically relevant.
Indeed, an infinite flux would correspond to an instantaneous rearrangement of
the buoyancy field. We impose therefore a bound for the norm of the probability
flux Jb, expressed as:

∀z ∈ [−HH],
∫
Vσ

dσ
J2

b

2ρb
6 C(z). (C 8)

The quantity Jb/ρb can be interpreted as a diffusion velocity for the probability
density field, and the constraint in (C 8) ensures that this velocity remains finite
everywhere and for each buoyancy level during the relaxation process.

The variational problem of the maximum entropy production principle is treated by
introducing Lagrange multipliers ζ (z), βt and −/D(z) associated with the constraints
in (C 6), (C 7) and (C 8), respectively. Note that following the Karush–Kuhn–Tucker
conditions, an inequality such as (C 8) can be treated as an equality constraint when
computing the first-order variations in an optimisation problem (Sundaram 1996). The
condition

δṠ − βtδĖ +
∫ +H

−H
dz
∫
Vσ

dσζ (z)δJb −
∫ +H

−H
dz
∫
Vσ

dσ
1
D

Jb

ρb
δJb = 0, (C 9)
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must be satisfied for each δėc and δJb. Using

δṠ = V
2H

∫ +H

−H
dz
∫
Vσ

dσ∂z(log ρb)δJb − 3V
2ec
δėc,

δĖ = Vδėc + V
2H

∫ +H

−H
dz
∫
Vσ

dσσδJb,

 (C 10)

equation (C 9) yields

βt = 3/(2ec), Jb =−D(∂zρb − βt(σ − b)ρb), (C 11)

where ζ (z) has been determined by using the constraint in (C 6). In addition, the
coefficient D must be positive for the entropy production to be positive. As far as
the equilibrium state is concerned, the value of D in not important. Indeed, the flux
Jb vanishes when equilibrium is reached, which ensures that the equilibrium state does
not depend on D.
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