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Blind Quality Estimation by Disentangling
Perceptual and Noisy Features in High Dynamic
Range Images

Navaneeth Kamballur Kottayil, Giuseppe Valenzise, Senior Member, IEEE, Frederic Dufaux, Fellow, IEEE, Irene
Cheng, Senior Member, IEEE

Abstract—High Dynamic Range (HDR) image visual quality
assessment in the absence of a reference image is challenging.
This research topic has not been adequately studied largely due
to the high cost of HDR display devices. Nevertheless, HDR
imaging technology has attracted increasing attention because
it provides more realistic content, consistent to what the Human
Visual System perceives. We propose a new No-Reference Image
Quality Assessment (NR-IQA) model for HDR data based on
convolutional neural networks. The proposed model is able to
detect visual artifacts, taking into consideration perceptual mask-
ing effects, in a distorted HDR image without any reference. The
error and perceptual masking values are measured separately, yet
sequentially, and then processed by a Mixing function to predict
the perceived quality of the distorted image. Instead of using
simple stimuli and psychovisual experiments, perceptual masking
effects are computed from a set of annotated HDR images during
our training process. Experimental results demonstrate that our
proposed NR-IQA model can predict HDR image quality as
accurately as state-of-the-art full-reference IQA methods.

I. INTRODUCTION

High dynamic range (HDR) images can present a much
larger range of luminance compared to conventional images.
This larger range of luminance is achieved by using 16-32
bit floating point values, instead of a conventional 8§ bits
per pixel integer representation. Viewers are able to perceive
more vivid colors and scene content compared to viewing
on a conventional Standard Dynamic Range (SDR) or Low
Dynamic Range (LDR) display. This generates a better quality
of viewing experience [1]. The advancement of HDR imaging
technology has changed the landscape of the entire mul-
timedia communication pipeline from capturing, processing
and transmission, to the visualization of HDR content [2].
This technology has become an important development in the
consumer market, e.g., TV and photography, with the support
of industrial investments.

In this work, we consider evaluating HDR image quality on
a HDR compatible display. Image quality assessment (IQA)
can be broadly categorized into Full-Reference (FR) and No-
Reference (NR). In FR-IQA, the quality of a given image is
evaluated by comparing a distorted image with an undistorted
version of the same image. In NR-IQA, the quality is evaluated
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by judging the distorted image only. Since the target audience
of the HDR content is the Human Visual System (HVS), one
IQA solution is to conduct user subjective tests. However,
subjective tests are tedious and time-consuming. Even with the
help of massive crowdsourcing projects, e.g., mturk, HDR IQA
is difficult due to the high cost of acquiring systems capable
of displaying HDR content. A better solution is to develop an
efficient NR-IQA model, which can automatically assess HDR
content, matching the human perception.

Our proposed model is capable of predicting the perceived
HDR image quality and localizing the distortions. We use
a convolutional neural network (CNN) based architecture
to achieve this goal. Our model addresses low-level image
distortions such as artifacts caused by image compression.
We do not consider changes in image quality due to high-
level effects, e.g., artistic intent, where complex aesthetical
considerations need to be taken into account.

Our contributions in HDR image quality assessment lie in:

1) Proposing an NR-IQA model based on a convolutional
neural network architecture, which can separate pix-
elwise errors from their impact on perception in a
distorted image. Our model outperforms other NR-IQA
models and is competitive with state-of-the-art HDR
full-reference IQA algorithms.

2) Providing an accurate error prediction in a distorted
image without a reference image.

3) Predicting the visual masking effects without the need
of explicit psychovisual subjective tests.

The rest of this paper is organized as follows: Section
II discusses the previous work in related fields. Section III
explains our motivation for the new approach. In Section IV
we discuss the conceptual idea and implementation of the pro-
posed method. Section V deals with performance comparisons
and test of our method against other algorithms. Followed by
this, in Section VI, we discuss the functionality of each of
the subcomponents of our system and show how they work.
Section VII concludes the paper.

II. PREVIOUS WORK

In pace with the rapid development of HDR imaging tech-
nology, Full-Reference Image Quality Assessment (FR-IQA)
of HDR images has been gaining attention in recent years, and
a number of studies have addressed the evaluation of quality
for HDR images and video [3], [4], [5]. However, much less



has been done on No-Reference Image Quality Assessment
(NR-IQA) of HDR images. Relevant work in the NR-IQA
literature can be classified into two general categories:

o LDR NR-IQA, where the quality of images is estimated
when it is visualized on LDR displays.

o Tone-Mapped NR-IQA, in which color and contrast val-
ues of a HDR image are mapped onto a smaller range of
color and contrast values, using Tone Mapping Operators
(TMO), and the output is evaluated on LDR screens.
TMOs are often used to compress the dynamic range of
HDR images.

Note that in our work, we assume instead that HDR images
are directly evaluated on HDR displays.

A. LDR NR-1QA

Machine learning approaches are often used in LDR NR-
IQA. These approaches start by creating a feature image and
fit a relevant distribution. The parameters of this distribution
are used as the feature vector of the distorted image. An
early method based on machine learning in LDR NR-IQA is
the Blind Image Quality Index (BIQI) [6]. It is a two-step
process: (1) from a set of features, a Support Vector Machine
(SVM) predicts the type of distortion, and (2) a set of Support
Vector Regressors (SVRs) predict the score for each distortion
type. The final quality score is computed as

m
score =y " p; - g, (1)
=1

where m is the distortion type, p; represents the probability
of each distortion obtained from the SVM and ¢; represents
the quality score given by each of the SVR’s. BIQI [6] used
Daubechies 9/7 wavelet as the feature image.

Many methods follow a similar approach and show good
performances on assessing LDR content on LDR screens
without a reference image. Examples are Blind/Referenceless
Image Spatial QUality Evaluator (BRISQUE) [7], Distortion
Identification-based Image Verity and INtegrity Evalutation
(DIIVINE) [8] and Spatial-Spectral Entropy based Quality
metric (SSEQ) [9]. These algorithms can have complex fea-
tures, but just need a single SVR to predict the final quality
of an image.

BRISQUE [7] computes the Mean Subtracted Contrast
Normalized (MSCN) image as feature using M SCN(i,j) =
%, where p7 v, ; and o7 n; ; represent the mean
and variance computed over a local Gaussian window of size
N around the point (4,7). I(i,7) is the image intensity at
(i, 7). DIIVINE [8] uses divisive normalized steerable pyramid
decomposition coefficients to create the feature image.

SSEQ [9] generates features using entropy. A scale space
decomposition is used to generate three scales of an image,
and entropy is calculated for each image block in the spatial
and DCT domain. The entropies are then pooled by percentile
pooling. The mean and variance of the spatial and frequency
components are used in the feature vector.

An alternative approach in LDR NR-IQA is using Convo-
lutional Neural Networks (CNN) as in [10]. We refer to this
method as kCNN throughout the paper. This is an enhanced

version of [11]. The basic idea is to learn discriminative
features that can perform IQA rather than using a handcrafted
method; [11] uses dictionary learning to form discriminative
filters and [10] improves the process by redesigning it as a
CNN. The CNN has four layers that act on MSCN image
blocks of size 32x32. The first layer is a convolution layer
with 50 filters (kernels), followed by a pooling layer that
reduces the dimensionality of the data, and finally there are
two fully connected layers. The network is trained with the
Mean Opinion Scores (MOS). This method can produce a
“perceptual distortion map”, which shows location of the
errors of the distorted image.

In general, these LDR NR-IQA algorithms rely largely on
statistical characteristics of the distorted images, i.e., they as-
sume image distortions alter the statistical properties exhibited
by “natural” undistorted images. However, they do not take in
to consideration the human visual resistance to errors, e.g.,
due to masking phenomena. The natural image statistics are
to be captured in the internal representation of the SVM or
CNN. Thus, these LDR NR-IQA algorithms need an explicit
training stage in order to learn what “natural” is and how the
noise change the “naturalness” property. A recent work that
tries to alleviate this problem is [12], which assesses perceived
image quality corrupted by uniform and high-frequency noise.
The method uses a combination of features, with appropriate
feature weights to scale the errors. However, it cannot estimate
compression errors. In contrast, we formulate the naturalness
property in our model and our technique can also assess
compression errors.

B. Tone-Mapped I1QA

As explained earlier, Tone-Mapped IQA is a related re-
search area, where HDR images are tone-mapped to LDR
images, which are then evaluated on LDR displays. The
Tone-Mapped Quality Index (TMQI) metric [13] follows the
structural fidelity criterion [14], to compare an HDR image
with its tone-mapped version, by embedding the knowledge
of the Contrast Sensitivity Function (CSF) at different values
of luminance [15], [16]. In addition, similar to NR-IQA, a
naturalness measure is also included to compare the statistics
of the tone-mapped image to those of natural images. This
idea is further explored in [17], where the performance is
improved with better error pooling and naturalness measure.
Phase congruency is added as a feature in [18] for the same
purpose to compare two images.

A NR-IQA approach for Tone-Mapped HDR [19] employ
MSCN images as spatial domain features. It also obtains
gradient computations on different neighborhoods of every
pixel. This is followed by Gaussian parameter extraction and
a Support Vector Regressor (SVR) process like the other
techniques described in Section II-A. The idea is to generate
a HDR image by fusing images captured using multiple expo-
sures. The HDR image is then tone-mapped to a LDR image.
The groundtruth Mean Opinion Score (MOS) is obtained based
on subjective quality evaluation using LDR displays. The
method is statistics-based and does not incorporate perceptual
modeling. In contrast, our evaluations are based on displaying



HDR images on compatible HDR displays and the human
perception component is an integral part of our model. It
should be understood that a tone-mapped HDR image has
a reduced gamut of colors and luminance compared to the
original HDR image. Experimental evidence of psychophys-
ical differences in viewing HDR and LDR image content
is provided in [20]. Their study demonstrates how HDR
and LDR (or reduced dynamic range) contents are perceived
differently when displayed on a HDR screen. The authors
collected opinions, including users’ ratings of naturalness,
visual appeal, spaciousness, and visibility. Here, visibility
refers to the details in the image. The study found statistically
significant difference in how users rated visibility for HDR
and LDR images when these are displayed on a HDR screen.

III. MOTIVATION

Conventional LDR displays have a maximum luminance of
about 300 cd/m?2. High Dynamic Range (HDR) displays have
a luminance of 4,000 cd/m?2 and above, which delivers more
realistic scenes and vivid content to the Human Visual System
(HVS). In addition to advanced HDR acquisition devices,
HDR images can be generated using multi-exposure fusion
algorithms [21] and tone-mapped onto lower dynamic range
images [22], [23] for evaluation on LDR displays. Current NR-
IQA methods focus on quality assessment on LDR displays.
If these methods are applied to predict the quality of HDR
images displayed on a HDR display, the result is not accurate,
as shown in Section V. This is because they rely on statistical
modeling of noise and fail to take into account how the
Human Visual System (HVS) responses to HDR displays [24].
Therefore, to design a robust HDR NR-IQA system, which is
consistent with how the HVS perceives real-world content,
we need a new NR-IQA model that incorporates perceptual
factors to predict the visibility of error on HDR screens. To
date, we are not aware of any related work that is designed
for HDR viewing conditions.

A. HVS response to HDR displays

How the HVS responses differently to HDR and LDR
displays has been extensively studied by Aydin et al. [24].
In their experiments, the authors used a LDR display with
luminance range 1-100 cd/m? and another HDR display with
luminance range 10-1,000 cd/m? to evaluate the difference in
perceived image qualities. They found that a distorted image,
when viewed on the brighter display, was perceived as worse
compared to the same image displayed on the display with
lower brightness. This shows that viewing content on LDR
displays and HDR displays has different perceptual effects.

Hence, we argue that, in addition to statistical comparison,
HDR NR-IQA should incorporate the psychophysical phenom-
ena that can determine the perception of distortion in HDR
conditions. Although such perceptual approach is not common
in NR-IQA, it is often used in FR-IQA models. HDR-VDP-
2.2 [3] and HDR-VQM [4] are two examples. HDR-VDP
2.2, simulates the early processing stages of the HVS, based
on psychophysical measurements. HDR-VQM uses sub-band

decomposition and spatial-temporal error pooling to simulate
visual recognition. Both are FR-IQA methods, which generate
a local error visibility map. An alternative approach is to apply
SSIM [25], which is a FR-IQA method for PU-encoded HDR
data. These are the best performance algorithms in FR-IQA
for HDR data based on the survey presented in [5]. We will
compare the performance of our proposed NR-IQA system
with these FR-IQA.

IV. PROPOSED SYSTEM

In order to design a perceptual model consistent with how
the HVS perceives HDR real-world content, it is necessary
to understand the contrast sensitivity associated with a com-
plex image. The traditional approach considers various visual
features like contrast, frequency and background luminance.
Very often, a handcrafted function is used to compute a quality
score based on a combination of these features. The quality
score function is obtained by fitting opinions collected from
subjects in psychophysical experiments using sample datasets.
The research question is how to generalize user study results
for all real-world images.

We approach this problem of designing a perceptual HDR
NR-IQA model by dividing the visual quality analytic process
into sub-components. We represent visual quality perception
as the result of two functional units. The first unit takes a
distorted image and detects error, and the second unit performs
a perceptual scaling of this error to compute a quality score.
By using a supervised learning approach, the mathematical
behavior of these two units can be modeled. The data required
for this training is obtained from an IQA dataset, which
contains images and the corresponding quality scores.

A. Model Overview

To formulate the above idea, we design a Convolutional
Neural Network (CNN) (Fig. 1) that processes HDR image
blocks composed of linear luminance values. We use a block
size of 32x32 pixels. This is the same block size that was
suggested in [26]. Our CNN model has three major parts: E-
net, P-net and a Mixing function. E-net estimates the Error
(i, ) of an image block centered at (4, j). P-net computes the
Perceptual Resistance T(i, j) of the block. The output of these
two systems are then input to a Mixing function, to produce
the local block quality. We obtain Differential Mean Opinion
Scores (DMOS) for each image block. The block scores are
then combined to generate the final image quality score. In our
model, DMOS is a number directly proportional to the level
of distortion in a HDR image.

B. E-net Error Estimation

The Error 6(4,j) quantifies the change in statistics in a
distorted image block. For an image block centered at (i, j),
we define the error as,

§(i,§) = mean(|Yr(i,§) — Yo (i, 5)|) 2)

where Y and Yp are, respectively, the original and distorted
linear HDR luminance values of the image block centered at
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Fig. 1: Proposed strategy for a robust HDR NR-IQA. E-
net detects the error, P-net detects the perceptual resistance,
and Mixing function consolidates the results and computes a
DMOS.

(i, 7). This does not indicate a Full Reference computation, as
the original version is only used during training (a pair of HDR
image and its distorted version is used here). The objective is
to train E-net with the distortion characteristics, like blocky
artifacts, blurring effects, jagged edges, etc.

We use ¢; norm for error computation (Eq. 2) instead
of alternative measures such as /o norm, to avoid over-
emphasizing large errors. This is particularly important in
HDR images where the histogram of Y is generally very
skewed and some pixels take very high luminance values. We
use our own CNN approach to design E-net to obtain and
estimation (i, j) of the error in Eq. (2).

C. P-net Perceptual Resistance

For each image block centered at (i,j), we compute the
Perceptual Resistance T'(i, 7). This value represents the diffi-
culty for a viewer to perceive the error (¢, j) of the block. A
high T' value implies that it is less likely to see the error, and
hence the quality of the block is less affected (high perceptual
resistance). Conversely, a low value implies that the image
block will be perceptually degraded by error.

Perceptual Resistance 7T'(4,j) aims to represent a combi-
nation of all perceptual effects exhibited by an image block
centered at (4,7). Though it is functionally similar to the
pixel-wise just noticeable error measure used in conventional
IQA systems like [12], [27] and [3], we introduce Perceptual
Resistance as a new term because our model generates local
quality scores (DMOS), as opposed to a local probability of
error detection.

Instead of following the traditional perceptual modeling
method of deriving perceptual thresholds from psychophysical
experiments, we solve this problem by a data driven method.
We use a convolutional neural network (CNN) based archi-
tecture, P-net, to derive the Perceptual Resistance of a block.

The CNN automatically computes the features required to do
this task by a training process using real-world images. A
detailed analysis of how a generic CNN generates its features
is explained in [28]. In our system, P-net approximates a
function that maps the image block values onto a perceptual
resistance value. Differing from a conventional psychophysical
perceptual function, the *function’ that is captured by P-net is
represented as weights in the CNN.

D. Mixing function

We use a Mixing function f (5, T), which combines the
estimated error and Perceptual Resistance to generate a quality
score. This is a critical part of the system because it is this
value that is optimized by the training process to match human
quality scores. The output of P-net would change based on how
the Mixing function is designed.

The Mixing function is designed as follows, with error
expressed in multiples of Perceptual Resistance:

DMOS:fQJU:G(;) 3)
where G is a monotonically increasing function. By using this,
we express error in JND like measure ( §5% ), so that the
error quantity is mapped onto a more perceptually relevant
scale. Such interpretation is common in IQA literature, e.g.,
[12], [24] and [3].

Mapping % to quality scores is achieved by the function
G. Since increase in visible error always leads to decrease in
quality and increase in DMOS, the latter must monotonically

increase with <%, implying that G also has to be monoton-

ically increasing with %. Thus, any monotonically increasing
function is sufficient for G. However, choosing a G that is
too complex can lead to optimization problems because of
unstable data points along the function, or low values for
gradients, leading to slow or zero learning. We do not go
into the mathematics of CNN convergence and optimization
functions as it is beyond the scope of this work.
Based on the above considerations, we use G(z) = 1 —
exp(—|kz|) and DMOS is computed as:
) @

ko 6(i, §)
T(i, j)

This choice is inspired by the error model proposed in [12],
but we introduce a scaling factor k. Here the added parameter
(weight) k can be tuned during the training process, so that
the predicted values of DMOS are as close to the ground truth
DMOS as possible.

As seen from the plot of Eq. 4 in Fig. 2, G can characterize
different rates of increase for DMOS, depending on the values

DMOS(i,j) =1 —exp (—

of 6(i,5), T(i,j) and k. Note how k serves to control how
slowly DMOS increases with % (Fig. 2 B).

The block-wise DMOS scores obtained from Eq. (4) is
converted to a global score by averaging. A weighted scheme
is not required here since the perceptual scaling of errors based
on content is already handled by Eq. (4) (the T' computed by
the CNN changes based on image content and handles content-
dependent scaling).
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Fig. 2: Behavior of the Mixing function. (A) Varying T" with
k fixed at 1 illustrates the impacts of changing ¢ and 7" on
DMOS. (B) Varying k with T fixed at 20 illustrates the impacts
of changing k and § values on DMOS. An optimal k value is
determined during the training process.

E. Two-Stage Training process

An important element in a CNN-based system is the selec-
tion of right labels for training. To force the desired behavior
of the sub-components, we need to provide the right examples
to each of the CNN’s.

E-net detects blockwise errors. It is trained with linear
luminance values of the distorted image as input, and per pixel
errors (Eq. (2)) as output, which are available in the training
stage.

For P-Net, the ideal training data is a numeric quantity,
encapsulating all perceptual effects on the HVS, generated
from an image block. Although we cannot get such a final
value directly, our system can produce a quality score after
the Mixing function process. We use this score for training.
This two-stage training forces the P-net to extract a set of
perceptual features from the image blocks and to derive a
single final Perceptual Resistance value. The optimal value
of k in the mixing function is also computed.

We therefore define our two-stage training process as fol-
lows:

Stage 1: E-net is trained with distorted image blocks as
input and errors ¢ as target. The error is computed with Eq. (2).

Stage 2: all the training weights of E-net are frozen by
setting their learning rate to zero. The whole network is then
trained with image blocks as input and ground truth image
quality of the whole image, DM OS;, as target. We use J as
the cost function for any image block centered at (i, j), where

J(i,§) = [DMOS(i, j) — DMOS . 5)

DMOS(,j) is the output of the Mixing function. The P-net
and the mixing function (optimal value of k) get trained during
this stage.

The overall process is illustrated in Fig 3.

Notice that in Eq. (5) we assume that the local quality
of an image block is the same as the global image quality
score, similarly to the setting in [26]. While this assumption
is somehow inaccurate (as distortion can be unevenly spread
across a picture), it has been proven to be accurate enough
to predict image quality without reference [26]. We leave to

Stage 1 Stage 2

Image block
y(@.j)

Image block
y(@.))

P-Net

T(@j) TN

L CY)) -
E-Net weights are frozen.
P-Net and mixing
function are trained
together.

. Mixing
function

Inactive
during
stage 1

Only E-Net is trained.

Input @ <y(i,j)>
Target: 5(i, J).

Input : <y(i,j)>
Target: DMOS(i, j).

DMOS(i,j) DMOS(i,j)

Fig. 3: Two-stage training process.

future work how to produce more accurate groundtruth quality
labels for training, e.g., as in the very recent method [29].

F. Network Architecture

Our network architecture has two major advantages. First,
a separation of the perceptual component from the physical
error gives more intuitive results that can be used in applied
fields of IQA like image and video compression. With ade-
quate calibration, Perceptual Resistance values can be used to
optimize compression or transmission. Secondly, it simplifies
the learning process leading to improved results and better
generalization of those results to real-world cases.

E-net is a typical CNN architecture consisting of five layers.
The E-net structure is shown in Fig. 4. Spatial pooling is used
after each filtering stage. The final layer consists of one node
corresponding to the output. Spatial dropout layers [30] are
added to prevent over-fitting of data.

For P-net, we define a customized CNN layer, namely
Augmented Input Layer. In this layer, in addition to the
original luminance values of the block, we compute the mean,
variance and MSCN images. For the MSCN image, we use the

formulation in [7], i.e., MSCN (yn(i,7)) = %
where fi,, (; 5y is the mean and oy, (; ;) is the variance. They
are computed by replacing every pixel (i,j) with the mean
and variance, respectively, over a local Gaussian window of
size N around (i,7). We use a smaller value 0.01 as the
stabilizing constant in order not to significantly impact the
MSCN values. Since neural network training requires the input
values in a specific range, we scale the input, variance map and
the MSCN map with trainable scalar weights, w;, i = 1,...4,
whose values are determined as part of the overall optimization
process. Hence the output of the Augmented Input Layer are
four scaled feature maps: wy - yn(i,5), wa - fiyy (i), W3 -
Tyn(irj)s Wa - MSCN(yn(i,7)). The subsequent layers are
convolutional and fully connected layers. The final layer has
one node corresponding to the output. The P-net structure is
shown in Fig. 5.

The results of E-net and P-net are integrated and analyzed
by the Mixing function, whose behavior is modeled by Eq. 4,
with trainable parameter k£ tuned during the training process.

V. EXPERIMENTS AND RESULTS
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In this section, we compare the performance of our algo-
rithm with existing methods and show a clear improvement
in performance. We conduct two tests: 1) a test of overall
performance of the proposed method on a large dataset of
subjectively annotated HDR images; 2) a cross-dataset test to
assess the generalization capabilities of the proposed approach.

A. Datasets

To obtain a large enough number of HDR images, we
combine subjective scores from five different datasets [31],
[32], [33], [34] and [5]. The authors of the respective datasets
conducted subjective evaluations using different HDR dis-
plays, of different maximum luminance and viewing distances.
The characteristics of the datasets are described in Table I. In
order to align the subjective scores of the different datasets,
we follow the same setup as the evaluation of HDR FR-
IQA in [5], i.e., we employ the iterated nested least square
algorithm (INLSA) proposed by Pinson and Wolf [35]. Details
about the application of this method for the considered datasets
are given in [5]. All the experiments in the following are done
using the aligned scores obtained after INLSA.

Dataset Number Nu.mber Distortion Max.imum
Number of Reference of Distorted type Luminance
Images Images (Cd/m?)
#1 [31] 27 140 JPEG 1000
#2 [32] 29 210 JPEG 2000 1000
#3 [33] 24 240 JPEG-XT 4000
JPEG
#4 [34] 15 50 JPEG2000 4000
JPEGXT
JPEG
#5 [5] 15 50 JPEG2000 4000
JPEGXT

TABLE I: Datasets characteristics

The datasets provide only MOS values of the images. Since
our system requires the difference of mean opinion scores
(DMOS), we convert MOS to DMOS as follows:

_ MOSyax — MOS(i)

DMOS, (i) = =3 e 2=, (©)

where DM OS (i) is the ground truth DMOS score for image
i, MOSyax represents the maximum MOS in the IQA
training dataset and MOS(i) is the MOS of the i*" image
of combined database after INLSA alignment.

B. Experimental setup

The proposed system was implemented on a computer with
an Intel core 17 processor, 16GB RAM, and a Nvidia GTX1070
graphics processor. Python was used as the programming
language with Keras on Theano backend, Imageio and Open
CV as supporting libraries. We used Adam optimizer ([36])
to optimize the weights of the CNN. The parameter values
of Adam was learning rate = 0.001, 5; = 0.9, B2 = 0.999,
e = 1078 and decay = 0.0. The batch size used was 200. The
training was done for 10 epochs.

Performance comparison measures used were Spearman
Rank order Correlation Coefficient (SRCC), Kendall Rank-
order Correlation Coefficient (KRCC), Pearson Linear Cor-
relation Coefficient (PLCC) and Root Mean Square Error
(RMSE). A good NR-IQA is characterized by a higher value
for SRCC, KRCC, and PLCC, and a lower value for RMSE.
The metric values and subjective DMOS were scaled to [0,100]
for evaluation of RMSE.

C. IQA Reference Schemes

Since the research on HDR NR-IQA is still at its preliminary
stage and there is no generally accepted benchmark metric,
we compared our approach with a number of state-of-the-
art LDR NR-IQA methods: BRISQUE [7], SSEQ [9], BIQI
[6], DIIVINE [8], and kCNN [10], with and without pre-
processing operators. The results were obtained after retraining
the algorithms on the respective processed HDR datasets. PU
encoding was used as a pre-processing operator because it has
been shown to perform well in a similar context for HDR FR-
IQA [34]. We also used a number of tone-mapping operators,
which include [23], [37], [38] and [39], in pre-processing.
Features were extracted using the implementation provided by
the authors. In the case of SSEQ [9], we normalized the images
by the maximum intensity under the respective schemes (4000
for linear HDR and 455 for PU encoded data). For training
the SVM, a grid search on the cost and kernel parameters
of the SVM was conducted for a range of 10~'° to 10'°
before training. The algorithm in [40] was re-implemented
using Python.

D. Overall performance

In order to test the overall performance of the proposed
method, we (re)train each algorithm on our combined image
dataset, by splitting it in training/testing subsets (80% for
training and 20% for testing). We repeat this procedure 100
times, similar to [40]. We assure that the training and testing
sets do not contain the same contents. Note that the results can
vary slightly since the CNN weights initialization is random.
The computed median SRCC, KLCC, PLCC and RMSE are
shown in Table II.

Considering the NR-IQA originally designed for LDR con-
tent, we see an acceptable performance in SRCC (about 0.7



Scheme Processing SRCC KRCC | PLCC | RMSE
Lin 0.7274 0.5430 | 0.7231 | 18.1797
PU 0.8047 0.6116 | 0.7825 | 17.3576
TMO - Drago 0.7374 0.5415 | 0.7203 | 19.1261
BRISQUE TMO - Reinhard 02 | 0.7782 0.5853 | 0.7699 | 18.1523
TMO - Reinhard 05 | 0.6903 0.5061 | 0.6643 | 20.3307
TMO - Mantiuk 0.6172 0.4559 0.6148 | 22.1868
Lin 0.6022 0.4378 | 0.6008 | 23.3017
PU 0.7342 0.5451 | 0.7175 | 19.4117
SSEQ TMO - Drago 0.6853 0.501T | 0.6954 | 20.8766
TMO - Reinhard 02 | 0.6866 0.5183 | 0.6688 | 21.0673
TMO - Reinhard 05 | 0.6568 0.4845 | 0.6467 | 20.5737
TMO - Mantiuk 0.4185 0.2926 0.4651 | 25.7570
Lin 0.1817 0.1391 | 0.1466 | 38.7513
PU 0.3387 0.2406 | 0.3445 | 30.5220
BIQI TMO - Drago 0.2803 0.1923 | 0.2960 | 41.0579
TMO - Reinhard 02 | 0.3756 0.2778 | 0.3766 | 33.2005
TMO - Reinhard 05 | 0.3097 02213 | 0.2874 | 27.7294
TMO - Mantiuk 0.2822 0.1957 | 0.2408 | 39.0999
Lin 0.6677 0.4853 | 0.6759 | 21.8020
PU 0.7156 0.5290 | 0.7193 | 18.7586
DITVINE TMO - Drago 0.7418 0.5562 | 0.7400 | 18.9959
TMO - Reinhard 02 | 0.7149 0.5266 | 0.7024 | 20.7177
TMO - Reinhard 05 | 0.7900 0.5932 | 0.7809 | 17.2134
TMO - Mantiuk 0.4946 0.3549 0.4936 | 27.4918
Lin 0.8363 0.6530 | 0.8134 | 19.1753
PU 0.8638 0.6852 | 0.8497 | 16.8937
KCNN TMO - Drago 0.7700 0.5853 | 0.7485 | 18.2759
TMO - Mantiuk 0.8075 0.6188 | 0.8053 | 17.7948
TMO - Reinhard 02 | 0.8613 0.6668 0.8179 | 17.7157
TMO - Reinhard 05 | 0.6438 0.4631 0.6074 | 22.3484
Proposed PU 0.8860 0.7170 | 0.8871 | 16.4171
Proposed Lin 0.8920 0.7184 | 0.8860 | 14.1464

TABLE II: Overall Performance comparison. Highlighted in
bold are the high performing metric.

after retraining) for many of the algorithms. Best performances
are obtained by using BRISQUE [7] and kCNN [26]. The high
performances of BRISQUE and kCNN can be attributed to
the features they use, i.e., the MSCN coefficients. It is likely
that the normalization by variance cancels the effects of the
increased dynamic range and yields a similar distortion pattern
as LDR images. Practically, kKCNN is more useful because it
produces a perceptual distortion map in addition to the quality
score. The perceptual distortion map indicates what errors a
human viewer can notice on the noisy image. Furthermore,
we observe a clear performance improvement in LDR NR-IQA
algorithms if the data is pre-processed and the dynamic range
of the data is reduced to LDR levels. PU encoding improves
the performance in most of the cases. The best performance
among LDR NR-IQA is obtained while using PU encoding in
conjunction with kKCNN.

The performance of the proposed system is significantly
better than the other algorithms in all cases both with or
without preprocessing using PU encoding.

E. Cross-dataset testing

In order to demonstrate the generalization capabilities of
the proposed NR-IQA technique to different conditions and
contents, we train the algorithms using datasets #1, #2 and #3,
and test them on datasets #4 and #5. This represents a real-
world scenario, where the validating conditions are different
from that of the training data. In addition, this testing method
allows us to compare performance with FR-IQA algorithms.
From a machine learning point of view, we have a sufficient
number of examples of each type of distortion in datasets
#1, #2 and #3. There is also a combination of all distortion

types in dataset #4 and #5. The test set contains DMOS scores
uniformly distributed in the range [20, 90].

Since the CNN is initialized with a set of randomly gener-
ated weights, the results of training can vary. We report the
median score after 10 train-test cycles. Our results are given
in Table III. By itself, BRISQUE, BIQI, SSEQ and DIIVIINE
seem to be unable to adapt to the different image sizes and
luminance ranges in the testing set, when these features are
different from the training set. This can be explained by the
fact that the features used by these algorithms are computed
over a global histogram from the entire image.

The KCNN method performs well and shows good adapt-
ability to a different test image size. This can be attributed
to the fact that an image block is used to train the kCNN
and hence the overall image size becomes less important. The
method, however, does not take into account perceptual factors
and we can see an improvement if PU encoding is used in pre-
processing.

Our proposed algorithm outperforms related methods in all
test cases when considering generalization to a real-world
scenario. The superior performance demonstrates the strength
of our two-stage training design, which successfully adapts to
different image and luminance range. Perceptual Resistance
values are able to scale the errors based on the luminance
and image content. Our result achieves performance close to
FR-IQA methods without the need of a reference image. For
the full reference methods, the metric values are scaled to the
range of [0,100] as suggested in [5]. A scatter plot comparing
the scores generated by the proposed method and the human
judged DMOS is shown in Fig. 6. A high correlation is
observed.
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Fig. 6: Scatter plot between objective scores from the proposed
method and subjective human judged DMOS.

VI. ANALYSIS AND DISCUSSION

In this section, we analyze each sub-component of the
proposed system and show the functions performed by them
in detail. We highlight some interesting results provided by
our system in addition to the quality score of an image. We
also discuss the weakness and failure cases. In the following,
we color-code the results with red points showing high values,
green intermediate and blue low values.



Scheme Processing SRCC | KRCC | PLCC | RMSE
Lin 0.5400 | 0.3732 0.4772 | 28.8475
PU 0.7135 | 0.5121 0.6503 | 20.5534
TMO - Drago 0.6337 | 0.4483 0.5903 | 21.7118
BRISQUE TMO - Reinhard 02 | 0.6583 | 04670 | 0.6512 | 18.4500
TMO - Reinhard 05 | 0.3524 | 0.2482 0.3946 | 30.6615
TMO - Mantiuk 0.5887 | 0.4103 0.5493 | 22.7529
Lin 0.5287 | 0.3599 0.4714 | 25.2588
PU 0.6492 | 0.4543 0.6111 19.6977
SSEQ TMO - Drago 0.5865 | 0.3956 0.5634 | 22.6987
TMO - Reinhard 02 | 0.5810 | 0.4075 0.5644 | 22.9900
TMO - Reinhard 05 | 0.4990 | 0.3401 0.5036 | 24.9193
TMO - Mantiuk 0.4973 | 0.3398 0.4770 | 21.2044
Lin 0.2845 | 0.1876 | 0.2831 | 31.0686
PU 0.4386 | 0.3041 0.4399 | 21.2084
BIQI TMO - Drago 0.5332 | 0.3780 0.4436 | 25.6200
TMO - Reinhard 02 | 0.4632 | 0.3196 0.4358 | 22.0376
TMO - Reinhard 05 | 0.5748 | 0.4048 0.5630 | 19.4825
TMO - Mantiuk 0.4651 | 0.3204 | 0.4571 | 24.2268
Lin 0.5041 | 0.3429 0.5209 | 20.6506
PU 0.5318 | 0.3691 0.5442 19.6772
DILVINE TMO - Drggo 0.4143 | 0.2852 0.4065 | 25.9697
TMO - Reinhard 02 | 0.3634 | 0.2434 0.3953 | 26.1464
TMO - Reinhard 05 | 0.5558 | 0.3849 0.5374 | 19.3122
TMO - Mantiuk 0.4138 | 0.2838 0.4496 | 21.0499
kCNN Lin 0.6991 | 0.5156 0.7008 | 19.3677
kCNN PU 0.7694 | 0.5845 0.7544 | 18.5854
Proposed Lin 0.8672 | 0.6773 | 0.8780 | 18.626
HDR-VDP-2.2 | Full Reference 0.9298 | 0.7691 0.8710 | 10.120
HDR-VQM Full Reference 0.9193 | 0.7444 0.8940 | 10.725
PU-MSSIM Full Reference 0.8969 | 0.7125 | 0.7589 | 12.775
PU-SSIM Full Reference 0.9121 | 0.7339 | 0.7121 | 11.688

TABLE III: Cross-dataset results for different IQA methods.

A. Error Estimation

Per block error estimation is performed by E-net (Figure 1).
The output 6 of E-net on a few example images from Datasets
#4 and #5 is reported in Fig. 7, which shows the distorted
images, the actual error § in the image (equation 2) and the
error estimations generated by E-net. As a reference, we also
include the corresponding Root Mean Square Error (RMSE)
between § and § in Fig 7 (e).

A more detailed look at the error estimations can be seen
in Figure 8, where we show enlarged regions of the image
containing actual error and the corresponding error estima-
tions. It is apparent from the error maps that E-net is able to
successfully identify major errors in the images.

Reference Image Distorted image ) ) RMSE
4.176
3.489
8.018
(d) (e)

Fig. 7: Error estimation. (a) reference images; (b) distorted
images; (c) ground truth error map provided by the database;
(d) error maps estimated by E-net; (¢) RMSE between the
estimated and ground truth errors on the HDR luminance
images.

Reference Distorted

Full size s
Region 1
Region2 [ ’

ﬁ.

(a) (b) {c) (d)

Fig. 8: Error estimation. Detailed comparison of actual and
estimated error. Columns (a) to (d) have the same meaning as
Figure 7.

B. Perceptual Resistance

The Perceptual Resistance value 7' produced by P-Net
shows how unlikely it is that an error in a region can
reduce local visual quality. We use the image in Fig. 9 to
illustrate how P-net handles contrast sensitivity and masking
effects. We consider a JPEG compressed image from the CSIQ
dataset [41]. The image is scaled to a maximum luminance of
100 cd/m?. This is done for ease of explanation as this is
the luminance range commonly seen in everyday computer
and television screens. The image is input to the proposed
algorithm as blocks of size 32 x 32. The output from E-net,
P-net and the Mixing function are shown in Fig. 9.

a) Analysis of spatial masking: Spatial masking effects
can be observed in the output of P-net ( T" in Fig. 9). In the
color map, the Perceptual Resistance 7" is lower for pixels
in the sky, which is brighter and smoother, compared to other
image blocks. Thus, errors in the sky region are easy to notice.
On the contrary, in regions with high spatial frequency, e.g.,
bushes and architecture, 7" is higher indicating that errors are
less noticeable. The error & estimated by E-net and the actual
error § is shown in Fig. 9. The perceptual distortion map
obtained after the mixing function reflects high values in the
sky and low values in the more densely textured regions.

b) Analysis of sensitivity to luminance: As explained in
Section III.A, [24] performed a user study by displaying a
distorted image on two screens with maximum luminance of
100 cd/m? and 1,000 cd/m?, respectively. The study revealed
that users rated the perceived quality on the high luminance
monitor worse compared to the the same image displayed
on the lower luminance monitor. We reproduced this finding
by applying our algorithm on the LDR images in the CSIQ
database [41]. We used all the JPEG distorted images in
the database and linearly scaled the images to luminance
ranges of 100 cd/m? and 1,000 cd/m?, respectively. We then
computed the quality of these images using the proposed
method and compared the scores of the two luminance ranges.
We found that the mean value of DMOS for the images of
low brightness was 68.76 and those of high brightness was
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Distortion Map

Fig. 9: Perceptual resistance. Example output of E-net and P-
net. For the content of *Image’, Actual error §, Output of E-net
5 - Estimated error, Output of P-net T" - Perceptual Resistance
and perceptual distortion map DM OS(i, j) from the Mixing
function is shown.

76.72. This implies that the brighter images appear more
distorted than their corresponding low brightness counterparts.
We then employed ANalysis Of VAriance (ANOVA) to check
for statistical significance of the difference between DMOS
for the low and high brightness images. The p value was
found to be < 0.05 and F' < F,.; for the hypothesis that
the difference in means was zero; proving that the difference
is statistically significant. Hence, we can reproduce the results
obtained in [24] using our data driven method without the need
of conducting low level visibility user studies.

We performed further analysis on the image discussed in
Fig. 9. Fig. 10 shows the output of our proposed method
at different noise levels under 2 different luminance ranges.
Notice that:

1) In both luminance ranges, the estimated 5 is the same,
because the measure is based on content statistics and
does not take into account the change in luminance.

2) The estimated 7T is instead affected by the luminance
range, as discussed in Section III. For a given distortion
level, the perceptual resistance is lower for higher lumi-
nance values, consistently with the the findings in [24].
However, the mapping of luminance to perceptual resis-
tance is not a simple global linear scaling, but takes into
account the complex content-dependent characteristics
that determine contrast and luminance masking.

c) Comparison between perceptual resistance and con-
trast sensitivity: HDR-VDP 2.2 can provide a contrast thresh-
old, i.e., the per pixel contrast (difference) such that an error
is visible with a certain probability. This map is related to our
Perceptual Resistance values. However, the contrast threshold
is the result of psychophysical experiments to determine con-
trast sensitivity at different luminance levels, while Perceptual
Resistance is indirectly obtained through quality scores.

A visual comparison, Fig. 13, can give and idea of the
relative values of the two measures. The color maps shown
are generated using the same scale and value range, i.e., log
scale normalized to the range [0,1]. The comparison shows

Proposed  Linear tanh() Logistic
SRCC 0.8672 0.8616 0.8560 0.8476
KRCC 0.6773 0.6630 0.6719 0.6474
PLCC 0.8780 0.8597 0.8688 0.8535
RMSE 18.6268 18.8270  16.2990  26.7700

TABLE IV: Performance with various mixing functions

similar perceptual results of the two algorithms. The color
maps show that the location and relative intensity of the
visual errors are similar. While the contrast threshold map is
perceptually more accurate, it requires the knowledge of the
pristine image. The proposed two-stage network architecture
enables to approximate it without any reference.

C. Comparison using alternative Mixing functions

As explained in Section 4.D, an alternative Mixing function
can be used as long as it is monotonically increasing and the
network can converge.

We tested the following cases to study the effects of different
mixing function formulations:

1) Proposed: DMOS(i,j) =1 — exp(—
2) Linear mixing: DMOS = %

3) Hyperbolic tangent: DMOS = tanh(%).
4) Logistic function:

kx6(i,5)
T(4,5)

).

1
DMOS(i,j) =
(@) 1+ exp(—k(z — z9)
where x = %

We found that during the train-test cycles in cases 2 and
4 above, the network failed to converge and the training
error kept increasing. This happens when the random weight
initialization causes these functions go out of bound, inter-
fering the gradient propagation. Cases 1 and 3 do not have
convergence problem. The results are shown in Table IV.
We observed a similar performance whenever the network
converged, implying the possibility of having multiple choices
for G.

To investigate further, we selected a distorted image and
generate the results using different mixing functions and P-net
as shown in Fig. 11. As explained earlier, a mixing function
outputs the DMOS and P-net outputs the Perceptual Resistance
of an image block. A comparison of HDR-VDP 2.2 error
probability and contrast threshold is shown for reference.

The perceptual distortion maps do not change significantly
as the mixing function changes. This is because the CNN
optimization process tries to minimize the difference between
the mixing function output and the actual human judged
DMOS. Upon convergence, the results will be similar.

Considering P-net, we see that the results show a similar
trend in terms of relative values. For example, visibility values
in the sky are generally higher compared to the texture-
rich forest area. However, the level of change in Perceptual
Resistance varies depending on the type of mixing function
used. The proposed Mixing function defined in Eq. 4 is used
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Fig. 10: Perceptual resistance: Behavior of proposed system at different luminance levels. Distortion Level of JPEG is shown
in dB, ¢ is the Acutal error, ¢ is the Estimated error by E-net, 7" is the Perceptual Resistance by P-net. Within each column,
the left and right images are output when the input image is linearly scaled to 1,000 and 100 cd/m? respectively.
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Fig. 11: Effect of different mixing functions. Comparison of perceptual distortion maps and perceptual resistance generated
from different mixing functions. HDR-VDP error probability and contrast threshold are shown for reference.

in our system because it generates the closest results to that
of the FR-IQA metric HDR-VDP2.2.

Finally, the Mixing function could automatically be learned
from data using another CNN. However, this process would
involve more weights and difficulties in optimization, with no
guarantee that the overall model converge to a good solution.
We confirmed this experimentally by using a Deep Belief
Network in place of the Mixing function. Even if the system
did converge with a DBN, the gain in performance with respect
to the proposed mixing function is not substantial, and this
function would be rather a “black box” with no intuitive
interpretation.

D. Perceptual distortion map

One of the advantages of the proposed CNN based NR-
IQA scheme is that it gives the approximate location of the
perceived errors in a perceptual distortion map. A comparison
of the perceptual distortion maps produced by FR-IQA (HDR-
VDP 2.2, PU-SSIM) and NR-IQA (PU-kCNN) algorithms and

the proposed method for some example images is shown in
Fig. 12. In order to highlight the errors, the probability of
error detection is shown for HDR-VDP 2.2, and an inverted
PU-SSIM map is shown for PU-SSIM. Notice that the map
obtained using HDR-VDP 2.2 is conceptually different from
those of PU-SSIM and PU-kCNN: the former represents per
pixel probability of detecting distortion, while the latter two
convey information about the magnitude of local distortion.
Instead, our map summarizes the two types of information
into a local perceptual distortion, which can be seen as the
inverse of local perceptual quality.

Although they express different properties of distortion, the
perceptual distortion maps produced by the proposed scheme,
PU-kCNN and HDR-VDP2.2 are consistent in general. To
show the performance improvement with respect to the current
state-of-the-art PU-kKCNN to produce a perceptual distortion
map, we compute the MSE between perceptual distortion maps
of proposed and PU-kCNN with respect to HDR-VDP2.2,
reported in Fig. 12. From both MSE and visual inspection,
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Fig. 12: Perceptual distortion maps. Comparison of perceptual distortion maps estimated by various IQA schemes. MSE shown
is computed between the distortion maps of proposed method and PU-kCNN with HDRVDP2.2.
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Fig. 13: Perceptual distortion map. Comparison between P-net
Perceptual Resistance and HDR-VDP2.2 contrast threshold.
Image pixel values are in log scale and normalized to [0,1].

it is clear that our perceptual distortion map is closer to HDR-
VDP visibility map, compared to PU-KCNN, i.e., it discounts
errors that are less likely to be perceived due to masking and
reduced sensitivity to contrast. This explains the overall better
performance of the proposed approach over kCNN in Table
111

E. Effect of preprocessing

In HDR FR-IQA it is common to preprocess images through
a perceptual transfer function [24], [5], [42] in order to
compute perceptually meaningful differences between pixels.
However, in our approach we decouple the error computation
from its perceptual scaling, and this preprocessing turns out
to be unnecessary, as it is implicitly carried out by the P-net.

To support this claim, we test the performance of our system
by preprocessing images with the PU encoding [24] before
training the network. The performance with this setting is
reported at the bottom of Table II. Although PU encoding
improves the performance of all other NR-IQA (since it pro-
vides perceptual scaling), it does not improve the performance
of the proposed system — in fact, correlations are slightly lower
if pixels are PU encoded. This could be attributed to the loss
of information due to perceptual encoding, where information
is somehow quantized and some slight variations in the data
are compressed with a fixed scaling function.

F. Failure cases

We isolated some cases where the predicted DMOS quality
has a large error compared to the groundtruth. In some of
those cases, the perceptual distortion maps produced by our
method are poorly correlated with the visibility maps produced
by HDR-VDP or with the local PU-SSIM estimated distortion.
Some examples are reported in Fig. 14. We observe that the
perceptual distortion maps produced by our method are not
consistent with the ones produced by HDR-VDP and PU-
SSIM (e.g., in the sky for the first image, or in the lake for
the second or the dress of the woman in Fig. 12): in one
case, the FR algorithms estimate minimal distortion, while our
method predicts higher errors, while in the other two cases, our
method underestimates perceptual distortion. MSE between
the estimated distortion map and HDR-VDP error visibility,
as well as groundtruth DMOS values, are given for reference.

To analyze this further, we note that the discrepancy appears
mainly in large smooth areas, e.g., sky and the water of
the lake, where HDR-VDP shows high error detection, and
in cluttered ground area where HDR-VDP shows low error
detection in smooth region. PU-SSIM estimates a similar
spatial distribution of the error into both regions. Another
instance of this is in Fig. 12, second row, where the highly



textured dress of the woman is shown to have high errors in
HDR-VDP and PU-SSIM, but the proposed method suggests
a low error.

We can see from intermediate results of the proposed
method inside blue box of Fig. 14 that the errors are caused by
different components of the system. Over-estimation of errors
in the smooth sky is the effect of over-estimation of errors by
E-net in smooth areas, whereas under-estimation of errors in
highly textured regions is the result of perceptual resistance
being too high. These errors are likely due to some bias in our
dataset, where a large fraction of examples contain smooth or
textured regions have low and high quality respectively.

We notice, however, that those results could indeed be
meaningful from a perception point of view, and that the
visibility map produced by HDR-VDP alone is not a good
indicator of quality [34]. In order to further assess the pre-
diction of local perceptual error and its impact on overall
quality, we would need per block groundtruth of quality scores,
which not only is unavailable nowadays, but is very difficult
to produce as assessing quality is by definition a global
task. Furthermore, the proposed method estimates quality per
block independently, which is a major simplification in the
model. Extensions to how to embed higher order dependencies
between regions of the image, and possibly semantic consider-
ations (which become realistic using deep CNN architectures),
are left to future work.

G. Computational complexity

Assuming a fully trained system, the computational com-
plexity of our method is high because of the large amount
of convolutions involved. The asymptoptic time complexity is
mainly due to E-net because of its convolutional layers. Each
convolutional layer uses the results of the previous layer. This
makes our method slower compared to kKCNN where there
is only one layer of convolutional filters. We found that in
our GPU implementation, computation of score for an image
with 1920 x 1080 resolution takes 0.33 seconds (assuming the
theano graph is in memory). For KCNN, a similar coding
style gave us execution time of 0.15 seconds per image.
Note that the execution speed can be improved with better
implementation. This is left as a future work; our focus in
this work is to improve NR-IQA performance.

VII. CONCLUSION

We propose a HDR NR-IQA scheme that uses a CNN based
architecture, composed of E-net, P-net and Mixing function,
to generate values corresponding to Error Estimation and
Perceptual Resistance in an image, which are then combined
to generate a perceptual distortion map and DMOS. Taking
into account perceptual phenomena is directly derived from
real-world data driven optimization, and does not involve psy-
chophysical user studies. The derived Perceptual Resistance
shows similar characteristics compared with other perceptual
models. Experimental results demonstrate that our algorithm
accurately predicts visual distortions such as compression arti-
facts. Our algorithm scores correlate well with human scores.
It outperforms other NR-IQA methods and the performance

is competitive compared to HDR FR-IQA methods, with the
advantage that no reference image is needed.
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