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Cet article présente un modèle qualitatif basé sur la théorie des graphes afin d'aider à la compréhension de l'évolution spatiale du trafic routier urbain. Le modèle prend en compte un certain nombre d'objets qui ont un impact sur le trafic routier et les relations entre ces objets. Les données acquises aux niveaux microscopique et macroscopique seront intégrées au modèle et l'information qualitative ajoutée à l'information quantitative a pour objectif d'améliorer la robustesse du modèle. Ce premier travail sur ce modèle met l'accent sur la description formelle du graphe à différents niveaux de granularité.

ABSTRACT. In this paper, we present a qualitative model, based on graph theory, which will help to understand the spatial evolution of urban road traffic. Various real world objects which affect the flow of traffic, and the spatial relations between them, are included in the model definition. Heterogeneous data, at microscopic and macroscopic levels, will be the input for the model, and qualitative knowledge, in addition to, quantitative data will improve its robustness. Mathematical formalization of graphs at different levels of granularity is focused on.

Introduction

To develop intelligent transportation systems (ITS), it is necessary to understand the evolution of road traffic in space-time, as well as interactions between traffic participants and structural elements present in the environment. Most of the existing environment perception algorithms focus on either the space in the immediate vicinity of a vehicle (microscopic level) [START_REF] Granström | Pedestrian tracking using velodyne data -stochastic optimization for extended object tracking[END_REF], or consider entire road traffic as a collective entitiy (macroscopic level) [START_REF] Li | Citywide estimation of traffic dynamics via sparse gps traces[END_REF]. In order to have a "global" view of the environment, there is a need to create a model which will incorporate data gathered at different levels of detail. In addition, the perception algorithms make use of quantitative data. Although it can give precise information about the environment, enhancing it with qualitative knowledge will lead to a more robust model [START_REF] Guan | Modeling traffic flow characteristics with qualitative and quantitative knowledge[END_REF].

In this paper, we present a qualitative spatial model capable of providing information about the road traffic at different levels of granularity. The model uses qualitative knowledge, extracted from quantitative data, about the environment to comprehend the spatial relations between different traffic participants. It is formalized using graphs as they provide a data structure to work with abstracted real world information and have the capability to incorporate the dynamics of the road traffic [START_REF] Butts | Revisiting the foundations of network analysis[END_REF]. This model is envisaged to be implemented in an urban data center where all the data about the road traffic is stored, and using this data, the evolution of the road traffic is understood, and the information about other traffic participants present in its vicinity is sent to each vehicle. Figure 1 shows the block diagram of the global system. The data acquired from on-board/external sensors, traffic data and map data from Geographical Information Systems(GIS), knowledge about the road geometry, along with the output of the off-the-shelf environment perception algorithms is stored in the database. This quantitative data is then fed into the model and the qualitative knowledge is extracted, using which the environment perception is improved and the spatial interaction between different traffic participants is understood. This paper is organized as follows. Section 2 presents the previous work in this domain. Section 3 describes the qualitative spatial model along with the definitions of its constituents. In section 4 we take an in-depth look at two types of granularity present in the model. The paper is concluded in section 5 while describing the future directions for our research.

Related Work

In this section, we will take a look at some of the modeling techniques present in the literature. As already mentioned, the model proposed in this paper is based on graph theory. An alternative is to use probabilistic graphical models like Bayesian Networks to model the vehicle environment [START_REF] Kuhnt | Towards a unified traffic situation estimation model-street-dependent behaviour and motion models[END_REF]. These models define joint probability distribution over a set of random variables (nodes) and conditional dependencies between them (edges). Since the aim of this work is to understand the spatial relations between different physical objects, it is understandable to represent the objects as nodes and relations as edges, which is not possible with probabilistic models.

Another category of models is object oriented (or segmentation based) models [START_REF] Rieken | Toward perception-driven urban environment modeling for automated road vehicles[END_REF]. These models utilize the knowledge about real-world objects to understand the environment and classify them into different classes. However, they do not define spatial relations between the objects, which is an important characteristic of the proposed model. Nonetheless, this category of models has motivated us to define different object classes which are explained in a later section.

There are other graph based models which are present in the literature, as in [START_REF] Ulbrich | Graph-based context representation, environment modeling and information aggregation for automated driving[END_REF] and [START_REF] Knaup | Roadgraph-graph based environmental modelling and function independent situation analysis for driver assistance systems[END_REF]. These models take into account the information about vehicles and road lanes, and don't consider other types of objects in the environment. Also, the definition of graphs used is not suitable to model the spatial knowledge of an urban area.

The model proposed in this article includes real world objects and spatial relations between them at microscopic and macroscopic levels, and formalizes the graphs using the general graph definition.

Spatial Graphical Model

In this section, we describe the qualitative spatial model. The entities and spatial relations represent the nodes and edges of the graph, respectively. We give a general description about entities and various spatial relations included in the model and then take a look at different graphical representations of the SAGEO'2017 road network. After defining some important terms, we formalize the graphs. In the end, we define different object classes present in the model.

Entities and Spatial Relations

For a phenomenon, an entity is an object (physical/abstract) which plays a significant role in understanding that phenomenon. Entities can have different definitions according to the type of the phenomenon and the level of abstraction (Del [START_REF] Mondo | A Spatio-Temporal Graph-based Model for the Evolution of Geographical Entities[END_REF], [START_REF] Chen | The entity-relationship model-toward a unified view of data[END_REF]. A unique identity for each entity needs to be defined to differentiate between similar entities [START_REF] Hornsby | Qualitative representation of change[END_REF].

The interactions between entities are represented by spatial relations, which can be categorized into: metric, topological, and order [START_REF] Egenhofer | A formal definition of binary topological relationships[END_REF]. Metric relations represent quantitative distance. However, it can be converted into qualitative distance, as explained in [START_REF] Clementini | Qualitative representation of positional information[END_REF]. A popular framework to understand the topological relations between two surfaces is Region Connection Calculus (RCC) [START_REF] Randell | A spatial logic based on regions and connection[END_REF], and [START_REF] Röhrig | A theory for qualitative spatial reasoning based on order relations[END_REF] describes the theory of order relations. In addition, orientation relations explain the relative orientation between different entities in a desired frame of reference [START_REF] Freksa | Using orientation information for qualitative spatial reasoning[END_REF], whereas directional relations [START_REF] Frank | Qualitative spatial reasoning: Cardinal directions as an example[END_REF] are based on a general frame of reference and provide information in terms of cardinal directions.

There are other relations which are useful in case of dynamic entities. For example, [START_REF] Sridhar | Benchmarking qualitative spatial calculi for video activity analysis[END_REF] mentions relative speed and relative trajectory. A method to explain relative trajectory is Directed Interval Algebra (DIA) [START_REF] Renz | A spatial odyssey of the interval algebra: 1. directed intervals[END_REF]. Extending the relation of relative speed between two objects, we define average relative speed for a set of moving objects. Since information about the road network in a given area is included in our model, we introduce two spatial relations between two road segments (formal definiton of a road segment is given later), namely, accessibility relation (AR) which describes if one road segment is accessible from another using adjacency matrix [START_REF] Cheng | Spatio-temporal autocorrelation of road network data[END_REF], and relative orientation which, as the name suggests, explains the relative orientation between two connected road segments.

Road Network Representation

To represent road networks, two static graphs, Primal Graph and Dual Graph, are proposed in (Porta et al., 2006a) and (Porta et al., 2006b). In primal graph, the road segments form the edges while the intersections joining them form the nodes. Using the primal graph, the spatial structure of the road network can be explained. The dual graph, however, in which the road segments form the nodes and intersections the edges, is useful to understand the topology of the road network. These graphs augment the knowledge that the proposed model exhibits.

Definitions of the Terms Used

We define three terms which are used in the model.

-Road segment: A road segment R i is the part of the road network which has two adjacent intersections I j and I k as its end points (figure 2). Each road segment can be divided into two bidirectional carriageways or a set of non-overlapping sectors.

Figure 2. A road segment (top) can be divided into two carriageways (middle) or into non-overlapping sectors (bottom). The rectangular intersection blocks are merely symbolic

-Road carriageway: Two, single-or multi-lane, carriageways are defined to make the bi-directional nature of a road segment explicit [START_REF] Kong | Efficient traffic state estimation for large-scale urban road networks[END_REF]. In figure 2, carriageways are represented as L = {l1, l2}, where l1 and l2 are two opposite direction carriageways.

-Road sector: Another way to divide a road segment is into consecutive non-overlapping sectors [START_REF] Kamran | A multilevel traffic incidents detection approach: Identifying traffic patterns and vehicle behaviours using real-time GPS data[END_REF]. This division can be on the basis of length of sectors or according to road geometry. In figure 2, set of sectors for a road segment is A = {A 1 , ..., A n }. The number of sectors will vary depending on the level of abstraction.

SAGEO'2017

Graph Formalization

In this subsection we formalize different graphs which describe the spatial knowledge from different points of view. The combination of these graphs will provide the global information about the road traffic. A graph

G = (X, E) (1)
describes the spatial relations between different real-world objects in an urban environment, which are represented by the set of nodes

X = V ∪ B ∪ V S ∪ M ∪ F ∪ P ∪ H ∪ R ∪ I.
Here V is set of vehicles, B is set of buildings, V S is set of vertical structures (e.g. lane dividers, signboards, traffic signals, guard rails), M is set of road markings (e.g. zebra crossing, edge line, stop line, center line), F is set of roadsides, P is set of pedestrians, H is set of bicycles, R is the set of road segments and I is the set of intersections. The object classes in X include the objects which affect the flow of traffic in an urban area, and can be detected using existing segmentation based algorithms [START_REF] Ošep | Multi-scale object candidates for generic object tracking in street scenes[END_REF].

The set of edges is given by Let the number of road segments in a given urban area be N R which is the cardinality of set R. Zooming in on a single road segment R i ∈ R, a graph

E = {(x, y) | x ρ y}, ρ ∈ , ∀x, y ((x ∈ V ∧ y ∈ X) ∨ (x ∈ F ∧ y ∈ P ∪ H)) where = {T, O, RT, RS, QD,
G i = (X i , E i ) (2)
is defined which consists of set of nodes X i ⊆ X \ (I ∪ {R j | R j ∈ R, j = i}), i, j = 1, .., N R present on R i and the set of edges E i ⊆ E between them. Set X i doesn't include the intersections and the road segments except R i . Now, this road segment R i ∈ R can be divided into bi-directional carriageways l1 and l2, and a two-carriageway graph

G Li = (Y i , E ωi ) (3)
is defined. The set of nodes of this graph Y i = {V l1 , V l2 } represents the groups of vehicles and the associated relations in carriageway l1 and l2, respectively. The set of edges is given as

E ωi = {(x, y) | x ω y}, ω ∈ Ω, ∀x, y ∈ Y i , x = y
where Ω = {T, ARS, D} is the set of types of relations between the two groups.

The elements of set ARS give the average relative speed between the groups and D is the set of directional relations.

If the road segment R i ∈ R is divided into non-overlapping sectors, a sector graph for j th sector of i th road segment is

G Ai(j) = (U ij , E ij ) (4)
The sets of nodes and edges are given as U ij ⊆ X i and E ij ⊆ E i respectively, since the type of entities and relations included in G Ai(j) is same as in G i . We can also assert that G Ai(j) ⊆ G i .

The primal and dual graphs can also be formalized mathematically. These graphs are external to the hierarchy of graphs explained so far. The primal graph is defined as 

G P = (I, E γ ) ( 

Thesaurus of Objects in Urban Environment

In this subsection, we will take a look at different object classes in more detail. The classification of objects into classes creates a thesaurus of objects as shown in figure 3. We consider nine different object classes present in an urban environment. Figure 4 shows different kinds of objects which can be included in these classes.

The idea behind highlighting this classification is to be able to associate a set of spatial relations to each class and, hence, reduce the number of relations required to explain different spatial interactions. Since our model is "vehiclecentric", the relations for each class represent its interactions with class "Vehicle". There are, however, two exceptions as we consider the relation between

Carriageway based Granularity

When a bidirectional road segment R i ∈ R is divided into carriageways, a graph G Li formalizes the relations between the groups of vehicles traveling on each carriageway. This graph can be considered as granular subgraph [START_REF] Stell | Granulation for graphs[END_REF] of G i . Granulation, in this case, is the action of grouping together of certain nodes present at one level of detail into a single node at a lower level of detail, as the individual nodes become indistinguishable at this level (Figure 5). However, the relations between the abstracted nodes are different in G Li as compared to G i . Figure 5 (b) shows both G Li for coarser detail and G i for finer detail. The relations between three vehicles V 1, V 2 and V 4 and the objects in their vicinity are included in G i . The objects included belong to class building (B1, B2), roadside (F r, F l), road marking (center line CL), vertical structure (signboards S1, S2) and pedestrian (P 1, P 2). To formalize the change in granularity from G Li to G i , we define a relation δ ∈ T \{DC, EQ, EC, P O, T P P i, N T P P i} between a vehicle v ∈ V i , V i ⊆ V and carriageway lk ∈ L, k = 1, 2, which explains if the vehicle is a tangential or non-tangential proper-part (TPP or NTPP) of the carriageway (according to RCC8). V i is the set of vehicles present over R i and L is the set of carriageways. A bi-partite transition graph

G T = (Y i , V i , σ i ) classifies each vehicle v ∈ V i into either of the two groups in Y i . Here, σ i = {(x, y) | y belongsT o x}, ∀x, y ((x = V lk ∈ Y i ) ∧ (y ∈ V i | y δ lk), k = 1, 2) is the edge set. SAGEO'2017

Sector based Granularity

When a road segment R i ∈ R is divided into non-overlapping sectors, a graph for k th sector is given as G A(k) . As explained in section 3.4, G A(k) ⊆ G i at every level of abstraction. Figure 6 shows two levels. The level with more detail has more number of sectors and at the coarser level, these sectors are combined. It is noteworthy that the entities common between two adjacent sectors are only included in the graph when these two sectors are combined. We define a set λ = {1, ..., M } of various possible levels of abstraction, where level j + 1, j ∈ λ is coarser than j. Set A j = {A j 1 , ...A j n } is the set of sectors present at level j with cardinality N j A . We also define a set G j A of graphs at this level. The graphs for finer sectors are combined to form graphs for coarser sectors using Algorithm 1. It takes the set of graphs G j A and its cardinality N j A as input, and gives the set G j+1 A at level j + 1 as output. If the cardinality is even, then the graphs at level j are combined in pairs. If the cardinality is odd and greater than three, the graphs are combined in pairs while checking the number of uncombined graphs left. When last three graphs are left, they are combined together. This is done to avoid redundant information at two levels. If the cardinality is three, again all three graphs are combined. Using this algorithm, all the graphs at a given level are combined. However, it can be modified to combine only the desired graphs by choosing a graph index and subsequent number of graphs to be combined. Another parameter can be introduced to select the level of detail for the output graph.

Algorithme 1 : Combination of all sector graphs at level j Data : Set of graphs at j ∈ λ: G j A , its cardinality: N j A Result : Set of graphs at j + 1:

G j+1 A 1 G j+1 A = ∅ 2 switch N j A is even do 3 case true do 4 for k = 1 to N j A do 5 G j+1 A(k+1)/2 = G j A(k) • G j A(k+1) 6 G j+1 A ← G j+1 A ∪ {G j+1 A(k+1)/2 } 7 k ← k + 2 8 break 9 case false do 10 if N j A > 3 then 11 ctr = 0 // counter 12 for k = 1 to N j A do 13 if (N j A -2 * ctr) > 3 then 14 G j+1 A(k+1)/2 = G j A(k) • G j A(k+1) 15 ctr ← ctr + 1 16 G j+1 A ← G j+1 A ∪ {G j+1 A(k+1)/2 } 17 i ← i + 2 18 G j+1 A(ctr+1) = G j A(2 * ctr+1) • G j A(2 * ctr+2) • G j A(2 * ctr+3) 19 G j+1 A ← G j+1 A ∪ {G j+1 A(ctr+1) } 20 else if N j A == 3 then 21 G j+1 A(1) = G j A(1) • G j A(2) • G j A(3) 22 G j+1 A ← G j+1 A ∪ {G j+1 A(1) } 23 break
Now, let us take a look at the graph combination operator •. We define Ū j k as the set of entities present in sector A k at level j. However, some entities in sector A k might be shared with adjacent sectors A k+1 and A k-1 , and such entities are not included in graph

G j A(k) for A k . Entities included in G j A(k) are computed as U j k = Ū j k -Ū j k-1 -Ū j k+1 .
Similarly the edges of G j A(k) are given as E j k . The combination of two graphs G j A(k) and G j A(k+1) is represented as

G j+1 A(m) = G j A(k) • G j A(k+1)
, and formalized as

U j+1 m = U j k ∪ U j k+1 ∪ ( Ū j k ∩ Ū j k+1 ), E j+1 m = E j k ∪ E j k+1 ∪ {(x, y) | x R y}, ∀x, y (x ∈ U j k ∧ y ∈ U j k+1 ∪ ( Ū j k ∩ Ū j k+1 )) ∨ (7) (x ∈ U j k+1 ∧ y ∈ U j k ∪ Ū j k ∩ Ū j k+1 )) ∨ (8) (x ∈ ( Ū j k ∩ Ū j k+1 ) ∧ y ∈ (U j k ∪ U j k+1 )) (9) 
to get the graph G j+1 A(m) = (U j+1 m , E j+1 m ) at level j + 1 for a sector m. R is a general representation of a relation between x and y. It is noteworthy that operation k+1) is associative and commutative. Complexity of the algorithm depends on the complexity of the operation of combining graphs, which in turn depends on the complexity of formation of new edges with {(x, y) | x R y}. Properties ( 7), ( 8) and (9) describe three ways in which the elements x and y can be chosen to form new edges. Hence the complexity of • operation is O(p * q), where p and q are the cardinalities of the sets which contain x and y in ( 7), ( 8) and ( 9). It can, however, be improved by utilizing the knowledge of object classes and the corresponding relations listed in Table 1.

G j+1 A(m) = G j A(k) • G j A(

Conclusion and Future Work

In this paper, we present our initial ideas to develop a spatial model to understand the urban road traffic using heterogeneous data available at different levels of detail. We formalized various graphs which include different types of entities and relations. We also present the idea of categorizing the real-world objects into various classes and associate a specific set of spatial relations to each class. We propose two types of granularity: carriageway-based and sectorbased. In former, the level of detail is shifted using transition graph. And in latter, the graph combination operator to shift from finer to coarser graphs is presented.

In future, the combination of sector graphs will be improved in terms of complexity and usability, and a separate algorithm to shift from coarser to finer detail will be proposed. Some criteria to segregate real road segments into sectors will be also be defined. Since road traffic is dynamic, we want to expand our model by including the temporal information. Also a dynamic graph focused on an arbitrary intersection needs to be proposed to comprehend the flow of traffic at that intersection. For the implementation of the model, we will use the traffic and perception data collected by CEREMA for the city of Rouen, France, along with map data from services like OpenStreetMaps.

  Figure 1. System block diagram

  5) It includes the spatial relations between two arbitrary intersections included in I. The set of edges in G P is E γ = {(x, y) | x γ y}, γ ∈ Γ, ∀x, y ∈ I, x = y with Γ = {D}. A dual graph formalized as G D = (R, E ψ ) (6) includes spatial relations between road segments included in R. The edge set is E ψ = {(x, y) | x ψ y}, ψ ∈ Ψ, ∀x, y ∈ R, x = y where Ψ = {AR, RO} is the set of type relations. AR represents accessibility relation and RO gives the relative orientation between two road segments.

Figure 3 .

 3 Figure 3. Classification of physical objects into classes

Figure 5 .

 5 Figure 5. (a) An arbitrary road segment divided into two carriageways l1 and l2 (b) Two graphs for two levels of detail are shown. The finer graph is G i represented from "vehicle-centric" point of view. The implementation view of this graph will have non-repetitive nodes. The coarser graph is G Li . All the relations are not shown to make the image more readable

Figure 6 .

 6 Figure 6. Two arbitrary levels of detail for sector based granularity. In this figure, the implementation view of different graphs is shown, which has single node for each entity. All relations are not shown to make the image more readable
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Pedestrian-Roadside and between Bicycle-Roadside. Spatial relations for each object class are shown in table 1. 

Figure 4. Types of objects in various classes

Granularity

Granularity of a model is its ability to be explained in terms of granules, where finer granules are more detailed and coarser granules are more abstracted [START_REF] Keet | A taxonomy of types of granularity[END_REF]. This makes the model useful in extracting information from different points of view and focusing on only the necessary data. In the proposed model, there are two types of granularity based on the division of the road segment: Carriageway based granularity and Sector based granularity (as in [START_REF] Płaczek | The granular computing implementation for road traffic videodetector sampling rate finding[END_REF]).