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Abstract A cell model to describe heat and mass trans-
fer between two media, one or both of which are involved
in stochastic motion, is proposed. The model consists of
two chains of cells to describe 1D stochastic motion of the
flows. Each couple of corresponding cells experiences heat
and mass exchange at every transition. The model allows
describing the transient process as well as the steady-state
distribution of parameters of the flows. It allows taking into
account such non-linear phenomena as phase transformation
(boiling, for example) and the internal heat sources caused,
for example, by chemical reactions. The examples of mod-
elling given in the paper demonstrate the ability of the model
to describe all necessary features of the process.

Keywords Markov chain · Matrix of transition proba-
bilities · Heat and mass transfer · Phase transformation ·
Stochastic granular flow · Chemical reaction

1 Introduction

The thermal treatment of granular materials is widely used
in chemical industry. It allows running different physical and
chemical processes such as drying, baking, calcining, and
others. The classical approach to model and calculate the
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process is based on the integral heat and mass balance equa-
tions written for input and output parameters of the process
[1,2]. It does not take into account local distributions of the
parameters over an apparatus, i.e., local conditions of heat
and mass transfer and heat and mass emission, which can
vary strongly over the apparatus. Usually this approach is
accompanied by a large number of correcting coefficients
taken from experiments at an already functioning apparatus.

The description of the processes on the basis of the local
approach employs differential equations of flows motion and
heat and mass transfer between them [3,4]. Analytical solu-
tions to the equations are possible only under considerable
simplifications and require special knowledge in mathemat-
ics that makes them not very convenient for engineers. These
solutions are very useful for understanding of the process
behavior but they can hardly be used as a realistic basis for
their calculation, particularly if the process includes obvi-
ously non-linear phenomena such as phase transformations
or chemical reactions.

The cell models, mostly based on the theory of Markov
chains, occupy the intermediate position between these two
approaches. They operate with the local distributions where
the scale of locality is not infinitely small but coincides with
a chosen cell size. This size can be conditioned by the design
of an apparatus, for example, by sections covered by trans-
porting or mixing blades.

Markov chains have been employed to model particulate
flows in a great variety of process equipments. Inoue and
Yamaguchi [5] for a V- blender, Chen et al. [6] and then Lai
and Fan [7] for static mixers, Boss and Dabrowska [8] for
a silo mixer, Fox and Fan [9] and more recently Dehling
et al. [10], or Harris et al. [11] are good examples of Markov
chain modeling of bulk particulate flows. Mixing of different
flows have also been investigated by either homogeneous
or heterogeneous Markov chains, as can be seen in papers
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by Oyama and Ayaki [12], Fan and Shin [13] or Dechsiri
et al. [14].

The strategy of application of the approach to describe the
stochastic motion of a single-phase flow was discussed in
[15–18]. At the present study an attempt to use the approach
to describe the process, in which two components move
stochastically and experience heat and mass exchange, is
undertaken.

2 Basic chain model and governing equations

2.1 Structure of the chain model

Let us suppose that there are two parallel flows (for example,
the particulate flow 1 and the gas flow 2), which can exchange
with heat and/or mass (Fig. 1). Let us divide the total length of
the process into the finite number m of perfectly mixed cells
of identical length !x. The choice of m can be conditioned
by different reasons and should be discussed in each particu-
lar case. For example, if blades transport the particulate flow,
the value of m can be taken as the number of zones covered
by the blades. If we want to obtain the process description,
which is more close to the continuous dispersion equation,
the value of m (and related value of !x) should be chosen
from the condition when the obtained distributions of flow
parameters stop depending on !x with a reasonable accu-
racy. It is necessary to note that the choice of m ifluences on
transition probabilities that will be discussed below.

If we examine evolution of the additive property S of a
flow, its distribution over the process length can be presented
as the state column vector S = [S1, S2, . . . Sm]T where the
upper symbol T means transposing of a vector, or matrix. Also
suppose that we observe the state of the process at discrete
moments of time ti = i!t where!t is the transition duration,
and i is the number of transition, which can be interpreted as
discrete time. During !t the state Sj in the j-th cell can be
changed due to the following reasons: the action of external
sources, which can be subdivided into the feed to the chain
!Sjf , and the amount of S that comes form the corresponding
cell of the neighboring chain !Sj1−2; the action of internal
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Fig. 1 The chain model of the process with heat exchange between
chains

sources !Sj int caused, for example, by chemical reactions;
the longitudinal transition of the property along the chain due
to the stochastic motion of the medium the property S belongs
to. As far as the changes are similar for all cells of the chain,
they also can be presented in the vector (matrix) notation,
and the kinetic equation of the evolution of the property can
be written in the following form:

Si+1 = P(Si + !Si
f + !Si

1−2 + !Si
int) (1)

where P is the matrix of transition probabilities, which
describes the stochastic motion of the medium along the
chain and will be discussed below.

2.2 Matrices of transition probabilities

The transition duration should be small enough the particles
in a cell could be able to transit only to the neighboring cells.
Thus, during !t a particle can stay inside the cell, or get the
forward or backward transition. The probabilities of these
transitions are Ps, P f and Pb respectively. It is obvious that
for any cell, which is not open outside the chain, Ps + P f +
Pb = 1. The transition probabilities can be arranged as the
tridiagonal matrix where the probabilities to stay are placed
on the main diagonal of it, and the forward and backward
probabilities are placed below and above this diagonal.

Two approaches can be used to define the transition prob-
abilities. The first one is based on direct experimental study
of the flow motion with the help of its tracing and using the
RTD-technique. The details of the approach with applica-
tion to modeling of continuous blade mixer by means of the
theory of Markov chains can be found in our paper [18].

The second approach is based on similarity of the chain
model and the finite difference procedure for numerical solu-
tion of the dispersion equation, which is also often used to
model particulate flows. The matrix of transition probabili-
ties construction on the basis of this approach is described
below.

In many practical cases it is convenient to subdivide the
transitions into completely random (symmetrical) transitions
and deterministic transition. If a flow moves to the right
(Fig. 1) this operation gives for all intermediate cells: Pb = d,
Pf = d + v, Ps = 1 − 2d − v where d is related to com-
pletely stochastic motion (d = D!t/!x2 where D is the
dispersion coefficient, which remains the adjusting parame-
ters to agree the experimental and calculated RTD curve in
most of models), and v is related to its deterministic compo-
nent (v = V !t/!x where V is the mean velocity of medium
motion, which is to be calculated from the continuity equa-
tion if the hold-up and throughput are known). In this notation
the matrix of transition probabilities has the form:

123



Application of the theory of Markov chains 337

P =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − d − v d 0 . . . 0 0 0

d + v 1 − 2d − v d . . . 0 0 0

0 d + v 1 − 2d − v . . . 0 0 0

. . . . . . . . . . . . . . . . . . . . .

0 0 0 . . . 1 − 2d − v d 0

0 0 0 . . . d + v 1 − 2d − v d

0 0 0 . . . 0 d + v 1 − d − v

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2)

It is necessary to note that the matrix in Eq. (2) is built for
the cells of identical volume. Otherwise the correction coef-
ficients should appear at the transition probabilities. Despite
it is written for v = const and d = const, no problems arise if to
take into account the variation of these parameters along the
process if corresponding correlations between them and flow
parameters are known. At the constant feed to the first cell
and absence of all source terms in Eq. (1) the matrix given by
Eq. (2) provides the homogeneous asymptotic distribution of
S over the cells.

The problem of reliability of determination of the tran-
sition probabilities arises here. It can be checked by the
possibility to correspond the experimental and calculated
RTD curves using only one adjusting parameter D. If the
correspondence cannot be reached, it means that the one-
dimensional chain of perfectly mixed cells does not fit the
real flow structure, and it is necessary to employ a multi-
dimensional array of the cells describing the non-
homogeneous flow in the crosswise direction. This is also
can be done on the basis of the theory of Markov chains but
such complication of the model is beyond the present study.

2.3 Flows between chains and internal sources

First let us examine the case of direct-current exchange. Let
the chain for granular material flow is being fed through the
left cell as it is shown in Fig. 1. The total feed rate G10
consists of the feed rate of dry matter D10 and the feed rate of
moisture W10 that means that the dry basis moisture content
is X10 = W10/D10. The temperature of the material T10 is
also known.

The feed vectors for the chain are:
dry component in the flow 1

!D1f = [D10!t, 0, 0, . . ., 0]T (3)

moisture in the flow 1

!W1f = [W10!t, 0, 0, . . ., 0]T (4)

heat with the flow 1

!Q1f = [D1c1dT10!t + W1c1wT10!t, 0, 0, . . ., 0]T (5)

where c1d and c1w are the specific heats of the components
of the flow 1.

It is supposed that all these quantities are transported along
the chain 1 by the matrix P1, which is given by Eq.(2) with
v1 and d1.

The same formulae can be used to construct the feed
vectors for the flow 2, motion of which along the chain is
controlled by the matrix P2. In order to transit form the direct-
current exchange to the coutercurrent one it is just necessary
to rotate 1800 the matrix P2 and the feed vectors for the
flow 2.

The amount of heat transiting from a cell of the chain 2
to the corresponding cell of the chain 1 can be described as
follows (indices are omitted):

!Q2 = αt F(T2 − T1)!t = at (T2 − T1) (6)

where αt is the heat transfer coefficient from gas to granular
material, F is the surface of heat exchange in the cell.

The process of heat transfer between couples of cells of
parallel chains (Eq.(6)) is illustrated in Fig. 2 where the
process for one-component flows without mass transfer is
shown. Being a non-additive property, the temperature can-
not travel between and along the chains but its difference
defines the heat traveling over the cells. The same can be
said about the moisture content. This is why all the tran-
sitions are defined for heat and mass but temperatures and
moisture contents are to be calculated after each transition to
calculate heat and mass transitions during the next time step.

This heat goes to heating the cell of the flow 1 (!Q1)

and/or to evaporation or vaporization of moisture from it:
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and new thermal states of the cells
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!Q1 = !Q2 − qev!W1,!W1 = αuF(U2 − U1)!t

= au(U2 − U1) if T1 < Tb, W1 > 0 (7)

!Q1 = 0,!W1 = !Q2/qv if T1 = Tb, W1 > 0 (8)

where αu is the mass (moisture) transfer coefficient from
granular material to gas, qev and qv is the specific heat of
evaporation and vaporization respectively, U is the moisture
concentration. If moisture is completely removed from the
flow 1 (W1 = 0), !Q2 goes to further heating of dry matter
of the flow 1.

After the heats and the masses are removed along the
chains by the transition matrices (Eq.1) and the next states are
calculated, the next vectors of temperature can be found as

Ti+1
1,2 = Qi+1

1,2 ./(ci+1
d1,2Di+1

1,2 − ci+1
w1,2Wi+1

1,2 ) (9)

where the operator ./ means element by element (scalar) divi-
sion of vectors. The similar expression can be written for the
moisture concentration.

In order to introduce the internal source caused by a chem-
ical reaction let us suppose that after the temperature T1
reaches the value Tro the reaction of thermal decomposi-
tion of the component A with the specific heat of reaction qr
begins in the granular flow (qr >0 for an exothermic reaction
and qr <0 for an endothermic one). Let it be a reaction of the
first order, the rate of which is subjected to the Arrhenius low:

dcA

dt
= −kAcA with kA = 0 at T1 < Tro and

kA = z Ae
− E A

R(T1−Tr0) = z Ae
− E A

R(T20−T0)

(T20−Tr0 )

(T1−Tr0)

= z Aβ

(T20−T0 )

(T1−T0) at T1 > Tro (10)

The variation of concentration of A in the dry component
D1 of the flow 1 during !t will cause the following heat in
the cell:

!Qr = qr!D1A = qr D1Az Aβ

(T20−Tr0 )

(T1−Tr0)
−1

!t

= qrr D1Aβ

(T20−Tr0 )

(T1−Tr0)
−1

(11)

where qrr = qr zA!t is the reduced heat of the reaction.

3 Some results of modelling

These results are shown in Figs. 3–5 where asymptotic
distributions of parameters over the cells are presented. It
is necessary to note that the objective of the section is not
to model this or that real process but to demonstrate work-
ability of the proposed mathematical tool in wide range of
sub-processes involved. This is why the examples may look
artificial but they are constructed to emphasize the influ-
ence of this or that process parameter. All temperatures on
the graphs below are normalized to the hot gas temperature
and are dimensionless. The following can be said about the
dimensionless transfer parameters at and au . They include
not only the physical process parameters but also the para-
meters of modeling!t and!x . The value of these parameters
at and au must be within the range 0 (no exchange) and 1.
If one of them is higher than 1, the computational stability
is being lost. Physically it mean that during a transition the
value of a property extracted from a cell is bigger than the cell
contains. The situation can be corrected by reduction of !t .
The similar requirement comes from the transition matrix
side, in which the elements on the main diagonal should not
be negative. Thus, the transition duration must be less than
the smallest one providing the computational stability. In the
examples below the values of the transfer coefficient are taken
more or less arbitrary from the range providing the compu-
tational stability. They have no qualitative influence on the
distributions of flows parameters, and are important only in

Fig. 3 Influence of the solid
flow axial dispersion (left) and
the flow rate of solids (right) on
temperature and moisture
content distribution for the
direct-current exchange:
at = 0.03, au = 0.01, X10 =
0.1, qv = 10 (black markers
material flows, white markers
gas flows)

G2=0.6, d=0 
 – G1=0.2 
 – G1=0.05 

G2=0.6, G1=0.1
 – d1=0

 – d1=0.4 
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Fig. 4 Influence of the flow
rate of solids (left) and the heat
of vaporization (right) on
temperature and moisture
content distribution for the
countercurrent exchange: at =
0.06, aw = 0.01, X10 = 0.1

G2=0.6, qv=20
 – G1=0.1
 – G1=0.2 
 – G1=0.4 

G2=0.6, G1=0.2
 – qv=10  
 – qv=30

qrr = 0 -0.2

qrr = +0.2

qrr= +0.5

rq r =

Fig. 5 Influence of the reduced heat of chemical reaction on tempera-
ture distribution for the countercurrent heat exchange: at = 0.05, za =
0.5, Tr0 = 0.3. (thin lines gas temperature, solid lines material temper-
ature, dotted lines temperature threshold of chemical reaction)

the case of modeling of a particular process, which is not the
objective of the present study.

Figure 3 shows the influence of the solid flow axial disper-
sion (left) and the flow rate of solids (right) on the tempera-
ture and moisture content distribution for the direct-current
exchange. The left graphs are related to the unlimited mois-
ture absorption capacity by the flow 2 and boiling temperature
equal to 0.4T20. The stochasticity of the granular flow affects
strongly on distribution of parameters of this flow. Boiling
begins closer to the wet granular flow inlet and ends more far
from it for higher level of axial stochasticity of the granular
flow. However, the dry remainder of the flow 1 at the outlet
has less temperature for this case. Evacuation of water from
the flow 1 (drying) goes faster at the beginning but the very
last portions of water are kept longer in the flow with higher
stochasticity. The graphs on the right demonstrate how the
ratio of flow rates affects on the distributions (boiling is not

taken into account in this example). The physical sense of
the influence is obvious.

Figure 4 shows the influence of the flow rate of solids (left)
and the heat of vaporization (right) on temperature and mois-
ture content distribution for the countercurrent exchange.

At small flow rate of the wet granular material (circles)
boiling goes very close to its inlet and occupy rather short
distance of the process. The dry remainder of the flow at its
outlet has the temperature, which is close to gas temperature
at its inlet. At higher flow rate of the wet granular mater-
ial (squares) boiling begins later, occupies longer zone of the
process but ends before the outlet is reached. The dry remain-
der is heated up but to lower temperature than in the previous
case. At last, for the case of more high flow rate (triangles)
boiling begins in the middle of the process and does not end
at the outlet. The flow still contains some water and has the
temperature equal to the temperature of boiling.

As far as the wet component of the flow 1 is not necessarily
water, the graphs on the right show the influence of the heat
of vaporization on the process parameters distribution. The
physical sense of the influence is also obvious. At higher
heat of vaporization the zone of boiling is longer, and due to
higher temperature drop of the flow 2 boiling begins farther
from the granular flow inlet.

Influence of the reduced heat of chemical reaction on tem-
perature distribution for the countercurrent heat exchange is
shown in Fig. 5.

The upper left graph is the basis for comparison. The
endothermic reaction leads to a quasi-isothermal zone on
the heating curve of the flow 1; the exothermic reaction leads
to the sharp growth of the curve. If the specific heat of the
reaction is high enough (in combustion, for example), the
temperature of the flow 1 can exceed the temperature of
the flow 2, and the flow 1 becomes the heating medium for
the flow 2.

123



340 V. Mizonov et al.

4 Conclusions

The Markov chain model to describe heat and mass transfer
between stochastically moving particulate and gas flows is
proposed. The model is based on the universal algorithm of
axial transitions of mass, heat and moisture from one cell
to another during a transition, and on presenting of mass,
heat and moisture coming from, or going to the neighbouring
flow as the source terms within the transition. The model
allows taking into account such non-linear phenomena as
phase transformation (boiling, for example) and the internal
heat sources caused, for example, by chemical reactions.

Some results of modeling are presented to demonstrate
workability of the proposed tool. In particular, it is shown
computationally that the growth of granular flow axial sto-
chasticity extends the zone of boiling and, respectively, the
zone of water evacuation despite the moisture content near
the inlet decreses faster. It is also shown that if an exothemic
chemical reaction occurs in the granular flow and the specific
heat of the reaction is high enough, there can be inversion of
heating and heated medium when the granular flow becomes
the heating medium for already hot gas. The quantitative
influence of some other process parameters on the steady-
state distributions of temperature and moisture content are
also presented.

The obvious advantage of the approach is that the only
mathematical tool, which is necessary to construct and run
the model, is the basics of matrix algebra. The examples of
modelling given in the paper demonstrate the ability of the
model to describe all necessary features of the process.
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