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Abstract: Impact approximation is widely used for calculating Stark broadening in a plasma.
We review its main features and different types of models that make use of it. We discuss recent
developments, in particular a quantum approach used for both the emitter and the perturbers.
Numerical simulations are a useful tool for gaining insight into the mechanisms at play in
impact-broadening conditions. Our simple model allows the integration of the Schrödinger equation
for an emitter submitted to a fluctuating electric field. We show how we can approach the impact
results, and how we can investigate conditions beyond the impact approximation. The simple
concepts developed in impact and simulation approaches enable the analysis of complex problems
such as the effect of plasma rogue waves on hydrogen spectra.

Keywords: stark broadening; impact approximation; numerical simulation

1. Introduction

Stark profiles are used in astrophysics and other kinds of plasmas for obtaining information
on the charged environment of the emitting particles. Using light for conveying information on
the plasma often requires a modeling of both the plasma and the radiator. We will review different
situations requiring different modeling approaches. The impact-broadening approach considers the
emitter-plasma interaction as a sequence of brief separate collisions decorrelating the radiative dipole.
Impact models are very effective for many types of plasmas, and can be applied to different kinds
of emitters, hydrogen being an exception for most plasma conditions. Many different models using
impact approximation have been developed, and we will review the most commonly-used. One can
distinguish firstly between models keeping the quantum character of the perturbers, and those using
a classical trajectory for the charged particles. Full quantum approaches require specific calculation
techniques, which, once established, have proved to be of general interest. Another way to look at the
models is the degree of accuracy required. It is often not necessary to have an accuracy better than
about 20%, since the experimental errors are often of the same order or worse. This has enabled the
development of a semi-empirical impact model, useful especially in cases where one does not have a
sufficient set of atomic data for adequate application of more sophisticated methods with which one
can readily obtain a large number of line shapes [1], making it an effective diagnostic tool.

A typical starting point for a line shape formalism in a plasma is a full quantum formalism for the
emitter and the perturbers. It can be written as a linear response for the emitter dipole operator, and
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provides the response of an emitter at a time t, knowing its state at an initial time [2]. This response in
time allows the physical measurement of the spectrum to which it is linked by a Fourier transform.
Quantum formalism introduces specific computational difficulties, but also brings powerful tools
such as the angular averages. We will briefly discuss such approaches, and how they compare
to semi-classical calculations. Classical path impact approximations have been widely developed,
and exist in several levels of accuracy, depending on whether one is interested in a rapid analysis
of a large number of spectra, or one asks for an accurate analysis of a few lines. We will identify
situations for which other models are helpful, e.g., for the case were the emitter-perturber interactions
cannot be represented by a sequence of collisions. Such models use the statistical properties of the
electric field created by the perturbing particles. In astrophysics, model microfield methods provide an
efficient alternative for cases where neither the impact nor the static approximation are valid. For such
situations, several models have been developed and interfaced with atomic data. Their accuracy can
be tested by simulation techniques avoiding some approximations, but at the expenses of computer
time. Such computer simulations can be used to analyze the various physical processes involved in
plasmas under arbitrary conditions. We will illustrate their use in the case of plasma rogue waves.

2. Impact Broadening

A detailed and accurate modeling of Stark broadening started almost sixty years ago with the
development of a general impact theory having the ability of retaining the quantum character of the
emitters and perturbers, and allowing both elastic and inelastic collisions between such particles [2].
The line shape is obtained by a Fourier transform of the dipole autocorrelation function (DAF),
a quantity expressed as a trace over all possible states of the quantum emitter plus perturbers system:

C(t) = Tr[
→
d .T+(t)

→
d T(t)ρ], (1)

where
→
d is the dipole moment of the emitter, T(t) = exp(−iHt/}) the evolution operator and ρ

the density matrix, these last two quantities being dependent on the Hamiltonian H for the whole
system. Such an expression could be calculated by density functional theory or quantum Monte
Carlo methods, taking advantage of the development of computational techniques and computer
hardware [3]. Such studies have proved to be efficient for describing the properties of dense plasmas
found in the interior of gaseous planets, the atmospheres of white dwarfs or the laboratory plasmas
created by energetic lasers. They might be useful for understanding some features in the spectrum
of such plasmas, but have not been developed yet in the context of line broadening. Probably the
main reason for this is that there is no clear evidence that the dynamical effects of multiple quantum
perturbers can affect a line shape. Another reason is that for most of the plasma conditions and line
shapes studied, we can use the impact approximation, which assumes that the various perturbers
interact separately with the emitter (binary collision assumption), and that the average collision is weak.
A validity condition for the impact approximation is that the collision time is small compared with
the decorrelation time of C(t). If this condition and the binary collision assumptions are verified, it is
possible to use a constant collision operator to account for all the effects of the perturbers on the emitter.
Different approaches using impact approximation have been proposed, but we can distinguish firstly
between quantum impact models that retain the quantum behavior of both emitters and perturbers,
and the semiclassical impact models treating only the emitter as a quantum particle. A pictorial
representation of the full quantum emitter-perturber interaction is provided by the use of wave packets
for the perturbers. Each wave packet is scattered in a region within the reach of the interaction potential
with the emitter. Quantum collision formalism can be applied, enabling the calculation of cross sections
with the aid of scattering amplitudes. Although quantum impact calculations have been performed
since the seventies [4,5], such calculations are not very numerous for line broadening due to their
computational difficulty. In particular, they involve a calculation of the scattering matrix or S matrix [2].
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Many calculations have been applied to isolated lines of various ions, a case for which the width w
takes the compact form of an average over the perturbers after the use of the optical theorem [2]:

w =
1
2

N{v[σi + σ f +
∫

dΩ| fi(θ,ϕ)− f f (θ,ϕ)|2]}
Av

, (2)

where N is the perturbers’ density, v their velocity, σi and σ f are inelastic cross sections, fi and f f the
forward-scattering amplitudes in a direction given by θ,ϕ for the initial i and final f states, and {. . .}Av
stands for a Boltzmann thermal average.

With the advent of accurate atomic structure and S matrix codes, such impact quantum
calculations have been given a new life [6,7], and are most often in good agreement with other
calculations. A very efficient calculation has been proposed starting from Equation (2), using a
Bethe-Born approximation [8] for evaluating inelastic cross sections. This semi-empirical model
uses an effective Gaunt factor, a quantity which measures the probability of an incident electron
changing its kinetic energy [9]. This function has been modified and improved to develop the modified
semi-empirical model which is frequently used for calculations of isolated ion lines [1].

For most plasma conditions and line shapes studied, the wave packets associated with the
perturbers are small and do not spread much in time. This enables the use of classical perturbers
following classical paths. Different approaches use this approximation together with the impact
approximation for the electron perturbers. Early calculations of hydrogen lines with comparisons to
experimental profiles proved that a profile using an impact electron broadening [10], together with a
static approximation for the ion perturbers, is in overall agreement for the Balmer Hβ line in an arc
plasma with a density N = 2.2× 1022 m−3 and a temperature T = 10,400 K. The remaining discrepancies
concerned the central part of the line and the far line wings, two regions that required an improvement
of the model.

For isolated lines of neutral atoms and ions, the semiclassical perturbation (SCP) method [11]
has been successfully applied to numerous lines, and is implemented in the STARK-B database [12].
The SCP method was inspired by developments in the quantum theory of collisions between atoms
and electrons or ions, and, e.g., performs the angular averages with Clebsch-Gordan coefficients. It has
the ability to generate several hundred lines rapidly for a set of densities and temperatures in a single
run. The accuracy of the SCP method is assessed by a comparison to experimental spectra, and is about
20 to 30% for the widths of simple spectra, but could be worse for some complex spectra. The method
is continuously improving, and has been interfaced with atomic structure codes [11].

An interesting point is raised by the comparison of impact quantum and semiclassical calculations,
and a comparison of those with experiments. Quantum calculations have often been found to predict
narrower lines than those of semiclassical models [13]. Semiclassical calculations may be brought
closer to quantum widths, e.g., by a refined calculation of the minimum impact parameter allowing the
use of a classical path [14]. Surprisingly, quantum widths of Li-like and boron-like ions often show a
worse agreement with experiments than semiclassical calculation, thus calling for further calculations
and analysis [7,15]. As an example of such, more recent quantum calculations [15] are in fairly good
agreement with experiments [15].

3. Simulations of Impact Theory and Ion Dynamics

The need for a model that does not assume the impact approximation arose out of the study of
hydrogen lines, with the surge of accurate profile measurements in near equilibrium plasmas [16].
It appeared that a standard model using a static ion approximation, and an impact electron collision
operator, showed pronounced differences with the measures near the line centers, and also in the far
wings. The line wings were well reproduced by the so-called unified theory, which retains the static
interaction between an electron and the atom as a strong collision occurs [17,18]. The difference in
the central part of the line was linked to the use of the static ion approximation, since it depended on
the reduced mass of the emitter-ion perturber system. The observation of the Lyman-α (Lα) line [19]
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showed later that the experimental profile was a factor 2.5 broader than the theoretical line using
static ions in arc plasma conditions. This was a strong motivation for developing a technique able to
retain ion dynamics in a context where the electric field is created by numerous ions in motion. Since
perturbative approaches were unable to account for multiple strong collisions, a computer simulation
has been proposed for describing the motion of the ions. The effect on the emitter of the time dependent
ion electric field is obtained by a numerical integration of the Schrödinger equation. Early calculations
showed the effect of ion dynamics in the central part of the line, and were able to strongly reduce the
difference between experimental and simulation profiles [20–22].

Simple hydrogen plasma simulations may be used to illustrate the behavior of an electric field
component during a time interval of the order of the line shape time of interest. This time is usually
taken as the DAF decorrelation time, and can also be defined as the inverse of the line width. The electric
field experienced by an atom surrounded by moving charged particles can be calculated at the center
of a cubic box, using particles with straight line trajectories. The edge of the cube should be assumed
to be equal to a few times the Debye length λD =

√
ε0kBT/(Ne2), with T and N the hydrogen plasma

temperature and density, respectively, e the electron charge, kB the Boltzmann constant, and ε0 the
permittivity of free space. If we simulate only the ion perturbers, we assume that each particle creates
a Debye shielded electric field, in an attempt to retain ion-electron correlations. Random number
generators are used to obtain the uniform positions and Maxwell-Boltzmann distributed velocities of
the charged particles. If an ion leaves the cubic box, it is replaced by a new one created near the cube
boundaries. For the weak coupling conditions assumed, a large number of particles (several thousand
commonly) is retained in a cube with a size larger than the Debye length. Such a model provides a good
approximation for the time-dependent electric field in a weakly coupled ion plasma at equilibrium,
although it suffers from inaccuracies, especially if the size of the box is not large enough [23]. We show
in Figure 1 the time dependence of one component of the ionic electric field calculated at the center
of the box for an electron density Ne = 1019 m−3, and a temperature T = 40,000 K. The electric field
is expressed in units of E0 = 1/

(
4πε0r2

0
)
, where r0 is the average distance between particles defined

by r3
0 = 3/(4πNe). The time interval of 5 ns used in Figure 1a is the Lα time of interest for such

plasma conditions. The validity condition of the binary collision approximation requests that the
Weisskopf radius ρw = }n2/mevi, with n the principal quantum number of the Lα upper states (n = 2),
and vi =

√
2kBT/mp the thermal ion velocity (me and mp are resp. the electron and proton mass),

is much smaller than the average distance between particles. This ratio is for Lα and protons of the
order of 0.04, enabling the use of an impact approximation. The electric field in Figure 1a clearly
exhibits several large fields that are well separated in time during the 5 ns of the Lα time of interest.
During this time interval, only a few fields (3 in Figure 1a) have a magnitude larger than 50 E0,
but about 20 have a magnitude of 10 E0 or more. A piece of the same field history is shown in Figure 1b
during a time interval equal to the time of interest for the Balmer-β (Hβ) line. For this time interval of
0.3 ns, the electric field shows much fewer fluctuations, the atom is no longer submitted to a sequence
of sharp collisions, and we can no longer use the impact approximation. This is confirmed by a value of
0.16 for the ρw/r0 ratio, making the use of an impact approximation for this line problematic. Looking
now at Figure 1a,b, we can see a background of electric field fluctuations with a small magnitude of
about E0, and a typical time scale longer than the collision time r0/vi. Such fluctuations correspond to
the sum of electric fields of distant particles with a magnitude on the order of E0. For hydrogen lines
affected by the linear Stark effect, it is well known that this effect of weak collisions is dominant in
near impact regimes [10], and results from the long range of the Coulomb electric field.
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Figure 1. Electric field component in units of 0 in a plasma with a density Ne = 1019 m−3, and a 
temperature T = 40,000 K, during (a) a time interval of the order of the time of interest for the Lα line, 
and (b) a time interval of the order of the time of interest for the Hβ line. 

Using several thousand samples of such electric fields, it is possible to calculate the DAF for 
each line studied. This requires for each field history ( )  an integration of the Schrödinger 
equation of the emitter submitted to a dipolar interaction potential − . ( ). We obtain the emitter’s 
evolution operator by finite difference computational methods, using time steps adjusted to ensure 
the best compromise between computer time cost and accuracy [24]. The integration time interval is 
provided by the time of interest for the line calculated, and a first estimate for the time step is a 
hundredth of the collision time. In the following, we retain only the broadening of the upper states 
of the line, resulting in some loss of accuracy for the first Balmer lines, but in a much faster 
calculation. We show in Figure 2a the DAF of Lα for the same plasma conditions as in Figure 1. The 
ab-initio DAF (solid line) is obtained by a simulation of the ions retaining also the effect of electrons 
with an impact approximation. We observe that this simulation is close to an impact calculation for 
both ions and electrons (dashed line). For the same condition and the Hβ line, the decay of the 
ab-initio DAF is significantly smaller than for the impact calculation, indicating again a deviation 
from ion impact broadening for this line. 
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Figure 2. Dipole autocorrelation functions with an ab-initio simulation (solid line) and in the impact 
limit (dotted line) in a plasma with a density Ne = 1019 m−3, and a temperature T = 40,000 K, for (a) the 
Lα Lyman transition, and (b) the Hβ Balmer transition. 

Another way of taking account of ion dynamics is with the help of stochastic processes. A 
stepwise constant stochastic process is used to model the electric field felt by the atom [25]. The 

Figure 1. Electric field component in units of E0 in a plasma with a density Ne = 1019 m−3, and a
temperature T = 40,000 K, during (a) a time interval of the order of the time of interest for the Lα line,
and (b) a time interval of the order of the time of interest for the Hβ line.

Using several thousand samples of such electric fields, it is possible to calculate the DAF for each

line studied. This requires for each field history
→
E(t) an integration of the Schrödinger equation of

the emitter submitted to a dipolar interaction potential −
→
d .
→
E(t). We obtain the emitter’s evolution

operator by finite difference computational methods, using time steps adjusted to ensure the best
compromise between computer time cost and accuracy [24]. The integration time interval is provided
by the time of interest for the line calculated, and a first estimate for the time step is a hundredth
of the collision time. In the following, we retain only the broadening of the upper states of the line,
resulting in some loss of accuracy for the first Balmer lines, but in a much faster calculation. We show in
Figure 2a the DAF of Lα for the same plasma conditions as in Figure 1. The ab-initio DAF (solid line) is
obtained by a simulation of the ions retaining also the effect of electrons with an impact approximation.
We observe that this simulation is close to an impact calculation for both ions and electrons (dashed
line). For the same condition and the Hβ line, the decay of the ab-initio DAF is significantly smaller
than for the impact calculation, indicating again a deviation from ion impact broadening for this line.
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Another way of taking account of ion dynamics is with the help of stochastic processes. A stepwise
constant stochastic process is used to model the electric field felt by the atom [25]. The process requires
the knowledge of the microfield probability distribution function, and of a waiting time distribution
function controlling the jumps from one field to the next one. Such model microfield methods are
efficient for retaining ion dynamics effects, and are used for a diagnostic of hydrogen lines [26].
Stochastic processes are also used in the line shape code using the frequency fluctuation model for an
inclusion of ion dynamics [27]. During the last decades, several simulations and models have been
developed with the ability of retaining ion dynamics. The field is still active, with ion dynamics being
one of the issues discussed in the Spectral Line Shapes in Plasmas workshop, providing many new
analyses [28].

4. Effect of Plasma Waves

Plasmas sustain various types of waves, which behave differently in a linear and nonlinear regime.
A way to distinguish between the two regimes is to calculate the ratio W of the wave energy density to
the plasma energy density, given by:

W = ε0E2
L/4NekBT , (3)

where EL is the electric field magnitude of the wave. For values of W much smaller than 1, we expect a
linear behavior of the waves. In a linear regime, electronic Langmuir waves oscillate at a frequency
close to the plasma frequency ωp =

√
Nee2/meε0, and can be excited even by thermal fluctuations.

We assume that the numerous emitters on the line of sight are submitted to different Langmuir
waves, each with the same frequencyωp, but a different direction and phase chosen at random, and a
magnitude sampled using a half-normal probability density function (PDF). In the following, we have
used this half-normal PDF for the reduced electric field magnitude F = E/E0:

P(F) =
√

2
σ
√
π

exp
(
− F2

2σ2

)
(4)

In this expression, we use the standard deviation σ of a normal distribution, and thus obtain
the mean value EL of E by writing EL = σE0

√
2/π. Each Langmuir wave has a different electric

field history, and we obtain the DAF by an average over about a thousand such field histories. For a
plasma with a density Ne = 1019 m−3, and a temperature T = 105 K, we first calculated the Lα DAF
for Langmuir waves with a mean electric field magnitude corresponding to W = 0.01 (EL = 15E0).
The response of the DAF is a periodic oscillation with a period equal to 2π/ωp, but with an amplitude
much smaller than 1 for this average field magnitude of 15E0. After a product with an impact DAF for
retaining the effect of the background electron and ion plasma, there remains no visible effect of the
waves on the convolution DAF for the value W = 0.01. This ratio can take much larger values, however;
especially if an external energy source such as a beam of charged particles is present. As W increases,
nonlinear phenomena start showing up, enabling, for instance, wave-wave couplings. Although only
recently investigated in plasmas, the occurrence of rogue waves has been raised in various plasma
conditions [29–31]. Rogue waves have been studied in many dynamical systems, and are known to the
general public by the observation and study of rogue or freak waves that suddenly appear in the ocean
as large isolated waves. In oceanography, rogue waves are defined as waves whose height is more than
twice the mean of the largest third of the waves in a wave record. Rogue waves appear to be a unifying
concept for studying localized excitations that exceed the strength of their background structures. They
are studied in nonlinear optics [32], Bose-Einstein condensates [33], and many other fields outside of
physics. For our line shape problem in plasmas, we postulate that nonlinear processes create rogue
waves from a random background of smaller Langmuir waves. The physical mechanism at play is the
coupling of the Langmuir wave with ion sound and electromagnetic waves; density fluctuations of the
sound waves affect the high frequency waves throughωp. The first Zakharov equation [34] shows how
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density fluctuations affect Langmuir waves, and a second equation how a Langmuir wave packet can
produce a density depression via the ponderomotive force [35]. We will not discuss these equations
here, which are particularly useful for a study of wave collapse. Most present rogue wave studies
rely on the nonlinear Schrödinger equation (NLSE), which is obtained in the adiabatic limit (slowly
changing density perturbations) of the Zakharov equations [35]. A one-dimensional solution of the
NLSE is commonly used to approximate the response of nonlinear media. Stable envelope solitons are
possible solutions of the 1D NLSE. We will assume that there is a contribution of a stable envelope
soliton for each history of the microfield, similarly to what we did for the background Langmuir wave.
Using a ratio W = 0.1, the average peak magnitude of such solitons will be 3 times the amplitude
of background Langmuir waves, fitting them in the category of rogue waves. A possible shape for
the envelope is a Lorentzian, with a time dependence that bears some similarity with the celebrated
Peregrine soliton [36]. We observe in Figure 3 that the DAF of Lα obtained with a product of the impact
DAF and the Langmuir rogue wave DAF for W = 0.1 is affected by oscillations at the plasma frequency.
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Looking at the line shape obtained with a Fourier transform, we can see in Figure 4 that the peak
of the line including the wave effect is about 10% lower than the impact line peak, but this with almost
no effect on the line width. Not shown in Figure 4, we noticed that the wing of the line affected by
rogue waves had a slightly slower decay than the impact profile, indicating a transfer of intensity from
the center toward large line shifts. It is remarkable that a such rogue wave had a rather small effect on
the profile. This is probably due to the fact that we are in impact conditions for this line. In impact
regimes, decorrelation is very effective, leaving only a small broadening contribution to the type of
rogue waves that we considered. A larger broadening effect would be observed by considering wave
collapse, a phenomenon occurring as W takes larger values of the order of 1 or more for such plasma
conditions. The emitters then experience the effect of a sequence of solitons which can significantly
increase the broadening [37].
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5. Conclusions

Impact approximation mainly consists of saying that, on an average, it takes many collisions to
change the quantum state of an atom. When this approximation is valid, the effect of the numerous
fluctuating interactions of the emitter with the perturbers can be expressed with a constant collision
operator. We have briefly described several models using impact approximation. A wide variety
of impact models have been proposed, ranging from full quantum calculations to semiclassical
approaches. Impact calculations allow expression of the width and shift of a line in terms of quantum
scattering cross-sections. Such calculations have enabled many improvements in the application of
quantum theory for obtaining observable quantities such as a line shape. The comparison between
experimental and theoretical spectra is of great benefit for the validation of such models. It is thus
crucial to be able to rapidly obtain numerous spectra for the lines of many atoms and ions. This is
possible using models such as the semiclassical perturbation or the semi-empirical formalism. We have
also shown how a computer simulation can reproduce the results of the impact approximation for
hydrogen lines. Such simulations involve several thousand particles, however, and are certainly not
the most efficient technique for obtaining the impact profile. The main advantage of simulations
is that they can go beyond the impact approximation, for situations with many perturbers acting
simultaneously on the emitter. We have briefly recalled the problem of ion dynamics, and have
proposed a simple simulation for a calculation of the effect of Langmuir rogue waves of Lα in an
impact regime.
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