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RESUME. La distribution des commerces dans la ville doit être analysée en prenant en compte 

la structure réticulaire de l’espace urbain. De surcroît, les réseaux viaires des villes 

contemporaines varient en intensité et en configuration dans l’espace. Le concept 

d’hétérogénéité dans un semis de points est souvent associé à l’hétérogénéité de la 

distribution spatiale de son intensité. Cet article développe une nouvelle proposition 

méthodologique pour analyser une distribution de points sur un réseau non uniforme. 

L’analyse configurationnelle des réseaux et les théories fractales fournissent des paramètres 

locaux de la distribution spatiale du réseau et du semis de points. La combinaison de ces deux 

valeurs nous informe sur la relation entre les distributions des points et du réseau. 

L’homo/hétérogénéité d’un semis de points est redéfinie par rapport à la distribution spatiale 

locale du réseau. Une application de la méthode pour un cas d’étude réel de distribution 

commerciale est présentée dans la seconde partie de l’article. 

ABSTRACT. Retail distribution in the city has to be analyzed taking into consideration the 

network structure of urban space. What is more, street networks in contemporary cities vary 

in intensity and configuration over space. The concept of heterogeneity referred to point 

patterns is often associated to the heterogeneity of its intensity distribution. This paper 

develops a new methodological proposal for analyzing the distribution of points on a non-

uniform network. From the configurational studies of networks and fractal theories, we derive 

local parameters of network and point pattern distribution. The combination of these two 

values give us an information about the relation between the points and the network 

distribution. The homo/heterogeneity of a point pattern is redefined in relation to the relative 

local network pattern. An application of this method to a real case-study of retail distribution 

is presented in the second part of the paper.  
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1. Introduction: spatial point patterns on networks  

When we want to study the spatial distribution of retail activity in a city, the 

problem that we face is a typical problem of point pattern analysis on network 

where points represent retail activity distribution, while the network is the spatial 

domain where events occur, namely the urban street network. 

The increasing awareness of the importance of spatial relations in every 

discipline, stimulated the creation of ad hoc solutions, with a consequent large 

variety of methods for spatial pattern recognition (Perry et al. 2002). Each of them 

studies a particular aspect of spatial relations, which is necessary for the 

comprehension of the spatial behavior of the phenomenon under investigation. Dale 

et al. (2002) analyzed a large number of methods arising from several disciplines in 

order to identify similarities from both mathematical and conceptual points of view. 

They conclude their work affirming that despite the partial redundancy of these 

methods, their combination is required for a better comprehension of different 

aspects of spatial structures. This remark legitimates the need to explore new 

approaches in point pattern analysis and to couple them with more traditional ones, 

with the aim of identifying new aspects of spatial distributions of events.  In this 

work, we will try to understand if a new approach, strongly building on well-

established techniques, could lead us to a better understanding of the spatial relation 

between network and point distributions. 

Resuming and describing all methods for spatial patterns analysis on networks, is 

an ambitious task which requires an abstraction from any particular domain of 

application and deepest knowledge of each method; this goal goes beyond our 

scope. Within this paper we are more interest in the applications of some particular 

methods with a heuristic approach, for exploratory data analysis (EDA). As 

suggested by Perry et al. (2006) “spatial statistics have most utility when used 

alongside a process-based or mechanistic investigation of the underlying processes 

driving the spatial patterns observed, whether experimental or model-based”. 

For this reason, in the second part of this paper we will recapitulate only a subset 

of these statistical methods. More particularly, we will focus on local analyses only, 

with the aim of characterizing local distributions of points as they are observed from 

each of them. Our underlying research question is in fact the characterization and 

explanation of retail distributions as observed from any retail location in the city, 

given the street network connecting retail activities among them and given strong 

heterogeneities in the street network. Ripley’s local K function (1979) and its 

adaptation to network space (Okabe 2012), retained our attention: its 

implementation process is the starting point of other network-based analyses, based 

on configurational and fractal approaches, which lead to indicators describing 

different aspects of spatial patterns.  

In the third part of this paper we will describe the basic principles of fractal and 

network configuration analyses and highlight the similarities and differences with 
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some phases of K-function analysis on networks. Domain implications in spatial 

distribution of retail activities in the city will be explored.   

A new methodology will be then proposed in section 4 to analyze the relation 

between the spatial distribution of the network and points, inheriting properties from 

the three aforementioned approaches. This simple method provides a new local 

indicator measuring hot- and cold- spots in relation to the network predisposition to 

support the presence of the point distribution. 

The application of this methodology to a real case study of retail activity on an 

urban street network will show us its peculiarities and limitations in section five. 

Conclusions and research perspectives will complete the paper. 

   

2. Point pattern analysis: some methods  

First of all, we need to define the subject of this study: a spatial point process is a 

“stochastic mechanism which generates a countable set of events xi in the plane” 

(Diggle 2003, p. 43); point pattern is a realisation of a process (Gatrell et al. 1996), 

which means a simple collection of points distributed in a specific spatial domain. 

The analyzed region can have a particular size and shape: in urban studies, often this 

space coincides with the urban street network. Point patterns are realizations of point 

processes. In the simplest case, each point (or ‘event’, Diggle 2003) is defined by its 

spatial coordinates; when additional attributes are considered, we refer to ‘marked’ 

point patterns (Gatrell et al. 1996). In this paper, we will consider the simple point 

pattern defined on an urban street network in order to evaluate different 

methodological approaches. Further works could consider marked information (i.e. 

retail category). 

Traditionally statistical methods are divided in those using areas as units of 

calculus (e.g. the quadrat-based methods described by Greig-Smith 1952 Moran’s I 

1950 and others) and statistics using distances (Clark and Evans 1954 and others). 

The former are preferred when analyzing events occurring in a discrete space, i.e. 

administrative units, segments of a river system, etc. and/or where the precise 

location of the events within this partitioning of space is unavailable or irrelevant. 

The latter are more adapted when events are described by their precise localization 

and no a priori space partitioning can be assumed. Since retail locations in the city 

are precisely known
1
 and we do not want to recur to any pre-established partitioning 

of space, we will focus here on distance-based methods.  

The first step when analyzing point distribution in space is exploring its density 

calculated as the ratio between the number of points and the size of the analyzed 

space. Intensity is the inverse function of density and is also usually employed. It 

describes the average spacing between the event points. Since retail activities are 

located on a network constrained space, our denominator (numerator for intensity) 

                                                 
1
 our case study application has been realized using the detailed geodatabase from 

the local Chamber of Commerce. 
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will be the length of the analyzed street network (or sub-network). This procedure 

gives us a general information about the whole study area; applying the same ratio to 

subspaces, we can investigate how density and intensity vary in space. Local 

measures of density/intensity on networks can be obtained with several methods as 

the Kernel density (Okabe 2012), or the moving window on network (Steenberghen 

2010) adaptation of the quadrat method. 

These approaches inform us about the density/intensity of the point pattern 

insisting on a selected space or subspace; comparing the local intensity to its average 

on the whole space of study, give us an information of local high/low 

concentrations. This process is implemented for example in LINCS analysis (Local 

Indicators of Network-Constrained Clusters, see Yamada and Thill 2004, 2007, 

Fusco and Araldi 2016).  

If we want to go further, analyzing the reciprocal position of points, other 

techniques need to be used:  nearest neigh neighborhood (NN, Clark 1954) the n-th 

NN, pair correlation function Ripley’s K function and others. These methods are 

characterized by the study of the relative distribution of points around each 

occurrence with a distance based function summarizing the general spatial structure.  

Ripley’s K function retains our attention in this paper for several reasons: while 

NN, n-th NN, pair correlation functions study points with specific spatial conditions, 

K function analyzes patterns of all points at different scales.  This function is 

obtained considering the mean of the count of events within disks centered on each 

point; this count is divided by the overall density in the study region. Increasing the 

radius, we obtain a function describing the point pattern at different scales. K 

function considers as reference n realizations of a Poisson spatial process with 

known probability using a Monte Carlo sampling scheme. The definition of this 

process and its properties are widely discussed in literature (ex Stoyan and Penttinen 

2000). The purpose of the n realizations is to obtain significant upper and lower 

bounds for different radii of analysis: if the empirical K function of the point 

distribution falls inside this envelope, the hypothesis of randomness is satisfied. If 

the empirical value is higher than the upper bound for a given radius, our point 

pattern presents significant spatial clustering behavior at this scale of analysis; if it 

falls below the lower one, we can infer the presence of regularity in our distribution. 

When Ripley’s K function is applied on a point pattern on network, the 

traditional planar approach needs to be revisited: spatial relation between points are 

distorted because of the network spatial constrain which reduce the spatial domain 

where events occur. In this case, the procedure presented above needs to consider 

network-based subspaces instead of Euclidean disks. Many studies demonstrated 

statistically how the planar techniques can generate false clusters or hot-/cold-spots 

when applied to a network constrained space; Yamada and Thill (2004) use a data 

set of traffic accidents in Buffalo in order to demonstrates how the general planar K 

function often overestimates clusters compared to the network based methods. The 

same conclusion has been reached when applied to crime data (Lu et Chen 2007).  

Whether in planar or in network domain, another aspect needs to be considered. 

The main assumption of complete spatial randomness is that the intensity of events 
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will not vary across the region (Diggle 2003). Several studies, in the last decade, 

considered the heterogeneity of the point pattern distribution on network. Two main 

solutions have then been proposed. Okabe (2012), considering car accidents on road 

networks, proposes a ‘physical’ modification of the network space in order to 

consider the variation of the traffic density on each axis. The second solution takes 

in consideration the variation of the intensity of the point process at a macro-scale 

within the study area: the kernel density or different a priori intensity parameters are 

used in the K function (Baddeley et al. 2000). 

The discussion of the best method to implement when considering spatial 

heterogeneity goes beyond the purpose of this study. It seems to us, however, that 

the aforementioned solutions focus more on the heterogeneity of point patterns on 

networks than on the heterogeneity of the underlying network spatial distribution. 

One could say that the network heterogeneity is considered inasmuch as the K 

function is obtained by the ratio between the count of points in a selected sub-space 

and the sub-space size. But this is precisely a way of focusing on variation of 

intensity in space, by assuming that the phenomenon under study is independent on 

network heterogeneity. What we want to explore in this work is precisely the 

relation between point pattern and network pattern heterogeneities. This forces us to 

first analyze them separately and only later explore the relations between the two.  

What we have to retain from this discussion is the radial-centered, network-

based approach used by the K function to count events at different distances and 

informing us on the distribution of the points around any selected event. In the next 

section, we will see how this approach is adopted in other methods, namely fractal 

analysis and network configuration analysis.  

  

 3. Patterns analysis: similarities with different approaches  

3.1 Fractal analysis 

As introduced in the previous section, when analyzing the spatial distribution of 

a human settlement, its social and economic functioning, independently by the scale 

of observation we can observe an apparently irregular distribution; geographers, 

sociologists, economists before other disciplines had to face this particular 

distribution (Frankhauser 1998). Under the apparent irregularity of the spatial 

distribution, a more complex spatial ordering has often been identified. Self-

organization phenomena have been associated to these complex form and 

distributions.  

Fractals have been demonstrated to be a valid approach to the analysis of these 

irregular distributions. The impossibility to find a regular pattern within the usual 

Euclidean geometry of discrete dimension (the line, the plane, the 3-D volume) does 

not mean that regularities cannot be detected in a space possessing a fractal 

dimension.  Fractal analysis tries first to find a singular parameter describing a 

repeating pattern at different scales, a parameter capable of accounting for the 

apparent irregularity of a geometrical features spatial distribution. This parameter is 

the fractal dimension of the distribution. In some cases, braking points in the fractal 
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dimension can be found over the scale range. The purpose of the analysis is then to 

find a simple set of parameters in order to explain the complexity of the non-

homogenous spatial organization. Starting from Mandelbrot (1977), researchers 

widely apply the fractal approach on urban systems and agglomerations developing 

new morphological parameters (Fotheringham et al. 1989, Batty and Longley1994, 

White 1993, Frankhauser 1994, 1998. etc). 

Based on the large scientific literature of urban fractal forms, we will focus our 

discussion on a particular formulation of fractal analysis. In this domain, analysis 

can have a global or local approach; in the first group, we can find grid, dilatation 

and correlation methods (Batty and Longley 1994, Frankhauser 1994). These 

methods are characterized by the determination of a unique value describing the 

whole distribution regularity. More interesting for our purpose are the local methods 

based on the radial analysis and on curves of scaling behavior.  

Fractal approach to network analysis has been applied in Albert and Barabasi 

(2002), Song et al. (2005) and Bejan (1996). In many of these studies, the fractal 

analysis is applied to topological networks (WWW, proteins, cellular networks etc.) 

using the box counting method on topological measure of distances between nodes. 

In this work, we are more interested in its metrical implementation because of our 

case study represented by a real street network. 

If we consider the radial analysis, we can find similarities with the statistical 

method of K function: they both consider a specific point called center of analysis 

and for different radii r they count the number of elements (i.e. built cells on a 

regular grid for radial analysis, number of events for K function) falling inside each 

disk. The fractal law that we obtain through this analysis is given by a regression 

line on a log-log diagram, plotting the radius of calculus r and the corresponding 

number of elements N(r): 

     N(r) = r
D
  log N(r) = Dr*log r                                         (1) 

From this equation, we obtain the fractal dimension Dr; this parameter resumes 

the trans-scalar spatial organization of the geometrical pattern around the center of 

analysis. As suggested by Frankhauser (1998, p. 217), this local method is a detailed 

approach in studying variation of local spatial patterns “by comparing the results 

obtained for different counting centers”; additionally, he described this approach as 

an instrument for research for the analysis of empirical structures through their 

comparison and classification. 

As we can see, this procedure is equivalent to the one described above in 

Ripley’s K function in a Euclidean space. The counting method with disks of 

increasing radii is applied by fractal analysis in order to identify the parameter 

synthetically describing the apparently irregular distribution analyzed. Like the K 

function, we will need to apply the local fractal approach in the network space: we 

will see in the following section how the network approach will preserve the same 

structure of equation (1). When calculated locally on the street network itself, fractal 

parameter Dr will then describe how the spatial domain size grows with the radius of 
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analysis around each point; this information determines a fundamental property of 

the spatial domain where point patterns take place.  

3.1 Network configurational analysis 

The same principle of non-homogeneity in the spatial distribution of urban, 

social and economic patterns discussed before, can be investigated on networks.  

Bavelas (1948) identified the importance that central places in social networks 

have on human communication: a central localization is characterized by power, 

influence and control properties on the whole network. Based on this theory, several 

indicators of network properties have been studied (ex: Leavitt 1951; Freeman, 1977 

etc.). This approach, has been later applied to urban systems and street networks. 

Within a street network, the notion of centrality takes a wider connotation ranging 

from visibility, popularity, passage and attraction notions, influencing economical 

and functional properties of the space. The central idea of configurational analysis of 

street networks is that the network elements possess configurational properties 

derived from the spatial relations that they establish with all other network elements 

within the whole study area (global properties) or a subspace of it (local properties 

within a given radius). The network configuration is seen as an underlying organizer 

of patterns of potential movement and encounters. When buildings and urban 

functions are integrated in the configurational analysis of the street network, 

increasingly comprehensive analyses of the configuration of urban space can be 

performed. 

When we study the relations between urban network configurational properties 

and the localization of social and economic activities within a city, The social logic 

of space (Hillier and Hanson 1984) and Space is the machine (Hillier 1996) are 

unanimously considered the milestones of this research field and, more particularly, 

of the analytical methods of Space Syntax (SSx). Porta et al. (2006a, 2006b) 

identified two approaches of configurational analysis based on two different 

representation of the network: the dual approach applied in space syntax studies, 

where street segments are modelled as nodes and intersections as arcs (Hillier et 

Hanson, 1984; Hillier 1996); and the primal approach, base of Multiple Centrality 

Assessment (MCA), with an opposite representation (Batty 2005; Porta et al. 2006a;  

Svetsuk 2010). This approach has been widely applied in the last few years to 

different urban phenomena in order to study their spatial distribution, which is 

highly heterogeneous: property prices, office rents, land use intensity, retail 

distribution, etc. 

Like with statistical and fractal analysis, we now focus our attention on a 

particular indicator within configurational analysis. When we count the number of 

nodes (links, destinations, etc.) attainable from a certain location, we are studying an 

accessibility measure which is a function of the connectivity of a point within the 

network: Reach in MCA, Node Count in SSx. Their formulation is of interest when 

they are calculated locally within a given radius: 

Reach r [i] =Ʃ d[i,j]≤ r (j)                               [2] 
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Their implementation procedure is -another time- the same we encountered in 

Ripley’s K function and fractal local radial analysis. Configurational analysis, unlike 

fractal analysis compares the centrality value in the space at a selected scale (given 

radius r). Some studies try to compare the relation of these properties at different 

scales or at different times (Barthelemy 2011). Unlike K function and fractal radial 

analysis, though, configurational indicators were conceived in the first place for 

network analysis and don’t need any particular adaptation to network environments. 

3.1 The local counting method  

We saw so far three spatial analysis methods from different research traditions. 

Each of them is applied with different adaptations, purposes and meanings but the 

three share, at least initially, the same procedure. In order to better understand our 

proposal in the next chapter, we summarize some concepts discussed above: 1) 

Local measures of spatial patterns are based on the counting method applied to disks 

obtained by increasing radii around each point of the analysis; while configurational 

analysis focuses its attention on a particular radius r, the fractal approach and K 

function analyze the evolution of the count with increasing size of r; fractal analysis 

summarizes this evolution with the fractal dimension Dr but can also highlight 

breaking points where fractal dimension changes. 2) Statistical procedures like K 

function compares the empirical count to the expected outcome of a random process 

in order to determine if there is a spatial clustering behavior; this inferential 

approach is missing in fractal and configurational analyses, which remain more 

descriptive. 3) Network space is a particular domain: its non-Euclidean dimension 

influences the spatial distribution of events; moreover, empirical street networks in 

contemporary cities present strong heterogeneities; in statistical studies the focus is 

on heterogeneity of point intensity; configurational indicators are on the contrary 

conceived to highlight the differences in network properties within urban space.  

The aim of the method implemented in this paper is to analyze the point pattern 

on the network separately from the network configuration. A comparable calculus 

will be used in order to observe similarities or differences between the two spatial 

distributions. In order to achieve this purpose, we avoid the use of density/intensity 

that combines these two sources information, hiding possible relations between 

point pattern heterogeneity and network heterogeneity. 

Separating network and retail activity heterogeneities is the starting point of 

Piovani et al. (2017), as well. These authors use percolation theory (Stauffer and 

Aharony 1994) to analyze the variation of the share of clusterized street segments 

and retail activities, respectively, using different percolation thresholds. Although 

sharing the same goal of analyzing separately network and retail activity patterns, 

their approach remains global and is not a local counting method: the clustering 

behaviors of the two phenomena are analyzed and compared within a whole study 

area. On the contrary, our approach remains local by evaluating network and point 

pattern heterogeneities around each point. Street segments and retail points are not 

clustered and an average relation between the two phenomena over the whole study 

area is not sought for. A finer analysis is provided which highlights local 

specificities and possible pattern inversions. 
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4. Proposal 

The methodology proposed in this paper is based on the counting method 

described above applied locally, at every point of analysis, with different radii. At 

first, Lr is calculated as the length of the network subset included in a reticular radius 

r from each event point. We then apply the same procedure to the pattern of event 

points: Nr  represent the number of points at the given reticular radius r. In both 

cases, the range of r is limited between r-min and r-max, justified by considerations 

on the domain of analysis. 

As we saw above, fractal analysis has been first applied to geometrical features 

in order to characterize their distribution pattern through its spatial dimension. When 

we analyze networks with a metrical fractal approach, this amounts to determining 

its local geometrical dimension. As we know from fractals theories a network has a 

geometrical dimension which is equivalent neither to the linear dimension nor to the 

bi-dimensional planar space. So when we plot the values of r and Lr in a log-log 

diagram, we recognize a linear distribution with slope L corresponding to the 

fractal dimension Dr we encountered in [1]. The parameter L is then a local 

indicator of spatial distribution of the network, varying between 1 and 2 : the lower 

limit corresponds to a purely linear structure, the higher, to an extremely dense 

homogeneous mesh.  

The example in Fig. 1, show us a real application to a street network: L is close 

to 1 when r remains between 0 and 40 meters (corresponding to the block size). 

From 40 meters to 640 meters, if we consider the semi-linear network (blue in Fig.1) 

L is 1,13 while considering the regular mesh (red in Fig.1) L is equal to 1,97. The 

parameter L (or Dr in [1]), calculated for each point of the analysis, gives us the 

information about the proportionality factor of the evolution of the network around 

the considered point. Network heterogeneities impact the average slope L 

considerably. When a point falls within a densely meshed area of small spatial 

extend surrounded by more linear network extensions, the slope variates over r, with 

higher values for smaller radii and smaller ones later. The average value is relatively 

low if the dimension of the densely meshed area is much smaller than rmax. 

The second step sees the same procedure applied to the point pattern. Once again 

we obtain the parameter N =Dr; this time the point distribution can vary between 0 

and 2. The application of this fractal approach to the point pattern gives us once 

again an indication of the local proportional factor. When N 2 the number of 

points grows almost as in a two-dimensional homogeneous plane and many more 

event points are at larger distances than at smaller ones. When N 0 far away 

points are so rare that the point of analysis is almost isolated. N is relatively low 

even when the point of analysis is within a dense point cluster, whose dimension is 

much smaller than rmax. In this case the cluster, and not the single point, is isolated 

from other clusters. But the effect of network density is not taken care of. 
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Fig.1 The Fractal Dimensions obtained from a dense meshed (red) and a corarse(blue) grid. 

The next step is thus crucial for the analysis: if we compare L and N we can 

analyze the two different behaviors of network and point pattern distribution around 

each point. If they have the same fractal dimension (N - L = 0), the point 

distribution follows the network distribution; in other words, the distribution of 

points is homogeneously distributed on the network, independently on its density.  

More interesting is the case when N - L ≠ 0: if the difference is positive, the 

point distribution grows more rapidly with r than the network distribution. This is 

often the case of isolated points which are not too far away from point clusters, even 

after considering the effect of network density variation. On the contrary, a negative 

difference characterizes a high local concentration of event points with a local count 

that grows less rapidly than the network length.   

Before discussing limitations and potential evolutions of this approach, we 

describe a real case study of retail distribution on an urban street network, as well as 

the interpretation of the results obtained. 

5. Application to the analysis of retail in the city 

We applied the proposed method to the Nice metropolitan area in South-Eastern 

France. The city of Nice and its neighboring municipalities are characterized by 

strong heterogeneity in network distribution, due to physical constraints and 

interpenetration of urban fabric from different historical periods (Araldi and Fusco 

2017). Retail distribution in urban space is relatively heterogeneous, too. We 

implemented the three steps method on an 18,000-point dataset distributed over a 

2,300 kilometer long street network. A maximum radius of 640 meters has been 

considered in the calculus in order to account for possible interaction between 

commerce locations given the constraints of pedestrian movement. The minimum 

radius is 40 meters, below which network geometry becomes linear. The radius of 

analysis is increased as a geometrical progression of factor 2: 40 m, 80 m, 160 m, 

320 m, 640 m. For each analysis point we can thus calculate five values of Lr and Nr.  

Within these values, the linear regressions of Lr and Nr on r in a log-log plot 

have an average R
2
 of 0,989 and 0,936, respectively, with standard deviations of 
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0,0254 and 0,0579 for the 18,000 series. Linear regressions on log-log plots are thus 

relatively well suited for the network length count, less for the retail distribution. A 

few outliers need a contextual clarification: the presence of shopping malls 

containing several retailers are modeled with the superposition of several points at 

the same location in our original geodatabase; this particular event generates 

erroneous N due to the presence of N40>>1, reducing the N value and the R
2
 of the 

linear fit. 

In order to analyze our results, we will focus our discussions on the small area of 

Saint-Laurent-du-Var, west of Nice, where almost all the variations and 

combinations of our pattern distributions are represented (Figures 2 and 3). This 

urban area presents physical (river and sea front respectively east and south) and 

infrastructural constraints (railways and motorways longitudinal disposition, 

following the seafront), a small densely meshed village, a less densely meshed sea-

front and low-density, tree-like street networks in the rest of the area. From a simple 

visualization of the retail pattern, we can easily recognize two agglomerations: in the 

north area of the selected region the cluster corresponds to the center of Saint 

Laurent-du-Var village while in the south, a more recent commercial development 

around a shopping mall. Outside these clusters, an apparently homogenous 

distribution of retailers. 

When a spatial pattern of points presents strong heterogeneity in its distribution 

as in our case study, the application of K function in its traditional or modified 

version, can only support the evidence of clustering behaviors. What we are asking 

to our method is to go beyond this detection guiding the analyst in the understanding 

of the spatial relations of these clusters with the heterogeneity of the underlying 

network, at the point level, without any spatial aggregation.   

As introduced in the previous section, we first need to analyze separately the two 

patterns of point and network; in both cases the linear model assumed, is not always 

the best representation of the empirical distribution. The goodness of fit of the linear 

model in Saint-Laurent-du-Var is represented in Fig. 2 where R
2
 values are mapped. 

Low values of R
2
 correspond to two different shapes of Lr departing from linearity: 

small local retail concentration surrounded by less dense areas (Fig 2.a) or isolated 

retailers around which other retailers can be reached only at further distances 

(Fig2.b). In the first case αL is close to or lower than 1; in the second, αL is close to 

or higher than 2 (Fig.3). When the method is applied to the network, this behavior is 

weaker but persists. 

With this information, we can now analyze the distribution of the two slope 

parameters, represented in in Fig.3.1 and Fig.3.2. The two retail clusters presented 

above are well identified by low values of αN (Fig.3.2). This parameter can be read 

as a local degree of “isolation/agglomeration” of the pattern. 

The same interpretation can be given to αL: higher values correspond to 

connective long axes, cul-de-sac irregular regions, adjacent or surrounded by denser 

meshed areas; on the contrary when the local network of a point is characterized by 

a higher street density than the farthest areas, αL is determined by lower values. 
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Fig.2 Distribution of R
2
 of the linear regression of N(r); a and b represent the 

function N(r) of two different point having R
2
 lower than the average value 

While Figure 3.1 and 3.2 inform us on the two spatial distributions separately, 

their difference, which we will call local fractal deviation
2
, helps us characterize 

their local relations (Fig.3.3).  We can then recognize three behaviors:  

1-When the fractal dimensions of the point pattern and of the network are 

similar, we can recognize a point pattern homogeneously distributed on the local 

sub-network; high retail concentrations are normally further than rmax (Fig.3d).  

2- If the local fractal deviation is negative (αN-αL<0), we identify local high 

concentrations in well meshed grids Fig.3e.  

3- If it is positive (αN-αL>0), we often have isolated retail activities (or very 

small concentration) in not particularly meshed sections of the street network 

(Fig.3f); from these isolated patterns, high retail concentrations can be reached at 

around rmax, explaining the increase of the slope αN. 

Fig3.3, shows the importance of our approach in reading relations between point 

pattern and network: while the two retail clusters could be easily recognized even 

without sophisticated methods, the rest were just classified as low concentration 

areas. Our approach gives us the possibility to distinguish between homogenous 

areas and isolated or small local clusters. 

 

                                                 
2
 deviation and not difference because the fractal dimension of the street network has 

the role of a reference pattern. 
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Fig.3 In the three maps we can analyze the spatial disposition of the indicators 

implemented: in 1 the fractal parameter of the network αL, in 2 the fractal 

parameter of the retail distribution αN and in 3 the difference αN-αL. 
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6. Conclusion and perspectives 

Our proposal should be conceived just as the starting point of a new 

methodology of point pattern analysis on heterogeneous street networks, which 

could be applied to different domains (retail activity, crime, road accidents, etc.). Its 

core is the local count of elements falling within increasing network radii around 

each event point, a common phase of K function analysis, fractal radial analysis and 

reach indicator in configurational analysis. Event point pattern and network are 

analyzed separately and later combined. Relations between point pattern 

heterogeneity and network heterogeneity can thus be investigated at the a very local 

level, without needing a global partitioning or clustering of features. Different 

relationships between point patterns and network patterns can be highlighted at a 

local level. Within their work on London, Piovani et al. (2017) show that street 

segments and retail activities have very similar percolation thresholds and that the 

latter cluster more intensively than the former at all scales of analysis. Our analysis 

on the metropolitan area of Nice shows that the local fractal deviation of retail 

activities referred to the street network can be positive, negative or null, highlighting 

different local behaviors.  A more fine-grained analysis of the relation between 

street network morphology and retail activity distribution becomes thus possible, as 

shown by our case study. 

As already pointed out, the method needs further developments. A calculus of 

significance levels of local fractal deviations could be implemented, as in statistical 

approaches. Marked point patterns could also be analyzed, as already proposed by 

local cross-K function analysis.  
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