
HAL Id: hal-01643555
https://hal.science/hal-01643555v1

Submitted on 21 Nov 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Anaerobic Digestion Alters Copper and Zinc Speciation
Samuel Legros, Clément Levard, Claire-Emmanuelle Marcato-Romain,

Maritxu Guiresse, Emmanuel Doelsch

To cite this version:
Samuel Legros, Clément Levard, Claire-Emmanuelle Marcato-Romain, Maritxu Guiresse, Emmanuel
Doelsch. Anaerobic Digestion Alters Copper and Zinc Speciation. Environmental Science and Tech-
nology, 2017, 51 (18), pp.10326-10334. �10.1021/acs.est.7b01662�. �hal-01643555�

https://hal.science/hal-01643555v1
https://hal.archives-ouvertes.fr


Open Archive TOULOUSE Archive Ouverte (OATAO) 
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible. 

This  is  an author-deposited version published in  :  http://oatao.univ-toulouse.fr/
Eprints ID : 18528

To  link  to  this  article :  DOI  :10.1021/acs.est.7b01662
URL : http://dx.doi.org/10.1021/acs.est.7b01662

To  cite  this  version :  Legros,  Samuel  and  Levard,  Clément  and
Marcato-Romain,  Claire-Emmanuelle  and  Guiresse,  Agnès  Maritchù
and Doelsch, Emmanuel Anaerobic Digestion Alters Copper and Zinc
Speciation. (2017) Environmental Science & Technology, vol. 51 (n°
18). pp. 10326-10334. ISSN 0013-936X 

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

http://oatao.univ-toulouse.fr/
http://dx.doi.org/10.1021/acs.est.7b01662
mailto:staff-oatao@listes-diff.inp-toulouse.fr


Anaerobic Digestion Alters Copper and Zinc Speciation
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ABSTRACT: Anaerobic digestion is a widely used organic waste
treatment process. However, little is known on how it could alter
the speciation of contaminants in organic waste. This study was
focused on determining the influence of anaerobic digestion on
the speciation of copper and zinc, two metals that generally occur
at high concentration in organic waste. Copper and zinc
speciation was investigated by X-ray absorption spectroscopy in
four different raw organic wastes (predigestion) and their
digested counterparts (postdigestion, i.e., digestates). The results
highlighted an increase in the digestates of the proportion of
amorphous or nanostructured copper sulfides as well as
amorphous or nanostructured zinc sulfides and zinc phosphate
as compared to raw waste. We therefore suggest that the
environmental fate of these elements would be different when spreading either digestates or raw waste on cropland.

1. INTRODUCTION

Waste production has risen 10-fold over the past century, and it
is predicted that by 2025 it will double again to reach 6 million
t/day.1 Solutions must therefore be found to deal with this
worsening situation. Organic waste (e.g., pig slurry, sewage
sludge, etc.) accounts for a significant share of global waste
production, and can be recycled via two main routes.
The first main route is agricultural recycling. Organic waste

(OW) has fertilizing properties (e.g., high N, P and K
concentration) and can be used as an alternative to chemical
fertilizers.2 However, high pollutant concentrations may also be
found in OW, including trace elements (e.g., copper (Cu) and
zinc (Zn)) that are particularly worrisome.3 OW amended soils
can have trace elements accumulated in their surface layers.4,5

The fate of trace elements in cropfield soils after OW
amendment is a key issue since their accumulation could
induce phytotoxicity and groundwater quality degradation.
Prediction of this fate could be enhanced by determining trace
element speciation in OW.6−9

The second main route is energy recovery. OW can undergo
anaerobic digestion (AD) to produce biogas (mainly composed
of methane) that can be used to generate electricity and heat.
AD has recently been receiving attention in a sustainable
development framework since the energy it produces is
renewable. Moreover, AD preserves N, P, and K, so digested
waste (i.e., digestates) can also be spread on cropland, like the

raw counterpart.10 However, during AD, organic substance
decomposition results in a decrease in OW total mass and a
relative increase in the trace element concentration.10 It is thus
essential to monitor the total trace element concentration in
digestates while, more importantly, identifying the chemical
forms in which trace elements occur, since these forms
determine their mobility, bioavailability, and ecotoxicity.11−13

Whether AD could induce some change in trace element
speciation is still a matter of debate in the literature. Only a few
studies have investigated changes in trace element speciation
following AD. Regarding Cu, two recent chemical extraction
studies demonstrated that AD has no effect on Cu speciation in
sewage sludge.14,15 For Zn, Dong et al.15 showed that AD has
no effect on Zn speciation in sewage sludge, while Dab̨rowska
et al.14 showed an increase in the proportion of the organic
matter/sulfide fraction. Marcato et al.16 combined sequential
extraction and biochemical fractionation and highlighted Cu
and Zn conversion into potentially less mobile fractions in
digested pig slurry compared to raw pig slurry. However, the
same authors also used a biological approach (Cu and Zn



uptake by Zea mays and Vicia faba) and found no differences
between digested and raw pig slurry.16

These inconsistencies in the findings of the different studies
could be attributed to chemical extraction shortcomings,
including incomplete dissolution of the target phase, and/or
dissolution of the nontarget species. In these studies, the
obtained fractions were dependent on the chosen extraction
procedure.17 Substantial uncertainties on the impact of AD on
trace element speciation in OW hence remain. In this study, we
assessed the impact of AD on Cu and Zn speciation in four
different OWs. X-ray absorption spectroscopy (XAS) was used
to compare Cu and Zn speciation in raw OW (predigestion)
and the digestate (post-AD). XAS is one of the most widely
known structural techniques for direct determination of
speciation of trace elements present in complex matrix, even
at low concentration. The accuracy of this approach has been
previously demonstrated for OWs.8,9,18

2. EXPERIMENTAL SECTION

2.1. Sample Collection and Preparation. Four wastes
were analyzed in the study, before and after anaerobic
digestion: pig slurry (PS), sewage sludge (SS), sewage sludge
mixed with green waste (SSGW) and municipal waste fine
fraction (MWFF).
PS has been described in Marcato et al.10 SS was collected in

an experimental municipal plant in the APESA technical
plateform (www.apesa.fr). MWFF was obtained by sieving (<10
mm) the biodegradable fraction of household waste collected in
southwestern France. Green waste, mainly composed of leaves
and grass clippings, was ground and sieved through a 10 mm
mesh sieve, then mixed with sewage sludge to produce SSGW.
AD of PS has been described in Marcato et al.10 Briefly, the

anaerobic reactor was run at mesophilic temperature (37 °C),
with a retention time of about 15 days. For the three other
wastes (SS, MWFF, and SSGW), three mesophilic (39 °C)
stirred tank reactors in the APESA technical plateform were
used. In each digester, the organic loading rate was maintained
at 1 g organic matter (OM) L−1·d−1, with a hydraulic retention
time of about 35 days. Eh was maintained lower than −300 mV,
and the pH was always within the 7.0−8.2 range.
Note that, throughout the manuscript, the abbreviations (PS,

SS, MWFF, and SSGW) refer to raw OW, whereas all
information related to the digestate are annotated with “D”
(e.g., PS_D for digested pig slurry).
2.2. Chemical Analysis. Total carbon (ISO 10694) and

total nitrogen (ISO 13878) were determined by dry

combustion with an elemental NC 2100 Soil Analyzer (Thermo
Electron Corp.) Inorganic carbon was measured in a Shimadzu
carbon analyzer and organic carbon was deduced from the
difference between total and inorganic carbon.
Ground and homogenized samples were digested using a

mixture of HF, HNO3 and HClO4 (ISO 14869-1:2001; Soil
quality−dissolution for determination of the total element
content). Major element and trace element concentrations were
determined using an inductively coupled plasma optical
emission spectrometer (ICP-OES Vista-PRO, Varian Inc.)
with an axially viewed plasma system and a charge coupled
device detector. Two kinds of checks were performed for each
element analysis using certified reference material (Reference
material No. 146R: Sewage sludge of industrial origin produced
by the Community Bureau of Reference, Commission of the
European Communities) with five repeat measurements of each
sample signal. The variation coefficient for both of these checks
had to be less than 5%. Internal control samples and CRM
samples (Certified Reference Materials from Bureau of
Analyzed Samples Ltd.) were used to improve the quality of
the results according to the ISO 9001 certification of the
laboratory (AFAQ, number QUAL/2000/13516b). The
measurement uncertainty was less than 10%.

2.3. X-ray Absorption Spectroscopy. Zinc K-edge (9659
eV) and Cu K-edge (8979 eV) X-ray absorption spectra were
recorded at the Stanford Synchrotron Radiation Lightsource
(SSRL) on beamline 11−2. X-ray absorption spectroscopy
(XAS) measurements were performed on the eight OWs (raw
wastes and digestates). Spectra acquisition was performed on
freeze-dried samples pressed into thin pellets at liquid nitrogen
temperature to prevent X-ray sample damage. Measurements
were carried out in fluorescence mode with a 100-element
solid-state Ge detector. Each scan was focused on a different
specimen position to reduce the risk of beam damage and
obtain representative spectra. The energy was calibrated using
Zn and Cu metallic foils (threshold energy taken at the zero-
crossing point of the second derivative spectrum). Each
spectrum was at least the average of three scans. The
normalization and data reduction were performed according
to standard methods19 using Athena software.20

There are two regions in a spectrum obtained with XAS: X-
ray absorption near edge structure spectroscopy (XANES) and
extended X-ray absorption fine structure spectroscopy
(EXAFS).
XANES spectra provide overall information on the oxidation

state, three-dimensional geometry, and coordination environ-

Table 1. Element Concentrations in Raw Waste and Digestates

Corg Ntot C/N P S Fe Cu Zn

%a % g/kg g/kg g/kg mg/kg mg/kg

pig slurry PS 39.9 4.71 8.47 43.9 5.72 2.84 664 553

PS_D 34.4 4.86 7.08 47.3 7.26 3.18 788 842

municipal waste fine fraction MWFF 35 1.53 22.9 3.84 3.83 8.77 84.8 369

MWFF_D 30 1.81 16.6 5.92 4.28 12.1 136 634

sewage sludge SS 41.8 7.91 5.28 26.1 0.61 6.07 350 668

SS_D 34.7 5.23 6.63 37.3 3.60 9.84 487 988

sewage sludge mix green waste SSGW 42.8 7.62 5.62 22.8 1.03 5.05 294 553

SSGW_D 34.7 5.5 6.31 40.1 3.56 10.4 501 842
aThe element concentrations are all expressed on a dry matter basis.



ment of elements under investigation. Here, XANES spectra
were used only for Cu. Indeed, Cu presents two oxidation
states (+I and + II) that could be identified with XANES
spectroscopy. The XANES spectra of Zn were not discriminant
in this study, presumably because Zn only has one oxidation
state. Therefore, the XANES results for Zn were not presented.
EXAFS provides information on the distance between the

target element and atomic neighbors, the number of atomic
neighbors, and the nature of atomic neighbors. This
information enables identification of the target element bearing
phases. EXAFS was thus used for Cu and Zn. The procedure
used in this study to fit the Zn and Cu EXAFS spectra of each
of the raw wastes and digestate samples has been described
previously.6 Briefly, this procedure is based on a combination of
principal component analysis (PCA), target transformation
(TT), and least-squares linear combination fitting (LCF).
Details on PCA, TT, and LCF results are given in the
Supporting Information (SI) (Part SI-2), in addition to the
complete Cu and Zn model compound library (Part SI-3).
Note that the LCF fitting uncertainty was estimated at 10%.21

3. RESULTS AND DISCUSSION

3.1. Anaerobic Digestion Influence on Element
Concentrations. The concentrations of selected major and
trace elements in raw waste and digestates are shown in Table
1.
Concerning organic carbon, all of the studied paired samples

(raw waste + digestate) showed the same pattern. The organic
carbon concentration was 14−20% lower after AD. This
indicated the conversion of organic carbon into biogas mostly
consisting of CO2 and CH4 and the reduction of the OM
content in the waste during digestion.

Concerning the total nitrogen concentration (Ntot), two
patterns were noted. First, in PS and MWFF, the Ntot
concentration increased by 3% and 18%, respectively, after AD,
inducing a decrease in the C/N ratio. Conversely, in SS and
SSGW, the Ntot concentration decreased by 34% and 28%,
respectively, after AD, increasing in the C/N ratio. SS and
SSGW had a high quickly mineralizable nitrogen content.
Concerning the major elements P, S, and Fe, all of the

studied wastes showed the same pattern. The concentration
was higher after digestion (NB: analysis findings for the other
major elements are presented in SI Table SI-1). The increase
ranged from 8% (for P in PS) to 490% (for S in SS). Note that
there were relative increases in these element concentrations.
Indeed, their total mass was preserved during the AD process,
while the total waste mass decreased. AD therefore preserved or
even improved the potential fertilizing value of the waste.
Concerning the trace elements Cu and Zn, all of the studied

wastes showed the same pattern. The Cu and Zn concen-
trations were higher after AD (NB: analysis findings for the
other trace elements are presented in SI Table SI-2). The
increase ranged from 19% (for Cu in PS) to 72% (for Zn in
MWFF). Similarly to the pattern noted for major elements, the
trace elements concentrations underwent relative increases,
thus highlighting the potential risk concerning trace elements in
digestates. Note, however, that Cu and Zn concentrations were
still below the threshold limits set in European environmental
protection legislation, particularly in soil when sewage sludge is
used in agriculture (86/278/EEC). Indeed, this limit is 1750
mg.kg−1 for Cu and 4000 mg.kg−1 for Zn. Besides, it is now
recognized that the total trace element concentration in waste is
not sufficient to properly assess the risk when used in
agriculture. Further information on their speciation is required.

Figure 1. Zinc K-edge extended X-ray absorption fine structure spectra (solid line) and their respective LCF fits (dashed lines) for (a) the raw wastes
and (b) digestates. The spectra of the references are shown for comparison.



3.2. Zinc Speciation in Raw Waste and Digestates. The
Zn K-edge EXAFS spectra of the raw wastes and their digested
counterparts are presented in Figure 1. The LCF results were
satisfactory for all samples, with low normalized sum-square
(NSS) values ranging from 1.53 to 3.38, and high recovery
ranging from 99% to 112% (details on the LCF results are
presented in the SI, Table SI-7).
The EXAFS spectra of four references were necessary to fit

the Zn K-edge EXAFS spectra of all the samples (Figure 1),
that is, Zn adsorbed on ferrihydrite, Zn phytate, nanosphalerite,
and Zn complexed to histidine (see SI Table SI-9 for further
details on the EXAFS structure of all of the Zn references used
in this study). The EXAFS spectrum corresponds to a local
chemical structure. Therefore, the interpretation of this
spectrum in an actual Zn bearing phase must be done with
caution, while taking into account the consistency of this
species with regard to the physicochemical properties of the
sample.
First, the reference Zn adsorbed on ferrihydrite was

interpreted as a more generic bearing phase, that is, Zn sorbed
on iron oxyhydroxide (Zn−FeOx). Indeed, the local structure
of Zn sorbed on ferrihydrite with ≈4 atoms of O at ≈1.97 Å
and ≈1−4 atoms of Zn/Fe at ≈3.4 Å22,23 was similar to that of
Zn sorbed on several iron oxyhydroxides. Besides, it has been
shown that Zn has a high sorption affinity for several iron
oxyhydroxides.22,23 Finally, the physicochemical conditions in a
pig slurry lagoon or a sewage treatment plant are favorable for
the precipitation of several iron oxyhydroxides.24 The use of Zn
sorbed on ferrihydrite as a model compound is therefore
environmentally relevant and representative of Zn sorbed on an
oxyhydroxide surface (Zn−FeOx).
The EXAFS spectrum of Zn phytate presented a local

structure with four oxygen atoms at 1.96 Å and one phosphorus
atom at 3.08 Å.25 This structure was very similar to that
observed when Zn was sorbed on phosphate minerals.26 The
physicochemical conditions in a pig slurry lagoon or a sewage
treatment plant are also favorable for the precipitation of
phosphate minerals,6 which have been identified as a Zn
bearing phase in OW27,28 The selection of this reference in
LCF was therefore interpreted as involving a Zn sorbed on
phosphate minerals (Zn-Ph).

The EXAFS spectrum of nanosphalerite (i.e sphalerite of
around 3 nm in size) presented a local structure with four S
atoms at 2.34 Å and ≈ six Zn atoms at 3.8 Å.29 This local
structure differed from that of the four bulk sphalerite S atoms
at 2.34 Å and 12 Zn atoms at 3.83 Å.6 Sphalerite nanoparticules
thus exhibited a high fraction of under-coordinated surface
atoms. The average neigbouring nanosphalerite Zn atoms was
lower than for bulk sphalerite, leading to a less structured
EXAFS spectrum (see SI Figure SI-6). The bulk sphalerite
spectrum was also used as a reference in the LCF fitting, but the
results obtained with nanosphalerite were consistently better.
Zn sulfides have already been observed in OW6,18 and were
found to be nanostructured only in sewage sludge29 and pig
slurry.9 Batch experiments in which the physicochemical
conditions were similar to those of OW suggested the
occurrence of a Zn sulfide nanoparticulate state. Indeed, Lau
et al.30 suggested that the high OM content of OW hinders Zn
sulfide crystal growth, which would lead to the formation of Zn
sulfide nanoparticles. The selection of this reference in LCF
was therefore interpreted as being due to the presence of a
nanoparticulate Zn sulfide bearing phase (nZnS). Besides, our
results showed that this Zn sulfide nanoparticulate state might
be common in OW.
The EXAFS spectrum of the reference Zn complexed to

histidine presents a square planar local structure with four N
atoms at 2.05−2.19 Å.31 This structure corresponds to the
interaction of Zn with natural OM functional groups.32 This
structure was thus interpreted as being Zn bound to OM (Zn−
OM).
Figure 2 presents the Zn distribution among the bearing

phases, adjusted to 100% for easier comparison. The Zn
speciation of PS included a majority of Zn−FeOx (64%) and
Zn−Ph (36%). The Zn speciation of MWFF included a
majority of Zn−FeOx (77%) and two minor species, that is,
nZnS (11%) and Zn−OM (12%). The Zn speciation of SS and
SSGW includes a majority of Zn−Ph (53−63%), a significant
proportion of Zn−FeOx (22−30%) and nZnS (7−25%).
Zn speciation was dominated by inorganic species in all

samples. The Zn−FeOx species was present in all wastes. Zn−
FeOx represented a high proportion in SS and SSGW (22−
30%) and was the major species in PS and MWFF (64−77%),
confirming the results of previous studies where Zn was always

Figure 2. Pie charts showing Zn speciation in raw organic waste (first line) and digestates (second line). Zn−FeOx = Zn sorbed on Fe oxyhydroxide,
Zn−Ph = Zn sorbed on phosphate, Zn−OM = Zn bound to organic matter, nZnS = nanoparticulate Zn sulfide.



partially associated with iron oxy-hydroxides in wastes.18,28,33

The Zn-Ph species was also present in all raw wastes except in
MWFF and it was the major species in SS and SSGW (53−

64%). The absence of Zn-Ph in MWFF was consistent with the
relatively low amount of total P measured in the sample
compared to the three others (Table 1). The nZnS species was

Figure 3. (a) Copper K-edge X-ray near edge structure spectra, and (b) their respective first derivative functions for all raw waste and digestates. The
reference spectra are shown for comparison. Cu(II)malic = Cu(II)malic, Cu(I)meth = Cu(I)methionine.

Figure 4. Copper K-edge extended X-ray absorption fine structure spectra (solid line) and their respective LCF fit (spheres) for (a) the raw wastes
and (b) digestates. The reference spectra are shown for comparison; Cu(II)galac = Cu(II)galacturonic acid and Cu(I)meth = Cu(I)methionine.



present in all raw wastes except in PS, but the proportion of this
species was relatively low (7−25%). It seemed that the role of
sulfide phases might have been markedly underestimated in Zn
speciation in OW. Indeed, Zn sulfide minerals have only been
observed in OW in the few studies using XAS.6,29 Standard
sequential chemical extraction methods underestimate the
sulfide fraction, since it is extracted along with OM fractions.34

Zn species bound to organic species were only present in a
minor proportion (12%) in MWFF, thus confirming the minor
role played by OM in Zn speciation in OW.
AD changed Zn speciation in all the wastes studied except for

SS (Figure 2). In PS_D, the proportion of Zn-Ph increased
sharply from 36% to 80%. The proportion of Zn sulfide had
increased in the other wastes. The proportion of Zn sulfide in
digestates was 1.2- to 6.3-fold higher than in raw waste. Indeed,
the anoxic conditions in the AD were favorable for Zn sulfide
precipitation. The amount of Zn sulfide in SS also increased
after AD, However, this increase was not significant regarding
the uncertainty of the LCF fitting (±10%).
Previous findings concerning the effect of AD on Zn

speciation were not consistent. On one hand, AD was shown
to have no effect on Zn speciation in sewage sludge,15 while on
the other chemical extractions revealed that AD induced an
increase of the proportion of the OM/sulfide fraction.14,16,35

Our results were in agreement with the latter studies, whereas
the analysis of the XAS results overcame the confusion between
organic matter species and sulfide species.
3.3. Copper Speciation in Raw Waste and Digestates.

The normalized Cu K-edge XANES spectra of all raw waste and
digestates are presented in Figure 3, with two reference
compounds for comparison: Cu(I) complexed to methionine
and Cu(II) complexed to malic acid.
Differences were noted among the near-edge spectra and

inflections in the absorption edge (A, B, and C) corresponding
to peaks in the first derivatives (Figure 3b). These inflections
provided information on the Cu oxidation state. Indeed,
Feature A, at 8981 eV, corresponds to the 1s → 4p transitions
for Cu(I) compounds. No Cu(II) reference had this inflection
point (or first maximum of the first derivative) between 8980
and 8985 eV.24

Consequently, the presence of a shoulder between 8980 and
8985 eV in the Cu absorption edge spectrum indicated the

presence of Cu(I) in the sample. Features B (8984 eV) and C
(8990 eV) correspond respectively to the 1s→ 4p and 1s →
continuum transitions for Cu(II) compounds.24,36 Features A,
B and C were observed on the spectra of all waste samples
studied, indicating that two Cu (Cu(I) and Cu(II)) oxidation
states were present in all the samples.
The Cu K-edge EXAFS spectra of the raw wastes and their

digested counterparts are presented in Figure 4. The LCF
results were satisfactory for all samples, with low NSS values
ranging from 1.10 to 3.96 and high recovery ranging from 87%
to 106% (details on the LCF results are presented in the SI,
Table SI-8).
For copper, the LCF results revealed the contribution of four

reference spectra: Cu(II)phtalocyanine, Cu(II)histidine, Cu-
(II)galacturonic acid and Cu(I)methionine (Figure 4). In the
Cu(II)phtalocyanine and Cu(II)histidine references, Cu
presented an oxidation state of 2, surrounded by four oxygen
and/or nitrogen atoms in square planar symmetry. In the
Cu(II)galacturonic acid reference, Cu presented an oxidation
state of 2 surrounded by six oxygen atoms in distorted
octahedral symmetry (see SI Table SI-10 for more details).
These two types of structure corresponds to the interaction of
Cu(II) with natural OM functional groups.37 Therefore, those
three references were pooled in “Cu(II)−OM”, representing a
pool of Cu with an oxidation state of 2 complexed to OM.
The last Cu(I)methionine reference corresponded to a pool

of Cu with an oxidation state of 1 bound to sulfur: “Cu(I)-S”.
This Cu(I)-S pool could correspond to two types of species.
First, Cu(I)-S would correspond to Cu complexation with thiol
(-SH) functional groups in the OM. Indeed, OW has a high
OM content by definition and the thiol functional group has
high affinity for Cu.38 Second, Cu(I)-S would correspond to Cu
sulfide precipitation.
Cu speciation has been extensively studied in soil. In oxidized

conditions, Cu(II)−OM is considered to be the dominant form
of Cu, while five- to six-membered oxygen ring chelates formed
by closely spaced carboxyl and hydroxyl groups were shown to
be the dominant form of Cu(II)−OM complexes. At low Cu-
to-C ratios (<0.005), nitrogen-containing functional groups are
likely also involved in Cu(II) complexation.39 In reducing
conditions, Cu(I)-S is the dominant form of Cu. In sulfide poor
environments, the OM thiol functional group is the dominant

Figure 5. Pie charts showing the speciation of Cu of raw organic waste (first line) and digestates (second line). Cu(II)−OM = Cu(II) bound to
organic matter and Cu(I)-S = Cu(I) bound to sulfur.



form of Cu(I)-S, whereas in sulfide rich environments, Cu(I)-
thiol complexation may be less relevant as inorganic sulfide is
assumed to compete with organic ligands.39

In this study, we found that the distribution among the
different Cu species observed in soil could be to some extent
applied to OW.
The pH and anoxic conditions and high sulfur concentration

of a pig slurry lagoon or a sewage treatment plant are favorable
for the precipitation of chalcocite (Cu2S).

24 However, the
EXAFS spectrum of chalcocite has also been used as a reference
in LCF fitting and was not selected. The EXAFS spectrum of
Cu(I)methionine is quite similar to that of chalcocite (see SI
Figure SI-1) and Cu sulfide has already been detected in pig
slurry24 and sewage sludge.27 Cu(I)-S could thus represent an
amorphous Cu sulfide phase with a disordered local structure
similar to that of Cu(I)methionine. This hypothesis has been
well documented in the literature, for instance Villa-Gomez et
al.40 suggested that the instantaneous reaction kinetics and low
Cu sulfide solubility over the entire pH range makes Cu sulfide
precipitation prevail over the formation of another Cu species,
while also leading to the formation of amorphous Cu sulfide
precipitates. The studies of Shea and Helz41 and Pattrick et al.42

also demonstrated the precipitation of amorphous Cu sulfide in
batch experiments at room temperature and in anaerobic
conditions. Besides, similar to nanoparticles of Zn sulfides, the
high OM content of OW could hinder chalcocite mineral
crystal growth and lead to the formation of nano or amorphous
Cu sulfide.
Figure 5 presents the Cu distribution among the bearing

phases, adjusted to 100% for easier comparison. Cu speciation
was similar in all of the raw waste samples studied. Cu(II)−OM
was the major species in all of the raw waste samples studied
(58−83%). The speciation of Cu in raw waste was thus
dominated by Cu(II) complexed to organic species. This was
consistent with previously published findings where OM was
considered to be the major (and often only) Cu bearing phase
in waste.16 Indeed, OW is mainly composed of OM and Cu is
known to have strong affinities for OM.16

However, Cu(I)-S was also detected in all of the raw wastes
studied at high proportions (17−42%). Like Zn, the role of
sulfide phases might have been markedly underestimated in the
Cu speciation in OW. Indeed, Cu sulfide has only been
observed in OW in the few studies that have been carried out
using XAS.24

AD altered Cu speciation in all of the wastes studied, with a
similar pattern. The proportion of Cu(I)-S increased to even
become the major species in SS_D and SSGW_D. The
proportion of Cu(I)-S in digestates was 1.2- to 1.7-fold higher
than in raw waste. This was consistent with the sharp decrease
in OM content during AD. Besides, the anoxic conditions in
AD were also favorable for the reduction of Cu and for Cu(I)
sulfide precipitation.24,43

Contradictory findings have been reported in the literature
concerning the influence of AD on Cu speciation due to
differences in the extraction methods used. Dabrowska and
Ronsiska14 and Dong et al.15 observed no influence, while
Marcato et al.16 observed a modification in Cu speciation. The
results presented here are in agreement with the data reported
by Marcato et al.,16 but contradict those of Dabrowska and
Ronsiska14 and Dong et al.15 Indeed, when using sequential
chemical extraction, the sulfide fraction is extracted together
with the organic matter fraction,44 so redistribution between
those two species is impossible to observe.

3.4. Environmental Implications. Cu and Zn speciation
in raw waste differs from that in the digestate. In raw waste,
speciation is largely dominated by oxidized species (e.g.,
Cu(II)−OM or Zn−FeOx) while in digestates other species
(e.g., Cu(I)-S, Zn-Ph or nZnS) also have a high proportion and
can even be the major species. Raw waste and digestates are
often spread on crop fields. Therefore, questions arise
concerning the behavior of their Cu and Zn bearing phases
at the soil surface after spreading.
Concerning Zn−FeOx, the sorption/desorption mechanisms

of Zn from waste-derived Fe oxyhydroxide in soil conditions
drive the Zn mobility and bioavailability.8 Desorption is favored
below pH 645 and the presence of OM increases the
desorption, likely because of chelating effects.11

Concerning nZnS, the oxidation and solubilizing mechanisms
of Zn sulfide species likely have a marked impact on Zn
mobility and bioavailability. Zn sulfide precipitates in anoxic
conditions, and its solubility is low, with solubility constants of
2 × 10−25.43 However, it has been shown that Zn sulfide can be
soluble under aerobic conditions within the pH 5−8 range,
which corresponds to the pH measured in many soils.46−48

Besides, Voegelin et al.49 showed that ZnS dissolved more
slowly in the acidic soils than in the near neutral and the
calcareous soil.
Concerning Cu(II)−OM, waste OM mineralization by soil

microorganisms has a substantial influence on Cu mobility and
bioavailability.8 The highest OM mineralization rate in soil is
obtained in wet aerobic conditions from 25 to 35 °C50 over the
entire pH range, but the rate gradually decreases below pH 6.51

Concerning Cu(I)-S, Cu mobility and bioavailability are
principally determined by the oxidation and solubilizing
mechanisms of Cu sulfide species. Chalcocite (Cu sulfide)
precipitates in anoxic conditions and its solubility constant (2.5
× 10−48) is very low.43 However, the reactivity and fate of Cu
sulfide in soil remains to be determined, but the pH and redox
conditions likely have an important role.52,53

Cu and Zn species in digestates seem to reduce the mobility
and bioavailability of Cu and Zn compared to Cu and Zn
species in raw waste. This suggests that AD could reduce the
risk associated with Cu and Zn. It should, however, be
underlined that kinetic effects and potential interactions
between soil compounds and OW were not taken into account
in the previously cited assessments of Cu and Zn species
solubility. Besides, Zn sulfides and Cu sulfides observed in this
study presented a disordered structure, indicating that they are
amorphous or they are nanostructured, which would have a
marked influence on their solubility. A more detailed study on
the solubility kinetics of amorphous and/or nanoparticulate Cu
and Zn sulfides in soil upon which OW has been spread is
needed in order to determine whether AD actually reduces the
trace element associated risk in OW spreading.
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Geoderma 2004, 122 (2−4), 195−203.
(47) Isaure, M.-P.; Manceau, A.; Geoffroy, N.; Laboudigue, A.;
Tamura, N.; Marcus, M. A. Zinc mobility and speciation in soil
covered by contaminated dredged sediment using micrometer-scale
and bulk-averaging X-ray fluorescence, absorption and diffraction
techniques. Geochim. Cosmochim. Acta 2005, 69 (5), 1173−1198.

(48) Stanton, M. R.; Gemery-Hill, P. A.; Shanks Iii, W. C.; Taylor, C.
D. Rates of zinc and trace metal release from dissolving sphalerite at
pH 2.0−4.0. Appl. Geochem. 2008, 23 (2), 136−147.
(49) Voegelin, A.; Jacquat, O.; Pfister, S.; Barmettler, K.; Scheinost,
A. C.; Kretzschmar, R. Time-dependent changes of zinc speciation in
four soils contaminated with zincite or sphalerite. Environ. Sci. Technol.
2011, 45 (1), 255−261.
(50) Stemmler, S. J.; Loyaux-Lawniczak, S.; Berthelin, J. Effet de la
teneur en eau d’un sol sur la red́uction bacteŕienne d’oxydes de fer. C.
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