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Abstract
We study proof techniques for bisimilarity based on unique solution of equations. We draw in-
spiration from a result by Roscoe in the denotational setting of CSP and for failure semantics,
essentially stating that an equation (or a system of equations) whose infinite unfolding never pro-
duces a divergence has the unique-solution property. We transport this result onto the operational
setting of CCS and for bisimilarity. We then exploit the operational approach to: refine the the-
orem, distinguishing between different forms of divergence; derive an abstract formulation of the
theorems, on generic LTSs; adapt the theorems to other equivalences such as trace equivalence,
and to preorders such as trace inclusion. We compare the resulting techniques to enhancements
of the bisimulation proof method (the ‘up-to techniques’). Finally, we study the theorems in
name-passing calculi such as the asynchronous π-calculus, and revisit the completeness proof of
Milner’s encoding of the λ-calculus into the π-calculus for Lévy-Longo Trees.
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1 Introduction

In this paper we study the technique of unique solution of equations for (weak) behavioural
relations. We mainly focus on bisimilarity but we also consider other equivalences, such
as trace equivalence, as well as preorders such as trace inclusion. Roughly, the technique
consists in proving that two tuples of processes are componentwise in a given behavioural
relation by establishing that they are solutions of the same system of equations.

In this work, behavioural relations, hence also bisimilarity, are meant to be weak because
they abstract from internal moves of terms, as opposed to the strong relations, which make
no distinctions between the internal moves and the external ones (i.e., the interactions with
the environment). Weak equivalences are, practically, the most relevant ones: e.g., two equal
programs may produce the same result with different numbers of evaluation steps. Further,
the problems tackled in this paper only arise in the weak case.

The technique of unique solution has been proposed by Milner in the setting of CCS, and
plays a prominent role in proofs of examples in his book [13]. The method is important in
verification techniques and tools based on algebraic reasoning [22, 2, 10]. Not all equations
have a unique solution: for instance any process trivially satisfies X = X. In Milner’s
theorem [13], uniqueness of solutions is subject to some limitations: the equations must
be ‘strongly guarded and sequential’, that is, the variables of the equations may only be
used underneath a visible prefix and preceded, in the syntax tree, only by the sum and
prefix operators. This limits the expressiveness of the technique (since occurrences of other
operators above the variables, such as parallel composition and restriction, in general cannot
be removed), and its transport onto other languages (e.g., languages for distributed systems
or higher-order languages usually do not include the sum operator, which makes the theorem
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7:2 Divergence and unique solution of equations

essentially useless). A comparable technique, involving similar limitations, has been proposed
by Hoare in his CSP book [12].

Trying to overcome such limitations, a variant of the technique, called unique solution of
contractions has been proposed [25]. The technique is for behavioural equivalences; however
the meaning of ‘solution’ is defined in terms of the contraction of the chosen equivalence.
Contraction is, intuitively, a preorder that conveys an idea of efficiency on processes, where
efficiency is measured on the number of internal actions needed to perform a certain activity.
The condition for applicability of the technique is, as for Milner’s, purely syntactic: each
variable in the body of an equation should be underneath a prefix. The technique has two
main disadvantages: for proving an equivalence one needs also the theory of the associated
contraction preorder; there may be processes for which the technique is not applicable
simply because the contraction is strictly finer than the equivalence, and therefore one of the
processes fails to be a solution.

In this paper we explore a different approach, inspired by results by Roscoe in CSP [21, 20],
essentially stating that a guarded equation (or system of equations) whose infinite unfolding
never produces a divergence has the unique-solution property. The theorem is presented, as
usual in CSP, with respect to denotational semantics and failure based equivalence [5, 6].
In such a setting, where divergence is catastrophic (e.g., it is the bottom element of the
domain), the theorem has an elegant and natural formulation. (Indeed, Roscoe develops a
denotational model [20] in which the proof of the theorem is just a few lines.)

We draw inspiration from Roscoe’s work to formulate the counterpart of these results in
the operational setting of CCS and bisimilarity. In comparison with the denotational CSP
proof, the operational CCS proof is more complex. The operational setting offers however a
few advantages. First, we can formulate more refined versions of the theorem, in which we
distinguish between different forms of divergence. (These refinements would look less natural
in the denotational and trace-based setting of CSP, where any divergence causes a process to
be considered undefined.) A second and more important advantage comes as a consequence
of the flexibility of the operational approach: the unique-solution theorems can be tuned to
other behavioural relations (both equivalences and preorders), and to other languages.

To highlight the latter aspect, we present abstract formulations of the theorems, on
a generic LTS (i.e., without reference to CCS), where the body of an equation becomes
a function on the states of the LTS. The CCS theorems are instances of the abstract
formulations. Similarly we can derive analogous theorems for other languages. Indeed we
can do so for all languages whose constructs have an operational semantics with rules in the
GSOS format [3] (assuming appropriate hypotheses, among which congruence properties).
In contrast, the analogous theorems fail for languages whose constructs follow the tyft/tyxt
[11] format, due to the possibility of rules with a lookahead. We also consider extensions of
the theorems to name-passing calculi such as the π-calculus. The abstract version of our
main unique-solution theorem has been formalised using the Coq proof assistant [8].

Today, for concrete proofs of bisimilarity results, the bisimulation proof method is
predominant, also thanks to enhancements of the method provided by the so called ‘up-to
techniques’ [19]. Powerful enhancements are ‘up to context’, whereby in the derivatives of
two terms a common context can be erased, ‘up to expansion’, whereby two derivatives can
be rewritten using the expansion preorder, and ‘up to transitivity’, whereby the matching
between two derivatives is made with respect to the transitive closure of the candidate
relation (rather than the relation alone). Different enhancements can sometimes be combined,
though care is needed to preserve soundness. One of the most powerful combinations is
Pous ‘up to transitivity and context’ technique, which relies on a termination hypothesis.
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µ−→ P ′

if K 4= P

Figure 1 The LTS for CCS

This technique generalises ‘up to expansion’ and combines it with ‘up to context’ and ‘up to
transitivity’. We show that, under an additional side condition, our techniques are at least as
powerful as this up-to technique: any up-to relation can be turned into a system of equations
of the same size as the up-to relation and that satisfies the hypothesis of our theorems.

An important difference between unique solution of equations and up-to techniques
arises in the (asynchronous) π-calculus. In this setting, forms of bisimulation enhancements
that involve ‘up to context’ require closure of the candidate relation under substitutions
(or instantiation of the parameters of an abstraction with arbitrary values). It is an open
problem whether this closure is necessary in the asynchronous π-calculus, where bisimilarity
is closed under substitutions. Our unique-solution techniques are strongly reminiscent of up
to context techniques (the body of an equation acts like a context that is erased in a proof
using ‘up to context’); yet, surprisingly, no closure under substitutions is required.

As an example of application of our techniques in the π-calculus we revisit the completeness
part of the proof of full abstraction for the encoding of the λ-calculus into the π-calculus
[24, 27] with respect to Levy-Longo Trees (LTs). The proof in [24, 27] uses ‘up to expansion
and context’. Such up-to techniques seem to be essential: without them, it would be hard
even to define the bisimulation candidate. For our proof using unique-solution, there is one
equation for each node of a given LT, describing the shape of such node.

Outline of the paper: Section 2 provides background about CCS and behavioural relations.
We formulate our main results for CCS in Section 3, and generalise them in an abstract
setting in Section 4. Section 5 shows how our results can be applied to the π-calculus.

2 Background

CCS. We assume an infinite set of names a, b, . . . and a set of constant identifiers (or simply
constants) to write recursively defined processes. The special symbol τ does not occur in the
names and in the constants. We recall the grammar of CCS:

P := P1 | P2 | Σi∈Iµi.Pi | νa P | K µ := a | a | τ

where I is a countable indexing set. We write 0 when I is empty, and P + Q for binary
sums. Each constant K has a definition K 4= P . We sometimes omit trailing 0, e.g., writing
a | b for a. 0 | b. 0 . The operational semantics is given by means of an LTS, and is given in
Figure 1 (the symmetric versions of the rules parL and comL have been omitted).

Some standard notations for transitions: =⇒ is the reflexive and transitive closure of τ−→,
and µ=⇒ is =⇒ µ−→=⇒ (the composition of the three relations). Moreover, P µ̂−→ P ′ holds if

P
µ−→ P ′ or (µ = τ and P = P ′); similarly P µ̂=⇒ P ′ holds if P µ=⇒ P ′ or (µ = τ and P = P ′).

Letters R,S range over relations. We use the infix notation for relations, e.g., P R Q means
that (P,Q) ∈ R, and denote as RS the composition of R and S. A relation terminates if
there is no infinite sequence P1RP2R . . . . We use a tilde to denote a tuple, with countably
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7:4 Divergence and unique solution of equations

many elements; thus the tuple may also be infinite. All notations are extended to tuples
componentwise; e.g., P̃ R Q̃ means that Pi R Qi, for each component i of the tuples P̃ and
Q̃. We use def= for abbreviations; in contrast, 4= is used for the definition of constants, and =
for syntactic equality and for equations. We focus on weak behavioural equivalences, which
abstract from the number of internal steps performed.

I Definition 1 (Bisimilarity). A relation R is a bisimulation if, whenever P R Q, we have:

1. P
µ−→ P ′ implies that there is Q′ such that Q µ̂=⇒ Q′ and P ′ R Q′;

2. the converse, on the actions from Q.
P and Q are bisimilar, written P ≈ Q, if P R Q for some bisimulation R.

Systems of equations. Unique solution of equations [13] intuitively says that if a context
C obeys certain conditions, then all processes P that satisfy the equation P ≈ C[P ] are
bisimilar with each other.

We need variables to write equations. We use capital letters X,Y, Z for these variables
and call them equation variables. The body of an equation is a CCS expression possibly
containing equation variables. We use E,E′, . . . to range over equation expressions; these
are process expressions that may contain occurrences of variables; that is, the grammar for
processes is extended with a production for variables.

I Definition 2. Assume that, for each i of a countable indexing set I, we have a variable Xi,
and an expression Ei, possibly containing some variables. Then {Xi = Ei}i∈I (sometimes
written X̃ = Ẽ) is a system of equations. (There is one equation for each variable Xi.)

E[P̃ ] is the process resulting from E by replacing each variable Xi with the process Pi,
assuming P̃ and X̃ have the same length. (This is syntactic replacement.) The components
of P̃ need not be different from each other, while this must hold for the variables X̃.

I Definition 3. Suppose {Xi = Ei}i∈I is a system of equations. We say that:
P̃ is a solution of the system of equations for ≈ if for each i it holds that Pi ≈ Ei[P̃ ].
The system has a unique solution for ≈ if whenever P̃ and Q̃ are both solutions for ≈,
then P̃ ≈ Q̃.

For instance, the system X1 = a.X2, X2 = b.X1 has a unique solution, whereas the
equations X = X, or X = τ .X, or X = a | X do not.

A system of equations is guarded (resp. strongly guarded) if each occurrence of a variable
in the body of an equation is underneath a prefix (resp. a visible prefix, i.e., different from τ).

Divergences. We consider the standard notion of divergence:

I Definition 4 (Divergence). A process P diverges if it can perform an infinite sequence of
internal moves, possibly after some visible ones; i.e., there are processes Pi, i ≥ 0, and some
n, such that P = P0

µ0−−→ P1
µ1−−→ P2

µ2−−→ . . . and for all i > n, µi = τ . We call a divergence
of P the sequence of transitions

(
Pi

µi−−→ Pi+1
)
i
.

I Example 5. The process L 4= a. νa (L | a) diverges, since L a−→ νa (L | a), and (leaving
aside 0 and useless restrictions) νa (L | a) has a τ transition onto itself.
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3 Main Results

3.1 Divergences and Unique Solution
This section is devoted to our main results for bisimilarity, in the case of CCS. We need to
reason with the unfoldings of the given equation X = E: we define the n-th unfolding of E
to be En; thus E1 is defined as E, E2 as E[E], and En+1 as En[E]. The infinite unfolding
represents the simplest and most intuitive solution to the equation. In the CCS grammar,
such a solution is obtained by turning the equation into a constant definition, namely the
constant KE with KE

4= E[KE ]. We call KE the syntactic solution of the equation.
For a system of equations X̃ = Ẽ[X̃], the unfoldings are defined accordingly (where Ei

replaces Xi in the unfolding), and the syntactic solutions are defined to be the set of mutually
recursive constants {K

Ẽ,i

4= Ei[K̃Ẽ
]}i.

I Theorem 6 (Unique solution). A guarded system of equations whose syntactic solutions do
not diverge has a unique solution for ≈.

We explain the schema of the proof, considering, for simplicity, a single equation X = E.
We take a solution P of the equation and a transition P

µ−→ P ′. The goal is to find an
n such that En[P ] can match this transition without the need of P ; i.e., there is E′ with
En[P ] µ̂=⇒ E′[P ], and for any process Q also En[Q] µ̂=⇒ E′[Q] holds.

We look for this n incrementally. If the matching transition Em[P ] µ̂=⇒ Pm (recall
the P is solution) involves some transitions of P , then Em[P ] does not work. We then
consider a matching transition emanating from Em+1[P ], which starts with the transitions
in Em[P ] µ̂=⇒ Pm that do not involve P . We observe that there are are at least m of these,
because P is underneath at least m prefixes in Em[P ].

This procedure necessarily stops: otherwise, we could build an infinite sequence of
transitions involving only the unfoldings of E, and with at most one visible transition: this
would yield a divergence in the syntactic solution of E. With this construction at hand, given
another solution Q of the equation, we construct a bisimulation containing the pair (P,Q).

3.2 Innocuous Divergences
In the remainder of the section we refine Theorem 6 by taking into account only certain forms
of divergence. To introduce the idea, consider the equation X = a.X | K, for K 4= τ .K:
the divergences induced by K do not prevent uniqueness of the solution, as any solution P
necessarily satisfies P ≈ a.P . Indeed the variable of the equation is strongly guarded and a
visible action has to be produced before accessing the variable. These divergences are not
dangerous because they do not percolate through the infinite unfolding of the equation; in
other words, a finite unfolding may produce the same divergence, therefore it is not necessary
to go to the infinite unfolding to diverge. We call such divergences innocuous. Formally,
these divergences are derived by applying only a finite number of times rule const of the
LTS (see Figure 1) to the constant that represents the syntactic solution of the equation.

I Definition 7 (Innocuous divergence). Consider a guarded system of equations X̃ = Ẽ

and its syntactic solutions K̃
Ẽ
. A divergence of K

Ẽ,i
(for some i) is called innocuous when

summing up all usages of rule const with one of the K
Ẽ,j

s (including j = i) in all derivation
proofs of the transitions belonging to the divergence, we obtain a finite number.
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7:6 Divergence and unique solution of equations

I Theorem 8 (Unique solution with innocuous divergences). Let X̃ = Ẽ be a system of guarded
equations, and K̃

Ẽ
be its syntactic solutions. If all divergences of any K

Ẽ,i
are innocuous,

then Ẽ has a unique solution for ≈.

I Remark. The conditions for unique solution in Theorems 6 and 8 are a mixture of syntactic
(guardedness) and semantic (divergence-free) conditions. A purely semantic condition can
be used if rule const of Figure 1 is modified so that the unfolding of a constant yields a
τ -transition:

K
τ−→ P

if K4=P

Thus in the theorems the condition that the equations are guarded could be dropped. The
resulting theorems would actually be more powerful because they would accept equations
not all of which are guarded: it is sufficient that each equation has a finite unfolding that
is guarded. For instance the system of equations X = b | Y , Y = a.X would be accepted,
although the first equation is not guarded.

The next lemma states a condition to ensure that all divergences produced by a system
of equations are innocuous. This condition will be sufficient in all examples in the paper.

I Lemma 9. In a system of equations X̃ = Ẽ, suppose for each i there is ni such that in
Eni
i , each variable is underneath a visible prefix (say, a or a) whose complementary prefix (a

or a) does not appear in any equation. Then the system has only innocuous divergences.

3.3 An example: lazy and eager servers
We now show an example of application of our technique, taken from [25]. The example also
illustrates the relative strengths of the two unique solution theorems (Theorems 6 and 8).

For the sake of readability, we use a version of CCS with value passing; this could be
translated into pure CCS [13]. In a value-passing calculus, a(x).P is an input at a in which
x is the placeholder for the value received, whereas a〈n〉.P is an output at a of the value
n; and A〈n〉 is a parametrised constant. This example consists of two implementations of
a server; this server, when interrogated by clients at a channel c, should start a certain
interaction protocol with the client, after consulting an auxiliary server A at a.

We consider the two following implementations of this server: the first one, L, is ‘lazy’,
and consults A only after a request from a client has been received. In contrast, the other
one, E, is ‘eager’, and consults A beforehand, so then to be ready in answering a client:

L
4= c(z). a(x). (L | R〈x, z〉)

E
4= a(x). c(z). (E | R〈x, z〉)

A〈n〉 4= a〈n〉.A〈n+ 1〉

Here R〈x, z〉 represents the interaction protocol that is started with a client, and can be any
process. It may use the values x and z (obtained from the client and the auxiliary server A);
the interactions produced may indeed depend on the values x and z. We assume for now
that R〈x, z〉 may not use channel c and a; that is, the interaction protocol that has been
spawned need not come back to the main server or to the auxiliary server. Moreover we
assume R may not diverge. We want to prove that the two servers, when composed with A,
yield bisimilar processes. We thus define LS〈n〉 4= νa (A〈n〉 | L) and ES〈n〉 4= νa (A〈n〉 | E).
A proof that LS〈n〉 ≈ ES〈n〉 using the plain bisimulation proof method would be long and
tedious, due to the differences between the lazy and the eager server, and to the fact that R
is nearly an arbitrary process.
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For a proof using our technique, the equations are: {Xn = c(z). (Xn+1 | R〈n, z〉)}n.
The proofs that the two servers are solutions can be carried out using a few algebraic laws:
expansion law, structural laws for parallel composition and restriction, one τ -law. To apply
Theorem 6, we also have to check that the equations may not produce divergences. This
check is straightforward, as no silent move may be produced by interactions along c, and
any two internal communications at a are separated by a visible input at c. Moreover, by
assumption, the protocol R does not produce internal divergences.

If however the hypothesis that R may not diverge is lifted, then Theorem 6 is not
applicable anymore, and divergences are possible. However, such divergences are innocuous:
the equation need not be unfolded an infinite number of times for the divergence to occur.
We can therefore still prove the result, by appealing to the more powerful Theorem 8.

3.4 Comparison with other techniques
Milner’s syntactic condition for unique solution of equations essentially allows only equations
in which variables are underneath prefixes and sums. The technique is not complete [25]; for
instance it cannot handle the server example of Section 3.3.

The technique of ‘unique solution of contractions’ [25] relies on the theory of an auxiliary
preorder (contraction), needed to establish the meaning of ‘solution’; and the soundness
theorems in [25] use a purely syntactic condition (guarded variables). In contrast, our
techniques with equations do not rely on auxiliary relations and their theory, but the soundness
theorems use a semantic condition (divergence). The two techniques are incomparable.
Considering the server example of Section 3.3, the contraction technique is capable of
handling also the case in which the protocol R is freely allowed to make calls back to the main
server, including the possibility that, in doing this, infinitely many copies of R are spawned.
This possibility is disallowed for us, as it would correspond to a non-innocuous divergence. On
the other hand, when using contraction, a solution is evaluated with respect to the contraction
preorder, that conveys an idea of efficiency (measured against the number of silent transitions
performed). Thus, while two bisimilar processes are solutions of exactly the same set of
equations, they need not be solutions of the same contractions. For instance, we can use
our techniques to prove that processes K 4= τ . a. a.K and H 4= a.H are bisimilar because
solutions of the equation X = a.X; in contrast, only H is a solution of the corresponding
contraction.

Up-to techniques. We compare our unique-solution techniques with one of the most
powerful forms of enhancement of the bisimulation proof method, namely Pous ‘up to
transitivity and context’ technique [17]. That technique allows us to use ‘up to weak
bisimilarity’, ‘up to transitivity’, and ‘up to context’ techniques together. While ‘up to weak
bisimilarity’ and ‘up to transitivity’ are known to be unsound techniques [19], here they are
combined at the price of a termination hypothesis over a ‘control relation’, below written �.

We write C(R) for the context closure of a relation R (the set of all pairs (C[P̃ ], C[Q̃])
with P̃ R Q̃). Moreover, R stands for (≈ ∪C(R)), and R+ for the transitive closure of R.

I Definition 10. Let � be a relation that is transitive, closed under contexts, and such that
� ( τ−→

+
) terminates. A relation R is a bisimulation up to � and context if, whenever P R Q:

1. if P µ−→ P ′ then Q µ̂=⇒ Q′ for some Q′ with P ′ (� ∩R)+ C(R) ≈ Q′;
2. the converse, on the transitions from Q.

If R is a relation then we can also view R as an ordered sequence of pairs (e.g., assuming
some lexicographical ordering). Then Ri indicates the tuple obtained by projecting the
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7:8 Divergence and unique solution of equations

pairs in R on the i-th component (i = 1, 2). The size of a relation is the number of pairs it
contains. The size of a system of equations is the number of equations it consists of.

I Theorem 11 (Completeness with respect to up-to techniques). Suppose R is a bisimulation
up to � and context. Then there is a guarded system of equations, of the same size as R,
with only innocuous divergences, admitting R1 and R2 as solutions.

In the proof, the equations are defined by exploiting the expansion law in CCS [13]. The
proof then involves a rather delicate analysis in which the termination hypothesis is used to
prove that the syntactic solutions of this system have only innocuous divergences (they may
indeed have divergences). We may then apply Theorem 8 (rather than Theorem 6).
I Remark. In [17], the transitive closure (� ∩ R)+ in Definition 10 is actually a reflexive and
transitive closure. We do not know if relaxing this technical condition breaks Theorem 11.

4 Abstract Formulation

4.1 Abstract LTS and Operators
In this section we propose generalisations of the unique-solution theorems. For this we intro-
duce abstract formulations of them, which are meant to highlight their essential ingredients.
When instantiated to the specific case of CCS, such abstract formulations yield the theorems
in Section 3. The proofs are adapted from those of the corresponding theorems in Section 3.
The results of this section, up to Theorem 15, have been formalised in Coq [8].

The abstract formulation is stated on a generic LTS, that is, a triple T = (S,Λ,→)
where: S is the set of states; Λ the set of action labels, containing the special label τ
accounting for silent actions; → is the transition relation. As usual, we write s1

µ−→ s2 when
(s1, µ, s2) ∈ →. The definition of weak bisimilarity ≈ is as in Section 2. We omit explicit
reference to T when there is no ambiguity.

We reason about state functions, i.e., functions from S to S, and use f, f ′, g to range
over them. We recall that (f ◦ g)(x) = f(g(x)) for all x. The CCS processes of Section 2
correspond here to the states of an LTS; and CCS contexts correspond to state functions.

I Definition 12 (Autonomy). For state functions f, f ′ we say that there is an autonomous
µ-transition from f to f ′, written f µ−→ f ′, if for all states x it holds that f(x) µ−→ f ′(x).

Likewise, given a set F of state functions and f ∈ F , we say that a transition f(x) µ−→ y

is autonomous on F if, for some f ′ ∈ F we have f µ−→ f ′ and y = f ′(x). Moreover, we say
that function f is autonomous on F if all the transitions emanating from f (that is, all
transitions of the form f(x) µ−→ y, for some x, µ, y) are autonomous on F .

When F is clear, we omit it, and we simply say that a function is autonomous.

Thus, f is autonomous on F if, for some indexing set I, there are µi and fi ∈ F such
that for all x we have f(x) µi−−→ fi(x), for each i; the set of all transitions emanating from
f(x) is precisely ∪i{f(x) µi−−→ fi(x)}. Autonomous functions correspond to CCS guarded
contexts, which do not need their process argument to perform the first transition. We now
formulate conditions under which, intuitively, a state function behaves like a CCS context.
Functions satisfying these conditions are called operators.

I Definition 13 (Set of operators). Consider an LTS T , and a set O of functions from S to
S. We say that O is a set of operators on T if the following conditions hold:
1. O contains the identity function;
2. O is closed by composition (that is, f ◦ g ∈ O whenever f, g ∈ O);
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3. composition preserves autonomy (i.e., if g is autonomous on O, then so is f ◦ g);
4. all functions in O respect ≈, i.e., x ≈ y and f ∈ O imply f(x) ≈ f(y).

A ‘symmetric variant’ of clause 3 always holds: if f is autonomous, then so is f ◦ g. The
autonomous transitions of a set of operators yield an LTS whose states are the operators
themselves. Such transitions are of the form f

µ−→ g. Where the underlying set O of operators
is clear, we simply call a function belonging to O an operator.

We use state functions to express equations, such as X = f(X). We thus look at
conditions under which such an equation has a unique solution (again, the generalisation to
a system of equations is easy, using n-ary functions).

Thinking of functions as equation expressions, to formulate our abstract theory about
unique solution of equations, we have to define the divergences of finite and infinite unfoldings
of state functions. The nth unfolding of f (for n ≥ 1), fn, is the function obtained by
n applications of f . An operator is well-behaved if there is n with fn autonomous (the
well-behaved operators correspond, in CCS, to equations some finite unfolding of which yields
a guarded expression). We also have to reason about the infinite unfolding of an equation
X = f(X). For this, given a set O of operators, we consider the infinite terms obtained by
infinite compositions of operators in O, that is, the set coinductively defined by the grammar:

F := f ◦ F where f ∈ O (i.e., f is a metavariable for the elements in O).
(We do not need finite compositions, as O itself is closed under finite compositions.) In
particular, we write f∞ for the infinite term f ◦ f ◦ f ◦ . . ..

We define the autonomous transitions for such infinite terms using the following rules:

g
µ−→ g′

g ◦ F µ−→ g′ ◦ F
g autonomous (g ◦ f) ◦ F µ−→ F ′

g ◦ (f ◦ F ) µ−→ F ′
g not autonomous

Intuitively a term is ‘unfolded’, with the second rule, until an autonomous function is
uncovered, and then transitions are computed using the first rule (we disallow unnecessary
unfoldings; these would complicate our abstract theorems, by adding duplicate transitions,
since the transitions of g ◦ f duplicate those of g when g is autonomous). An infinite term
has no transitions if none of its finite unfoldings ever yields an autonomous function. This
situation does not arise for terms of the form f∞ or g ◦ f∞, where f is well-behaved, which
are the terms we are interested in. Note that no infinite term belongs to a set of operators.

I Definition 14 (Operators and divergences). Let f, f ′, fi be operators in a set O of operators,
and consider the LTS induced by the autonomous transitions of operators in O. A sequence
of transitions f1

µ1−−→ f2
µ2−−→ f3 . . . is a divergence if for some n ≥ 1 we have µi = τ whenever

i ≥ n. We also say that f1 diverges. We apply these notations and terminology also to
infinite terms (such as f1 ◦ f2 ◦ . . .), as expected.

In the remainder of the section we fix a setO of operators and we only consider autonomous
transitions on O. We now state the “abstract version” of Theorem 6 (the proof being similar).

I Theorem 15 (Unique solution, abstract formulation). Let f be a well-behaved operator on
O. If f∞ does not diverge, then the equation X = f(X) either has no solution or has a
unique solution for ≈.

The equation in the statement of the theorem might have no solution at all. For example,
consider the LTS (N, {a},→) where for each n we have n + 1 a−→ n. The function f with
f(n) = n+ 1 is an operator of the set O = {fn}n∈N (with f0 = Id, the identity function).
The function f is autonomous because, for all n, the only transition of f(n) is f(n) a−→ n
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7:10 Divergence and unique solution of equations

(this transition is autonomous because f a−→ Id). A fixpoint of f would be an element x with
x

a−→ x, and there is no such x in the LTS.
Theorem 15 can be refined along the lines of Theorem 8. For this, we have to relate

the divergences of any fn (for n ≥ 1) to divergences of f∞, in order to distinguish between
innocuous and non-innocuous divergences. To build a divergence of f∞ from a divergence
of fn, for n ≥ 1, we need to reason up to (finite) unfoldings of f : thus we set =f to be the
symmetric reflexive transitive closure of the relation that relates g and g′ whenever g = g′ ◦ f .

I Lemma 16. Consider an autonomous operator f on O and a divergence of fn

fn
µ1−−→ f1

µ2−−→ . . .
µi−−→ fi

τ−→ fi+1
τ−→ . . .

This yields a divergence of f∞: f∞ µ1−−→ g1 ◦ f∞
µ2−−→ . . .

µi−−→ gi ◦ f∞
τ−→ gi+1 ◦ f∞

τ−→ . . .

such that for all i ≥ 1, gi is an operator and gi =f fi.

Given a divergence ∆ of fn, we write ∆∞ to indicate the divergence of f∞ obtained from
∆ as in Lemma 16. We call a divergence of f∞ innocuous when it can be described in this
way, that is, as a divergence ∆∞ obtained from a divergence ∆ of fn, for some n.

I Theorem 17 (Unique solution with innocuous divergences, abstract formulation). Let f ∈ O be
a well-behaved operator. If all divergences of f∞ are innocuous, then the equation X = f(X)
either has no solution or has a unique solution for ≈.

4.2 Reasoning with other Behavioural Relations
Trace-based Equivalences. We can adapt the results of the previous section about bisim-
ilarity to other settings, including both preorders and non-coinductive relations. As an
example, we consider trace-based relations. We write ≈tr for trace equivalence, that equates
two processes having the same set of (finite) traces. The definitions from previous sections
are the same as for ≈, replacing ≈ with ≈tr. All theorems presented for ≈ can be adapted
to ≈tr, and the proofs are similar. As an example, Theorem 17 becomes:

I Theorem 18. Let f ∈ O be a well-behaved operator. If all divergences of f∞ are innocuous,
then the equation X = f(X) either has no solution or has a unique solution for ≈tr.

In contrast, the theorems fail for infinitary trace equivalence, ≈∞tr (whereby two processes
are equated if they have the same traces, including the infinite ones), for the same reason why
the ‘unique solution of contraction’ technique fails in this case [25]. As a counterexample, we
consider equation X = a+ a.X, whose syntactic solution has no divergences. The process
P
4=
∑
n>0 a

n is a solution, yet it is not ≈∞tr -equivalent to the syntactic solution of the
equation, because the syntactic solution has an infinite trace involving a transitions.

Preorders. We show how the theory for equivalences can be transported onto preorders.
This means moving to systems of pre-equations, {Xi ≤ Ei}i∈I . With preorders, our theorems
have a different shape: we do not use pre-equations to reason about unique solution – we
expect interesting pre-equations to have many solutions, some of which may be incomparable
with each other. We rather derive theorems to prove that, in a given preorder, any solution
of a pre-equation is below its syntactic solution.
I Remark. The opposite direction for pre-equations, namely {Xi ≥ Ei}i∈I is less interesting.
It would mean aiming to prove that the syntactic solution is below other solutions. This
is usually a trivial property for a behavioural preorder, without any hypothesis such as
autonomy or non divergence (a possible exception is a preorder with infinitary observables,
such as infinitary trace inclusion, where the property may fail).
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We write ⊆tr for trace inclusion, ⊆tr∞ for infinitary trace inclusion, and ≤s for weak
simulation. These preorders are standard from the literature [28].

In the abstract setting, the body of the pre-equations are functions. Then the theorems
give us conditions under which, given a pre-equation X ≤ f(X) and a behavioural preorder
�, a solution r, i.e., a state for which r � f(r) holds, is below the syntactic solution f∞. We
present the counterpart of Theorem 17; other theorems are transported in a similar manner.

I Theorem 19. Let f ∈ O be a well-behaved operator. If all divergences of f∞ are innocuous,
then, given ≤ ∈ {⊆tr,⊆tr∞ ,≤s}, whenever x ≤ f(x) we also have x ≤ f∞, for any state x.

Theorem 19 intuitively says that the syntactic solution of a pre-equation is maximal
among all solutions. Note that, in contrast with equations, Theorem 19 and the theory of
pre-equations also work for infinitary trace inclusion.

4.3 Rule formats
A way to instantiate the results in Sections 4.1 and 4.2 is to consider rule formats [1, 16].
These provide a specification for the form of the SOS rules used to describe the constructs of
a language. To fit a rule format into the abstract formulation of the theory from Section 4.1,
we view the constructs of a language as functions on the states of the LTS (the processes of
the language). One of the most common formats is GSOS [3, 29, 9]. For lack of space we only
show the instantiation to GSOS of Theorem 8. In the statement, we consider an extension
of a GSOS language with constants, in the same way as they appear in CCS, so that the
definitions of ‘syntactic solution of equations’ and of ‘innocuous divergence’ can be taken to
be the same as for CCS (these are easier to grasp than their formulation in Section 4.1).

I Theorem 20. Consider a language whose constructs have SOS rules in the GSOS format
and preserve ≈, and an equation X = E for the language. If E is autonomous (over the set
of functions corresponding to the contexts of the language), and if, in the language extended
with constants, the syntactic solution of the equation only has innocuous divergences, then
either the equation has no solution or it has a unique solution for ≈.

We briefly discuss the hypotheses in the theorem. Some GSOS rule formats guarantee
congruence for weak bisimilarity [29, 9], which allows one to remove the corresponding
condition (the condition could actually we weakened, by considering the syntactic positions
in which the variables can occur in the equations). Checking the autonomy property is
often straightforward; for instance, it holds if, in the body of an equation, all variables are
underneath an axiom construct, that is, a construct that (like prefix in CCS) is defined by
means of SOS rules in which the set of premises is empty. In the tyft/tyxt formats [11],
lookaheads are possible. Lookahead allows one to write rules that ‘look into the future’
(a transition is allowed if certain sequences of actions are possible); this breaks autonomy
(condition 3 of Definition 13), hence Theorem 17 is not applicable.

5 Name Passing: the π-calculus

5.1 Unique solution in the asynchronous π-calculus
In this section, we port our results onto the asynchronous π-calculus, Aπ (addressing the
full π-calculus would also be possible, but somewhat more involved). To allow constants
(recursive definitions) and equations, we enrich the syntax of Aπ [26] with parametrised
processes (ã)P . These and the constants form the set of abstractions, ranged over by F,G.
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7:12 Divergence and unique solution of equations

We omit the definitions of free and bound names. An expression is closed if it does not have
free names. Constant definitions are of the form K

4= F , where F is a closed abstraction.
The grammar for processes includes also the application construct F 〈ã〉, used to instantiate
the formal parameters of the abstraction F with the actual parameters ã.

The body of an equation is also a closed abstraction, possibly containing equation variables.
Since the calculus is polyadic, we rely on a sorting system [15] to avoid disagreements in the
arities of the tuples of names carried by a given name, and in the parameters of abstractions
and equations. For lack of space, we omit the full grammar and the operational semantics
(see [24]). When writing examples, for readability, we assume that the syntax contains the
guarded replication operator !a(̃b).P (it could be encoded, using constants).

In bisimulations or similar coinductive relations for the asynchronous π-calculus, no
name instantiation is required in the input clause or elsewhere (provided α-convertible
processes are identified); i.e., the ground versions of the relations are congruence relations
[26]. Similarly, the extension of bisimilarity to abstractions only considers fresh names:
F ≈ F ′ if F 〈ã〉 ≈ F ′〈ã〉 where ã is a tuple of fresh names (as usual, of the appropriate sort).

Theorems 6 and 8 for CCS can be adapted to the asynchronous π-calculus. The definitions
concerning transitions and divergences are transported to Aπ as expected. In the case of
an abstraction, one first has to instantiate the parameters with fresh names; thus F has a
divergence if the process F 〈ã〉 has a divergence, where ã are fresh names.

I Theorem 21 (Unique solution in Aπ). A guarded system of equations whose syntactic
solutions do not contain divergences has a unique solution for ≈.

I Theorem 22 (Unique solution with innocuous divergences in Aπ). A guarded system of
equations whose syntactic solutions only have innocuous divergences has a unique solution
for ≈.

We pointed out in earlier sections on CCS the connection between techniques based on
unique solution of equations and ‘up to context’ enhancements of the bisimulation proof
method. The same connection is less immediate in name-passing calculi, where indeed
there are noticeable differences. In particular, ‘up to context’ enhancements for the ground
bisimilarity of the π-calculus require closure under name instantiation, even when ground
bisimilarity is known to be preserved by substitutions (it is an open problem whether the
closure can be lifted). Thus, when comparing two derivatives C[P ] and C[Q], in general it is
not sufficient that P and Q alone are in the candidate relation: one is required to include
also all their closures under name substitutions (or, if the terms in the holes are abstractions,
instantiation of their parameters with arbitrary tuples of names). In contrast, the two unique
solution theorems above are ‘purely ground’: F = (x̃)P is solution of an equation X = (x̃)E
if P and E{F/X} are ground bisimilar – a single ground instance of the equation is evaluated.

5.2 An application: encoding of the call-by-name λ-calculus
To show an extended application of our techniques for the π-calculus, we revisit the proof of
full abstraction for Milner’s encoding of the call-by-name (or lazy) λ-calculus into Aπ [14]
with respect to Lévy Longo Trees (LTs), precisely the completeness part. We use M,N to
range over the set Λ of λ-terms, and x, y, z to range over λ variables. If M is an open λ-term,
then either M diverges, or M ⇒ λx.M ′, or M ⇒ x M1 . . . Mn.

I Definition 23 (Lévy-Longo Tree). The Lévy-Longo Tree (LT) of an open λ-termM , written
LT (M), is the (possibly infinite) tree defined coinductively as follows.
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1. If M diverges, then LT (M) is the tree with a single node labelled ⊥.
2. If M → λx.M ′, then LT (M) is the tree with a root labelled with "λx.", and LT (M ′) as

its unique descendant.
3. If M → x M1 . . . Mn, then LT (M) is the tree with a root labelled with "x", and

LT (M1), . . . , LT (Mn) (in this order) as its n descendants.

LT equality (two λ-terms are identified if their LTs are equal) can also be presented as a
bisimilarity (open bisimilarity, 'o), defined as the largest open bisimulation.

I Definition 24. A relation R on Λ is an open bisimulation if, whenever M R N :
1. M ⇒ λx.M ′ implies N ⇒ λx.N ′ with M ′ R N ′;
2. M ⇒ x M1 . . . Mn with n ≥ 0 implies N ⇒ x N1 . . . Nn and Mi R Ni for all 1 ≤ i ≤ n.
3. The converse of clauses 1 and 2 on the challenges from N .

Milner’s encoding is defined thus: [[λx.M ]] 4= (p) p(x, q). [[M ]]〈q〉 [[x]] 4= (p) x〈p〉
[[M N ]] 4= (p) νr, x ([[M ]]〈r〉 | r〈x, p〉 | !x(q). [[N ]]〈q〉)

The full abstraction theorem for the encoding [24, 27] states that two λ-terms have the
same LT iff their encodings into Aπ are weakly bisimilar terms. Full abstraction has two
components: soundness, which says that if the encodings are weakly bisimilar then the original
terms have the same LT; and completeness, which is the converse direction. The proof [24] first
establishes some operational correspondence between the behaviour (visible and silent actions)
of λ-terms and of their encodings. Then, exploiting this correspondence, soundness and
completeness are proved using the bisimulation proof method. For soundness, this is just open
bisimulation (Definition 24). In contrast, completeness involves enhancements of the proof
method, notably ‘bisimulation up to context and expansion’. As a consequence, the technique
requires having developed the basic theory for the expansion preorder (e.g., precongruence
properties and basic algebraic laws), and requires an operational correspondence fine enough
in order to be able to reason about expansion.

Below we show that, by appealing to unique solution of equations, completeness can
be proved by defining an appropriate system of equations, each of which having a simple
shape, and without the need for auxiliary preorders. For this, the only results needed are:
(i) validity of β-reduction for the encoding (Lemma 25), whose proof is simple and consists
in the application of a few algebraic laws (including laws for replication); (ii) the property
that if M diverges then [[M ]]〈p〉 may never produce a visible action [24].

I Lemma 25 (Validity of β-reduction, [24]). For M ∈ Λ, if M →M ′ then [[M ]] ≈ [[M ′]].

I Theorem 26 (Completeness, [24]). For M,N ∈ Λ, LT (M) = LT (N) implies [[M ]] ≈ [[N ]] .

Proof. Suppose V andW are two λ-terms with the same LT. We define a system of equations,
solutions of which are obtained from the encodings of V andW . We will then use Theorem 22
to deduce [[V ]] ≈ [[W ]]. If V and W have the same LT, then there is an open bisimulation R
containing the pair (V,W ). The variables of the equations are of the form XM,N for M R N ,
and there is one equation for each pair in R. We show how the equation for a pair M R N

is built. We assume an ordering of the λ-calculus variables so to be able to view a finite set
of variables as a tuple. Thus we write x̃ for the variables appearing free in M or N .

Essentially, the equations are the translation of the clauses of Definition 24, assuming a
generalisation of the encoding to equation variables:

If M,N are both divergent, then the equation is XM,N = (x̃, p)!τ .
IfM,N satisfy clause 1 of Definition 24, the equation isXM,N = (x̃, p)p(x, q).XM ′,N ′〈ỹ, q〉,

where ỹ are the free variables in M ′, N ′.
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7:14 Divergence and unique solution of equations

Finally, if M,N satisfy clause 2 of Definition 24, the equation is given by the translation
of x XM1,N1 . . . XMn,Nn

, which, rearranging restrictions and parallel compositions, is

XM,N = (x̃, p)(νr0, . . . , rn )( x〈r0〉 | r0〈r1, x1〉 | . . . | rn−1〈rn, xn〉 |
!x1(q1).XM1,N1〈x̃1, q1〉 | . . . | !xn(qn).XMn,Nn

〈x̃n, qn〉) .

where x̃i are the free variables inMi, Ni. Applying Lemma 9 (more precisely, its Aπ analogue,
with additional reference to the sorting system to handle name instantiation in abstractions
and inputs), we show that the equations may only produce innocuous divergences.

Now, for (M,N) ∈ R, set FM,N to be the abstraction (x̃, p)[[M ]]〈p〉, and similarly
GM,N

4= (x̃, p)[[N ]]〈p〉. The set of all such abstractions FM,N yields a solution for the system
of equations, and the same for the GM,N ’s. The proof that they are solutions (hence bisimilar)
is a consequence of Lemma 25. For instance, for clause 1 of Definition 24, we have:

FM,N = (x̃, p)[[M ]]〈p〉
≈ (x̃, p)[[λx.M ′]]〈p〉 ≈ (x̃, p)[[λx.XM ′,N ′ ]]〈p〉{FM′,N′/XM′,N′}

J

6 Future Work

We have compared our techniques to one of the most powerful forms of enhancements of the
bisimulation proof method, namely Pous ‘up to transitivity and context’, showing that, up
to a technical condition, our techniques are at least as powerful. We believe that also the
converse holds, though possibly under different side conditions. We leave a detailed analysis
of this comparison, which seems non-trivial, for future work. In this respect, the goal of
the work on unique solution of equations is to provide a way of better understanding up-to
techniques and to shed light into the conditions for their soundness. Pous technique, for
instance, is arguably more complex, both in its definition and its application.

Another aspect in which a deep comparison with up-to techniques might be useful is
understanding the need for the closure under substitutions in up to context techniques for
name-passing calculi such as the asynchronous π-calculus. Such a closure is rather heavy
and is a long-standing open problem. However, currently it is unclear how to formally relate
bisimulation enhancements and ‘unique solution of equations’ in name-passing calculi.

Up-to techniques have been analysed in an abstract setting using lattice theory [18]
and category theory [4, 23]. It could be interesting to do the same for the unique-solution
techniques, to study their connections with up-to techniques, and which equivalences can be
handled (possibly using, or refining, the abstract formulation of Section 4).

In comparison with the enhancements of the bisimulation proof method, the main
drawback of the techniques exposed in this paper is the presence of a semantic condition,
involving divergence: the unfoldings of the equations should not produce divergences, or
only produce innocuous divergences. A syntactic condition for this has been proposed
(Lemma 9). Various techniques for checking divergence exist in the literature, including
type-based techniques [30, 7]. However, in general divergence is undecidable, and therefore,
the check may sometimes be unfeasible. Nevertheless, the equations that one writes for
proofs usually involve forms of ‘normalised’ processes, and as such they are divergence free
(or at most, contain only innocuous divergences). More experiments are needed to validate
this claim or to understand how limiting this problem is.
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