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EVENT DATE MODEL: A ROBUST BAYESIAN TOOL FOR

CHRONOLOGY BUILDING

LANOS PHILIPPE AND PHILIPPE ANNE

Abstract. We propose a robust event date model aiming to estimate the date

of a target event by the combination of individual dates obtained from archae-
ological artifacts assumed to be contemporaneous. These dates are affected by

errors of different types: laboratory and calibration curve errors, irreducible

errors related to contaminations, taphonomic disturbances, etc, hence the pos-
sible presence of outliers. This modeling, based on a hierarchical Bayesian sta-

tistical approach, provides a very simple way to automatically penalize outly-

ing data without having to remove them from the dataset. Prior information
on the individual irreducible errors is introduced using a uniform shrinkage

density with minimal assumptions about Bayesian parameters. We show that
the event date model is more robust than models implemented in BCal or Ox-

Cal, although it generally yields less precise credibility intervals. The model

is extended in the case of stratigraphic sequences which involve several events
with temporal order constraints (relative dating), or with duration, hiatus con-

straints. Calculations are based on MCMC numerical techniques and can be

performed using the ChronoModel software which is freeware, open source and
cross-platform. Features of the software are presented in Vibet et al. (2016).

We finally compare our prior on event dates implemented in ChronoModel

with the prior in BCal and OxCal which involves supplementary parameters
defined as boundaries to phases or sequences.

Target event date model ; robust combination of dates ; prior information on

dates ; hierarchical Bayesian statistics ; individual errors ; outlier penalization ;
MCMC computation ; Chronomodel software

1. Introduction

Bayesian chronological modeling appears as an important issue in archeology
and palaeo-environmental sciences. This methodology has been developed since
the 1990s (Bayliss, 2009, 2015) and is now the method of choice especially for the
interpretation of radiocarbon dates. Most applications are undertaken using the
flexible software packages, BCal (Buck et al., 1999), Datelab (Nicholls and Jones,
2002) and OxCal (Bronk Ramsey, 1995, 1998, 2001, 2008, 2009a,b; Bronk Ramsey
et al., 2001, 2010; Bronk Ramsey and Lee, 2013).

All of these models provide an estimation of a chronology of dated events (DE),
the estimated dates correspond to the dates of events that are actually dated by
any chronometric technique. However calibrated radiocarbon dates and date es-
timates from other chronometric dating methods such as thermoluminescence, ar-
chaeomagnetism, dendrochronology, etc. can be combined with prior archeological
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information of various kinds to produce a combined chronology that should be more
reliable than its individual components.

We propose a new chronological Bayesian model based on the concept of target
event. This is related to the concepts of the dated event and the target event pro-
posed by Dean (1978). The target event (TE) is the event to which the date is to be
applied by the chronometrician. Usually, the target events are not directly related
to the dated events. According to Dean (1978), the dated event is contemporane-
ous with the target event when there is convergence (the two dates are coeval: DE
= TE) and when the date is relevant to the target event. “Relevance” refers to
the degree to which the date is applicable to the TE : it must be demonstrated or
argued on the basis of archaeological or other evidence. Because it is generally not
easy or possible to assure the relevance of the dated event to the target event date
of interest, it is recommended to get many dates of dated event , and if possible
from different dating techniques.

These dates can be outliers without having a means to determine if they are
dating anomalies. In other words, we do not have any convincing archaeological
arguments for rejecting them before modeling. This motivates the development of
a robust statistical model for combining theses dates in such a way that it is very
little sensitive to outliers (see Lanos and Philippe, 2017). .

The target event model is a statistical model introduced in (Lanos and Philippe,
2017) for estimating the date of an event called “target event” . This model allows
to combine in a robust way the dates of artifacts, which are assumed to be contem-
porary to this target event. To validate the robustness of this model to outliers,
we provide a comparison of our model with the t-type outlier model implemented
in Oxcal application. Numerical experiments also illustrate the sensibility to the
outliers.

The target event model is then integrated to a most global model for construct-
ing chronologies of target events. Prior information is brought upon the dates of
the target events. We show how the prior archeological information based on rela-
tive dating between the target events (in a stratigraphic sequence for instance) or
based on duration , hiatus or Terminus post quem (TPQ) or terminus ante quem
(TAQ), assessment can be included in the model. The simulations and application
illustrates the improvement brought in term of robustness. The proposed model is
implemented in ChronoModel software, whose features are described in Vibet et al.
(2016). This model can be compared with the standard chronological models when
the target event is associated to only one dated event. However the interest of our
approach is to get a robust estimation of the date of target event even if the dated
events embeded dated events are outliers. We compare in the simulation part this
approach with an outlier model based using discrete mixture distributions.

Many issues in archaeology raise the problem of phasing, that is how to charac-
terize the beginning, the end and the duration of a given period. This question can
be viewed as a post processing of the chronological model as for instance in Philippe
and Vibet (2017a); Guérin et al. (2017). It is also possible to include additional
parameters to characterise the phases. This requires the construction of a prior
distribution on the dates of dated events, which belong to the phase. This point is
discussed in this paper, we analyse the choice of model implemented in Oxcal appli-
cation. We get an explicit form for the prior distribution of the dates, and we show
that this probability distribution behaves in the same way as the dates included in
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a target event in the sense that we observe a concentration of the dates belonging
to the phase. Our result also shows the difficulty to construct appropriate prior on
a sequence of dates.

The paper is organised as follows : In Section 2 we recall the construction of
the target event model and we provide a theoretical comparison with the t-outlier
model. In Section 3 we propose a new Bayesian model to estimate dates of target
event. In Section 4, we analyse the Bayesian modelling of phases implemented in
Oxcal application, and we compare this model with the target event model. In
Sections 5 - 6 we apply our models to simulated and real datasets.

2. A robust combination of dates : the target event date model

We propose a statistical Bayesian approach for combining dates, which is based
on a robust statistical model. This combination of dates is aiming to date a called
“target” event defined on the basis of archaeological/historical arguments.

2.1. Description of the Bayesian model. We propose to use a hierarchical
Bayesian model to estimate the date θ of a target event Et. It combines dates
ti (i = 1, ..., n) of dated events Ed in such a way that it is robust to outliers.
This model is based on very few assumptions and does not need to tune hyper-
parameters. It is described as follows.

The event dates ti are estimated from n independent measurements (observa-
tions, also called determinations in Buck’s terminology) Mi yielded by the different
chronometric techniques. Each measurement Mi, obtained from a specific dating
technique, can be related to an individual date ti through a calibration curve gi
and its error σgi (see Section 2 in Lanos and Philippe, 2017). Here this curve is
supposedly known with some known uncertainty.

At this step, the random effect model can be written as follows:

Mi = µi + siεi, ∀ i = 1, ..., n

µi = gi(ti) + σgi(ti)ρi(1)

where (ε1, ...εn, ρ1, ..., ρn) are independent and identically Gaussian distributed ran-
dom variables with zero mean and variance 1, and where :

• siεi represents the experimental error provided by the laboratory.
• σgi(ti)ρi represents the error provided by the calibration curve.

We assume that the experimental error provided by the laboratory are inde-
pendent. Dependence structure could be added between the (siεi)i=1,...,n in order
to take into account the systematic error associated to the dating techniques of
each laboratory (see Combs and Philippe (2017) in the particular case of the opti-
cally stimulated luminescence dating). However the construction of such a model
requires additional information depending on each dating method and each labo-
ratory, which is not available in most of the application of chronological models.

Remark 1. If we assume that all the measurements can be calibrated with a com-
mon calibration curve (i.e. gi = g for all i = 1, ..., n), for example when the same
object is analyzed by different laboratories, the measurements can be combined ac-
cording to the R-combine model (Bronk Ramsey, 2009b) before being incorporated
in the event date model. This model can be viewed as a degenerated version of the
target event model by taking σi = 0 for all i. On the contrary, if several calibration
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curves are involved, the R-combine model is no longer valid and chronometric dates
are directly incorporated in the event date model.

The target event date θ is estimated from the dated events ti. The main assump-
tion we make is the contemporaneity (relevance and convergence, following Dean
(1978)), of the dates ti with the event date θ. However, because of error sources of
unknown origin, it can exist an “over-dispersion” or dating anomalies of the dates
with respect to θ. These errors can come from the way of ensuring that the samples
studied can realistically provide results for the events that we wish to character-
ize, the care in sampling in the field, the care in sample handling, preparation and
measure in the laboratory, or other non-controllable random factors that can ap-
pear during the process (Christen, 1994). This over-dispersion is also similar to the
irreducible error described in (Niu et al., 2013) in the framework of radiocarbon
calibration curve building.

Consequently, we model the over-dispersion by an individual error σi according
to the following random effect model:

(2) ti = θ + σiλi

where (λ1, ..., λn) are independent and identically Gaussian distributed random
variables with zero mean and variance 1. The individual error σi measures the
degree of disagreement which can exist between a date (Ed) and its target event
date (Et). It will be a posteriori small when the dates (Ed) are consistent with the
target date θ and high when the date ti is far from the target date θ. Consequently,
the posterior distribution of the individual error σi will give some information about
the “outlying” state of a date with respect to the target date.

Finally, the joint distribution of the probabilistic model can be written according
to a Bayesian hierarchical structure:
(3)

p(M1, ...,Mn, µ1, ..., µn, t1, ..., tn, σ
2
1 , ..., σ

2
n, θ) = p(θ)

n∏
i=1

p(Mi|µi)p(µi|ti)p(ti|σ2
i , θ)p(σ

2
i ),

where the conditional distributions that appear in the decomposition are given
by:

Mi|µi ∼ N (µi, s
2
i ),

µi|ti ∼ N (gi(ti), σ
2
gi(ti)),

ti|σ2
i , θ ∼ N (θ, σ2

i ),

σ2
i ∼ Shrink(s2

0).(4)

The parameter of interest θ is assumed to be uniformly distributed on an interval
T = [Ta, Tb]

(5) θ ∼ Uniform(T ).

This interval, called “study period”, is fixed by the user based on historical or
archeological evidences. This appears as an important a priori temporal informa-
tion. Note that we do not assume that the same information is imparted to the
dates ti. Consequently their support is the set of real numbers R.
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The uniform shrinkage distribution for the variance σ2
i , denoted Shrink(s2

0),
admits as density

(6) p(σ2
i ) =

s2
0

(s2
0 + σ2

i )2
1[0,∞](σ

2
i ),

where 1A(x) is the indicator function (= 1 if x ∈ A,= 0 if x /∈ A) and where the
parameter s2

0 must be fixed.
The motivation for this choice of prior is described in detail in (Lanos and

Philippe, 2017). Parameter s2
0 quantifies the magnitude of error on the measure-

ments. It is estimated according to the following process:

(1) An individual calibration step is done for each measurement Mi, i = 1, ..., n.
It consists of the simple model

Mi|ti ∼ N (gi(ti), s
2
i + σ2

gi(ti)),

ti ∼ Uniform(T ).

using the same notation as (4) and (5). For each i,
(a) Sample from the posterior distribution of ti given Mi

(7) p(ti|Mi) ∝
1

Si
exp

(
−1

2S2
i

(Mi − gi(ti))2

)
1T (ti),

where S2
i = s2

i + σ2
gi(ti)

(b) Approximate the posterior variance var(ti|Mi) by its Monte Carlo ap-
proximation denoted w2

i .
(2) Take as shrinkage parameter s2

0:

1

s2
0

=
1

n

n∑
i=1

1

w2
i

.

Remark 2. The calibration curve gi in radiocarbon or in archaeomagnetic dating
is always defined on a bounded support [Tm, TM ]. Therefore an extension of gi on
R is required to well defined the conditional distribution of ti in (4).

We suggest to extend the calibration curve by an arbitrary constant value with a
very large variance with respect to the known reference curve: for instance

gi(t) = (gi(Tm) + gi(TM ))/2

and

σ2
gi = 106

(
sup

t∈[Tm;TM ]

(gi(t))− inf
t∈[Tm;TM ]

(gi(t))

)2

In the case of TL/OSL or Gauss measurements, there is no need for an extension
because gi(t) is defined whatever t in R.

This statistical approach does not model the outliers, i.e. we do not estimate
the posterior probability that a date is an outlier. Outlier modeling (See section
2.2 for such an approach) can provide more accurate results, but it often requires
two (maybe more) estimations of the model: the outliers are identified after a first
estimation and thus discarded from the dataset. Then the final model is estimated
again from the new dataset (however, the question remains to know when to stop,
because new outliers can appear during the subsequent runs). The event model
which is based on the choice of robustness, avoids this two-step procedure.
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2.2. Comparison with alternative outlier event models. Several outlier mod-
els have been implemented since the 90’s, in the framework of radiocarbon dating.
So we can distinguish between mainly three outlier modelings:

(1) Outlier model with respect to the measurement parameter (Christen, 1994;
Buck et al., 2003).

(2) Outlier model with respect to the laboratory variance parameter (Christen
and Pérez, 2009).

(3) Outlier model with respect to the time parameter. This corresponds to the
t-type outlier model (Bronk Ramsey, 2009b)

The t-type outlier model can be compared to the event model, by considering
that the date parameter t directly coincides with our target event date parameter
θ. It means that the hierarchical level between t and θ does no longer exist in the
t-type outlier model. Hence the observed measurement will be noted Mj instead
of Mi, the true unknown measurement noted µj instead of µi and a date noted tj
instead of ti in order to avoid any confusion with index i used for chronometric
dates (dated events) in the target event date model.

The model with random effect becomes :

Mj = µj + sjεj ,

µj = gj(tj + δjφj10u) + σgj (tj + δjφj10u)ρj(8)

where

• (ε1, ...εr, ρ1, ..., ρr) are independent and identically Gaussian distributed
random variables with zero mean and variance 1.
• sjεj represents the experimental error provided by the laboratory and
σgj (tj + δjφj10u)ρj the calibration error.
• the prior on φj is the Bernoulli distribution with parameter pj . A priori,
φj takes the value 1 if the measurement requires a shift and 0 otherwise. In
practice pj must be chosen and the recommended values are 0.1 in Christen
(1994); Buck et al. (2003) or 0.05 in Bronk Ramsey (2009b).
• δj corresponds to the shift on the measurement Mj if it is detected as an

outlier.
• u is a scale parameter to offset δj . Parameter u can be fixed (for instance

0) or prior distributed as Uniform([0,4])

When parameter u is fixed, the joint distribution of the probabilistic model for
r dates tj (j = 1, ..., r) can be written in the form:

(9) p(M,µ, t, δ, φ) =

r∏
j=1

p(Mj |µj)p(µj |tj , δj , φj)p(tj)p(δj)p(φj),

where the conditional distributions that appear in the decomposition are given by:

Mj |µj ∼ N (µj , s
2
j )

µj |tj ∼ N (gj(tj + δjφj), σ
2
gj(tj + δjφj))

tj ∼ Uniform([Ta, Tb])

δj ∼ N (0, σ2
δ ) or ∼ T (ν) : Student’s t- distribution with ν degrees of freedom

φj ∼ Bernoulli(pj)
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This modeling can be compared to the event date model if we consider several
dates nested in the Oxcal function “Combine” with t-type outlier model. The dates
tj (j = 1, ..., r) then becomes a common date t. Consequently, (9) is transformed
into:

(10) p(M,µ, t, δ, φ) ∝ p(t)
r∏
j=1

p(Mj |µj)p(µj |t, δj , φj)p(δj)p(φj),

If we consider linear calibration curves with constant errors, that is, by setting:

• gj(t) = t
• σgj (t) = σg,

and knowing that

• δj ∼ N (0, σ2
δ )

• φj ∼ Bernoulli(p),

it is possible to analytically integrate (10) with respect to δj , φj , and µj . The
posterior probability density of t is then given by:

(11) p(t|M) ∝ p(t)
r∏
j=1

p(Mj |t),

where the conditional distribution of Mj given t is a finite mixture distribution
defined by
(12)

p(Mj |t) = p
1

√
2π
√
s2
j + σ2

g + σ2
δ

e

−(Mj−t)
2

2(s2
j
+σ2g+σ

2
δ
) + (1− p) 1√

s2
j + σ2

g

√
2π
e

−(Mj−t)
2

−2(s2
j
+σ2g) .

Note that the outlier model operates well as a model averaging thanks to the
structure of mixture distribution in (12).

On the other hand, posterior density of event date θ = t deduced from (3) can
be compared to density of time t in (11) after integration with respect to µi = µj
and σ2

i = σ2
j . The posterior probability density of θ is given by:

(13) p(θ|M) ∝ p(θ)
r∏
j=1

p(Mj |θ),

where

(14) p(Mj |θ) =

∫ ∞
0

1√
2π(s2

j + σ2
g + σ2

j )
e

1

−2(s2
j
+σ2g+σ

2
j
)
(Mj−θ)2 s2

0j

(s2
0j + σ2

j )2
dσ2

j

A graphical representation of the densities defined in (12) and (14) are shown in
Figure 1 with the following parameter values: sj = 30 , σg = 10, σδ = 102 and θ =
t = 1000. The density (12) is plotted for three different values p = 0.01, 0.05, 0.10
. We can observe that shrinkage modeling in (14) leads to a more diffuse density
making it possible to better take into account the possible presence of outliers.
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Figure 1. Graphical representation of the densities defined in (12)
and (14) with the following parameter values: sj = 30 , σg = 10,
σδ = 102 and θ = t = 1000

3. Prior information on groups of target event dates

We now consider a group of dates θj (j = 1, ..., r) of target events which belong
either to a “stratigraphic phase defined as a group of ordered contexts, or to a
“chronological phase defined as a set of contexts build on the basis of archaeolog-
ical, architectural, geological, environmental,...criteria. In practice, a ”context” is
defined by the nature of the stratification at a site, and the excavation approach
used by the archaeologist. Together, these two determine the smallest units of
space and time -the context- that can be identified in the stratigraphic record at
an archaeological site. Because the term “phase” is also used to describe Bayesian
chronological models, Dye and Buck (2015) use the term “stratigraphic phase to
refer to a group of ordered contexts, and the term “chronological phase to refer to
a time period in a chronological model.

The concept of phase is currently implemented in chronological modeling by
using a specific parametrization which will be discussed in details in Section 4.
Hereafter, we extend the target event date model in a simple way to the case of a
group of dates related to each other by order or duration relationships. Hence we
propose to estimate the beginning, the end and the duration of a phase directly
from the group of target dates, without adding any supplementary parametrization.

3.1. Characterization of a group of target event dates. We consider a collec-
tion of r event dates denoted θj with j = 1, ..., r. For each event date θj , we suppose
that nj measurements denoted Mj = (Mj1, . . . ,Mjnj ) charactering the event are
observed. We assume the independence of the measurements conditionnally to the
event dates (θ1, ..., θr)

p(M1, . . . ,Mr, θ1, ..., θr) = p(θ1, ..., θr)

r∏
j=1

p(Mj |θj)

where p(Mj |θj) is the conditionnal distribution of Mj given θj in the hierarchical
model defined in (3). The Bayesian model is summarized by Figure 2.
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When there is no supplementary information, we assumed that the dates θj are
independent and uniformly distributed on the time interval (study period) T =
[Ta, Tb]. We remind that this interval is fixed by the user based on historical or
archeological evidences. Consequently, the prior on vector θ is such that:

(15) p(θ1, ..., θr) =
1

(Tb − Ta)r

r∏
j=1

1T (θj)

The overall Bayesian model is described in Figure 2 using a directed acyclic
graph (DAG). Such a graph describes the dependencies in the joint distribution of
the probabilistic model. Each random variable of the model (that is an observa-
tion or a parameter) appears as a node in the graph. Any node is conditionally
independent of its non-descendants given its parents. The circles correspond to all
the random variables of the model. With the color of the circles, we distinguish
between observations (red), parameters (blue) and exogenous variables (green).

j = 1 to r

i = 1 to nj

θj

tji

µji

Mji

σ2
ji

s2
ji

Figure 2. DAG for the hierarchical model of a group of event dates.

Almost always we do not know how a group of event dates can a priori be
distributed in a phase. It means that, in our approach, a phase does not respond to
a statistical model. From a chronological point of view, all the information is carried
by the target event dates themselves. Consequently, we estimate the beginning and
the end of a phase as a measurable application of the parameters θj (j = 1, ..., r).
Thus the beginning of a phase is estimated by the minimum θ(1) of the r event
dates included in the phase

(16) θ(1) = min(θj , j = 1, . . . , r).

In the same way, the end of a phase is estimated by the maximum θ(r) of the r
event dates included in the phase:

(17) θ(r) = max(θj , j = 1, . . . , r).
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By the plug-in principle, we estimate the duration of the phase by

(18) τ = θ(r) − θ(1)

Considering two phases Pk = {θk,1, ..., θk,rk}, k = 1, 2, the hiatus between P1

and P2 is the time gap between the end of P1 and the beginning P2. The hiatus is
estimated by :

(19) γ = max(θ2,(1) − θ1,(r1) , 0)

where θ2,(1) = min(θ2,1, ..., θ2,r2) and where θ1,(r1) = max(θ1,1, ..., θ1,r1). Note that
the estimate γ takes the value 0 if θ1,(r1) ≤ θ2,(1), that corresponds to the absence
of hiatus. The conditional distributions of the parameters θ(1), θ(r), γ and τ given
the observations can be easily derived from the joint posterior distributions of the
event dates.

Remark 3. Let us remind that these parameters are estimated knowing the data,
that is to say from the target event dates which are available in the phase of interest.
In particular, a good estimation of the beginning (resp. the end) of a phase requires
that the archaeologist has sampled artifacts belonging to target events which are very
near to this beginning (resp. this end).

These estimates are valid whatever the prior on the event dates are. Precision on
the estimation of these parameters can be gained if it is possible to add supplemen-
tary information on the target event dates within the study period T . For instance
some temporal orders induce some restrictions on the support of the distribution.

Different prior on dates θj can be defined according to the following circum-
stances:

• Relative dating based on stratigraphy as defined in Harris (1989) and De-
sachy (2005, 2008), can imply antero-posteriority relationships between tar-
get dates θj . This can also imply antero-posteriority relationships between
groups of dates θj , these groups defining different phases.

• We can have some prior information about the maximal duration of a group
of target events.

• We can also have some prior information about the minimal temporal hiatus
between two groups of target events.

It has been demonstrated that these types of supplementary prior information
can significantly improve chronometric dates (see initial works of Naylor and Smith
(1988); Buck et al. (1991, 1992, 1994, 1996) and Christen (1994)). In the next
three subsections, we discuss each of these prior information in the framework of
the target event date model. Our modeling approach is very soft thanks to the
fact that all the relationships operate directly onto the target event dates θj . As a
consequence, in a global modeling project, different phasing systems (multiphasing)
can be defined on the basis of different criteria and so a phasing system can intersect
an other phasing system: for example a ceramic phasing can intersect a lithic
phasing in the sense that some target events can belong to two or several phases.
Such a constraints network, when available, can significantly contribute to improve
the precision of the estimates.

3.2. Prior information on temporal order. Target events or phases (groups)
of target events can have to check order relationships. This order can be defined in
different ways: by the stratigraphic relationship (physical relationship observed in
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the field) or by stylistic, technical, architectural,... criteria which may be a priori
known. Thus, the constraint of succession is equivalent to a hiatus of unknown
amplitude put between event dates or groups (phases) of event dates.

If we consider a stratigraphic sequence composed of target events, the prior on
vector θ becomes:

(20) p(θ1, ..., θr) ∝
1

(Tb − Ta)r
1C(θ1, ..., θr)

with C = S ∩ T r and

• T r = [Ta, Tb]
r the support which defines the study period,

• S = the group of r-uplets event dates θj which respect total or partial order
relationships.

We can also consider two groups of target events, Pk = {θk,1, ..., θk,rk}, k = 1, 2,
containing rk event dates such that all the dates of P1 are before all the dates of
P2. The following equations should be verified by all the events included in both
phases.

∀j ∈ {1, ..., r1}, ∀l ∈ {1, ..., r2}, θ1,j < θ2,l

or
max(θ1,j , j = 1, . . . , r1) < min(θ2,l, l = 1, . . . , r2)

or

(21) min(θ2,l, l = 1, . . . , r2)−max(θ1,j , j = 1, . . . , r1) > 0

The r-uplets event dates θj will then have to check total or partial stratigraphic
constraints and also to satisfy the inequality (21) between event dates of the two
phases. We can see that a succession constraint between phases operates in the
same mathematical way as for a set of stratigraphic constraints put between all the
individual target events.

Remark 4. Estimating the date of a target event needs to incorporate several dates
(Ed), otherwise the event date modeling will not yield a better posterior information.
However, it is possible to nest only one date per target event provided that the group
of events is constrained by temporal order.

It is not rare to encounter dating results which contradict the stratigraphic order:
one speaks of “stratigraphic inversion”. This situation often occurs when some
artifact movements are provoked for example by bioturbations or establishment
of backfill soils. The target event date model makes it possible to manage such
situations thanks to the individual variances σ2

i which automatically penalize the
dates that are inconsistent with the stratigraphic order. This is illustrated in Section
5.2.

3.3. Prior information about the duration. Prior information can be included
on the duration of a phase, that is on a group of target events. We can impose a
maximal duration τ0. This means that all the event dates θj (j = 1, ..., r) in the
phase have to verify the constraint of duration according to the following equation:

(22) max(θj , j = 1, . . . , r)−min(θj , j = 1, . . . , r) ≤ τ0
The r-uplets event dates θj will have to check total or partial stratigraphic con-

straints and also to satisfy the inequality 22 between event dates in the phase. This
means that any r-uplet θj sampled during the MCMC process has a duration of at
the most τ0.
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3.4. Prior information about the amplitude of a hiatus. Prior information
about a hiatus γ between two phases Pk = {θk,1, ..., θk,rk}, k = 1, 2, may be avail-
able. Hence we can impose that the amplitude of the hiatus is higher than a known
value γ0 > 0. All the event dates of phase P1 and phase P2 have to verify the
following constraint :

(23) min(θ2,l, l = 1, ..., r2)−max(θ1j , j = 1, ..., r1) ≥ γ0

The event dates will have to check total or partial stratigraphic constraints and
also to satisfy the inequality (23). This means that any r-uplet θ1,j from phase
P1 and sampled during the MCMC process is separated by a time span of at least
γ0 from the r-uplet θ2,l of the next phase. Note that it is obviously not possible
to impose a hiatus between two phases when a same event belongs to these two
phases.

3.5. Prior information about known event dates: the bounds. Bounds,
such as historical dates, Terminus post quem (TPQ) or terminus ante quem (TAQ),
may also be introduced in order to constrain one or several event dates θj . If we
consider a set of r events assumed to happen after a special event with true calendar
date B such that

B < (θ1, ..., θr)

This condition must be included in the set of constraints that define the support of
the prior distribution of the event dates.

The bound can be also defined with an uncertainty, i.e. B ∈ [Ba, Bb] ⊂ [Ta, Tb],
and so it is included in the set of the parameters. The prior density of the event
dates can then be written as:

p(θ1, ..., θr, B) = p(θ1, ..., θr|B)p(B)

where

p(θ1, ..., θr|B) =
1

(Tb −B)r

r∏
j=1

1[B,Tb](θj)

and

p(B) =
1

Bb −Ba
1[Ba,Bb](B)

It is important to note that the introduction of bounds B in a global model
composed of groups (phases) of event dates must remain consistent with other
constraints of temporal order, of duration or of hiatus described in previous sections.

4. Discussion on date prior probabilities

In this section we discuss the question of the specification of the prior on the
event dates θj . When there is no supplementary information, it may seem natural
to assume that the dates θj are independent and uniformly distributed on the time
interval (study period) T = [Ta, Tb]. However, from an archaeological point of view,
it may seem more natural to assert that the span ∆ = max(θj) − min(θj) has a
uniform prior distribution We can see that this assumption is not checked when
starting from the prior density (15). After an appropriate change of variable and
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letting R = Tb − Ta, we can determine the density of the span according to the
number of dates r and regardless their order:

(24) p(∆) =
r(r − 1)

Rr
(R−∆)∆r−2

A span of 2∆ is favoured over a span of ∆ by a factor of about ∆r−2 when ∆� R
(spreading tendency when r becomes large). This behavior occurs regardless of the
order between dates.

Naylor and Smith (1988); Buck et al. (1992); Christen (1994); Buck et al. (1996);
Nicholls and Jones (2002) propose a specific phase modeling which aims to avoid
this spreading bias. We study the properties of this modeling implemented in BCal
and OxCal software. The Naylor-Smith-Buck-Christen (NSBC) prior is defined for
a group of event dates which are placed between two additional hyperparameters
α and β in the Bayesian hierarchical structure. These hyperparameters α and β
represent boundaries where α is the beginning and β the end of the group of events
called Phase. The dates θj are assumed to be independent conditionally to these
two boundaries. Then, the prior density on vector θ becomes:

(25) p(θ1, . . . , θr|α, β) =
1

(β − α)r
1[α,β]r (θ1, . . . , θr)

In the absence of supplementary information, a non informative prior density is
assigned to α and β :

(26) p(α, β) =
2

(Tb − Ta)2
.1P (α, β)

with P = {(α, β) | Ta ≤ α ≤ β ≤ Tb}. The pairs (α, β) are uniformly distributed
on the triangle P .

From these hypotheses, it is possible to calculate the prior joint probability
density of the event dates (θ1 . . . θr). This is carried out by integration against α
and β between the two limits Ta and Tb. For 2 (ordered or non ordered) event dates
θ1, θ2, we obtain:

p(θ1, θ2) =

∫
p(θ1, θ2|α, β).p(α, β) dαdβ

=

∫
1

(β − α)2
.1[α,β](θ1).1[α,β](θ2)

2

(Tb − Ta)2
.1[Ta≤α≤β≤Tb](α, β).dαdβ

=
2

(Tb − Ta)2

∫ min(θ1,θ2)

Ta

∫ Tb

max(θ1,θ2)

1

(β − α)2
dβ dα

=
2

(Tb − Ta)2

∫ min(θ1,θ2)

Ta

[
1

(max(θ1, θ2)− α)
− 1

(Tb − α)
] dα

Finally, we have:

(27) p(θ1, θ2) =
4

(Tb − Ta)2
(− ln(max(θ1, θ2)−min(θ1, θ2)) + ln(Tb −min(θ1, θ2))

+ ln(max(θ1, θ2)− Ta)− ln(Tb − Ta))1[Ta,Tb]2(θ1, θ2)
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The joint probability density for r (ordered or non ordered) event dates (θj , j = 1, . . . , r)
with r ≥ 3, is obtained by following the same integration process:

(28) p(θ1, ..., θr) =
2 r!

(r − 1)(r − 2)(Tb − Ta)2

(
1

[θ(r) − θ(1)]r−2

− 1

[Tb − θ(1)]r−2
− 1

[θ(r) − Ta]r−2
+

1

[Tb − Ta]r−2

)
1[Ta,Tb]2(θ(1), θ(r))

where θ(r) = max(θj , j = 1, . . . , r) and θ(1) = min(θj , j = 1, . . . , r).
Equations (27) and (28) clearly show that the priors (25) and (26) provoke

a strong concentration effect of the dates θj as illustrated in Figure 3 which is
calculated for two event dates with formula (27). The region of high probability of
(θ1, θ2) is concentrated around the first diagonal (θ1 = θ2). In conclusion, the NSBC
prior clearly favors the fact that dates (θ1, ..., θr) become near each other. This
property of the phase can be compared with the assumption of contemporaneity
imposed on the dates in the event model.

Figure 3. “NSBC” phase model: prior joint density on two (non
ordered) event dates θ1 and θ2 between two boundaries α and β and
after integration against α and β: a concentration effect appears
around values θ1 = θ2.

Starting from the prior densities (27) and (28), and after an appropriate change of
variable, we can also determine the density of the span ∆ = max(θj , j = 1, ..., r)−
min(θj , j = 1, ..., r), according to the number of dates r. Letting R = Tb − Ta, we
obtain :

r = 2 : p(∆) =
4

R2

[
(R+ ∆)(ln(R)− ln(∆)) + 2(∆−R))

]
(29)

r = 3 : p(∆) =
6

R2

[
(R−∆)(1 +

∆

R
) + 2∆(ln(∆)− ln(R))

]
(30)

r ≥ 4 : p(∆) =
2r

(r − 2)R2

[
(R−∆)(1 +

∆r−2

Rr−2
)− 2

r − 2)
(∆− ∆r−2

Rr−3
)

]
(31)
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These distributions are shown in Figure 4. When r is small (r = 2, 3, 4), the
densities are very high for ∆ near zero, hence a high concentration effect. When
r tends towards infinity, the distribution of ∆ tends to p(∆) = 2

R2 (R − ∆). This
latter triangular distribution is still maximal when ∆ = 0, and it becomes more
and more flat as R increases. Nicholls and Jones (2002) proposed to make the prior

distribution on the dates θj uniform by multiplying the prior in (26) by R2

2(R−∆)

where min(θj , j = 1, ..., r) is replaced by α and max(θj , j = 1, ..., r) by β .
This option is implemented in OxCal when setting UniformSpanPrior=true’ in a
modeling project (Bronk Ramsey, 2009a).

Figure 4. Distributions of the span ∆ pour different values of the
number r of event dates in a NSBC phase model with: Ta ≤ α ≤
θ1, . . . , θr ≤ β ≤ Tb. When r is small (r = 2, 3, 4), the densities are
very high for ∆ near zero, reflecting a high concentration effect.

Instead of looking at the span ∆, we can look at the variance of the event dates
θj , which is more representative of their scattering. This variance is proportional
to the sequence of the Euclidian distance of the event dates to the straight line
θ1 = θ2 = ... = θr in the space of dimension r and therefore it gives a good way
to characterize the scattering of the dates. We observe that this distance remains
near zero whatever the number r of event dates. Figure 5 shows an evaluation of
the dispersion of the dates through the density of the statistic

(32)
1

r

r∑
i=1

(
θi −

1

r

r∑
j=1

θj

)2
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obtained with r = 10. Conditionally to (α, β), the event dates are uniformly sam-
pled between α and β and the distribution of (α, β) is given by

p(α) =
2(Tb − α)

(Tb − Ta)2

p(β|α), =
1

(Tb − α)
1[α,Tb](β),

Note that we simulate a sample from the prior distribution of (α, β) as follows :

1. Generate u ∼ Uniform(0, 1)
2. Take α = Tb −R

√
1− u

3. Generate β ∼ Uniform(α, Tb).

The same result is obtained whatever the partial or total order of the event dates.

Figure 5. An other way to look at the concentration effect in the
NSBC phase model: distribution of (32) for r = 10 event dates
with: Ta = 0 ≤ α ≤ θ1, . . . , θ10 ≤ β ≤ 100 = Tb.

The concentration effect is particularly visible when considering dates with dif-
ferent uncertainties. In this case, the posterior results for α and β are attracted by
the most precise dates.

Our result shows that the prior on event dates θj given by formulas (27) and
(28) does not give an ideal solution for the specification of the prior density on
dates θj . It allows the correction of the date spreading bias when the uncertainties
on the dates are of the same amplitude, but it can generate some undesirable
concentration effect when these uncertainties are different from each other. This
behavior is illustrated in the following example.

Example 1. Synthetic data in NSBC phase
We consider a phase with 5 non ordered Gaussian dates: 3 dates 0 ± 30 AD, 1

date −500± 200 AD and 1 date +500± 200 AD. We can see in Figure 6 [left] that
the posterior densities for α and β calculated with OxCal program are very close to
the precise dates 0± 30, a result predicted by formula (27) . It is important to note
that, in this case, the agreement index A given by OxCal are low and produce a
warning to prevent from an over-interpretation of the result. Figure 3 [right] shows
the result obtained with ChronoModel program when the five dates are nested in the
event date model. We observe that the NSBC result tends to behave like the event
date model in the sense that it favors the contemporaneity of the dates.
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Figure 6. Posterior distribution of parameters in NSBC phase
model [left] and in event date model [right].

In conclusion, the specification of an appropriate prior on target event dates
still remains an open question. We showed that the NSBC phase model favors,
in an underlying way, the concentration of the event dates in a phase. We also
showed that the uniform prior favors spreading dates, especially when temporal
order constraints act.

5. Simulations

In this section, Monte Carlo experiments are done to illustrate the performance
of the proposed model on simulated samples. All the simulations are done using
the R package ArchaeoChron (see Philippe and Vibet (2017c)).

5.1. The target event model. To illustrate the properties of the event date
modeling, especially its robustness, we simulate sample of measurements Mi with
outliers using a mixture with two Gaussian components:

(33) (1− q)N (0, 1) + qN (µ, 1)

The date of the target event is 0, and q represents the proportion of outliers. We
compare the event target model with

• the r-combine model. See Remark 1.
• the t-outlier model described in Section 2.2

We assume that all the measurements have the same calibation curve, this condition
is required for the r-combine model. We take g(x) = x and σg = 0. The time range
(study period) T is set equal to [−20 , 20], Figure 7 and 8 represent the boxplot
of the Bayes estimates evaluated on 500 independent replications. This confirms
that the r-combine model is not robust to outliers. For q = 0 (no outlier) the three
models gives the same results, we do not observe a significant difference in terms
of accuracy. The target event model ant the t-outlier model behave similarly, and
provide robust statistical methods. Indeed for q < 5% the presence of outliers has
practically no influence on the target date result in the sense that the boxplots stay
centered around the true value



18 LANOS PHILIPPE AND PHILIPPE ANNE

The lengths of the boxplots also indicate that the loss of accuracy if less impor-
tant for event model than the t-outlier model. To understand the robustness of the
target event model, we represent in Figure 8 the boxplot of the Bayes estimate of
the individual variance σ2

i . We compare the values of this parameter when the date
ti of dated event is an outlier or not. Recall that the date ti is an outlier when it
is not contemporaneous of the date θ. Figure 8 shows that the individual standard
deviation takes large values for the outliers. This penalizes the contribution of the
observation on the estimation of the date, leading to robust procedure. Moreover
regardless to the proportion of outliers, the behavior is the same.

0 % 5 % 10 % 16 %

−0
.2

0.0
0.2

0.4
0.6

0.8
1.0

event model

0 % 5 % 10 % 16 %

−0
.2

0.0
0.2

0.4
0.6

0.8
1.0

outlier model

0 % 5 % 10 % 16 %

−0
.2

0.0
0.2

0.4
0.6

0.8
1.0

rcombine

Figure 7. Evolution of the Bayes estimate of θ (the date of the
target event (5)) as a function of the proportion q of outlier for
three Bayesian models. The number of replication is 500. The
data are simulated from with µ = 5 and the sample size is 100.
The hyperparameter in (12) are fixed σδ = 10 and p = 5% .
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Figure 8. Evolution of the Bayes estimator of σi in (4). Compara-
ison between a non- outlier [left] and an outlier [right] as function
of the proportion of outlier q. The parameters are the same as in
Figure 7

5.2. Chronological model. In this part, we illustrate the behavior of our chrono-
logical model in presence of stratigraphic inversion. We want to date target events,
which satistfy stratigraphy constraints θ1 < θ2 < · · · < θ10. To compare our model
with the t-outlier model, we construct target event containing only one dated event.
We denote t1, t2, . . . , t10 the dates of dated event. To evaluate the robustness of
event model, we assume that the date t5 creates a stratigraphic inversion. In other
words we take θi = ti for all i 6= 5 and t5 > θ5

We simulate sample of 10 measurements such that the true dates satisfy the
condition t1 < t2 < · · · < t10. Then, we shift the observation associated with
the date t5 to create the stratigraphic inversion in the observations. The prior
information on the dates of target events is θ1 < · · · < θn while this constraints is
imposed on the dates t1 < t2 < · · · < t10 for the t-outlier model. The time range
(study period) T is set equal to [−10 , 100]. Figure 9 and 10 compares our model
with the t-outlier model.

Figure 9 gives the results for the target event model. The value of t5 clearly
appears as an outlier, as shown by the high values of the standard deviation σ5 (see
Fig 9). The estimations of t5 are centered around the true value since the strati-
graphic constraints is not imposed to the parameters ti. Due to the stratigraphic
constraint, the Bayes estimate of θ5 is far from the true values of t5. But this outlier
does not disturb the estimation of the rest of the sequence. For all the other dates
the stratigraphic constraints on θi bring prior information and make more precise
the target dates θi than the dates ti.

Figure 10 gives the results of the t-type outlier model is applied to the same
datasets for different values of the parameter σδ. When σδ = 0, the outlier are not
taken into account in the model. For a good choice of the parameter σδ (here 10),
the performance of the t-outlier model is quite similar to those of the target event
model. But Figure 10 shows that the t-type outlier model is very sensitive to the
choice of its hyperparameter. The lack of an adaptative choice for this parameter
is the main drawback of this approach.
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Figure 9. Boxplot of the Bayes estimates of parameters
(θi, ti, σi)i=1,...,10 in the Target event model (3). The circles (resp.
stars ) indicate the true values of the dates θi. (resp ti) The number
of replication is equal to 500.
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Figure 10. Boxplot of the Bayes estimates of ti for the t-outlier
model with different values of the hyperparameter in (12) : σδ
varies and p = 5%. The simulated sample are the same as in Fig.
9 The circles (resp. stars ) indicate the true values of the dates θi.
(resp ti)

6. Applications

The model is implemented in the cross-platform application Chronomodel which
is free and open source software (Lanos et al., 2016). Features of the application are
described in details in (Vibet et al., 2016) : graphical user interface for importing
data and modeling construction, MCMC options and controls, graphical and numer-
ical results. Different graphical tools are implemented for assessing the convergence
of the MCMC: the history plot, the autocorrelation function, the acceptance rate
of Metropolis-Hastings algorithms (see Appendix, for details) The user can adjust
the length of burn-in, the maximum number of iterations for adaptation and for
acquisition, and the thinning rate (Vibet et al., 2016).

6.1. Lezoux (Auvergne, France): last firing of a potter’s kiln. The aim is to
date the last firing of a medieval potter’s kiln recovered at the Maison-de-Retraite-
Publique site (Mennessier-Jouannet et al., 1995), in Lezoux (Auvergne, France).
The target event corresponds to the last firing of the kiln, and this corresponds to
the last use of the kiln (i.e. behavioral event, according to Dean (1978)). Some
events relevant to this target event are dated by three chronometric techniques:
archaeomagnetism (AM), thermoluminescence (TL) and radiocarbon (14C). AM
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and TL dates are determined from baked clay and 14C date from charcoals of trees
assumed to be felled at the same time as the last firing.

The observations are composed of 3 TL dates (CLER 202a, 202b, 203), 2 AM
dates (inclination and declination) and 1 radiocarbon date (Ly-5212) As the kiln be-
longs to the historical period, the prior time range T is set equal to [−1000 , 2000].
Posterior densities ti (in color) obtained are greatly shrunken compared to indi-
vidual calibrated densities (in black line), especially for archaeomagnetic and TL
dates. The target date gives a 95% HPD interval equal to [574, 885] AD. Some of
the posterior densities for standard deviations σi (Fig. 12) are spread. This comes
from the multimodality of AM calibrated dates obtained with inclination (Inc) and
declination (Dec). More generally, the parameter σi takes larger values when the
associated date ti is a possible outlier (see also examples in Lanos and Philippe,
2017).

Figure 11. Lezoux . [white background ] Posterior densities of ti
and individual posterior calibrated densities (black line) obtained
for TL dates, for 14C dates and for AM dates. [gray background ]
Posterior density for event θ. The bar above the density represents
the shorter 95% posterior probability interval (credibility interval).
The vertical lines, delimiting the colored area under the density
curve, indicate the endpoints of the 95% highest posterior density
(HPD) region.



EVENT DATE MODEL: A ROBUST BAYESIAN TOOL FOR CHRONOLOGY BUILDING 23

Figure 12. Lezoux. Posterior densities obtained for standard de-
viations σi.

,

6.2. Duration constraint: household cluster from Malpáıs Prieto site (Mi-
choacán State, Mexico). In some favorable archaeological contexts, it is possible
to get information about the duration of a phase. It is the case here with an house-
hold cluster excavated on the Malpáıs Prieto site (Michoacán State, Mexico), in
the framework of the archaeological project Uacusecha (Pereira et al., 2016). The
archaeological artifacts are typical of a chrono-ceramic phase which is dated to the
period 1200 - 1450 AD, so the prior time range (study period) T can be set equal to
this interval. Five radiocarbon ages have been obtained from burials (bone samples)
and a midden (charcoal samples). Looking at the individual calibrated radiocarbon
dates, which appear to be consistent between them (no outliers), the overall date
range for the occupation is between 1276 and 1443 AD (at 95% confidence level).
Each radiocarbon date corresponds to one target event and these events allow to
estimate the beginning and the end of the household cluster phase to which they
belong to (Fig. 13, left). This modeling with only one date per target event and
without any stratigraphic or duration constraints gives large 95% HPD intervals
for the beginning and end estimates:

PHASE
Begin [1209; 1355]
End [1372; 1450]
Duration [48; 211]

Table 1. 95% HPD region for estimating the phase (begin/end/duration)

Thus, this simple modeling does not allow to significantly improve the prior
archaeological information. To do this, various archaeological evidences can better
constrain the occupation duration: stratigraphic evidences, accumulation processes
of the occupation remains, durability of the partly perishable architecture. In this
example, these information indicate that the occupation has hardly exceeded one
century, the most plausible estimation being between 60 and 90 years. As a trial,
we consider that the phase duration cannot exceed τ0 = 60 years. Applying this
constraint during the MCMC sampling according to (22), we obtain the following
results (Fig. 13, right) :
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PHASE (τ0 = 60)
Begin [1286; 1397]
End [1335; 1443]
Duration [28, 60]

Table 2. 95% HPD regions for estimating the phase (begin/end/duration)

Posterior densities of the target event dates θj in Figure 13 [right] are greatly
shrunken compared with the unconstrained modeling. Moreover, this modeling
tends to favor the recent part of the study period, by mitigating the bimodal shape
of the individual calibrated dates.

Figure 13. Malpáıs Prieto, without informative constraint [left]
and with constraint of maximal duration τ0 = 60 [left]. Each
picture provides the posterior densities for event dates θj [gray
background] and the posterior densities for beginning and end of
the phase [dark gray background]. The bar above the density rep-
resents the shorter 95% posterior probability interval (credibility
interval).

7. Conclusion

The Bayesian event date model aims to estimate the date θ of a target event
from the combination of individual dates ti coming from relevant dated events.
This model has a hierarchical structure which makes it possible to distinguish be-
tween target event date θ (the date of interest for the archaeologist) and dates ti
of events (artifacts) dated by chronometric methods, typo-chronology or historical
documents. One assumes that these artifacts are all contemporaneous, that is rele-
vant to the date of the target event. The dates can be affected by irreducible errors,
hence the possible presence of outliers. To take into account these errors, the dis-
crepancy between dates ti and target date θ is modeled by an individual variance
σ2
i , which allows the model to be robust to outliers in the sense that individual
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variances act as outlier penalization. The posterior distribution of the variance
σ2
i indicates if an observation is an outlier or not. Thanks to this modeling, it

is not necessary to discard outliers because the corresponding high values σ2
i will

automatically penalize their contributions to the event date estimation. Moreover,
this model does not require additional exogenous or hyperparameters. The only
parameter involved in prior shrinkage, s2

0 , comes uniquely from the data analysis
via the individual calibration process. So, the approach is adapted to very different
datasets. The good robustness properties of the event date model are paid with
less precision in the dates. However, this loss of precision is compensated by better
reliability of the chronology. The event model constitutes the basic element in our
chronological modeling approach. Dating data are nested within target event dates
(with or without stratigraphic constraints between them) which in turn may be
nested into phases (with or without succession constraints between them). Succes-
sion constraint, maximal duration and/or minimal hiatus can be put on the event
dates in the phases.
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MCMC computation

.1. Algorithms. The posterior distributions of the parameter of interest θ and of
other related parameters ti and σi can not be obtained explicitly. It is necessary
to implement a computational method to approximate the posterior distributions,
their quantiles, the Bayes estimates and the highest posterior density (HPD) re-
gions. We adopt a MCMC (Markov Chain Monte Carlo) algorithm known as the
Metropolis-within-Gibbs strategy because the full conditionals cannot be simulated
by standard random generators. For each parameter, the full conditional distribu-
tion is proportional to (3). Details on the algorithms used are given in (Lanos and
Philippe, 2017).

Here we give a more detailed insight on the way to estimate the date ti which
is defined on the set R due to the random effect model chosen in (2). The full
conditional distribution of ti (∀i = 1, ..., n) is given by

(34) p(ti| q) ∝ 1

Si(ti)
exp

{
−1

2S2
i (ti)

(Mi − gi(ti))2

}
exp

{
−1

2σ2
i

(ti − θ)2)

}
where S2

i (ti) = s2
i + σ2

gi(ti). Symbol q represents the observations and all other
parameters according to equation (3).

To estimate the posterior density of ti, we can choose between three MCMC
algorithms. In each case, the support of the proposal density includes the support
R of the target posterior density.
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• MH-1: A Metropolis-Hastings algorithm where the proposal is the prior
distribution of the parameter. This method is recommended when no cal-
ibration is needed, namely for TL/OSL, Gaussian measurements or typo-
chronological references.
• MH-2: A Metropolis-Hastings algorithm where the proposal is an adaptive

Gaussian random walk. This method is adapted when the density to be
approximated is unimodal. The variance of this proposal density is adapted
during the process.
• MH-3: Metropolis-Hastings algorithm where the proposal mimics the indi-

vidual calibration density. This method is adapted for multimodal densities,
such as calibrated measurements.

We are frequently confronted with multimodal target distributions as, for in-
stance, in archaeomagnetic dating (see example 6.1). In this case, algorithms MH1
and MH-2 are not well adapted to ensure a good mixing of the Markov chain.
Consequently, an alternative is to choose the MH-3 algorithm with a proposal dis-
tribution that mimics the individual calibration density defined in (7). In order to
ensure the convergence of MCMC algorithm, the support of the proposal must be
R. Thus we can consider a mixture having a gaussian component. This component
ensures that the whole support is visited. So we take as proposal :

(35) λC + (1− λ)N (0,
1

4
(Tb − Ta)2)

where λ is a number fixed close to 1, and the distribution C approximates the
individual calibration density. We can choose for instance the empirical measure
calculated on the simulated sample from (7) or a mixture of uniform distribution:

M∑
i=1

1

M
Uniform([t̃i, t̃i+1])

where (t̃i)i=1,...,M are the ordered values of the simulated sample.
An alternative is to choose the distribution with density

1

C

p∑
i=1

pi(τi)I[τi,τi+1], where C =

p∑
i=1

f(τi)(τi+1 − τi)

where (τi)i is a deterministic grid of T and pi is the density of individual calibration
density (7).

.2. Assessing Convergence. Using the packages ArchaeoPhases and coda im-
plemented in R (see Philippe and Vibet (2017b); Plummer et al. (2006) and R Core
Team (2017)), we check the convergence of MCMC samples simulated for different
values of the parameters λ in (35).

Figure 14 and 15 provide graphical tools for the diagnostic of MCMC sampler.
We consider the example of Lezoux and only give the result for the parameter of
interest θ and the date tdec associated with the declinaison measurement in AM
dating. Note that the behavior is the same for all the parameters of the model.

Whithin the Gibbs sampler, the tdec is simulated using MH-3 algorithm, and
so the proposal distribution depends on the choice of parameter λ in 35. For
three values of λ, Figure 14 and 15 show a stationary behavior with good mixing
properties. The autocorrelations even at lag 1 are small enough, to provide a good
approximation of the posterior distribution and its characteristics (mean/ variance
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/ quantiles etc) . Morever it is important to note that the results are not sensitive
to the value of λ.

The Gelman diagnostic (evaluated from 5 parallel chains) is equal two 1, and so
it confirms the convergence of MCMC samplers.
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Figure 14. Lezoux. Diagnostic for MCMC output from posterior
distribution of the date of target event. History plots, autocorre-
lation and marginal density are represented for different values of
λ = .99, .9, .7.
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Figure 15. Lezoux. Diagnostic for MCMC output from posterior
distribution of AM-dec date. History plots, autocorrelation and
marginal density are represented for different values of λ =
.99, .9, .7


