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Abstract

Inhibitory antibodies directed against coagulation factor VIII (FVIII) can be found in patients with acquired and congenital
hemophilia A. Such FVIII-inhibiting antibodies are routinely detected by the functional Bethesda Assay. However, this assay
has a low sensitivity and shows a high inter-laboratory variability. Another method to detect antibodies recognizing FVIII is
ELISA, but this test does not allow the distinction between inhibitory and non-inhibitory antibodies. Therefore, we aimed at
replacing the intricate antigen FVIII by Designed Ankyrin Repeat Proteins (DARPins) mimicking the epitopes of FVIII
inhibitors. As a model we used the well-described inhibitory human monoclonal anti-FVIII antibody, Bo2C11, for the
selection on DARPin libraries. Two DARPins were selected binding to the antigen-binding site of Bo2C11, which mimic thus
a functional epitope on FVIII. These DARPins inhibited the binding of the antibody to its antigen and restored FVIII activity
as determined in the Bethesda assay. Furthermore, the specific DARPins were able to recognize the target antibody in
human plasma and could therefore be used to test for the presence of Bo2C11-like antibodies in a large set of hemophilia A
patients. These data suggest, that our approach might be used to isolate epitopes from different sets of anti-FVIII antibodies
in order to develop an ELISA-based screening assay allowing the distinction of inhibitory and non-inhibitory anti-FVIII
antibodies according to their antibody signatures.
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Introduction

Coagulation factor VIII (FVIII) is a 300 kDa polypeptide acting

as a cofactor in the intrinsic pathway of thrombin formation. It

consists of a heavy chain (A1-a1-A2-a2-B) and a light chain (a3-

A3-C1-C2), linked via a metal ion and circulates in the blood

stabilized by von Willebrand factor (vWF). In hemophilia A (HA)

patients deficiency or malfunction of FVIII causes severe bleeding

diathesis [1]. Congenital HA, caused by mutations in the FVIII

gene located on the X chromosome, occurs in one of 5000 males.

Absent or non-functional FVIII is substituted with plasma-derived

or recombinant FVIII. As a consequence of the treatment, 5–40%

of HA patients develop allo-antibodies towards the therapeutic

FVIII protein, depending on the type of FVIII gene mutation [2].

Such immune responses against infused FVIII represent serious

complications of hemorrhage treatment. As inhibitors rapidly

inactivate FVIII, treatment efficacy is dramatically reduced [3].

On the other hand, antibodies against FVIII were detected that

bind to FVIII but do not interfere with its function. Such non-

inhibitory anti-FVIII antibodies can be found in inhibitor positive

and negative HA patients as well as in healthy controls [4,5,6].

The pathophysiological role of these non-inhibitory antibodies is

unclear although they may increase clearance of circulating FVIII

[7].

It is difficult to investigate the difference between inhibitory and

non-inhibitory antibodies, as the antibody fractions cannot be

separated and most approaches to measure anti-FVIII antibodies

cannot distinguish between them. The Bethesda assay is the only

method that selectively detects inhibitory antibodies but this test is

time consuming, has a low sensitivity and despite different

improvements shows a high inter-laboratory variation [8], which

indicates the need for an alternative test.

We hypothesize that the epitope specificity of an antibody

determines whether it is inhibitory or not, as antibodies binding to

a functional site on FVIII can inhibit its pro-coagulant activity.

To discriminate between inhibitory and non-inhibitory anti-

bodies, we aim at replacing the intricate and unstable antigen

FVIII by artificial binding proteins describing the epitope

signatures of anti-FVIII antibodies. As a proof-of-concept, we

used the well-described human monoclonal anti-FVIII antibody

Bo2C11 to select binders against its antigen-binding site. Bo2C11

is a high titer inhibitor derived from a congenital HA patient by

EBV transformation of a memory B cell [9]. As most allogeneic

FVIII inhibitors, Bo2C11 is an IgG4 antibody. It was shown to

recognize a discontinuous epitope on the C2 domain of FVIII that
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is involved in the interaction of FVIII with vWF and phospho-

lipids. This inhibitor therefore blocks FVIII activity by preventing

the formation of the tenase complex.

Several approaches for epitope mapping of anti-FVIII antibod-

ies have already been made. A murine antibody directed against

the idiotype of a FVIII inhibitor was generated and peptide

libraries were screened for anti-idiotypic binders to an inhibitor, to

mention a few [10,11]. It is not clear whether a murine antibody

can mimic the epitope of a human antibody and short peptides

have a rather small interaction site and limited potential to build

three-dimensional structures. Therefore we used Designed An-

kyrin Repeat Proteins (DARPins) as binding proteins for epitope

mimicry. DARPins are based on natural ankyrin repeat proteins

and were generated as described [12]. Briefly, the identification of

conserved and variable residues on natural ankyrin repeat proteins

led to the construction of a consensus repeat module with a

theoretical variability of 7.2 6107. DARPin libraries containing 2

or 3 repeat modules resulting in 1015 and 1023 different binders

were generated. The theoretical variability of the DARPin

libraries is much higher than diversities of phage peptide libraries

(109), which increases the possibility to find highly specific binders.

Due to their design, DARPin proteins can be generated in vitro.

Additionally, DARPin proteins have a molecular size of 14 to

18 kDa providing a larger area of interaction than peptides, which

makes them good candidates for epitope mimicry. DARPin

binders recognizing various targets with high specificity and

affinity have already been isolated [13,14,15]. In a previous study

we showed that DARPins can be selected against the antigen-

binding site of a murine monoclonal anti-IgE antibody [16]. Here

we tested the ability of DARPins to mimic the epitope of the

human monoclonal anti-FVIII antibody, Bo2C11, in order to

assess their potential to replace the complex and unstable antigen

FVIII. Using Ribosomal Display technology we successfully

isolated DARPin binders that specifically recognize the binding

site of the monoclonal anti-FVIII antibody, Bo2C11. We

produced dimeric DARPins by joining two DARPins via a flexible

protein linker. These constructs specifically blocked the binding of

Bo2C11 to its natural antigen, FVIII and neutralized the

antibody’s inhibitory activity. Furthermore they could be used to

detect Bo2C11 spiked into a healthy human plasma pool. Further

studies can now be performed to explore the use of such molecules

for epitope-specific screening of antibodies in patient blood

samples in order to develop a screening test distinguishing

inhibitory from non-inhibitory anti-FVIII antibodies.

Materials and Methods

2.1. Recombinant FVIII, anti-FVIII antibodies and human
plasma samples

Full-length recombinant FVIII (KogenateH FS) was kindly

provided by Bayer Healthcare. FVIII was reconstituted in H2O,

dialyzed into Borate Buffer (100 mM H3BO3, 150 mM NaCl,

5 mM CaCl2 6 2H2O, pH 7.0) and stored frozen at 220uC in

small aliquots until use.

The cell line producing a monoclonal IgG4k antibody named

Bo2C11, specific for human FVIII C2 domain and derived from a

congenital HA patient [9] was a kind gift of Dr. M.G Jacquemin.

The antibody was produced in serum-free medium (HL-1, Lonza,

Basel Switzerland) and purified using a Protein G column (GE

Healthcare, Chalfont St. Giles, UK). Fractions containing eluted

antibodies were pooled, dialyzed into PBS (137 mM sodium

chloride, 2.7 mM potassium chloride, 12 mM phosphate, pH 7.4)

and concentrated using VivaspinH columns (Sartorius Stedim

Biotech GmbH, Göttingen, D). Protein concentrations were

calculated from A280 using an extinction coefficient of 1.36.

Antibodies were aliquoted and frozen at 220uC.

The study has been accepted by the local ethical committee

(Kantonale Ethikkommission Bern (KEK), CH-3010 Bern). All

patients and healthy plasma donors in the study signed a written

informed consent.

2.2. Vectors and libraries
The vectors pRDV (GenBank accession no. AY327136), used

for ribosome display, pQi-bi-2-2, needed to generate dimeric

DARPins, as well as the expression vector pMPAG6 were received

from Molecular Partners AG (Schlieren, Switzerland). For

expression of monomeric DARPins the vector pMPAG6 was

used, a modified vector analogous to the commercially available

backbone pQE30 (Qiagen, Hilden, Germany), which contains a

His6-Tag sequence. For the expression of DARPins we used E.coli

XL-1 Blue (Stratagene, San Diego, CA). To obtain dimeric

constructs two DARPin DNA fragments were cloned into pQi-bi-

2-2 containing a [Gly4-Ser]4 linker located between BamHI/

HindIII and BglII/BsaI cloning sites that allow site-directed

DARPin insertion.

Two DARPin DNA libraries, coding for DARPins with 2 (N2C)

or 3 (N3C) repeat modules, were obtained from Molecular

Partners AG. Details on library construction have been published

elsewhere [17].

2.3. In vitro selection and DARPin expression
The selection of DARPins was performed using Ribosome

Display as described earlier [18,19,20]. We used both N2C and

N3C DARPin libraries to find binders to the variable region of the

human monoclonal anti-FVIII antibody Bo2C11 (IgG4). Two

selection rounds were performed on the target antibody, including

a pre-adsorption step on PBS containing 0.15% Casein (PBS-C) to

remove non-specific binders. In the third round a pre-adsorption

step on two different IgG4 antibodies of non-relevant specificity

was included to remove binders against the constant region. The

number of cycles for the PCR on cDNA was reduced from 45 to

35 and 30 from panning round 1 to 3, respectively.

Amplified DARPin sequences of the third panning round were

cloned into pMPAG6 vector for DARPin expression in E.coli XL1-

Blue cells. Crude extracts of different single DARPin clones were

produced for ELISA specificity screening as described earlier [21].

Briefly, overnight cultures were grown in selection medium (LB,

containing 100 mg/ml ampicillin) until an optical density of 0.6 at

600 nm was reached, then protein expression was induced with

1 mM isopropyl-b,D-thiogalactopyranoside (IPTG) (AppliChem,

Darmstadt, Germany) for 3 h. Cells were harvested by centrifu-

gation (20 min 3400 g), lysed with B-PERH (Thermo Fisher

Scientific, Waltham, MA, USA) and diluted in TBS500 (50 mM

Tris-HCl pH 8.0, and 500 mM NaCl) containing a protease

inhibitor cocktail (Roche, Basel, Switzerland) to give 1 ml clarified

crude extract after centrifugation.

2.4. Analysis of DARPin binding properties to human IgG
To analyze DARPin binding specificity crude extracts of 96

different N2C single clones (see 2.3) were tested on the anti-FVIII

antibody, Bo2C11. 33 nM of the target antibody diluted in PBS

were immobilized on a CorningH 96-well Microplate (microplate)

(Corning Incorporated, NY, USA) overnight at 4uC. Microplates

were washed twice with PBS and blocked with 150 ml PBS-C for

2 h at 37uC. Subsequently, 50 ml of crude extracts diluted 1:10 in

PBS-C were incubated for 1 h at 37uC, then plates were washed 4

x with PBS containing 0.01% Tween-20 (PBS-T) and 4 x with

PBS. Binding of DARPin proteins was revealed with a biotinylated

Epitope Mimicry Using DARPin Technology
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anti-polyhistidine (anti-His6) antibody (R&D Systems, Minneapo-

lis, MN, USA; 1:1000) followed by peroxidase-labeled streptavidin

(Dako, Glostrup, Denmark; 1:1000) after washing as described

above. DARPin binding was detected by 3,39, 5,59-tetramethyl-

benzidine (TMB, Fluka, St. Louis, MO, USA) and color reaction

was stopped after 5 min with 1 M H2SO4. Optical density was

read at 450 nm in a standard ELISA reader (BIO-TEK EL808,

BioTek, Bad Friedrichshall, Germany). Positive clones were

retested at the same dilution, including a human IgG4 antibody

with non-relevant specificity and the blocking agent, PBS-C, as

negative controls. Bound DARPins were detected with a murine

monoclonal anti-RGS His6 antibody (1:1000; Qiagen), followed by

a horseradish-peroxidase-conjugated goat anti-mouse IgG (1:5000;

Jackson ImmunoResearch, West Grove, PA, USA). DARPin

binding was visualized with TMB as described above.

For further experiments DARPin proteins were purified over a

TALONTM metal-affinity chromatography column according to

the manufacturer’s instructions (Clontech, CA, USA). The purity

and integrity of DARPins were confirmed by SDS PAGE and

Western blotting (Figure S1).

2.5. Sequencing of DARPins
From the overnight cultures, plasmid DNA was extracted using

a Maxi prep kit (Qiagen). DARPin-encoding DNAs were

sequenced using BigDye Terminator v3.1 Cycle sequencing kit.

PCR reactions were purified with BigDye XTerminator Purifica-

tion kit, read on the ABI 3130X Genetic Analyzer and analyzed

with Sequencing Analysis software v5.2 (all from Applied

Biosystems, CA, USA).

2.6. Generation and characterization of dimeric DARPins
Two monomeric DARPins, eBo01 and eBo38, were cloned into

pQi-bi-2-2 vector. The first DARPin sequence was digested with

BamHI and HindIII (Roche, Basel, Switzerland) and ligated using

T4 ligase (Invitrogen, Carlsbad, CA, USA). The second DARPin

was introduced downstream of the first fragment using BglII and

BsaI (New England Biolabs, MA, USA) restriction sites. All four

combinations of the two DARPins were generated and constructs

were produced in E.coli XL-1 Blue as described in 2.4 in large

expression cultures (250 ml). Cells were lysed with French Press

(15000PSI) (Thermo Fisher Scientific, Waltham, MA, USA) and

dimeric DARPins were purified on TALONH resin. The purity

and integrity of DARPins were confirmed by SDS PAGE and

Western blotting (Figure S1). Binding of purified mono- and

dimeric DARPins to Bo2C11 and human IgG subclasses was

compared. Microplates were coated with 13.3 nM antibodies,

washed and blocked as above. 150 nM of monomeric DARPins

(eBo01 and eBo38) and 4 nM of dimeric DARPins (eBo01-38 and

eBo38-38) were incubated for 1 h at 37uC. After a washing step

DARPin binding was visualized by an anti-RGS His6 antibody

and a peroxidase labeled anti-mouse IgG antibody as described

above.

2.7. Affinity measurements
Binding strength of purified DARPins was analyzed by surface

plasmon resonance analysis on a Biacore X100 instrument. HBS-

EP+ (10 mM HEPES, 150 mM NaCl, 3 mM EDTA, pH 7.4

containing 0.05% Surfactant P20) was used as running buffer (flow

rate 30 ml/min). 2100 Response Units of Bo2C11 were immobi-

lized on one of the flow cells of a CM5 sensor chip, whereas the

other flow cell remained uncoated and served as a reference. To

assess the association rates, samples were injected for 3 min at

different concentrations (1 nM to 40 nM for monomeric, 0.1 nM

to 6 nM for dimeric DARPins) and the dissociation rates were

measured for another 3 min. A buffer control was measured and

subtracted from the sensorgram of each sample and binding

parameters were determined using Biacore X100 evaluation

software 2.0 (all from GE Healthcare).

2.8. Competition between DARPins and FVIII for Bo2C11
In a first step the concentration of Bo2C11 giving a 50%

maximal signal (EC50) on immobilized FVIII was determined. For

this purpose FVIII (6.6 nM in PBS) was coated on a microplate

followed by a 2 h blocking step using PBS-C. Plates were washed

as described above. Bo2C11 was serially diluted 1:3 starting at a

concentration of 60 nM and the amount of antibody bound to

FVIII was determined using a horseradish-peroxidase-conjugated

sheep anti-human IgG antibody (The Binding Site, Birmingham,

UK). The determined concentration of Bo2C11 for EC50

(2.66 nM) was used in the inhibition assay.

In the inhibition ELISA 5.33 nM (2x EC50) of Bo2C11 were

mixed 1:1 with different concentrations of dimeric DARPins in the

range of 1023 - 103 molar excess. These mixtures were pre-

incubated for 1 h at room temperature and then added to FVIII

coated wells. Plates were incubated at 37uC for 1 hour and washed

as above. Residual Bo2C11 binding to FVIII was detected by a

horseradish-peroxidase-conjugated sheep anti-human IgG anti-

body (The Binding Site) and developed with TMB as described

above.

2.9. Bethesda Assay
First, the concentration of Bo2C11 inhibiting FVIII pro-

coagulant activity by 50%, defined as 1 Bethesda Unit (BU) was

determined empirically, as batch-to-batch variation occurs.

Bo2C11 was diluted in veronal acetate buffer containing 1 mg/

ml bovine serum albumin and mixed 1:1 with commercial normal

plasma exhibiting known FVIII activity. As a reference, FVIII

containing standard plasma was mixed 1:1 with FVIII deficient

plasma, which results in a theoretical FVIII activity of 50%.

Samples were incubated for 2 h at 37uC and coagulation was

measured on a Behring Coagulation System (all from Siemens

Healthcare Diagnostics, Deerfield, USA). Residual FVIII activity

in percent was calculated relatively to the reference value.

According to this first experiment, 3 nM of Bo2C11 (1BU) were

used for the neutralization assay. Dimeric DARPins were pre-

incubated with Bo2C11 at molar ratios ranging from 1023 to 103

for 1 h at room temperature. The mixture was diluted 1:2 with

normal plasma, coagulation was measured and residual FVIII

activity was calculated as above.

2.10. Detection of Bo2C11 in human plasma
The ability of DARPins to recognize Bo2C11 in human plasma

was analyzed by ELISA and a catching assay. For the analysis by

ELISA, one representative of Bo2C11-specific DARPins (eBo01-

38) and a control DARPin were immobilized at 2 mg/ml on a

microplate overnight at 4uC. Microplates were washed and

blocked as above. Bo2C11 was spiked at different concentrations

into a plasma pool of 4 healthy controls (diluted 1:100 in PBS-C)

and the mixtures were incubated for 2 h at 37uC on the

microplate. After washing, Bo2C11 binding to the DARPins was

detected using a peroxidase-labeled anti-human IgG antibody as

above. TMB was used for color development and optical density

was determined as above. The detection limit was defined as the

mean value of the diluted plasma pool without Bo2C11 + 2 SD.

For the catching assay three concentrations (1 mg, 0.1 mg and

0.01 mg) of a murine anti-His6 antibody were coated on a

nitrocellulose membrane. Commercial human plasma diluted 1:50

in PBS-C was spiked with 2 mg/ml of either Bo2C11 or a control

Epitope Mimicry Using DARPin Technology
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human IgG, or nothing. Samples were then mixed with equimolar

(13.3 nM) amounts of either eBo38-38 or a control DARPin or

without any DARPin for control purposes. Bound human IgGs

were detected using a peroxidase-conjugated sheep anti-human

IgG antibody (The binding Site). The presence of the coating

antibody was confirmed with a peroxidase-conjugated goat anti-

mouse IgG antibody (Jackson ImmunoResearch). Nitrocellulose

strips were developed using a 0.05% 4-chloro 1-naphthol solution

and scanned.

Results

3.1. Selection of Bo2C11 binders
To test whether DARPins are able to mimic the relevant

epitopes of intricate antigens we used the well-described human

anti-FVIII antibody Bo2C11 for the isolation of specific DARPin.

Thus, DARPin libraries consisting of two (N2C) or three (N3C)

randomly associated variable ankyrin repeat modules were

screened on Bo2C11. Three selection rounds were performed as

described in the Materials and Methods section.

Crude extracts of 96 individual DARPin clones (A #1–12; B

#13–24, C #25–36, D #37–48, E #49–60, F #61–72, G #73–

84, H #85–96) were screened for their binding to the target

antibody, Bo2C11 in ELISA (Fig. 1A). Sixteen clones with a high

signal on Bo2C11 (highlighted in dark grey) were selected for re-

testing on Bo2C11 and an isotype control. Eight of the 16 N2C

DARPin clones recognized Bo2C11, whereas only low reactivity

to control proteins was observed (Fig. 1B). From the N3C DARPin

pool, none of the clones was specific for the target antibody (data

not shown). The six N2C clones with the highest signal-to-noise

ratio (eBo01, eBo03, eBo38, eBo71, eBo89 and eBo90) were

sequenced and aligned to test diversity of binders (Fig. 2). We were

unable to sequence clone eBo03 and therefore this clone was

excluded from further analyses (data not shown). Based on

common framework mutations the clones were subdivided into 2

groups. Group 1 consisted of eBo01 and eBo90 and group 2 of

eBo38, eBo71 and eBo89. The sequence homology within the

groups was 99.2% (group 1) and 98.5% (group 2), respectively,

and between the two groups 90.5%. Together these results

indicated that one or two major epitopes can be isolated by a

monoclonal antibody. Finally, four DARPins, two of each group

(eBo01 and eBo90 from group 1; eBo38 and eBo89 from group 2)

were selected for further experiments.

3.2. Affinity and binding specificity of DARPins
For further characterization, the selected DARPin clones were

produced in large amounts in bacteria and purified on metal

affinity columns by interaction with their His6-tag. The purity and

integrity of the proteins were confirmed by SDS PAGE and

Western blotting (Fig. S1). The affinities of the four clones, as

determined by surface plasmon resonance analysis were compa-

rable and in the low nanomolar range (1.36 61028, 4.27 61028,

2.5361028 and 3.1961028 for eBo01, eBo90, eBo38 and eBo89,

respectively; Table 1B). Based on these similarities we chose

DARPins eBo01 and eBo38, one member of each group, for

further experiments.

To investigate whether DARPins specifically recognized the

variable part of the monoclonal antibody Bo2C11, purified

DARPin proteins were tested against human IgG subclass

antibodies of non-relevant specificities and against the blocking

agent (Fig. 3A). DARPins eBo01 and eBo38 specifically bound to

Bo2C11, while no reaction to the IgG subclasses or the blocking

agent was observed. Binding of eBo01 to the target antibody was

in the same range as that of eBo38, confirming the results obtained

in surface plasmon resonance analysis. The signal of both

DARPins on IgG4 was slightly increased compared to the other

IgG subclass antibodies but did not exceed the background value

of uncoated, blocked wells. Together these data indicate that

DARPins eBo01 and eBo38 do not react with the constant region

of IgG subclass antibodies and are specific for the binding sites of

Bo2C11.

3.3. Generation and characterization of dimeric DARPins
We previously observed that linking two DARPins allowed to

efficiently immobilize DARPins on a solid phase without affecting

specificity (data not published) and also could cause an increase in

binding strength due to an avidity effect. DARPins eBo01 and

eBo38 were used to generate dimeric DARPin constructs with

both orientations, expressed in E.coli XL-1 Blue and purified from

extracts as described in Materials and Methods. The purity and

integrity of the proteins were confirmed by SDS PAGE and

Western blotting (Fig. S1).

Surface plasmon resonance analysis revealed that binding of the

dimeric DARPins was increased by approximately thousand-fold

over their monomeric equivalents, resulting in affinities in the low

picomolar range (Table 1C). Importantly, affinities of dimeric

DARPins to Bo2C11 were in the same range as the binding

strength between FVIII and Bo2C11 (Table 1A). The combination

eBo01-01 showed the lowest affinity to Bo2C11 and was left out

for further experiments. In contrast to others [22], we did not

observe an effect of the orientation of DARPins eBo01 and eBo38

on binding strength.

To verify the specificities of dimeric DARPins their binding to

Bo2C11 and different human IgG subclass antibodies was

analyzed by ELISA (Fig. 3). Both monomeric DARPins eBo01

and eBo38 (Fig. 3A) and dimeric DARPins eBo01-38 and eBo38-

38 (Fig. 3B) were tested at different concentrations on Bo2C11 and

human IgG subclass control antibodies. An increased binding to

Bo2C11 of both dimeric DARPins compared to monomeric

DARPins was observed, even when using about 40 times less

dimeric over monomeric proteins. No binding to any of the

human IgG subclass antibodies was observed. We did not observe

any difference in reactivity against Bo2C11 between the two

constructs, indicating that the increased binding is mainly due to

an avidity effect.

3.4. DARPins inhibit Bo2C11 binding to FVIII
To investigate whether the Bo2C11-specific (eBo) DARPins

recognize specifically the binding site of the monoclonal anti-FVIII

antibody Bo2C11, an inhibition ELISA was performed (Fig. 4). A

final concentration of 400 ng/ml or 2.66 nM, corresponding to

the EC50 value of Bo2C11, was incubated with different amounts

of dimeric eBo DARPins ranging in molar ratio from 1023 to 103.

The residual amount of Bo2C11 that bound to FVIII coated on

the solid phase was assessed. All three Bo2C11-specific DARPin

constructs inhibited the binding of Bo2C11 to FVIII in a dose-

dependent manner, whereas a dimeric DARPin of non-relevant

specificity did not have any effect. The highest inhibition of 89%

was observed with DARPin eBo38-38 using a thousand-fold molar

excess of DARPin over Bo2C11. Inhibition of the binding of

Bo2C11 to FVIII by eBo DARPins indicates that they are directed

against the antigen-binding site of Bo2C11.

3.5. Neutralization of inhibitory activity of Bo2C11
As antibody binding is required for the inhibition of FVIII

activity, we investigated whether the eBo DARPins could restore

the pro-coagulant activity of FVIII in presence of Bo2C11 using a

Bethesda Assay. Bo2C11 at a concentration of 450 ng/ml or
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3 nM, corresponding to a titer of 1 BU/ml in our system, was

mixed with different concentrations of the three dimeric DARPins

or a control DARPin, ranging in molar ratios from 1023 to 103

(Fig. 5). All Bo2C11-specific DARPins restored pro-coagulant

activity of FVIII in a dose-dependent manner, whereas a control

DARPin had no effect. A thousand-fold molar excess of Bo2C11-

specific DARPins resulted in an increase of FVIII activity to

99.7% in average (SD = 6.7%). The maximal effect was achieved

with the dimeric DARPin eBo38-38 in agreement with ELISA

binding data.

Together, these data indicate that anti-Bo2C11 DARPins

represent the epitope of Bo2C11.

3.6. Detection of Bo2C11-like antibodies in human
plasma

As we intend to use the eBo DARPins to describe the signature

of anti-FVIII antibodies, we tested their ability to detect Bo2C11

in human plasma using two different immunoassays. In the ELISA

assay, a plasma pool of healthy donors was spiked with different

concentrations of Bo2C11 (Fig. 6A). eBo01-38 as a representative

of the eBo DARPins was able to detect Bo2C11 in human plasma

in a dose-dependent manner, whereas no Bo2C11 binding to the

control DARPin was observed. The sensitivity of the assay was

calculated to be 33 ng/ml.

The binding specificity of eBo DARPins to Bo2C11 was

confirmed in a catching assay (Fig. 6B). eBo38-38 but not a control

DARPin was able to precipitate Bo2C11 spiked into human

standard plasma on a membrane coated with an anti-His6

antibody. eBo38-38 did not precipitate a human control IgG

spiked into the plasma at the same concentration, whereas the

DARPin specific for the control IgG did. We observed some

background of the plasma on the anti-His6 antibody, which was

independent of the presence of DARPins and could be interpreted

as anti-mouse IgG antibodies present in the plasma.

These data suggest that eBo DARPins might be used to detect

Bo2C11-like antibodies in human plasma samples and thus

DARPin binding patterns could be used to replace complex

antigens for the development of ELISA- or Luminex-based

diagnostic tools.

Discussion

FVIII inhibitors seriously complicate HA treatment and are

routinely detected using the Bethesda Assay. However, this assay

shows limited sensitivity and high inter-laboratory variation while

Figure 1. Screening of DARPin clones after third selection round. A) Crude extracts of 96 individual DARPin clones were tested for binding to
the target antibody, Bo2C11. Extracts were diluted 1:10 and binding of DARPins was revealed using a murine anti-His6 antibody and a peroxidase-
labeled anti-mouse IgG antibody. Clones 1–12 are shown in row A, clones 13–24 in row B and so on. Clones chosen for retesting are highlighted in
dark grey. B) Re-testing of positive clones. The highlighted clones depicted in Fig.1A were again tested on Bo2C11 (black bars), an isotype control
antibody (grey bars) and the blocking agent (white bars) diluted 1:10. DARPin binding was revealed with a murine anti-His6 antibody and a
horseradish-peroxidase labeled goat anti-mouse antibody.
doi:10.1371/journal.pone.0060688.g001

Figure 2. Sequence analysis of Bo2C11–specific DARPin clones. Plasmid DNA of positive clones was sequenced and aligned with the N2C
DARPin consensus sequence. In the consensus module position X allows any amino acid except Cys, Pro or Gly and Z can be either His, Asp or Tyr.
Based on the sequence homologies, DARPins were grouped to group 1({) or group 2 (#), respectively. Identical residues are displayed as dots.
doi:10.1371/journal.pone.0060688.g002
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being labor intensive [8]. In addition to inhibitory anti-FVIII

antibodies, non-inhibitory anti-FVIII antibodies are present in

human plasma that are detected in ELISA using recombinant

FVIII [6]. This assay, though, cannot distinguish between

inhibitory and non-inhibitory antibodies. Therefore we aim at

developing an ELISA assay based on artificial binding proteins

describing the antibody signatures of inhibitory anti-FVIII

antibodies. In a previous study we showed that DARPins can be

selected against the antigen-binding site of a murine anti-IgE

antibody [16]. Here, we show the proof-of-concept for FVIII

epitope mimicry with DARPins using the inhibitory human

monoclonal anti-FVIII antibody, Bo2C11.

DARPins selected against idiotypic determinants of Bo2C11 not

only prevented the binding of Bo2C11 to FVIII, but were also able

to neutralize its inhibitory activity in a functional test. Our

experiments show that DARPins can be used to mimic relevant

epitopes of an intricate antigen. Several approaches for epitope

mapping of anti-FVIII antibodies were already tested. Screening

of anti-FVIII antibody specificity on FVIII heavy and light chains

[23] does not allow to differentiate between inhibitory and non-

inhibitory anti-FVIII antibodies as no differences in domain

specificity was observed between the two antibody groups [24].

Random peptide libraries [11] or peptide sequences derived from

FVIII [25] were used to mimic the epitope of several human and

mouse monoclonal anti-FVIII antibodies. Although sequence

relevance is ensured when peptides are derived from FVIII, these

peptides might not represent relevant epitopes, as they are linear.

Additionally, discontinuous epitopes are lost with this approach

and new (non-relevant) epitopes might be generated from

sequences hidden in native FVIII. By using random peptide

libraries for epitope mimicry, Villard and coworkers were able to

avoid the generation of non-relevant and the loss of discontinuous

epitopes [11]. They found binders representing the epitope of

Bo2C11 in constrained libraries but not in linear peptide libraries,

indicating that a three-dimensional structure better mimics the

epitope of this antibody. The fact that the rigid backbone and the

flexible loops of DARPins can be involved in target binding

indicates that their potential to represent three-dimensional

Table 1. Affinities of DARPins and FVIII to Bo2C11.

Binder Type Designation ka [M21s21] kd [s21] KD [M]

A. Coagulation factor VIIIa FVIII 7.40 6 105 1.6 6 1024 1.4 6 10211

B. Monomeric DARPins

Group 1 eBo01 2.53 6 107 0.3457 1.36 6 1028

eBo90 1.33 6 106 0.0626 4.71 6 1028

Group 2 eBo89 1.28 6 107 0.4072 3.19 6 1028

eBo38 1.45 6 107 0.3694 2.53 6 1028

C. Dimeric DARPin constructs

eBo01-01 1.016 106 1.146 1024 1.13 6 10210

eBo38-38 1.99 6 106 6.65 6 1024 3.34 6 10212

eBo01-38 6.54 6 106 1.36 6 1024 2.07 6 10211

eBo38-01 6.49 6 106 2.01 6 1024 3.10 6 10211

aPublished values [9].
doi:10.1371/journal.pone.0060688.t001

Figure 3. Specificity analysis of selected DARPin clones by ELISA. Purified DARPin proteins were tested for binding to the human
monoclonal anti-FVIII antibody Bo2C11 (black bars), human IgG subclass antibodies of non-relevant specificity (IgG1 dark grey bars, IgG2 grey bars,
IgG3 light grey bars, IgG4 white bars) and the coating control (PBS containing 0.15% Casein) (striped bars) in ELISA. DARPin binding was revealed
using a monoclonal mouse antibody directed against the N-terminal RGS-His6-tag of DARPins and a horseradish-peroxidase-labeled goat anti-mouse
antibody. A) shows the binding of 150 nM of monomeric DARPins eBo01 and eBo38. B) shows the binding of 4 nM of dimeric DARPins eBo01-38 and
eBo38-38. As control in A) and B), PBS-C was incubated without DARPins on the human antibodies.
doi:10.1371/journal.pone.0060688.g003
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structures is increased over that of small peptides. The monomeric

DARPins were able to neutralize the binding of Bo2C11 to FVIII

comparable to the constrained peptides (data not shown), whereas

dimeric DARPins have an approximately hundred times higher

neutralizing activity. Both the peptides and DARPins do not show

any amino acid sequence identity with the part of C2 domain that

was shown to be involved in Bo2C11 binding (data not shown)

[26]. Therefore, it is possible that the DARPins mimic surface

properties of C2 without sequence homology, as was also

suggested for the constrained peptides.

The selected DARPins were able to detect Bo2C11 in human

plasma and therefore could be used to set up a new assay to screen

for Bo2C11-like antibodies in blood samples. To evaluate the

usefulness of the DARPins for such a diagnostic test we screened

for Bo2C11-like antibodies in 12 sera from HA patients with anti-

C2 antibodies. We did not find sera reacting stronger with eBo01-

38 compared to a control DARPin (data not shown). As we are

looking for one unique epitope reacting with the monoclonal anti-

FVIII inhibitor Bo2C11, it is likely that no Bo2C11-like antibodies

are present in this small cohort of HA patients analyzed. Another

possibility is that the sensitivity of the assay is too low to detect low

frequencies of Bo2C11-like antibodies in the samples. The assay

might be optimized in order to increase its sensitivity and therefore

the probability to identify low frequency antibodies.

In summary, we have described two DARPin clones that

recognize one dominant idiotypic determinant on Bo2C11. These

DARPins were able to compete with the cognate antigen of

Bo2C11, FVIII, for binding, suggesting that similar epitopes are

present on the DARPin and on FVIII. These data will allow us to

apply this method for the isolation of epitopes from polyclonal

anti-FVIII antibody mixtures thereby describing the anti-FVIII

antibody signatures of HA patients. These signatures will provide

insight into the molecular mechanisms of the antibody responses

against FVIII and will serve to generate an array-based assay for

the assessment of the reactivity patterns of anti-FVIII antibodies in

Figure 4. Bo2C11 binding to FVIII in presence of dimeric anti-FVIII antibody-specific DARPins. Inhibition of anti-FVIII antibody (Bo2C11)
binding was performed at the EC50 value of Bo2C11 on FVIII. 800 ng/ml Bo2C11 was mixed 1:1 with increasing concentrations of eBo01-38 (black
circles), eBo38-01 (black triangles), eBo38-38 (black squares) or a dimeric DARPin of non-relevant specificity (open circles). The mixtures were pre-
incubated at room temperature for 30 min and then added to FVIII-coated wells. The amount of Bo2C11 binding to FVIII was revealed with a
horseradish-peroxidase-labeled anti-human IgG antibody. The results were normalized to 800 ng/ml Bo2C11 mixed 1:1 with buffer on FVIII. Data
represent mean and standard deviation of duplicates. Shown is one representative of 3 individual experiments.
doi:10.1371/journal.pone.0060688.g004

Figure 5. Anti-Bo2C11 DARPins neutralize inhibitory activity of Bo2C11. Different concentrations of three dimeric DARPins recognizing the
monoclonal anti-FVIII antibody Bo2C11 (eBo01-38: closed circles; eBo38-01: closed triangles; eBo38-38: closed squares) or a dimeric control DARPin
(open circles) were mixed 1:1 with 6 nM of Bo2C1, added to human standard plasma and analyzed in the modified Bethesda assay. 3 nM of the
monoclonal anti-FVIII antibody Bo2C11 corresponded to 1 Bethesda Unit (BU) (dotted line). Values were normalized to standard plasma and
expressed as residual FVIII activity.
doi:10.1371/journal.pone.0060688.g005
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HA patients and such assay may provide a tool to distinguish

inhibitory from non-inhibitory anti-FVIII antibodies in the future.

Supporting Information

Figure S1 Purity and integrity of DARPins analyzed by SDS

PAGE and Westernblot. Monovalent and divalent DARPins used

in this study were loaded at 30pmoles per lane on a 12%

acrylamide gel. Proteins were stained with silver ions (A) or blotted

to a nitrocellulose membrane, stained with a murine anti-His6

antibody (Qiagen) followed by a peroxidase labeled anti-mouse

IgG antibody (Jackson ImmunoResearch) and developed with

chemiluminescence (B). 1, eBo01; 2, eBo38; 3, eBo89; 4, eBo90; 5,

eBo01-01, 6, eBo01-38; 7, eBo38-01; 8, eBo38-38. Staining of

eBo01-01 with silver ions bleached, the presence of protein was

confirmed with coomassie-staining (not shown). A small degree of

polymerization of both monomeric and dimeric DARPins is

observed, as is usually the case. Also some degradation is visible

and probably a small contamination of dimeric DARPins with

monomeric ones (lines 6–8).

(TIF)
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