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Abstract

We study the long-time behaviour of a population structured by age and a
phenotypic trait under a selection-mutation dynamics. By analysing spectral
properties of a family of positive operators on measure spaces, we show the exis-
tence of eventually singular stationary solutions. When the stationary measures
are absolutely continuous with a continuous density, we show the convergence
of the dynamics to the unique equilibrium.

1 Preliminaries and Main Results

1.1 Introduction

Our ultimate goal is the understanding of the long-time behaviour of a population
where the individuals differ by their physical age a € R, and some hereditary variable
z €S c R? called trait. The population evolves as follows. An individual with trait
x €S and age a € R, has a death rate D(z,a) + ¢N where D is the intrinsic death
rate, N is the population size and ¢ > 0 the competition rate. This individual
gives birth at rate B(x,a). At every birth, a mutation occurs with probability
p € ]0,1[ and the trait of the newborn y € S is choosen according a distribution
k(x,a,y)dy. Otherwise, the descendant inherits of the trait « € S. In his thesis [19],
Tran introduced an individual-based stochastic model to describe such a discrete
population. The population is described by a random point measure

N
7 = 22 2 0. (1)
=1

which evolves as a cadlag Markov process with values in the set M™*(S xRy) of
positive finite measures on S x R, and each jump corresponds to birth or death of
individuals. When the order K of the size of the population goes to infinity such
that Zg( approximates a deterministic measure ng € M*(S xR, ), it is shown (see
[19],[20]) that the process approximates the unique weak solution (in the sense given
by [@I0) (n¢)e=0 € C(R4, MT(S x R,)) of the partial differential equation

{ﬁtnt(m, a) + Ogn¢(x,a) = — (D(x,a) +cfg <R, nt(y,a)dyda) ne(z,a), @)

nt(wao) :]:[nt] (.%'), (tamaa)ER-i- XSXR+7



where
F[nd (2) 3)

—(1-p) B(:c,a>nt<x,a>da+pf B(y, a)k(y, o 2)ny (y, a)dydar.
R+ SXR+

Recently, the well-posedness of measure solutions for a large class of partial differ-
ential equations including (2)) has also been established in [5], using a deterministic
method. At our knowledge, nothing has been done about its long-time behaviour.
In [4], the stationary problem is solved in L!(S x R, ) for a similar dynamics with
a pure mutational kernel (p = 1). The present paper is also motivated by [I]. The
authors study the long-time behaviour of a selection-mutation dynamics with trait
structure (and no age) and p € ]0,1[. They show the existence of stationary mea-
sures which can admit dirac masses in some traits and they analyse the long-time
behaviour of the solutions when the stationary measure admits a bounded density.
In this paper, we extend these facts to an age and trait structured population. We
show the existence of non-trivial stationary measures for Equation (2)) (see Theorem
[[3]) which can be singular. When these measures are absolutely continuous with
a continuous density, we show that the solutions of (2)) converge to the (unique)
equilibrium (see Theorem [[5]). The method is based on the analysis of the lin-
ear dynamics. Indeed, the stationary states of (2)) are eigenvectors for the direct
eigenvalue problem

—04N(z,a) — (D(z,a) + A)N(z,a) =0 ()

N(z,0) = F[N](x).

The solutions of the dual problem

0ap(x,a) — (D(x,a) + N)¢(z,a) + G [¢] (x,a) = 0, (5)

where
G (9] (v, a) = B(,a) ((1 LR e y)dy) L ©

give us some useful invariants and allow us to apply a method based on [11],[17]
leading to obtain an exponential rate of convergence for the linear dynamics to the
stable distribution.

As we will see, the study of the problem (4)) involves to understand spectral prop-
erties of a family of positive operators on the space of continuous functions on S of
the form

(r + D f(2) = r(2) () + L K(y, 2)f(y)dy (7)

where r is a continuous and positive function over S and K a continuous and non-
negative kernel over S. In [6], Coville finds a useful non-integrability criterion on the
parameter r which gives the existence of eigenfunctions associated with the principal
eigenvalue of the operator r + J. When this criterion fails, he gives examples where
there’s no eigenfunction. Nonetheless, he shows in [7] that there are always principal
eigenvectors in the of Radon measures space. Other properties of the operator



are studied in [§]. In Section 1, we give a new, shorter and unified proof of all
these results (see Theorem [Z3]). Our approach is based on duality arguments (see
Proposition 2.7 which is adapted from a result due to Krein-Rutman [I4]) and allows
us to obtain the existence of eigenvectors in a measures space. The criterion for the
existence of principal eigenfunctions is also deduced. Our approach allows us to
study at the same way the operator r + G defined by

(r + C)f(x) = r(2)f(x) + L K (x,9)f (y)dy (8)

which will be used for studying the dual problem (&).

In Section 1.3, we state our main results on the long-time behaviour of the
solutions of ([2)). In Section 2, we study spectral properties of the operators of the
form r + J, r + G defined by (), ([8) and of their analogous operators in measure
spaces. In Section 3, we apply these results to the study of the long-time behaviour
of the linear dynamics. In Section 4, we deduce from the previous sections the proofs
of our main results.

Notations. Let X be a metric space.

e C(X) (resp. CT(X)) represents the sets of continuous functions from X to
R (resp. R;). Cp(X) (resp. Cy (X)) represents the sets of continuous and
bounded functions from X to R (resp. Ry). M(X) (resp. MT(X)) represents
the set of finite Radon (resp. positive and finite Radon) measures on X.
Mioe(X) (vesp M;b (X)) represents the set of Radon (resp. positive Radon)
measures on X. For any metric space Y, we denote by C'(X,Y’) the set of
continuous functions from X to Y.

e We denote by C;’O’l = C;’O’I(R+ xX x R;) (resp. C}%1) the set of continu-
ous and bounded (resp. with compact support) functions from Ry xX x R
with continuous and bounded derivatives with respect to the first and third
variables. We define similarly C,?’l = Cl?’l(X xRy)and COt = C%L(X xR,).

e For any z € X and € € R%, we denote by V(z,€) (resp. V(z,¢€)) the open (resp.
closed) ball centred in = with radius e.

1.2 Preliminaries

We first give the main assumptions on the model. Then we recall some facts about
topology of measure spaces and we conclude by giving some words about the well-
posedness of the dynamics (II) and (2).

Assumptions 1.1.
S§=0, QcR? is open, bounded, connected with Lipschitz boundary, (A1)

B,DeC/(SxRy), D(z,a)=>D>0, keC(SxRyxS), (A2)

pe0,1[, ¢>0 (A3)



and there exists ¢g > 0 and I < R, with } # 0 such that for all x € S and
yeV(x,e)NS:
I < supp(k(z,y,.)) nsupp(B(z,.)). (A4)

Measure theory. We recall some classical definitions and facts about topology
on measures spaces. The Jordan decomposition theorem ensures that for any u €
M(S xRy), there is p*, u~ € MT(S x Ry ) mutually singular, such that u = pu* —
p~ . The total variation measure is defined by |u| = u™ +p~ and the Total Variation
norm by

Iy = |ul(S x Ry).

The Bounded Lipschitz norm is defined for any p € M(S x R,) by

f £ (@) ()
Sx R4

where WH® (S x R,) is the set of bounded Lipschitz functions from S x Ry to R
and || f||1,0 = || flleo + Lip(f) where Lip(f) is the Lipschitz constant of f and ||| =
sup {|f(z,a)|: (z,a) e S x Ry}. We recall (see [2I]) that for any sequence pu, €
MT(E xRy )and pe MH(S xRy), |un—p|BL = 0ifand only if for all continuous
and bounded function f from & x R, to R,

lplBL = SHP{

f e WEP(S xRy, [ fllieo < 1} :

lim F(@)pin(d) = L  Faulda),

n—o Jg xRy

i.e that p, — p weakly™ in (Cp(S x Ry))" ((Cyp(S x R4)) represents the dual space
of Cp(S x R;)). We denote by C(Ry, Mt (S xRy)) the space of continuous maps
from R, to M*(S x R, ) with respect to the Bounded Lipschitz norm.

Well-posedness. We precise the link between the stochastic process ([Il) and the
partial differential equation (2). We denote {u, f) = {4, R, f(x,a)u(dx,da). Let us

consider a sequence (Z&)k=o of M*(S x Ry) valued random variables of the form

1 3
ZOK = K Z 5(961'7(11')'
i=1

For each K € N* let (Z/)i=0 be defined as the cadlag measure-valued process
started at ZI with infinitesimal generator L given, for any f € Cl?’l and p €
M*(S xRy) by

IRy = | uf@a) ' (Gu )l do) ©)
& [ {0 2 ) - PG ) - pBGa)
S xRy

([0 22 ) = P o) B, a0,y

HE(G = "2, 1) = PG ) (DG,) + 1) f s,



where Fy(u) := F({u, f)) (we note that the set of functions of the form Fy is
sufficient to characterise the infinitesimal generator, as it is proved in [9]). The
following proposition allows to obtain the solutions of (2]) as a large population limit
of the stochastic process ZX. We refer to [T9] for the proof.

Proposition 1.2. Assume Assumptions [Tl Assume that ZI converges in law
to ng € M*(SxRy) as K — oo. Then, the sequence of processes (Z%)g=q
converges in law (on finite time interval) to the unique weak solution (n;)i>=o9 €

C(Ry, MT (S xRy)) of (@) which satisfies for all f € C;’O’l and t € R,

f fe(xz,a)n(dx, da) = f fo(z,a)ng(dx, da) (10)
S xRy S xRy

+ ftf (&;fs + Oufs — (D + cf ns> fs+G [fs]> (z,a)ngs(dx,da)ds
0 JS xR, S xRy

where G has been defined in ({@).

1.3 Main Results

Let us introduce some notations. For any (A, z,y,a) € |—D, +o[ x S xR, we
define:

R)\(x a) = exp( §o D(z, a)da) —Aa),

ra(x) SR (z,a)Rx(z,a)da, (11)

K)\(.%',y _pS]R+ m,a)k:(m,a, y)R,\(m,a)da.

For any \ € |—D, +o[, we define the linear operator 7y + Jy : M(S) — M(S) by

(Fr + T = ra(@)u + ( [ w)#(dy)) dn (12)

and we denote by p(7y + J)) its spectral radius. We now give the main results of
the paper. The first one shows the existence of stationary states for the dynamics
(I0), under some assumption on the spectral radius of the operators introduced
above (similarly as in [4]). This assumption is related to the supercriticality of the
associated linear dynamics.

Theorem 1.3. Assume Assumptions[LTland p(7g+.Jy) > 1. There exists a non-zero
solution m e M1 (S x Ry) of:

e LXR <6af— <D+CLXR ﬁ)erg[f]) (&, a)7(dz, da) = 0,
(13)

which is given by

n(x,a) = pyx(dr)Ry=(z,a)da
where A* > 0 is solution of the equation p(Fy» + Jyx) =1 and fixx € MF(S) is an
eigenvector of 7y + Jyx associated with the eigenvalue p(7yx + Jyx) = 1.

Let us now introduce an additional regularity assumption which allows us to
obtain the continuity of the solutions with respect to the initial conditions (see

Lemma [3.10).



Assumptions 1.4. B,De W1®(S§ xR, ) and ke WhP?(R, x S x Ry).

We now focus on the case where there exists a stationary measure 7 which admits
a continuous density (we keep the same notation 7 for the density).

Theorem 1.5. Assume Assumptions [T, [l Assume that p(7o +Jp) > 1 and that
there exists a solution @ € C(S, L' (R, )) of (I3)). Assume that there exist B,k > 0
such that B > B and k > k. Let (ns)¢=0 € C(Ry, M* (S xR,)) be the solution of
(I0) started at ng € M*(S x R4)\{0}. Then we have

lim |n; — 7|ty =0
t—00

and 7 is the unique stationary measure.

2 Spectral Properties of some Positive Operators

2.1 Position of the Problem and Results

Let us consider a subset S of R? which satisfies Assumption (AT)). We analyse the
spectral properties of the operators r + J,r + G : C(S) — C(S) defined respectively

by (@), ([8) and of their analogous operators on measure spaces 7 +J,7+G : M(S) —
M(S) defined similarly by

W+ﬂu=ﬂ@u+(LK@wmww>w,

4+ G = o+ ([ K pwtan) ) as

Assumptions 2.1.

r € C(S) is positive, (A5)

K € C(S x 8) is non-negative, (A6)

B >0, inf inf K > cp. AT
€;c0 >0, inf (yevér}m)ms (m,y)> co (A7)

Remark 2.2. Assume Assumption (A7), then we have

inf ( inf K(y,x)) > ¢p. (14)
yeV(

TeS z,60)NS
Indeed, let x € S and y € V(z,€9) n'S. Then = € V(y, €0) and K(y,z) > co.

The following result deals with the spectral properties of the operators introduced
above. We denote by p(r+.J) the spectral radius of the operator r +.J (and similarly
for r + ). The reader can refer to Appendix A for terminology and recalls about
spectral theory. The following theorem is proved in Section 2.2.



Theorem 2.3. Assume Assumptions 2.1l There exists u € M™*(S) such that
plr+ G = (7 + J)p

which satisfies u(A) > 0 for any Borel subset A of S such that Leb(A) > 0 (Leb
denotes the Lebesgue measure on S). Moreover, let us denote 7 = sup, 5 r(z) and
Y ={reS:r(zr) =7} Then we have:

(i) 7 < plr +G).

(ii) 7 < p(r + G) if and only if there exists u € C(S), u > 0 such that p = u(z)dz.
In this case, p(r+G) is an eigenvalue of r +J with algebraic multiplicity equals
to one, associated with the eigenfunction w.

(iii) If Leb(X) > 0 or if, Leb(X) = 0 and = ¢ L!(S), we have T < p(r + G).

(iv) If p(r + G) = 7, we have u = u® + h(z)dx with h € L'(S) and either u® = 0,
or p® # 0 and supp(p®) ¢ X.

(v) p(r+J) = p(r + G) = p(F + J) = p(7 + G).
Moreover, the same results are true exchanging J and G, J and G.
Proof. See Section 2.2. O

Remark 2.4. In [6],[7], Coville studies some spectral properties of the operators
introduced above. To do so, he introduces the generalised principal eigenvalue

Ap(r + J) =sup{A e R[Fp € C(S), ¢ > 0 such that (r + J)p + Ap < 0}

which generalises the Perron-Frobenius eigenvalue for irreducible matrices with non-
negative coefficients. The point (iii) is similar to the criterion obtained (in a more
general setting) in [6]. The point (iv) is contained in the results of [7]. The point
(v) is new. It is crucial for the proof of Propositions and

2.2 Proof of Theorem

The proof of Theorem [2.3] is given at the end of this section. We start by proving
a lemma in which some well known facts about the operators introduced previously
are recalled. We give a proof for the convenience of the reader. We denote by
pe(r + J) the essential spectral radius of r + J (see Appendix A).

Lemma 2.5. Assume Assumptions 211
(i) The operators r + J and r + G are positive and irreducible on C(S).
(ii) The operators J and G are compact on C(S).

(iii) = Pe(T + J) = pe(r + G)



Proof. (i): Since r is positive and K is non-negative, r + J and r + G are positive
endomorphisms of C(S). To prove irreducibility, it suffices to prove that there is
m € N* such that for all f € CT(S) and x € S, (r + J)™f(x) > 0 (see Definition
[A.6l and Lemma[ATT]). Since the set S is compact, there exist n € N* and (B;)_; a
family of balls with radius €y/4 such that S ¢ U B;. Let f € C*(S) be non-zero
and let I be an open subset of S such that f is positive on I. For all z € § we have

(r+J)"f(x) = delf(xl)K(xl, x9) fs dzsy . .. L dxn, K (xp,, )

= C dle(xl,xQ)f

dxy ... J dxn, K (xy, )
InB;; NS B, NS B;,, NS

where C' > 0 and (iy,...,iy,) € [1,n]" satisfies: B;; n I has non-empty interior; for
any ke [1,n—1],ue B;, nS,ve B NS, K(u,v) > ¢ and for any ue B, n S,
K (u,z) > cg. It comes that

Tt

(r+ J)"f(z) > 0

and r 4+ J is irreducible. The proof is similar for r + G.

(ii): Let M be a bounded subset of C'(S) and let Cjs be a positive constant such
that for all f € M, ||f|w < Can. Applying Ascoli’s criterion, we prove that J(M) is
relatively compact in C(S). Let x € S and f € M, we have

T F(@)] < 1o sup j K (y, 2)dy
2eS JS

< Cuy supj K(y, z)dy.
zeS JS

Then the set {Jf(z),f € M} is bounded and so relatively compact in R. We

check the equi-continuity condition. Let € > 0, since K is uniformly continuous

on S x 8§, there exists § > 0 such that if |z1 — zaf + |y1 — v < I, we have

| K (z1,11) — K(z2,y2)| < CuTeh@): Let y € S such that |z —y| < é. For all

f € M, we have

|Jf(y)——Jf(x)|=‘J;szXl(@gy)——RXz,m»dz
< C’MJ K (2,y) — K(2,2)|dz < ¢
S

which allows us to conclude for the compactness. The proof is similar for G.

(iii): Let us note from Lemma[A.12] that the essential spectrum of r is {r(z),z € S}.
Moreover J is compact. We deduce that p.(r + J) = p.(r) and that 7 = p.(r + J).
The proof is similar for p.(r + G). O

The following lemma makes a duality link between the operators introduced
above. It is crucial for the proof of Theorem 2.3

Lemma 2.6. Assume Assumptions 21 We have

(r+J) =f+G (r+G) = (15)

T+
where (r + J)' is the adjoint operator of r + J and (r + G)’ is defined similarly.



Proof. Let f € C(S) and ue M(S),

[Lutas)e+ s = | @w( o+ [ Kormay)
jf j(ﬂwawmmwow
ff ( u(de) +dacJny) (dy))

ff e

where we used Fubini’s Theorem. The proof is similar for (r + G)". O

The next result is easily adapted from [I8, Appendix §2.2.6] (it was originally in-
troduced by Krein-Rutman [14]) and [I8, Appendix §3.3.3]. Combined with Lemma
2.6 it is the main tool for the proof of Theorem 2.3l

Proposition 2.7. (i) Let T be a positive endomorphism of C(S). The spectral
radius p(7T) is an eigenvalue of T" associated with an eigenvector which belongs

to MT(S).

(ii) Let T be an irreducible endomorphism of C'(S). Then the spectral radius p(7T')
is the only possible eigenvalue of T' associated with a non-negative eigenvector.
Moreover, if p(T') is a pole of the resolvent, it is an eigenvalue of 7' with
algebraic multiplicity equals to one.

We give now a technical lemma.

Lemma 2.8. Assume Assumptions 21l Let zp € ¥ = {z € S : r(x) = 7}. There
exists a family (r;) =0 of C*(S) which satisfy for all j > 0:

(i) Forallz € S, rj(x) = rj41(x),
(ii) rj(x0) =7; =7 and Leb(X;) > 0, where ¥; = {x € S : rj(z) =T},
(i) Iy -l — 0.
J—00

Proof. Let g € X be fixed. For all ¢ > 0 sufficiently small, we define the closed
set Ac = (V(20,€)° U V(20,€¢/2)) 'S and a map g € C(Ac) by ge(z) = r(z) if
x € V(zg,e)¢ and ge(x) = 7 if x € V(xg,€¢/2). By Tietze Theorem, we extend
ge in a continuous function h. on S such that |kl = ||ge[o We introduce r. €
C(S) defined by rc(z) = max(he(x),r(x)). It is straightforward to check that: 1)
lime g |re — 7|oo = 0; Leb(X:) > 0; 3) re(z) = r(z) and sup,egre(x) = 7. We
conclude by proving that we can extract a decreasing subsequence of the family r.
which converges uniformly to r. To do so, we fix ¢y > small and we define a sequence
(€x)k=0 by €41 = %. We check that the sequence (r¢, )r>o is decreasing. Indeed,
let £ > 0. If x € V(zo, €441/2), then x € V(xo, ex/4) and 7¢,, (x) = he,,,(x) =T =
he () =1, (). If 2 € AZ | we have €x11/2 < |z — xo|| < €x41 = €x/2. So we have
Tepsr () ST = hey () = re, (). Finally, if 2 € V(20, €441), ey, , () = r(z) < 71 ().
So we have proved that for all z € S, re, ,, (z) < e, (2). O



Let us now prove Theorem 2.3

Proof of Theorem [Z.3. By Lemma and Proposition [27] (i) applied to the endo-
morphism r + G, there exists a non-zero measure p € M™(8S) such that for all Borel
and bounded functions f : § - R,

[s@ ([ Ko@) as+ [ 106 - o+ Gt <0, o)

Assume that there exists a largest Borel subset A of S, A # S such that Leb(A) > 0
and p(A) = 0. Choosing f = 14 in (I8), we deduce that for all x € A,

LK(y,dey) —o. (17)

Let zg € A be such that V(x¢,€e) nS ¢ A. By Assumption (A7) and (I7) we obtain
0> [ Kly.aou(dy) > con(Vian. o) 0 S)
V(zo,60) NS

and p(Au (V(zo,€)nS)) = 0 which is absurd by definition of A. Since u(S) > 0, we
conclude that for all Borel subset A of S such that Leb(A) > 0, we have p(A) > 0.
(i): By Lemma [27] (iii), we have p.(r + G) = pe(r) = T. It comes that 7 < p(r + G).
(ii): Assume that 7 < p(r + G). Let f € C(S). Then the map z € S —> %
is continuous and bounded. We get

= f(x) r —r{x X
[, @) = | B+ G) = r@)n(d)

- [ s 65 ([ amian) a

ZJ 2) s Ky, 0)puldy)
s'pr+G)—r()

So we have p = u(x)dx with

u(z) = §s K (y, 2)pu(dy)
p(r+G) —r()

a continuous, non-negative function on S. Therefore, for all f € C(S)

| f@ (um(r(x) o+ @)+ | K(y,m>u<y>dy) dr =0

and we deduce that for all z € S, (r + J)u(x) = p(r + G)u(z). Assume that there
exists g € S such that u(zp) = 0. Then we have

COJ u(y)dy < f K (y, zo)u(y)dy =0
V(z0,e0)NS S

which is absurd by the first statement we proved. Then, u is positive on S. Since
p(r+@G) is an eigenvalue of r+.J associated with a positive eigenfunction, Proposition
2717 (ii) gives that p(r + G) = p(r + J). We deduce that p(r + J) > 7 = pe(r + J).

10



It comes from Proposition [A.4]in Appendix that p(r + J) is a pole of the resolvent.
Since r + J is irreducible (see Lemma 23] (1)), it comes from Proposition 277 (ii) that
the algebraic multiplicity of p(r 4+ J) is equals to one. Conversely, assume now that
there exists u € C*(8S) such that p = u(x)dz. Then since for all z € S

1
ue) = s | Kty

we deduce that 7 < p(r + G).
(iii): Assume first that Leb(X) > 0. Choosing f = 1y in ([I6]) and by the definition
of 3, we get that

L (L K(y,x)u(dy)) dr = (p(r + G) —T)u(X).

Since Leb(X) > 0, we know that x(X) > 0. Since we have inf,es § 5 K (y, z)u(dy) > 0,
we deduce that 7 < p(r + G). Assume now that Leb(X) = 0 and =1 ¢ L(S). Here,
our calculations are inspired by [6]. Let

A= S) >0

inf:vES SS K(ya x)lu'(dy)
and B > A. There exists F' a closed subset of X¢ such that

1
B<J:———m<+w
FT—r(r)

Then, the map ¢ € [0, +oo — §,. #

x)+e
So, there exists ¢y > 0 such that

A<f;—i——%m
rT—r(x)+¢€

Choosing f(x) = ]lp(x)m in ([I6]), we have

JF p(r + Gl) —r(z) (L K(y,m)u(dy)> dr = L/‘(dm) < u(S)

dx is continuous and strictly decreasing.

and
1

JF p(r+G) —T+T7 —r(x)
Since the map € € [0, +) SF m
e <p(r+G)—TandT < p(r +G).
(iv): Assume that p(r+G) = 7. Let p = p® + h(z)dx be the Lebesgue decomposition
of the measure p with h € L'(S) and p® the singular part of the measure y, i.e there
exists E a measurable subset of S such that Leb(S) = Leb(E) and p*(E¢) = p*(S).

It comes from (I6) with f = 1ge that

dr < A.

dx is strictly decreasing, it comes that

c

L i (de) () — p(r + G)) = f u(de)(r(z) — p(r + G)) = 0.

Assume that u® # 0, then we deduce that the support of the measure p® is a subset
of X.

11



(v): Assume first that =2 ¢ L!(S) and Leb(X) = 0, or Leb(X) > 0. By (iii) we
get that 7 < p(r + G). By (ii), we deduce that there exists u € C(S), u > 0 such
that (r + J)u = p(r + G)u. By Proposition 27 (ii), we have p(r + J) = p(r + G).
Assume now that % € LY(S). Let 7o € ¥. By Lemma [Z8 there is a sequence
(rj)j=0 of C*(S) which satisfies: 1) |r; — 7| — 0; 2) Leb(X;) > 0 and 7j; = T
(X; = {z e S :rjx) =7}); 3) forall x € S, rj;1(x) < rj(x). By the first
part of the proof of (v), we deduce that p(r; + J) = p(r; + G) and we conclude
that p(r + J) = p(r + G) taking the limit j — oo, using the monotonicity (see
Proposition (i) in Appendix A) and the upper semi-continuity of the spectral
radius (see Lemma [A.8 in Appendix A). The others equalities are proved arguing
that (r +J) =7+ G and (r + G) =7 + J. O

3 The Linear Dynamics

In this section, we apply the results of the previous section to analyse the long-time
behaviour of the solutions (v¢)i=0 € C(R4, MT(S x R;)) of the linear equation:

(18)

Orve(x,a) + Oqve(x,a) = —D(x,a)ve(x,a), (t,x,a) e Ry xS xRy,
ve(z,0) = F o] (z), wvo e MT(SxR,).

The well posedness of solutions (v¢)i=0 € C(Ry, MH(S xR,)) is proved in [19]
using the microscopic approach, and in [5] using a deterministic method. We start
by proving that Assumptions [Tl imply Assumptions 2] for ) and K defined in
(Im.

Lemma 3.1. Assume Assumptions [[LT1

1) For all A € |-D, +oo[, the maps r), and K are well-defined, continuous, re-
spectively positive and non-negative. There exist €y, cg > 0 such that

inf inf K > cg.
265 (yEV(lmI,leo)ﬁS A(I’y)) 0

2) Moreover we have:

(i) Forall =D < A} < A2 and (z,y) € S x S, 7y, (x) > ry,(z) and K, (z,y) =
K)\Q('I’y)'
(ii) For all Ay > —Q, lim)\_,)\o ”7“)\ —T)\OHOO =0 and lim)\_,)\o ”K)\ —K)\O ”oo =0

(iii) For all A > —D, let us denote T) := sup,csra(z). Then the map A €
|—D, +0o[ —> T is continuous and (strictly) decreasing.

Proof of Lemma[31. 1): Let A > —D, we have

f exp (—f D(z,a)da — Aa) da < J exp (—Da — \a) da < +o0.
Ry 0 Ry

So, r) and K are well-defined. Moreover, ry and K are continuous by dominated
convergence theorem and respectively positive and non-negative by Assumptions

12



[LT The second part of the assertion is a consequence of assumption [L.1l
2) (i): Let A > —D and x € S. By derivation under the integral,

orra(z) = —(1 —p>f

aB(z,a)exp (—f D(z,a)do — Aa) da < 0.

The proof is similar for K.
(ii): Let Ag > —D and a € |[-D, \g[. For all z € S and A > «, we have

+00
(@) — g (2)] < f Bla,a)le O+ _ o CorDiajgq
0

+00
< I\ = o[ |Bll J ge—(@+D)agy
0
where we used that |e”* —e Y| < |z —y| if ,y = 0, and which allow us to conclude.
The proof is similar for K.
(iii): Let A\g > —D and let (\;) be a sequence such that \; — Ag. Let (z;) € S
such that 7y, = 7y, (z;) and let denote x* € S a limit point of (z;). Using (ii), we
obtain that 7, — 7, (2*) = T, We conclude by proving the strict monotonicity.
Let —D < A1 < Ag. For all x € § we have ry,(z) < 7y, (x), and so ry,(z) < Ty,.
Since S is compact and 7y, is continuous, we get that 7y, <T),. O

For any A € |—D, +oo[ we define the operators 7y + Jy, 7y + Gy : M(S) = M(S)
by
(i +- 2 = mtah + ([ Kt} (19)

(7 + Gyt = (@) + ( [ y)u(dy)> dn (20)

and ry + Jy,mx + Gy : C(S) — C(S) similarly as (@) and (§). By Lemma Bl we
deduce that Theorem 2.3]is satisfied for r) and K. We recall the conclusions in the
following lemma.

Lemma 3.2. Assume Assumptions [T} For all A > —D, there exists uy € M*(S)
such that

p(ra+ Ga)pa = (P + )
which satisfies ) (A) > 0 for all A Borel subset of S such that Leb(A) > 0. Moreover,
let us denote Ty = sup,egsra(x) and ¥y = {x € S : y(z) = T»}. Then we have:
(1) 7a < p(ra + Gh).

(ii) 7x < p(rx + G)) if and only if there exists uy € C(S), uy > 0 such that
wx = uyx(x)dr. In this case, p(ry + G,) is an eigenvalue of r) + Jy with
algebraic multiplicity equals to one, associated with the eigenfunction wu.

(iii) If Leb(Xy) > 0 or if, Leb(Xy) = 0 and =——— ¢ L'(S), we have 7y, < p(ry+G\).

TA—TA

(iv) If p(ry + G)) = Ty, we have py = p® + h(x)dr with h € L'(S) and either
u® =0, or pu® # 0 and supp(u®) c 2.
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(v) plra+Jx) = p(ra+ Gy) = p(ir + 1)) = p(Fx + G).
Moreover, the same results are true exchanging Jy and Gy, Jy and G,.

Proof. The proof of this theorem is a direct consequence of Theorem [2.3] O

The following assumption allows us to characterise the Malthusian parameter
associated with the linear dynamics.

Assumptions 3.3. There is A > —D such that p(7) + Jy) > 1.

Proposition 3.4. Assume Assumptions [Tl and B33l The map A € [A, +oo —>
p(7x+Jy) is continuous and (strictly) decreasing. There exists a unique A* € [A, +oo[
such that p(7yx + Jyx) = 1.

Proof of Proposition[34) First, remark that by Lemma B2 (v), we have for any
A€ [N, 4o, p(Fx + Jy) = p(ry + Jy). We divide the proof in three steps.

Step 1: the map \ € [A, +oo[ — p(ry+J)) is non-increasing. Let A < A\ < Ao.
By Lemma B.1]2)(i), we get that for all f € C*(S),

(T)\2 + J>\2)f(x) < (T>\1 + J)\l)f(x) (21)

By Proposition [A.7] (i) in Appendix, the spectral radius is monotone on the set of
positive operators, we conclude that p(ry, + Jx,) < p(ry, + Jy,)-

Step 2: The map A € [\, +o[ — p(r) + Jy) is continuous. Let \g > A. We
consider the two possible cases. First, we assume that 7y, < p(ry, +J»,). We deduce
by Lemma (ii) that : p(ra, + Jy,) is an eigenvalue of 7y, + J), with algebraic
multiplicity equals to one. On the other hand, for all A > A and f € C(S), we have

[(rx + IS = (rxg + o) Flloo < ([rn = 7 lloo + Leb(S) K\ = Ko [loo) [ flloo- (22)

Therefore, we deduce from Proposition [A.5 that: (a) there is > 0 such that if
IA — Xo| < 9, there exists an eigenvalue k) of ry + Jy with algebraic multiplicity
equals to one; (b) P\ — P as A — )¢ for the operator norm where P, P\ represent
respectively the projector on the null space of p(ry, + Ja,)I — 7y, + Jx, and kI —
rx + Jx. Let u be a positive eigenfunction of 7y, + J, associated with p(ry, + Jy,).
By (b), we have P\u —» Pu = u when A\ — )\g. In particular, we deduce that
there is 0 < & < 6 such that if |\ — \g| < &', Pyu is a positive eigenfunction of
rx + Jy associated with k). Hence, Proposition (i) gives that if |\ — N\g| < &',
p(rax + Jx) = kx. In order to conclude, let ();) be a sequence of [A, +o0[ which
converges to Ag. Since the function A € [\, +0[ — p(r)+Jy) is bounded, there exists
p* € [0, +oof and a subsequence always denoted (A;) such that p(ry; +Jy,) — p*.
We check that p* = p(ry, + Jy,). Let u be a positive eigenfunction of ry, + Jy,.
For all j sufficiently large, we have (ry, +Jy,)Py;u = p(ry; +Jy,) Py, u. By [22) and
(b), and taking the limit j — oo, we deduce that (ry, + Jy,)u = p*u. So, u is a
positive eigenfunction associated with the eigenvalue p*, it comes from Proposition
[A.10] (i) that p* = p(ry, + Jy,). Consider now the case where Ty, = p(rx, + J),)-
Assume that the map A\ € [A, +00[ —> p(ry + Jy) is not continuous at Ag. So we
have liminfy_,\, p(ry + J)) < limsupy_,, p(rr, + J),)- Since the spectral radius is
upper semi-continuous (see Lemma [A.8 in Appendix A), we deduce that

T = Uminf pe(ry + J)) < liminf p(ry + Jx) < p(rag + Irg) =T
A— Ao A—=Xo
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which is absurd and that concludes the proof of the continuity.

Step 3: strong monotonicity. Let A < A\; < Ay. By the first part of this proof,
we have p(ry, + Jy,) = p(ra, + Jy,). Assume that p(ry, + Jy,) = p(ra, + JIx,)-
We show that necessarily Ay = A2. As before, we distinguish two cases. First
we consider the case where p(ry, + Jy,) > Ty,. Since 7y, + Jy, is irreducible and
p(ra, + Jy,) is a pole of the resolvent of ry, + Jy,, we deduce by Proposition
(ii) that ry, + Jy, = 7a, + Jy, and so A\; = Aa. We now consider the second case
p(ra, + Jx,) = Ta,. Assume that A\; < Xo. If there exists A € [A;, Ag] such that
p(rs + J3) > 75 we conclude that p(ry, + Jy,) = p(r5 + J5) > p(ra, + Jx,) by the
previous part of the proof. Otherwise, we conclude that p(ry, + Jx,) > p(rx, + Jx,)
arguing that A € [\, +oo[ — T, is decreasing (see Lemma [B] 2)(iii)). We deduce
that A1 = As.

Since p(ry + Jy) > pe(ry + Jy) = Ty, Assumption B3] gives that p(ry + Jy) > 1 and
we conclude by the intermediate value theorem. U

The two following theorems give the existence of principal real eigenelements
associated with the linear dynamics.

Proposition 3.5. Assume Assumptions [T and B3l

(i) Let A € [\, o[. A non-zero measure N € M (S xR, ) is a solution of

e J (uf — (D + N F +G[f]) (z,a)N(dz,da) =0 (23)

S xRy

if and only if
N(dxa da) = ,U,A(dﬁ)R)\(:C, a)da,

where iy € M*(S) is non-zero and satisfies (7 + Jx)px = fx.

(ii) The largest A € [A,+oo[ such that there exists a non-zero measure N €
M (S x R;) which satisfies (23] is the unique solution of p(7y + J)) = 1.

Proof of Proposition[33. (i): Let A € [A, +oo[ and let N € M™(S xR, ) be a non-
trivial solution of (23]). We decompose N as

N(dz,da) = v(dz)u(z,da).

where v € M™(S) and u(x,da) be an associated transition measure. We extend
these quantities to the whole set of the following way. Let U € M+(Rd) defined for
all Borel subset A of R? by 7(A) = v(A N S); let @(x,da) defined by @(x,da) = 0 if
x ¢S and u(r,A) =u(z,AnRy) if €S and A is a Borel subset of R. We define
N(dz,da) = v(dz)i(z,da) € MT(R? x R). We extend continuously the functions
B, D and k to the whole sets R? x R, R? x R and R? x R? x R respectively and we
denote by B, D and k their extensions. We define

]]'SXR_'.('I’GJ) <

‘7 = = N e M+ Rd x R
Ry(z,a) toc( )
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where Ry (z,a) € C(R? x R) is defined similarly as Rj(z,a). Now we compute the
distributional partial derivatives ,V. Let f € C®(R? x R),

~ _ f D+ A
JRd ><R&J(av,a)V(dav,da) = LXR+ (%R—)\ —f R ) (z,a)N (dz,da)

_ L L {Ri] (2, 0)N (dz, da)

A

- | e 0P@td) + 15(@)Q)dn)
where we introduced

{P(m) = (1 - p) {x B(z,a)ii(z, da)

Q(x) = p §pa g By, a)k(y, a, x)a(y, da)v(dy).

It comes that 0,V = (P + 1sQdx)dy(da). Since the primitives of the zero distribu-
tion are constant functions, we deduce that there exists a distribution 7' e D’(R?)
such that

V(dz,da) = (PV + 15Qdx)1g, (a)da + T(x).

Since the support of V is a subset of S x R, we get that 7' = 0 and finally
N(dz,da) = (P(z)v(dz) + Q(z)dz)Ry(z, a)da (24)
where P := P 5 and Q := Q5. By (@d), we obtain:
P(z)v(dz) = (P(z)v(dr) + Q(z)dz)ri(z), (25)
and
Q(x)dz = J\(Pv + Qdy)(dx). (26)

Denoting p := P(z)v(dz) + Q(z)dx, we get by (28] and (ZB) that p = (7y + Jy)p.
Finally, it comes by (24) that

N(dz,da) = p(dx)Ry(x,a)da.

Reciprocally, it is easy to check that such a measure is solution of (23)).

(ii): Let A € [A, +oo[ and assume that there exists a non-zero N € MT(S xRy)
which satisfies (23). By (i), we deduce that there is u € M™(S) such that N =
p(dz) Ry (x,a) and which satisfies (7 + Jy)p = u. We deduce that 1 < p(7y + Jy).
Moreover, if p(7y + Jy) = 1 there exists v € M*(S) such that (7 + Jy)v = v by
Lemma That concludes the proof. O

Proposition 3.6. Assume Assumptions [[.T] and 331

(i) Let A € [A, +o0[. A non-zero measure 1) € M; (S x R.) such that ¢(dz, da) =
o(dz)ym(x,a)da, m(x,.) € L*(Ry), p(dx) € MT(S) is a solution of

VfeCh, L i (Ouf + (D + N f)(z,a)¢(dz, da) (27)

— [ @06 (o da) = | mle,0)f (. 0)eldo)
S xRy S
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if and only if

wldeda) = 5 2 (= pm(a) [ By )da
bl +w a
o [ m(an) B(as,awx,a)k(w,a,y)da),

where 7, € MT(S) is non-zero and satisfies (75 + G»)7\ = 7.

(ii) The largest A € [, +oo[ such that there exists a non-zero ¢ € M;. (S x R})
which satisfies (27)) is the unique solution of p(7y + Jy)) = 1.

Proof of Proposition[3.8. The proof is very similar to the previous proof.
(i): Let A € [A, +o0[ and let ¢ € M;' (S x R.) such that

¢ = o(dz)m(z,a)da

with m(z,.) € L*(Ry) and ¢ € MT(S), be a non-trivial solution of (27). As in the
previous proof, we extend all the quantities to the whole set R x R. We denote

U=1g xRy (m,a)]:l)\(x, a)gzg € MI)C(Rd x R)

and we compute the partial distributional derivative d,U. We denote n(dz) =
o(dz)m(z,0). Let g e CP(R? x R), we have

f ) 0ag(x,a)U(dz, da) = f (0a(gRN) + (D + AN)(gR))) (z, a)p(dx, da)
RY x R S xRy
—— | sam@0F ] @oda) + [ gl 0mlde).
S xRyt S
We deduce that 0,U = (7750 — R\G [qﬁ]) 1syr, and

- (n(dx) - L " Ra(2,0)G [4] (dm,da)) L xr, (x, a)da.

It comes that

o= gt (1000 [ Bz )G 16 (@na0). (28)

R}\(x?a’)
Since ¢ € M;. (S xR,) with ¢ = p(dz)m(z,a)da and m(z,.) € L®(R,), we have

necessarily
+00

R(2,0)G [¢] (da, da) = n(dx) (29)
which is equivalent to
ra@)nlde) +do | n(ds)K(a.) = nldo). (30)
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By [B0) we get that (7 + Gy)n = 1 and using @28), 29), B0), it comes that

da o
b= s ((1 “pnde) [ B0 (e a)da

+00

+p L n(dy) B(m)Rmx,a)k(x,a,y)da).

a

Conversely, it is easy to check that such a measure is a solution of (27)). The
proof of (ii) is similar as in the previous proof, since by Lemma B2 p(7y + Jy) =
p(7x + Gy). |

We deduce a corollary which concerns the "regular" case.

Corollary 3.7. Assume Assumptions [T, B3] and that 7y < 1. There exists a
unique (\*, N, ¢) € [A, +oo[ x C(S, L} (Ry)) x C(S, L®(R)) such that

{—aazv(m, a) — (D(z,a) + NX)N(z,a) =0, (z,a)€S xRy, (31)

N(z,0) = F[N] (z), SSX]R+ N =1,

{0a¢(x,a) — (D(z,a) + \*)p(x,a) + G [¢] (x,a) =0, (z,a) €S xRy, (32)
SS x Ry N¢ = 1.

Proof of Corollary[37. Let A* > A be the unique solution of p(ry« + Jyx) = 1 (see
Proposition B4]). Since Fy+ < 1 we deduce by Lemma (ii) that 1 is a simple
eigenvalue of the operators ryx 4+ Jyx and rys + Gyx. Let (N, ¢) € C(S,L'(R,)) x
C(S,L*(R,)) be a solution of (1)) and ([B2]) with A = A*. We have N(z,0), ¢(z,0) €
C*(S) and we deduce by Theorem 2.3 (ii) that N(z,0) and ¢(z,0) are positive
eigenfunctions of ryx + Jy+ and ry* + G* associated with the eigenvalue one. Since
this eigenvalue is simple, the conditions Ss <R, N =1 and Ss <R, N¢ =1 allow us
to fix N and ¢. Assume now that there exists (A, N, ¢') such that A # A\* and which
satisfies (BI) and ([B2). By Theorems and [3.6] it comes that A < A*. We deduce
that p(ry—+.Jy) > 1. Moreover N'(z,0),¢'(x,0) € C*(S) are eigenfunctions of ry+.Jy
and r) + G associated with the eigenvalue 1, which is absurd by Proposition 7]
(i). O

We are now able to describe the long-time behaviour of the solutions of the linear
equation (IS)).

Proposition 3.8. Assume Assumptions [[L1], [L4] B3] and that 7y« < 1. Assume
that there exists 7 > 0 such that for all a € Ry and (z,y) € S?

pB(y,a)k(y,z,a)p(x,0) = nd(y,a). (33)

Let (v¢)i=0 € C(R4, MT(S x R, )) be the solution of (2)) started at vy € M*(S x Ry).
Then we have

J o(xz,a)le v, — moN|(dz, da)
S x R+

< e~ beb(S)t J o(x,a)|lvg — moN|(dx, da) (34)
S x R+

where mg = g, R, o(x,a)vo(de, da).
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The idea of the proof is similar as in [I1]. We show the spectral gap property
for initial regular data, and then deduce it for measure initial data, using the two
following Lemmas. The assumption (B3]) is similar as in [I7, Theorem 3.5]. For
any measure g € M(S xRy), let u = p*(x,a)drda + p*(dx,da) be its Lebesgue
decomposition. We define

() = VI (@, a)Pdada + 1°](S x Ry).

S xRy

We use the following (semi-)continuity properties. The point (i) is well-known. See
[15, Theorem 5] for (ii).

Lemma 3.9. Let u,, 4 € M(S x R,) such that u, 'y weakly™* in (Cp(S x R))".
n—
Then for all f e Cy(S xR,),

(i)
lim inf f (@, a)\n(dz, da) > f F(@, o)l (de, da).
Sx Ry Sx Ry
(ii) If moreover {uu,) 2 {uy, then
li [ F@lldode) = [ fa)l(d,do).

n—0 SXR+ SXR+

The following lemma is proved in [5, Theorem 2.4].

Lemma 3.10. Assume Assumptions [T} [L4l There is a constant C' > 0 such that
for all v{,v € MT(SxRy) and t > 0:

1,2 Cty,l _ 2
vy —vilBL < e vg — vgllBL
where v!,v? are the solutions of (I8) started at v}, v3.
We now give the proof of Proposition [3.8]

Proof of Proposition [3.8. Tt suffices to prove the result for regular initial data, and
then conclude by regularising the initial measure. To analyse the regular case, we
follow the ideas of [I7]. So, let (v:)i=0 be the solution of (IX]) started at vy €
LY(SxRy) n Cl?’l. First, by choosing ¢ as test function in (I0), we obtain the
following invariance:

f ez, a)(z, a)duda = J vo(x, a)¢(z, a)dzda (35)
S xRy S xRy

(A*,¢ are defined in Corollary B7). We now define hy(z,a) := e v (x,a) —

moN (z,a) where

mo = J vo(z, a)p(z, a)drda.
S x R+
It is straightforward to verify that

{atwt(x, a)(x,a)) + a(he(w, a)$(x,a)) = —hy(z,a)G [¢] (x,a)
ht(x’ 0)¢($,0) = QS(x’O)‘F [ht] (x)
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Using a regularisation method used in [I7, Proposition 6.3], we deduce that

{@(lhtl(w,a)(ﬁ(w,a)) + Oa([he|(x, a)p(x, a)) = —|he|(x,a)G [¢] (2, a) (36)
|he(x,0)|¢(z,0) = d(x,0)|F [he] ()]
Integrating the first equation in (B6]) over S x R, we obtain
d |hi(z,a)|p(x, a)dzda (37)
dt S xRy

= f ¢(x, 0)|F [he] ()| — f |hi (2, 0)|G [¢] (2, a)dzda.
S

S x R+
From the equation (7)), and using the invariant (35]), we deduce that

4
dt S xRy

=f (1= p)é(2,0) | Bz, a)hi(z,a)da
S R,

|hi(z, a)|p(x, a)dxda

" f (pB(y. a)k(y, 7, ) (x, 0) — oy, a))hu(y, a)dady|dz
S xRt

—f ((1 o[ @B )b a)lda
S R,

+pL . B(z,a)k(z,y,a)¢(y,0)|h (m,a)|dyda> dx

Since we assume that for any a € R, (z,y) € S

pB(y,a)k(y, z, a)é(z,0) = no(y,a),
it comes that

d

— |hi(z, a)|p(x, a)dzda < —n Leb(S)f |hi(z, a)|p(x, a)dzda
dt Js « R -

S xRy

and we conclude by Gronwall’s Lemma. Now consider the case vg € M*(S x Ry).

There is a family of non-negative functions vf € Cl?’l N LY(S x Ry) such that |v§ —

voBL =, 0 and {v§) =, (vg). By Lemma [B.I0, it comes that for each t € R,
€—> €—>

[vf — ve|BL = 0. Similarly as in [I1], we conclude by using Lemma [3.9] taking the
e—
liminf in the left side of (34)) and the limit € — 0 in the right side of (34)). O

Let us prove that the malthusian parameter also plays a main role for the stochas-
tic underlying dynamics. For each K € N*, let (Y;%);>0 be the process with infinites-
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imal generator B defined, for any f € C’,?’l and p e MT(S xRy) by

BEFy) = [ dufe. )P (G (e, da) (33)
& [ {0 2 ) - PG ) - pBGa)
S xRy

([ 22 ) = P ) B, a0,y
1)
H(F (= 2 1) = F(u f)D(a, a)} (dz, da)

where Fy(p) := F({u, f)). The following result is similar as one proved in [12] for
age structured dynamics.

Proposition 3.11. Assume that A* > 0 and there exists C' > 0 such that for all
(r,a) e S xR,
G [¢%] (x,a) + D(z,a)¢*(z,a) < Cé(x, a). (39)

(i) Let K € N*. The process VX defined by V,X := e_)‘*t<Y;K,¢> is a square
integrable martingale and its quadratic variation satisfies E [(VK >oo] < +00.

The process VX converges in L? and almost surely to a non degenerate limit
V.

(ii) Assume that supgeyns E [V, 1)?] < 400 and that Y converges in law to
vo € MT(S xR,) as K — 0. For all € > 0,

lim P (sup [V — (vg, 9| > e) =0.
K—a =0

Proof. (i): Using a classical semimartingale decomposition for the process Y proved
in [19], the process VX is a square integrable martingale with quadratic variation

t
VY = %f e My G [67] + Dg?yds.
0

Taking the expectation, we deduce from (B9]) that
K C [ —A*s —A*s K
E[(VEu]< 5 | ¢ "B [6 ¥ ,¢>] ds.
0

Since e_)‘*t<YtK , ¢y is a martingale, we deduce that

< CE [<YOK7 ¢>] Jt

E [(VK>t] < e e M5 ds.

0
Therefore

E[(VEY] = O (%) , (40)
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which proves (i).
(ii): Let € > 0. We have

v (iﬁ%? [V, @) = (o, 8] > ) <P (iﬁlg M| > ) B (V5" — (oo, 9] > ¢)

where M is a martingale started at 0 which satisfies E [(MX),] = O (%). By
Doob’s inequality, we deduce that
2 2
P (sup |ME| > e) < 5 supE [|ME)?] = —E [(M Y]
t=0 €7 =0 €

=

and we conclude using (0. O

As in [I], we can give a concrete example in which the eigenmeasure is singular.
One can note that this phenomenon appears only if p < 1. If p = 1, we obtain that
ry = 0: the operator 7\ + Jy = J) is compact and the eigenelements are continuous
functions.

An example of a non regular stable distribution. Let S ¢ R? which satisfies
(AD). Let B(x,a) = B(z) such that E—iB € LY(S). Let D(z,a) = D € R% and
k(z,y,a) = 1.

Proposition 3.12. Let py € ]0, 1[ such that (po/(1 — po))B {4 §+B(m)dx < 1. Let
A=A py = p® +u(r)dr € MT(S) and 9y = n° + v(z)dz € M*(S) be such that
wx = (Tx + Jy)pa and 1y = (Fy + Gr)nx. Then for all p € [0, po[, p® # 0 and n* # 0.

Proof. Let p € |0,pp[ and A > A. First remark that we have r)(z) = (1 — p) fﬁg
and K)(z,y) = pffg. Assume there exists a non negative function v € L!(S) with

§sv(y)dy = 1 such that (7 + G)v = v. We have almost everywhere on S,

@) + [ K g)oldy = v(o)
We get that almost everywhere on &

_ B(x) 1 B(z) 1 _ p B
v(z) _p)\—l—Dl—m(x) \p)\+DF>\—m(x) B 1 —pB— B(x)

and we deduce that

1< dr <1

p FJ _ 1
1-p Js B— B(x)
which is absurd. So, n° # 0. The proof is similar for p°. O

4 Proof of the Main Results

We can now give the proof of our main results stated in Section 1.

Proof of Theorem [I.3. Tt is obvious that stationary states m € M™(S xR,) are
eigenmeasures of the linear operator. Indeed, they are solutions of (23) with A =
CSS <Ry T Since p(7o + Jp) > 1 we deduce by monotony that A* > 0 and we can

choose an eigenvector m = py+ Ry+ which satisfies CSS KRy = A, ]
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Proof of Theorem [I.3. The idea is to transform the solution of the non-linear equa-
tion to those of the linear equation. Indeed, let (n;);=0 € C(Ry, M*T(S xR,)) be
the solution of (I0) and let us denote p(t) = g, R, n¢(dx,da). Tt is straightforward
to check that .
ve(dz, da) = exp <cj p(s)ds) n¢(dx, da)
0
is a weak solution of the linear equation

{0tvt(x,a) + 0qvi(x,a) = —D(x,a)ve(z, a)
ve(z,0) = F [v] (), v = ng.

Let (A*, N, ¢) be the eigenelements given by Corollary B.71 By the assumptions
of the theorem we get that there exists ¢ > 0 such that ¢ > ¢. Combining with
Proposition B8] we deduce that

A le " *vy — moN vy =0, (41)
and that .
mi@a) e tu@a) e ) (2
p(t) e—A¥t SS YR, vy t—00 ’

We now study the long-time behaviour of p(t). Choosing f = 1 in (0] it comes that

dp
a (t)

= LX - n(x,a) ((1 —p)B(z,a) + pB(z,a) L k(.,y)dy — D(x, a)) — ()
= p(t) (D(t) + A*) — cp?(t)
with

ne(z,a)

D(t) = L L ((1 _ ) B(x,a) + pB(x,a) L k(. y)dy — D, a)) Y

Using ([#2)) we deduce that D(t) — 0 as t — oo and that p(t) — % as t — oo (using

a similar method as in [I6]) that ends the proof. O

Acknowledgment First, I would like to thank Sylvie Méléard for her continual
guidance during this work and her many readings of this manuscript. I also want to
thank Gael Raoul and Pierre Collet for many interesting discussions. And finally,
I would like to thank Jérome Coville for the discussion we had on the subject. I
acknowledge partial support by the Chaire Modélisation Mathématique et Biodi-
versité of Veolia Environment - Ecole Polytechnique - Museum National d’Histoire
Naturelle - FX.

References

[1] Olivier Bonnefon, Jérome Coville, and Guillaume Legendre. Concentration
phenomenon in some non-local equation. Discrete Contin. Dyn. Syst. Ser. B
22 (2017), no. 3, 763-781.

23



[2]

[10]

[11]

[12]

[13]

[14]

[15]

Felix E Browder. On the spectral theory of elliptic differential operators. i.
Mathematische Annalen, 142(1):22-130, 1961.

Laura Burlando. Monotonicity of spectral radius for positive operators on or-
dered banach spaces. Archiv der Mathematik, 56(1):49-57, 1991.

Angel Calsina and Josep M Palmada. Steady states of a selection-mutation
model for an age structured population. Journal of Mathematical Analysis and
Applications, 400(2):386-395, 2013.

José A Canizo, José A Carrillo, and Silvia Cuadrado. Measure solutions for some
models in population dynamics. Acta applicandae mathematicae, 123(1):141—
156, 2013.

Jérdme Coville. On a simple criterion for the existence of a principal
eigenfunction of some nonlocal operators. Journal of Differential Equations,
249(11):2921-2953, 2010.

Jérdme Coville. Singular measure as principal eigenfunction of some nonlocal
operators. Applied Mathematics Letters, 26(8):831-835, 2013.

Jérdme Coville, Juan Davila, and Salome Martinez. Pulsating fronts for non-
local dispersion and kpp nonlinearity. In Annales de l'Institut Henri Poincare
(C) Non Linear Analysis, volume 30, pages 179-223. Elsevier, 2013.

Donald Dawson. Measure-valued markov processes. Ecole d’été de probabilités
de Saint-Flour XXI1-1991, pages 1-260, 1993.

Niushan Gao. Extensions of Perron—Frobenius theory. Positivity, 17(4):965—
977, 2013.

Piotr Gwiazda and Emil Wiedemann. Generalized entropy method for the
renewal equation with measure data. Commun. Math. Sci. 15 (2017), no. 2,
577-586.

Peter Jagers and Fima C Klebaner. Population-size-dependent and age-
dependent branching processes. Stochastic Processes and their Applications,
87(2):235-254, 2000.

Tosio Kato. Perturbation theory for linear operators, volume 132. Springer
Science & Business Media, 2013.

Mark Grigor’evich Krein and Mark A Rutman. Linear operators leaving in-
variant a cone in a banach space. Uspekhi Matematicheskikh Nauk, 3(1):3-95,
1948.

Jan Kristensen and Filip Rindler. Relaxation of signed integral functionals
in bv. Calculus of Variations and Partial Differential Equations, 37(1):29-62,
2010.

Hélene Leman, Sylvie Meleard, and Sepideh Mirrahimi. Influence of a spatial
structure on the long time behavior of a competitive lotka-volterra type system.
Discrete Contin. Dyn. Syst. Ser. B 20 (2015), no. 2, 469-493., 2014.

24



[17] Benoit Perthame. Transport equations in biology. Springer Science & Business
Media, 2006.

[18] Helmut H Schaefer and MP Wolff. Graduate texts in mathematics. Topological
Vector Space, 1971.

[19] Viet Chi Tran.  Modéles particulaires stochastiques pour des problémes
d’évolution adaptative et pour l'approximation de solutions statistiques. PhD
thesis, Université de Nanterre-Paris X, 2006.

[20] Viet Chi Tran. Large population limit and time behaviour of a stochastic
particle model describing an age-structured population. ESAIM: Probability
and Statistics, 12:345-386, 2008.

[21] Cédric Villani. Topics in optimal transportation. Number 58. American Math-
ematical Soc., 2003.

A Operator Theory

In this appendix, we recall some well-known results about spectral theory for bounded
linear operators on Banach space and positive operators.

A.1 Resolvent and spectrum

Let (X, |.||) be a complex Banach space. We denote by B(X) the set of all bounded
linear maps from X to X. Let T' € B(X). We denote by |T|op = supj,—1 [7(z)]
the operator norm of 7.

Definition A.1. Let T € B(X).

(i) The resolvent set of T is R(T) = {z € C : (2 —T)~! € B(X)}. For all
z € R(T), the linear map Rr(z) = (2I —T) ! is called resolvent of T at point
z.

(ii) The spectrum of T"is o(T") = C\R(T") and the spectral radius of T is p(T) =
sup{|z| : z € o(T)}.

(iii) The essential spectrum of 7' is the set o.(T") of z € o(T') which satisfy at least
one of the following condition: (1) the range of zI — T' is not closed; (2) z
is not isolated in o(T); (3) Ups1ker((zf —T)") is infinite dimensional. The
essential spectral radius of T' is p.(T') = sup{|z| : z € 0.(T)}

Remark A.2. There are different definition of the essential spectrum in the liter-
ature, which are not equivalent. The definition we choose has been introduced by
Browder [2].

Definition A.3. Let zy be a pole of the resolvent. Let

+00

Rr(z) = ) ap(z— 2 (43)

k=—m
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be the Laurent expansion of Ry near zy where aj are linear operators on X and
a_m # 0. The integer m is the order of the pole zp. Then P(T) := a_; is the
projector onto the space ker((zI —T)™). The dimension of ker((zI —T)™) is called
algebraic multiplicity of zg.

The following characterisation of the essential spectrum is very useful. It is
proved in [2, Lemma 17].

Proposition A.4. Let T € B(X) and z € o(T). Then, z ¢ 0.(T) if and only if for
some m € N*| z is a pole of the resolvent of order m such that ker((zI — T)™) is
finite dimensional.

The following result is adapted from Kato [I3, Ch.IV §4. Thm 3.16].

Proposition A.5. Let T € B(X) and zp € o(T)\o.(T). We denote by ar(z) the
algebraic multiplicity of zg. Let € > 0. There is 6 > 0 such that if |T"— S|,y < 0,
the two following assertions are satisfied:

(a) There is z € 0(S)\o(S) such that ag(z) = ar(z).

(b) [P(T) = P(S)]op <€

A.2 Ordered Banach space

Let (X,|.|) be a real Banach space. Let C' < X be a positive cone. We denote
always B(X) for the set of bounded linear maps on X.

Definition A.6. Let T € B(X).
(i) The operator T is positive if T(C) < C.

(ii) The operator T is irreducible if T is positive and for some scalar z > p(T") and

for each non-zero u € C, the element >/ 27"T"(u) is quasi interior to C (see

[18] for the definition of quasi interior point).

(iii) Let T,S € B(X) be positive. We denote T' < S if the bounded linear map
S — T is positive.

The following proposition gives some monotonicity properties of the spectral
radius. The point (i) is proved in [3 Theorem 1.1]. The point (ii) is proved in [10),
Theorem 3.9].

Proposition A.7. Let S,T € B(X) be positive such that S < T. We have
(i) p(5) < p(T);

(ii) Assume moreover that p(7) is a pole of the resolvent of T. Then we have
either T'= S or p(S) < p(T).

We deduce a result of upper-semi continuity of the spectral radius. It is classical.
Lemma A.8. Let T' € B(X) be positive and let (T;)r=0 be a non-increasing se-

quence of B(X) such that | T, — T'||cc — 0 when k& — co. Then p(T}) e p(T).
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Proof. By Proposition [A7 (i), the sequence p(T}) is non-increasing and is bounded
below by p(T'). Then, it converges to a limit p* > p(T). Assume that p* > p(T).
Since the spectral radius is an element of the spectrum, we deduce that for all k € N
the operator p(T})I — T}, is singular (e.g (p(Tk)I —T) ™" is not bounded). Moreover,
the set of singular operators being closed, we deduce, taking the limit k& — oo that
p*I — T is singular which is absurd since p* > p(T). O

A.3 The space (C(S),|.|w)

Let S be a compact subset of R%. We now give some results on the Banach space
(C(S), |-lo) where C(S) denotes the set of continuous functions from S to R and
||l denotes the uniform norm. We denote by C*(S) the cone of non-negative
functions on S. We recall that the space of (signed) Radon measure M(S) is the
topological dual (the space of continuous linear form) of C(S) and that the set of
positive Radon measure M™(S) is the dual cone of C*(S). For any T € B(C(S)),
we denote by T" € B(M(S)) his adjoint.

The next result is easily adapted from [I8, Appendix §2.2.6] (it was originally intro-
duced by Krein-Rutman [I4]). It is a generalisation of Perron-Frobenius Theorem
for positive matrices to the infinite-dimensional framework.

Proposition A.9. Let 7' € B(C(S)) such that T'> 0. Then p(T) is an eigenvalue
of T" associated with a positive eigenmeasure p € M*(S).

The following result is proved in [I8, Appendix §3.3.3]. It precises the analogy
with the Perron-Frobenius theory.

Proposition A.10. Let T' € B(C(S)) such that T is irreducible. Then we have:

(i) The spectral radius p(7T') is the only possible eigenvalue associated with a non-
negative eigenfunction.

(ii) Assume moreover that p(7T') is a pole of the resolvent. Then, p(T') is a pole of
order one with algebraic multiplicity equals to one.

We give a lemma which characterises the quasi interior points (see [18] for the

definition) of C*(S).

Lemma A.11. Let f € C(S). Then f is quasi interior to C*(S) if and only if
f(x) >0 forall x € S.

We give now a result on the spectrum of the multiplication operator.

Lemma A.12. Let r € C(S) be a positive function. Let us denote by r the en-
domorphism of C(S) defined by rf(z) = r(x)f(z). Then we have o(r) = o.(r) =
{r(z) :z eS8}

Proof. We start by proving that o(r) = {r(z) : z € S} =: r(S). Let y € r(S)°. It is
straightforward to verify that the operator f € C(S) —> =@ f is the inverse of
(yI —r) and is bounded. We deduce that y € R(r) and o(r) < r(S). Conversely, let
y € R(r) and assume y = r(z) with x € S. Let v := (yI —r)~! and f € S such that
f(x) #0. We have f(x) = u(yl —r)f(x) = 0 which is absurd and then r(S) c o(r).
The function r being continuous, the set o(r) has no isolated point and we deduce
that o(r) = oge(r). O
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