
HAL Id: hal-01643672
https://hal.science/hal-01643672v1

Submitted on 21 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Linked USDL Extension for Describing Business
Services and Users’ Requirements in a Cloud Context

Hind Benfenatki, Catarina Ferreira da Silva, Aïcha-Nabila Benharkat, Parisa
Ghodous, Zakaria Maamar

To cite this version:
Hind Benfenatki, Catarina Ferreira da Silva, Aïcha-Nabila Benharkat, Parisa Ghodous, Zakaria Maa-
mar. Linked USDL Extension for Describing Business Services and Users’ Requirements in a Cloud
Context. In International Journal of Systems and Service-Oriented Engineering, 2017, 7 (3), pp.15 -
31. �10.4018/IJSSOE.2017070102�. �hal-01643672�

https://hal.science/hal-01643672v1
https://hal.archives-ouvertes.fr

This is a postprint version. The final version is available at DOI: 10.4018/IJSSOE.2017070102
2017, International Journal of Systems and Service-Oriented Engineering

 1

Linked USDL Extension for Describing
Business Services and Users’

Requirements in a Cloud Context

Hind Benfenatki1, Catarina Ferreira Da Silva1, Aïcha-Nabila Benharkat3
Parisa Ghodous1, and Zakaria Maamar4

1Univ Lyon, Université Claude Bernard Lyon 1, LIRIS UMR 5205 CNRS, 69621 Villeurbanne Cedex, France
3LIRIS, CNRS, UMR 5205, INSA - Lyon, 69621 Lyon, France

4Zayed University, Dubai, UAE

ABSTRACT

Linked Unified Service Description Language (Linked USDL) provides a comprehensive way for
describing services from operational, technical, and business perspectives. However, this description
treats services as isolated components that offer functionalities only without emphasis on how they are
used. This paper discusses how to extend Linked USDL in a way that permits to describe the services
of a marketplace in support of automating the provisioning of service-oriented cloud-based business
applications along with satisfying users’ requirements. The marketplace consists of business services
that can be composed and specialized services that act on behalf of the infrastructure upon which these
applications are deployed. A set of experiments demonstrating the use of the extended Linked USDL
are also presented in the paper.

Keywords: Linked USDL, service description, service composition, marketplace.

1 INTRODUCTION
There is a persistent trend of developing business applications using a set of loosely-coupled services
that are selected with respect to their functionalities and then put together in response to specific users’
requirements. Web services usually exemplify these services although other types of services exist
such as data services (Lagares Lemos, Daniel, & Benatallah, 2015), user interface services~ (Lagares
Lemos, Daniel, & Benatallah, 2015), human services (Services), and business services~ (Lüftenegger,
2014). Service classification also exists based on their branches of activities, for instance transport and
telecommunications (International classification of goods and services for the purposes of the
registration of marks, 2001), tangibility (Bhasin, 2016), and deployability. In this paper, we target
business services that are software packages providing business functionalities and subject to
composition. For instance, Wiki engines and databases could be composed together in response to a
request of making the Wiki content stored persistently.

Service description and composition are widely discussed at the operational level with focus on
Input/Output (I/O) matching. However, I/O matching cannot be used to evaluate the composability of
business services. Some languages like Linked Unified Service Description Language (USDL)
(Cardoso & Pedrinaci, 2015) (Linked USDL, 2015) allow to describe (non-business) services at the
business (e.g., price specification), technical (e.g., message protocol), and operational (e.g., service
functionalities) levels. However, (i)~these languages do not offer any support to business services
composition which is quite different from Web services composition (they are not characterized by
their I/O), and (ii) they describe what the services do with little regard to how they are used, i.e.,
environment in which they are deployed, with whom they can be used, etc.

This is a postprint version. The final version is available at DOI: 10.4018/IJSSOE.2017070102
2017, International Journal of Systems and Service-Oriented Engineering

 2

To address the aforementioned two limitations, we build upon our MADONA project standing for
Method for AutomateD provisioning (composition and deployment of services) of clOud-based
service-oriented busiNess Applications (Benfenatki et al., 2016) to automate the provisioning of
business service-oriented applications on cloud environment. Because composability of business
services cannot be evaluated using matching of services’ input/outputs, we consider service
description languages that would allow to identify each service’s composition constraints and
possibilities (the services with which the described service can be composed). In this paper, we
analyse existing languages describing services and user requirements. We target Linked USDL for the
description of services and user’s requirements. The choice of Linked USDL is guided by the fact that
the latter allows a wide coverage of technical, business, and functional aspects when describing
services. Moreover, it allows the description of various services for instance cloud, Web, and business
services.
Existing user requirements description languages like Web Service Request Language (WSRL)
(Mitra, Zhou, Bouguettaya, & Liu, 2013) and Service Requirement Modelling Ontology (SRMO)
(Xiang, Liu, Qiao, & Yang, 2007) require that users are familiar with the underlying language’s
notation, which is quite impossible for non-tech savvy users. Furthermore, these languages describe
the requirements in the form of a control flow and/or a data flow. This requires a good knowledge of
the business process of the future application to develop, which is quite impossible too when targeting
such users. In this paper, we discuss how the necessary support is provided to users by extending
Linked USDL.
The rest of this paper is organized as follows. Section 2 describes existing service and user’s
requirements description languages. Sections 3 and 4 present respectively an overview of Linked
USDL and of its extension. Section 5 evaluates our work. Section 6 draws final conclusions and
perspectives.

2 RELATED WORK
This section presents 2 categories of languages for describing services and user requirements,
respectively.

2.1 Service description languages
Our literature review resulted into classifying service description languages into two categories: (1)
those that treat services as isolated components (Christensen, Curbera, Meredith, & Weerawarana,
2001), and (2) those that focus on relationships between services (Cardoso, 2013). Relationships could
be either established or potential. The former describes current or past service’s composition forming
for instance, a service offering. The latter describes with whom a service can or must be composed.
Table 1 classifies these works categories of languages using 5 criteria: C1: type of service, C2:
technical description, C3: semantic description, C4: description of Quality of Services~(QoS), and C5:
description of relationships of a service. These 5 criteria provide an exhaustive coverage of the issues
to address, namely limited support to business services composition and limited description of how
business services are used.

Out of Table 1, Linked USDL has a wide coverage of service types such as business, cloud, and Web.
Furthermore, Linked USDL allows to describe various aspects including business, technical, and
operational. Moreover, Linked USDL is based on Linked Data (Linked data, 2015) principles, so
adding new concepts can extend it. We have therefore used this language to describe services.
However, Linked USDL does not describe potential relationships of a service. Instead, it describes the
established relationships between services constituting a service offering.

This is a postprint version. The final version is available at DOI: 10.4018/IJSSOE.2017070102
2017, International Journal of Systems and Service-Oriented Engineering

 3

Table 1. Classification of service description languages according to the type of the modelled description

1 Criterion met.

Research work C1 C2 C3 C4 C5
Web Service Description
Language (WSDL)
(Christensen, Curbera,
Meredith, &
Weerawarana, 2001)

Web services +1

QoS for WSDL
(D’Ambrogio, 2006) Web services + +

(Becha & Amyot, 2014) Web services +
OWL-S (Martin et al.,
2004) Web services + +

SAWSDL (Semantic
annotations for WSDL and
XML schema, 2007)

Web services + +

Can be done by the
instantiation of an
ontology describing the
QoS

(Afify, Moawad, Badr, &
Tolba, 2014)

Software as a
Service (SaaS) + + +

(Taekgyeong & Sim,
2010) Cloud services + +

(Kan & Sim, 2011) Cloud services + +
(Tahamtan, Beheshti,
Anjomshoaa, & Tjoa,
2012)

Cloud services + +

Cloud# (Liu & Zic, 2011) Cloud services +
BDL (Taher, Nguyen,
Lelli, Heuvel, &
Papazoglou, 2012)

Cloud services + +

SaaS DL (Sun, Zhang,
Chen, Zhang, & Liang,
2007)

SaaS +

CSMIC (Cloud service
measurement index
consortium)

Cloud services +

WSMO (Web service
modeling ontology
(wsmo), 2008)

Web services + + + +

LinkedWS (Maamar et al.,
2011)

Web services +

Service network (Cardoso,
2013) Web services + + +

Blueprint (Nguyen, Lelli,
Papazoglou, & Heuvel,
2012)

Cloud services + + + +

CoCoon (Zhang et al.,
2012) IaaS Services + + + +

Linked USDL (Linked
USDL, 2015) (Cardoso &

Business
services, + + + +

This is a postprint version. The final version is available at DOI: 10.4018/IJSSOE.2017070102
2017, International Journal of Systems and Service-Oriented Engineering

 4

We depict in the following how the literature examines relationships of a service:
1. Association (Cardoso, 2013) and collaboration (Maamar et al., 2011) describe the established

relationships of services with respect to previous compositions. The knowledge of these
relationships is not exhaustive since it is built up as compositions occur. Moreover, these
relationship descriptions do not distinguish between the services that have to be composed
(composition constraints) and those that can be composed (composition possibilities). This
does not allow to know the minimum necessary composition allowing the proper functioning
of a given business service. In our work, we have therefore chosen to describe both
composition constraints and composition possibilities of each business service.

2. Complementary and competitor relationships (Cardoso, 2013). Complementarity implies that it
is possible to compose services. However, identifying a service’s complement relies on user’s
evaluation of service relationships. This does not allow to describe all the composition
possibilities of a service.

3. Service requirements defined by Ngyuyen et al., (Nguyen, Lelli, Papazoglou, & Heuvel, 2012)
include in a single concept environment, resource, and service composition constraints. This
does not allow to automate neither the composition nor the deployment of services. In fact, it is
not possible to automatically identify the requirement type that is represented (composition or
deployment constraint). We have therefore distinguished in the description of each service
between the concepts describing the composition constraints, environment constraints, and
resources constraints.

4. Service offerings (Cardoso & Pedrinaci, 2015) refer to combining services (composition
relationships). In the literature, there are works that describe established relationships in
service offerings (Cardoso & Pedrinaci, 2015), (Web service modeling ontology (wsmo),
2008), (Maamar et al., 2011), (Cardoso, 2013), (Zhang, Ranjan, Haller, Georgakopoulos,
Menzel, & Nepal, 2012) and those describing potential relationships (Nguyen, Lelli,
Papazoglou, & Heuvel, 2012), (Zhang et al., 2012). Established relationships do not describe
all service’s compositions. Potential relationships described in (Zhang et al., 2012) are specific
to Infrastructure as a Service (IaaS) services, linking storage to computing services, and
network to computing services. This does not allow to describe composition constraints and
possibilities.
Table 2. Classification of service description languages according to the type of described relationship

Research work C1 C2 C3

WSMO (Web service modeling ontology (wsmo), 2008) +

LinkedWS (Maamar et al., 2011) +

Linked services (Cardoso, 2013) +

Blueprint (Nguyen, Lelli, Papazoglou, & Heuvel, 2012) +

CoCoon (Zhang et al., 2012) + +

Linked USDL (Cardoso & Pedrinaci, 2015) +

Pedrinaci, 2015) software
services, cloud
services,
infrastructure
services, and
human
services

This is a postprint version. The final version is available at DOI: 10.4018/IJSSOE.2017070102
2017, International Journal of Systems and Service-Oriented Engineering

 5

Table 2 classifies the works describing the relationships of a service based on the following
classification criteria: C1: describes established relationships between services, C2: describes potential
relationships between services, and C3: describes potential constraint relationships between services.

Unfortunately, not a single work allows to simultaneously describe a service’s composition
possibilities and constraints. We describe in this work for each service its composition constraints and
possibilities. We also define the concepts of environment, and resources constraints. To automate the
configuration of business applications on cloud environments, we also describe the configurable
parameters of each business service.
2.2 User Requirement Elicitation
Automating the management of cloud services greatly reduce the technical knowledge required for
their use. In our previous work (Benfenatki et al., 2016), we automated the generation of service-
oriented cloud applications based on non-technical user requirements expressed via a Web form. In
order to select the requirements to consider while provisioning service-oriented business applications
we have chosen the following criteria to compare in Table 3 the requirements description languages:
C1: objective of the work and C2: requirement description abstraction-level. This describes the level
of necessary details for the described requirements.

Table 3. Requirement description works comparison

Research works C1: Objective of the work C2: abstraction level
BPMN (Business
Process Model and
Notation, 2011)

Business process description
Desired activities, expected events, control
flow, several collaboration participants,
message flow

WS-BPEL (Alves et
al., 2007)

Description of service-oriented
business process execution Control flow, data flow

WS-CDL (WS-CDL,
2005)

Peer to peer choreography
description Control flow, data flow

SRMO (Xiang, Liu,
Qiao, & Yang, 2007)

Requirements description
ontology

Desired functionalities, functionalities
relationships, quality attributes, control flow

(Yuan & Zhang,
2015) for the
development of
service-oriented
Product Line
Software (PLS)

Allows the identification of the
specific requirements of a
particular client

Desired functionalities, functioning
environment, constraints associated to each
functionality, requirement rank, requirements
relationships (contradiction, quality, etc)

WSRL (Mitra, Zhou,
Bouguettaya, & Liu,
2013)

Declarative description of
service-oriented request Desired functionalities, I/O, WSRL request

Works in Table 3 describe the requirements on service-oriented applications. They define a language,
an ontology, or a notation for the description of the requirements. These works require from the user
to know the defined languages so that she uses them. They can be distinguished by the abstraction
level when describing application requirements (C2). In fact, the description of a control flow and/or a
data flow requires a good knowledge of the business process to develop. Furthermore, this is not
favourable when using business services because they are not defined by their Inputs/Outputs;
business services have a higher abstraction level than Web services, and their composition does not
consist in invoking service operations, but rather to adapt a business service so that it can cooperate
with another.

3 LINKED UNIFIED SERVICE DESCRIPTION LANGUAGE OVERVIEW
USDL (Cardoso, Barros, May, & Kylau, 2010) (USDL, 2011) describes technical and business
services to allow services to become usable. Attensity and SAP Research among others initiated this
language that was submitted for standardization to the W3C. The description of services with USDL is

This is a postprint version. The final version is available at DOI: 10.4018/IJSSOE.2017070102
2017, International Journal of Systems and Service-Oriented Engineering

 6

based on three perspectives: business (covers, among other things, quality of service, pricing models,
and legal constraints), operational (concerns the operations of a service and its functionalities), and
technical (includes transport, messages, metadata exchanges, and security protocols).

Linked USDL (Linked USDL, 2015), (Cardoso & Pedrinaci, 2015), (Linked USDL modules, 2015) is
a semantic language based on USDL. It describes human services (e.g., consulting), business services
(e.g., purchase requisitions), software services (e.g., RESTful services), infrastructure services (e.g.,
CPU and storage services), etc. The objective of Linked USDL is to allow an open, adaptable, and
extensible description of services using decentralized management.

Figure 1. Macroscopic view of Linked USDL

Linked USDL is divided into five modules that have different levels of maturity. Each module is a set
of concepts and properties. We illustrate in Figure 1 some Linked USDL classes. A detailed
description of all modules is available at (Linked USDL modules, 2015). The five modules are the
following:

- USDL-core: describes the operational aspects of a service.
- USDL-price: describes the price structure of a service.
- USDL agreement: describes the quality of the service provided, such as response time and

availability.
- USDL-sec: describes the security properties of a service.
- USDL-ipr: describes the rights to use a service.

Despite Linked USDL advantages such as extensibility and coverage of business, operational, and
technical aspects, it does not capture relationships among services. In fact, the type of service
relationships described in Linked USDL is done with the class "usdl-core:ServiceOffering". The
latter describes the combined services constituting a service offering. However, all possible
compositions are not necessarily included in a service offering, since the latter is supplier dependent.
Furthermore, Linked USDL describes services as isolated components, hence it has limitations
regarding the description of the whole service-oriented application requirements. To overcome these
shortcomings, we extend Linked USDL to describe a marketplace of services and requirements of
users.

This is a postprint version. The final version is available at DOI: 10.4018/IJSSOE.2017070102
2017, International Journal of Systems and Service-Oriented Engineering

 7

4 LINKED USDL EXTENSION
This section is composed of two parts describing Linked USDL extension. The first one concerns
service description. The second one concerns the user’s requirements description. In the following we
assume the existence of a marketplace of services (business and infrastructure). Each business service
has deployment and configuration scripts, and an additional script that connects it to other business
services. Juju store is an example of marketplace (Juju Charms, 2016). Service description using
Linked USDL can be formatted using RDF (RDF, 2014), Turtle (Turtle recommandation, 2014), or
JSON. In our case, we chose to use the turtle format because it allows a simple, concise, and human
understandable description. Therefore, we are focusing in this paper on the definition of the new
concepts of the extended Linked USDL instead of defining the syntax of the extended language.

4.1 Extending Linked USDL for service description
In Section 2, we analysed the works on a service’s established and potential relationships. None of
those works allows to describe both composition constraints and possibilities exhaustively. Figure 2
illustrates the extended Linked USDL. We describe in the following the concepts that we have
defined to extend the model.

The extension of Linked USDL consists of describing the composition relationships of a business
service including its deployment constraints, configurable parameters, category, deployment state,
technical characteristics of an IaaS (for business services deployment, only), and QoS description of
a business and IaaS services. In the following, each new concept is motivated, defined, and
exemplified with an example.
4.1.1 Composition relationships
A business service S1 can be linked to S2 thus creating a composition relationship. The latter
includes the composition constraints and possibilities (Definitions 1 and 2).

 Composition constraints
Some services need other services to function properly.

Definition 1. Composition constraints link the described business service to another. Composition
constraints are either hard or soft.
- Hard constraints (property 11 of Figure 2) impose the services that must be composed to the

one described. For example, MediaWiki must be composed with a MySQL database.
- Soft constraints (property 12 in Figure 2) offer the choice of selecting one, and only one,

service in a business service family providing the same functionality. For example, Joomla can
be composed with a MSSQL, PostgreSQL, or MySQL database.

 Composition possibilities

Service-Oriented Applications (SOA) relies on I/O matching during service composition. However,
this does not apply to business services. Section 2 has shown the lack of representation of
composition possibilities. In fact, studied work described the different past compositions of a service
(Maamar et al., 2011) (Cardoso, 2013). The latter do not distinguish between composition constraints
and possibilities neither allow an exhaustive description of the potential relationships of a service. To
overcome these shortcomings, we describe for each business service its composition possibilities.

Definition 2. Composition possibilities (property 13 of Figure 2) bind the described business service
to other peers. A business service S1 is a composition possibility of S2 if and only if S1 can be
composed with S2 and S2 works correctly if it is not composed with S1. For example, OpenStack

This is a postprint version. The final version is available at DOI: 10.4018/IJSSOE.2017070102
2017, International Journal of Systems and Service-Oriented Engineering

 8

works properly without a dashboard, but "Horizon" dashboard represents a composition possibility of
the core components of OpenStack.

Figure 2. Extended Linked USDL

4.1.2 Deployment Constraints
Deployment constraints cover environment and resources constraints.

 Environment constraints
Each business service requires a specific deployment environment. Environment constraints have
been described in the work of (Nguyen, Lelli, Papazoglou, & Heuvel, 2012). However, the resource
and composition constraints are grouped under the same concept, which is not useful when

This is a postprint version. The final version is available at DOI: 10.4018/IJSSOE.2017070102
2017, International Journal of Systems and Service-Oriented Engineering

 9

automating the composition and the deployment of business services. For automation purposes, we
define the environment and resource constraints’ concepts separately for each business service.

Definition 3. Environment constraints of a business service (property 7 in Figure 2) represent
software that must be installed on the virtual machine hosting the business service described. Each
environment constraint is described by a type (e.g., Web server) and name (e.g., Apache). We assume
that environment constraints are automatically incorporated into the deployment scripts of a business
service.

Resource Constraints
Each business service requires a minimum of resources to ensure its normal functioning.

Definition 4. Resource constraints (property 8 in Figure 2) of a business service represent the
characteristics required for the virtual machine hosting this service in terms of CPU (property 19 in
Figure 2), memory (Property 20 in Figure 2), and disk (Property 21 in Figure 2).

4.1.3 IaaS technical characteristics
To support the selection of an IaaS that satisfies the deployment constraints of a business service, we
define for each IaaS (e.g., Amazon EC2) the technical characteristics of the instances it offers
(property 9 of Figure 2). A cost plan is associated with technical characteristics (property 10 of
Figure 2) describing the cost of virtual machine instance for a given supplier.
4.1.4 Configurable parameters
To automate the configuration of a business application we define the configurable parameters of
each service.

Definition 5. Configurable parameters (property 3 in Figure 2) of a business service represent
parameters that can be customized for the use of the service, such as application name, logo etc. Each
configurable parameter is described by its name ("gr: name", property 4 in Figure 2) and by the type
of the HTML component (property 18 in Figure 2) to be inserted into the configuration interface
(e.g., a text box for the name of an application and a browse button for the logo of the application).

4.1.5 Business service category

For each business service, we define its category using "gr:category" property (property 6 in
Figure~2). A category is the family of services to which a service belongs. For example, MediaWiki
service belongs to "Wiki engine" family. This notion will be used to evaluate the quality of services
with respect to other similar services.
4.1.6 Quality of service settings

We choose in this work to entrust the task of describing QoS parameters to a third-party service.
Many third-party services for service evaluation and comparison are available on the Web such as
Cloud Armor (Cloud Armor) and Cloudorado (Cloudorado). The former provides a dataset of QoS
ranks (e.g., availability, response time, and ease of use) assigned by users to the cloud services used.
The latter provides a comparison of cloud providers in terms of SLA level, price, and functionality.
To illustrate the description of a service’s quality we consider four parameters namely respect of data
confidentiality, preservation against data loss, availability of the service, and response time of the
service. Listing 1 illustrates an example of a returned XML file, describing the QoS parameters of a
given service.

1. <?xml version ="1.0" encoding="UTF-8" standalone="no"?>
2. <QoS>
3. <Availability >7</Availability>

This is a postprint version. The final version is available at DOI: 10.4018/IJSSOE.2017070102
2017, International Journal of Systems and Service-Oriented Engineering

 10

4. <Response_Time>173.82358</Response_Time>
5. <Data_Privacy>8</Data_Privacy>
6. <Data_Loss>8.902313</Data_Loss>
7. </QoS>

Listing 1. XML file describing the QoS parameters of a service

4.1.7 Deployment state
The deployment state is modelled using property 25 in Figure 2. It concerns business services. Two
deployment states are considered: deployed and deployable.

4.2 Extending Linked USDL for user's requirements description
The requirements description implies the gathering, transformation, and treatment of the user's needs
for the desired business application. In our work, we allow the user to express her requirements via a
Web form since we are interested in the type of considered requirements instead of how the
requirements are collected. We have identified two major goals for requirements identification:

- Goal 1: Identify the minimum requirements for selecting and composing business services that
satisfy the user's needs.

- Goal 2: Consider non-technical requirements that may be important to the user, and which may
allow to select one service composition plan over another. Existing Linked USDL specification
considers non-technical requirements, such as business ones, however it lacks the service user
needs, like for example the required QoS characteristics.

To achieve these goals, we define the RequIrements VocAbuLary (RIVAL) as a new module of
Linked USDL to formalize the functional and non-functional user’s requirements. RIVAL reuses
existing concepts from the Good Relations vocabulary (GoodRelations: The professional Web
vocabulary for e-commerce, 2008), RDFS (RDF Schema 1.1, 2014), and XSD (XML Schema, 2004).
It also introduces new concepts allowing to select the services meeting the user’s functional
requirements and their composition possibilities. Figure 3 illustrates RIVAL classes that describe the
vocabulary’s concepts, and properties that describe relationships between classes. To reduce the
technical knowledge required for the provisioning of cloud applications, no technical requirement is
asked to the user.

This is a postprint version. The final version is available at DOI: 10.4018/IJSSOE.2017070102
2017, International Journal of Systems and Service-Oriented Engineering

 11

Figure 3. RIVAL's module overview

4.2.1 Functional requirements
Functional requirements meet the primary objective of the required service. They represent the global
functionalities that the business application must accomplish. These are described either by keywords
describing the desired functionality or objective, or by the name of the business service that satisfies
them. In this work, the description of functional requirements excludes any technical details such as
deployment or composition constraints. We introduce a distinction between primary and secondary
functionalities (Definitions 6 and 7) which guide respectively the selection of primary services and
their composition possibilities (secondary services).

Definition 6. A primary functionality (property 1 in Figure 3) describes the overall functionality for a
business application desired by the user. A primary functionality is independent from each other, and
can be linked to secondary functionalities.

Definition 7. A secondary functionality (property 2 in Figure 3) is related to a primary functionality,
and enhances the functionality of the latter, but it is not essential in the business application.

A functionality of a desired application is provided by a business service and is considered as
primary, e.g., project management. Any additional functionality to this project management is
considered as secondary, e.g., requiring a version management service with the project management
one. Only one primary functionality is allowed in user’s requirements. Several secondary
functionalities can be associated with it.
4.2.2 Non-functional requirements

Non-functional requirements satisfy the second objective and cover the requirements in terms of QoS
as well as the user preferences with regard to the desired business application. It is difficult for a user
to estimate acceptable tolerance thresholds for QoS parameters such as data availability or integrity.
In fact, usually users always aim for maximum quality. For these reasons, we use
weights~(Definition~8) that the user assigns to the QoS parameters. The quality of service
requirements for the desired application are therefore described in RIVAL by their names
(property~7 in Figure 3) and their weights that are assigned by the user (property 8 in Figure~3).

Definition 8. The weight assigned to each quality of service parameter describes the priority that the
user assigns to it. We decided to allow the user to distribute 10 points between the considered QoS
parameters, so that the sum of all the assigned values is equal to 10 (the values can be integers or
decimals). The choice of the sum equals to 10 is due to the simplicity, in our sense, to distribute 10
points rather than a percentage. These weights will be used to evaluate the quality of the discovered
services.

The description of QoS weights is optional. In the case where the user does not determine her
priorities for QoS parameters, the same weight will automatically be assigned by default to each of
considered parameters.
User preferences are related to deployment and payment details, including:
- The deployment location (property 4 in Figure 3): the user can choose the continent where her

application will be deployed. This requirement is optional, but may be important for the user
when she values the sensitivity of her data or the privacy laws in different continents.

- The name of the IaaS provider which will host the desired application (property 3 in Figure 3).
This preference is based on a previous experience of using an IaaS for hosting the application.
This requirement is optional.

- Payment details are described by the "PriceSpecification" class of the "Good Relations"
vocabulary (GoodRelations, 2008), which is associated with a currency (property 9 in

This is a postprint version. The final version is available at DOI: 10.4018/IJSSOE.2017070102
2017, International Journal of Systems and Service-Oriented Engineering

 12

Figure~3), a maximum cost (property 11 in Figure~3), and a billing period (property 10 in
Figure 3).

5 VALIDATION AND EVALUATION
The extended Linked USDL has been used with MADONA to describe respectively the
marketplace’s services and a user’s requirements (Benfenatki et al., 2016). MADONA has been
implemented and a video of the system is available at liris.cnrs.fr/hind.benfenatki/demo.mp4.
Let us consider the following scenario to illustrate the use and the benefit of the extended Linked
USDL while provisioning cloud-based service-oriented business applications: A manager in a
medical clinic (herein the user) wants to provision an application which is capable to manage patient
records and medical procedures billing. In this scenario, a patient records management functionality
represents the primary functionality and procedures billing functionality represents a secondary one.
From these functional requirements, several composition plans are generated following the
composition plans generation algorithm described in Listing 4 in (Benfenatki et al., 2016). Figure 4
illustrates the generated composition plans. Each composition plan bounds a set of relations. Each
relation composes a business service with its composition constraints and/or composition
possibilities. In fact, the first relation of each composition plan composes a service meeting the user’s
primary functionality (herein after called a primary service), the services representing the
composition constraints of the primary service, and the services meeting the user’s secondary
functionalities and representing a composition possibility of the primary service. The other relations
compose the composition plan’s services with their composition constraints. The generation of
composition plans is done automatically and dynamically since composition constraints and
possibilities are known from service’s description using extended Linked USDL.

Figure 4. Generated composition plans

The first composition plan in Figure 4 is composed of three relations. The first one composes PR1, a
service meeting the patient records management functionality, BM1, a service meeting billing
management functionality, and a MySQL database and SecureAuth that represent the composition
constraints of the primary service, and allow respectively to store patient information and to
guarantee a secure authentication to the generated application. The second and third relations
compose BM1 and SecureAuth with their composition constraints.
The generated composition plans are completed with an IaaS meeting the user’s deployment
preferences and QoS requirements. The cost of each composition plan is evaluated for the selected
IaaS and the ones exceeding the user’s payment preferences are excluded. The remaining
composition plans are evaluated according to the user’s QoS requirements and services’ QoS history.
The composition plan with the highest QoS is selected for deployment. For the selected composition
plan, several Web forms are displayed to the user so that she can personalize the generated

This is a postprint version. The final version is available at DOI: 10.4018/IJSSOE.2017070102
2017, International Journal of Systems and Service-Oriented Engineering

 13

application. Configuration and deployment scripts are automatically generated and executed. More
details on MADONA’s phases are reported in (Benfenatki et al., 2016).
We evaluate in Figure 5 the benefit of the extended Linked USDL on the provisioning of the running
scenario’s generated application (corresponding to the first composition plan with two
configurations). On the one hand considering composition constraints while describing a
marketplace’s services allows to know the minimal composition permitting the normal functioning of
a service. Moreover, it allows to automate the composition process, i.e., the generation of
composition plans, thus reducing the necessary technical knowledge required from the user for
provisioning service-oriented cloud applications. On the other hand, considering configurable
parameters and deployment constraints for each business service allows to automate the
configuration and the deployment respectively.

Figure 5. Extended Linked USDL evaluation

The number of invoked services is equal to the sum of the number of desired functionalities (primary
and secondary) and the number of composition constraints associated to those functionalities. As
shown in Figure 6, the number of services (or of functionalities) the user has to know remains fixed
while the number of the associated composition constraints grows. In fact, composition constraints
are taken into account automatically from the service’s description.
Furthermore, by describing composition possibilities, we reduce the number of generated
composition plans. In fact, the generated composition plans compose only the services that can be
composed.

0	

1	

2	

3	

4	

5	

6	

Script	lines	for	deplpoyment		 Script	lines	for	composi9on	 Script	lines	for	configura9on	

Linked	USDL	 Extended	Linked	USDL	

This is a postprint version. The final version is available at DOI: 10.4018/IJSSOE.2017070102
2017, International Journal of Systems and Service-Oriented Engineering

 14

 Figure 6. Number of introduced services according to the number of desired functionalities and their associated composition
constraints

CONCLUSION
We have defined an extension of Linked USDL for the description of the marketplace’s services
(business and infrastructure) and for the service requirements of the user. New concepts have been
added to describe the relationships that a business service must and can have with other peers in order
to know the composability of a service. We also described for each business service its deployment
constraints and configurable parameters, in order to automate the deployment and the configuration
of a given business service. We have described the technical characteristics of an IaaS service in
order to allow the selection of resources responding to the deployment constraints of each business
service. We entrust the description of the quality of the marketplace’s services to third-party services
in order to have an objective representation of the quality of the service.
We also have defined the RIVAL module to formalize the user's requirements, which are described
through a Web form. RIVAL defines the minimal requirements, functional and non-functional,
allowing an effective selection and composition of business services, and introduces the notion of
primary and secondary functionalities. Non-functional requirements include user deployment and
cost preferences, and QoS requirements. The requirements taken into account in RIVAL are
expressed at a high level of abstraction of technical details. For example, QoS requirements are
expressed in terms of weights symbolizing the importance the user assigns to each quality parameter
instead of it being expressed in precise values.

We present, as well, the results of experiments demonstrating the use of our extension of Linked
USDL with MADONA, a method for automated provisioning of cloud-based service-oriented
business applications. We can conclude that Linked USDL extension allows to generate automatically
and dynamically composition plans meeting user’s functional requirements and meeting services
composition constraints and possibilities. In fact, each service of a composition plan is automatically
composed with the services representing its composition constraints as the latter are known from
service’s description. Furthermore, only composable services are composed and this is done
automatically. In fact, composition possibilities of marketplace’s services are known from their
descriptions. Thus, describing composition constraints and possibilities of each business service

This is a postprint version. The final version is available at DOI: 10.4018/IJSSOE.2017070102
2017, International Journal of Systems and Service-Oriented Engineering

 15

allows (i) to automate the composition process, (ii) to consider the minimal composition allowing the
good functioning of each service, and (iii) to compose only composable services.
Considering resource constraints while describing a business service allows to automate its
deployment on sufficient resources allowing its good functioning. Considering configurable
parameters of each marketplace’s business service allows to automate the configuration process.
Hence, all the application provisioning process is automated.
As part of our ongoing work, we plan to consider a cost model which considers more relevant
parameters when estimating the use of resources for deploying business services, for instance, the type
of storage and bandwidth associated with the virtual machines deployed. We also plan to consider the
cost of business services of the generated application.

REFERENCES
Afify, Y. M., Moawad, I. F., Badr, N. L., & Tolba, M. (2014). Cloud services discovery and selection:
Survey and new semantic-based system. Bio-inspiring Cyber Security and Cloud Services: Trends and
Innovations , 449–477.
Alves, A., Arkin, A., Askary, S., Barreto, C., Bloch, B., Curbera, F., et al. (2007). Web service-business
process execution language (ws-bpel). From http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-
OS.html
Becha, H., & Amyot, D. (2014). Consumer-centric non-functional properties of soa-based services.
Proceedings of the 6th International Workshop on Principles of Engineering Service-Oriented and Cloud
Systems, PESOS 2014 , 18–27.
Benfenatki, H., Ferreira Da Silva, C., Kemp, G., Benharkat, A.-N., Ghodous, P., & Maamar, Z. (2016).
MADONA - a method for automated provisioning of cloud-based component-oriented business
applications. Service Oriented Computing and Applications , 11 (1).
Bhasin, H. (2016). Classification of services. From http://www.marketing91.com/classification-of-
services/

Binz, T., Breitenbu ̈cher, U., Kopp, O., & Leymann, F. (2014). Tosca: Portable automated deployment and
management of cloud applications. (Springer, Ed.) Advanced Web Services , 527–549.
BPMN, Business Process Model and Notation. (2011). From http://www.bpmn.org/
Cardoso, J. (2013). Modeling service relationships for service networks. Proceedings of the 4th
International Conference on Exploring Services Science, IESS2013 , 114–128.
Cardoso, J., & Pedrinaci, C. (2015). Evolution and overview of linked usdl. Proceedings of the 6th
International Conference on Exploring Services Science, IESS2015 , 50–64.
Cardoso, J., & Pedrinaci, C. (2015). Evolution and Overview of Linked USDL. International Conference
on Exploring Services Science , 50-64.
Cardoso, J., Barros, A., May, N., & Kylau, U. (2010). Towards a unified service description language for
the internet of services: Requirements and first developments. IEEE International Conference on Services
Computing (SCC) , 602-609.

Cardoso, J., Binz, T., Breitenbu ̈cher, U., Kopp, O., & Leymann, F. (2013). Cloud computing automation:
integrating usdl and tosca. Proceedings of the 25th International Conference on Advanced Information
Systems Engineering, CAISE2013 , 1–16.

This is a postprint version. The final version is available at DOI: 10.4018/IJSSOE.2017070102
2017, International Journal of Systems and Service-Oriented Engineering

 16

Christensen, E., Curbera, F., Meredith, G., & Weerawarana, S. (2001). Web services description language
(WSDL) 1.1.
Cloud Armor. (n.d.). Retrieved in 2017 from Cloud Armor Project Website:
cs.adelaide.edu.au/~cloudarmor/
Cloud service measurement index consortium. (2016). Retrieved in 2016 from http://csmic.org/
Cloudorado. (n.d.). Retrieved 2017 from Cloud computing price comparison | Cloudorado - Find best
cloud server from top cloud computing companies: https://www.cloudorado.com
Dbpedia. (2016). From http://wiki.dbpedia.org/
D’Ambrogio, A. (2006). A model-driven wsdl extension for describing the qos of web services. (IEEE,
Ed.) International Conference on Web Services, ICWS2006 , 789–796.
GoodRelations. (2008). From GoodRelations: The professional Web Vocabulary for E-Commerce:
http://www.heppnetz.de/projects/goodrelations/
GoodRelations: The professional Web vocabulary for e-commerce. (2008). From
http://www.heppnetz.de/projects/goodrelations/
International classification of goods and services for the purposes of the registration of marks. (2001).
From http://www.wipo.int/export/sites/www/classifications/nice/en/pdf/8_list_class_order.pdf
Kan, J., & Sim, K. M. (2011). Cloudle: an ontology-enhanced cloud service search engine. Web
Information Systems Engineering–WISE 2010 Workshops , 416–427.
Lagares Lemos, A., Daniel, F., & Benatallah, B. (2015). Web service composition: A survey of
techniques and tools. (ACM, Ed.) ACM Computing Surveys .
Linked data. (2015). From Linked data - connect distributed data across the web: http://www.
linkeddata.org/
Linked USDL. (2015). Retrieved 2015 from Linked usdl: http://linked-usdl.org/
Linked USDL modules. (2015). From http://github.com/linked-usdl/
Liu, D., & Zic, J. (2011). Cloud#: A specification language for modeling cloud. Proceedings of the
International Conference on Cloud Computing, CLOUD2011 , 533–540.
Lu ̈ftenegger, E. (2014). Service-dominant business design. Eindhoven University of Technology .
Maamar, Z., Wives, L. K., Badr, Y., Elnaffar, S., Boukadi, K., & Faci, N. (2011). Linkedws: A novel web
services discovery model based on the metaphor of “social networks”. Simulation Modelling Practice and
Theory , 121–132.
Martin, D., Paolucci, M., McIlraith, S., Burstein, M., McDermott, D., McGuinness, D., et al. (2004).
Bringing semantics to web services: The owl-s approach. First International Workshop on Semantic Web
Services and Web Process Composition , 26–42.
Mitra, G., Zhou, X., Bouguettaya, A., & Liu, X. (2013). A request oriented model for web services.
Proceedings of the 1st Australasian Web Conference , 13–20.
Nguyen, D. K., Lelli, F., Papazoglou, M. P., & Heuvel, W.-J. v. (2012). Issue in automatic combination
of cloud services. (IEEE, Ed.) 10th International Symposium on Parallel and Distributed Processing with
Applications, ISPA2012 , 487–493.
RDF Primer. (2004). From https://www.w3.org/TR/2004/REC-rdf-primer-20040210/
RDF Schema 1.1. (2014). From https://www.w3.org/TR/rdf-schema/

This is a postprint version. The final version is available at DOI: 10.4018/IJSSOE.2017070102
2017, International Journal of Systems and Service-Oriented Engineering

 17

Turtle recommandation. (2014). Turtle. From https://www.w3.org/TR/turtle/
Semantic annotations for WSDL and XML schema. (2007). Retrieved 2015 from
http://www.w3.org/TR/sawsdl/
Services. (2016). What is human services? Retrieved 2016 from http://www.nationalhumanservices.org/
what-is-human-services
SPARQL Protocol for RDF. (2008). From https://www.w3.org/TR/rdf-sparql-protocol/
RDF. (2014). Resource Description Framework (RDF). From https://www.w3.org/RDF/
Juju Charms. (2016). From https://jujucharms.com/store
Sun, W., Zhang, K., Chen, S.-K., Zhang, X., & Liang, H. (2007). Software as a service: An integration
perspective. (Springer, Ed.) Proceedings of the International Conference on Service-Oriented Computing,
ICSOC2007 , 558–569.
Taekgyeong, H., & Sim, K. M. (2010). An ontology-enhanced cloud service discovery system.
Proceedings of the International MultiConference of Engineers and Computer Scientists , 17–19.
Tahamtan, A., Beheshti, S. A., Anjomshoaa, A., & Tjoa, A. M. (2012). A cloud repository and discovery
framework based on a unified business and cloud service ontology. Proceedings of the 8th World
Congress on Services, SERVICES2012 , 203–210.
Taher, Y., Nguyen, D. K., Lelli, F., Heuvel, W.-J. v., & Papazoglou, M. (2012). On engineering cloud
applications-stateof the art, shortcomings analysis, and approach. Scalable Computing: Practice and
Experience , 215–232.
Tsai, W.-T., Sun, X., & Balasooriya, J. (2010). Service-oriented cloud computing architecture. 7th
International Conference on Information Technology: New Generations, ITNG2010 , IEEE, 684–689.
USDL. (2011). From Unified service description language: https://www.w3.org/2005/Incubator/usdl/
Web Service Modeling Ontology (WSMO). (2008). From http://www.wsmo.org/
WS-CDL. (2005). From Web service-choreography description language (ws-cdl):
https://www.w3.org/TR/ws-cdl-10/
WSDL. (n.d.). Retrieved 2016 from Web service description language (wsdl):
http://www.w3schools.com/xml/ xml_wsdl.asp
Xiang, J., Liu, L., Qiao, W., & Yang, J. (2007). Srem: A service requirements elicitation mechanism
based on ontology. (IEEE, Ed.) Proceedings of the 31st Annual International Conference on Computer
Software and Applications, COMPSAC2007 , 196–203.
XML Schema. (2004). From https://www.w3.org/XML/Schema
Yuan, X., & Zhang, X. (2015). An ontology-based requirement modeling for interactive software
customization. (IEEE, Ed.) International Model-Driven Requirements Engineering Workshop,
MoDRE2015 , 1–10.
Zhang, M., Ranjan, R., Haller, A., Georgakopoulos, D., Menzel, M., & Nepal, S. (2012). An ontology
based system for cloud infrastructure services discovery. Proceedings of the 8th International Conference
on Collaborative Computing: Networking, Applications and Worksharing, CollaborateCom2012 , 524–
530.

