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On the Long-Time Behaviour of an Age and Trait

Structured Population Dynamics

Tristan Roget

November 21, 2017

Abstract

We study the long-time behaviour of a population structured by age and a
phenotypic trait under a selection-mutation dynamics. By analysing spectral
properties of a family of positive operators on measure spaces, we show the exis-
tence of eventually singular stationary solutions. When the stationary measures
are absolutely continuous with a continuous density, we show the convergence
of the dynamics to the unique equilibrium.

1 Preliminaries and Main Results

1.1 Introduction

Our ultimate goal is the understanding of the long-time behaviour of a population
where the individuals differ by their physical age a P R

�

and some hereditary variable
x P S � R

d called trait. The population evolves as follows. An individual with trait
x P S and age a P R

�

has a death rate Dpx, aq � cN where D is the intrinsic death
rate, N is the population size and c ¡ 0 the competition rate. This individual
gives birth at rate Bpx, aq. At every birth, a mutation occurs with probability
p P s0, 1r and the trait of the newborn y P S is choosen according a distribution
kpx, a, yqdy. Otherwise, the descendant inherits of the trait x P S. In his thesis [19],
Tran introduced an individual-based stochastic model to describe such a discrete
population. The population is described by a random point measure

ZK
t �

1
K

NK
ţ

i�1

δ
pxiptq,aiptqq (1)

which evolves as a càdlàg Markov process with values in the set M�

pS �R
�

q of
positive finite measures on S �R

�

and each jump corresponds to birth or death of
individuals. When the order K of the size of the population goes to infinity such
that ZK

0 approximates a deterministic measure n0 P M�

pS �R
�

q, it is shown (see
[19],[20]) that the process approximates the unique weak solution (in the sense given
by (10)) pntqt¥0 P CpR�

,M�

pS �R
�

qq of the partial differential equation

#

Btntpx, aq � Bantpx, aq � �

�

Dpx, aq � c
³

S �R
�

ntpy, αqdydα
	

ntpx, aq,

ntpx, 0q � F rnts pxq, pt, x, aq P R
�

�S �R
�

,
(2)

1



where

F rnts pxq (3)

� p1 � pq

»

R
�

Bpx, αqntpx, αqdα � p

»

S �R
�

Bpy, αqkpy, α, xqntpy, αqdydα.

Recently, the well-posedness of measure solutions for a large class of partial differ-
ential equations including (2) has also been established in [5], using a deterministic
method. At our knowledge, nothing has been done about its long-time behaviour.
In [4], the stationary problem is solved in L1

pS �R
�

q for a similar dynamics with
a pure mutational kernel (p � 1). The present paper is also motivated by [1]. The
authors study the long-time behaviour of a selection-mutation dynamics with trait
structure (and no age) and p P s0, 1r. They show the existence of stationary mea-
sures which can admit dirac masses in some traits and they analyse the long-time
behaviour of the solutions when the stationary measure admits a bounded density.
In this paper, we extend these facts to an age and trait structured population. We
show the existence of non-trivial stationary measures for Equation (2) (see Theorem
1.3) which can be singular. When these measures are absolutely continuous with
a continuous density, we show that the solutions of (2) converge to the (unique)
equilibrium (see Theorem 1.5). The method is based on the analysis of the lin-
ear dynamics. Indeed, the stationary states of (2) are eigenvectors for the direct
eigenvalue problem

#

�BaNpx, aq � pDpx, aq � λqNpx, aq � 0

Npx, 0q � F rN s pxq.
(4)

The solutions of the dual problem

Baφpx, aq � pDpx, aq � λqφpx, aq � G rφs px, aq � 0, (5)

where

G rφs px, aq � Bpx, aq

�

p1 � pqφpx, 0q � p

»

S

φpy, 0qkpx, a, yqdy



, (6)

give us some useful invariants and allow us to apply a method based on [11],[17]
leading to obtain an exponential rate of convergence for the linear dynamics to the
stable distribution.
As we will see, the study of the problem (4) involves to understand spectral prop-
erties of a family of positive operators on the space of continuous functions on S of
the form

pr � Jqfpxq � rpxqfpxq �

»

S

Kpy, xqfpyqdy (7)

where r is a continuous and positive function over S and K a continuous and non-
negative kernel over S. In [6], Coville finds a useful non-integrability criterion on the
parameter r which gives the existence of eigenfunctions associated with the principal
eigenvalue of the operator r� J . When this criterion fails, he gives examples where
there’s no eigenfunction. Nonetheless, he shows in [7] that there are always principal
eigenvectors in the of Radon measures space. Other properties of the operator
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are studied in [8]. In Section 1, we give a new, shorter and unified proof of all
these results (see Theorem 2.3). Our approach is based on duality arguments (see
Proposition 2.7 which is adapted from a result due to Krein-Rutman [14]) and allows
us to obtain the existence of eigenvectors in a measures space. The criterion for the
existence of principal eigenfunctions is also deduced. Our approach allows us to
study at the same way the operator r �G defined by

pr �Gqfpxq � rpxqfpxq �

»

S

Kpx, yqfpyqdy (8)

which will be used for studying the dual problem (5).

In Section 1.3, we state our main results on the long-time behaviour of the
solutions of (2). In Section 2, we study spectral properties of the operators of the
form r � J , r � G defined by (7), (8) and of their analogous operators in measure
spaces. In Section 3, we apply these results to the study of the long-time behaviour
of the linear dynamics. In Section 4, we deduce from the previous sections the proofs
of our main results.

Notations. Let X be a metric space.

• CpXq (resp. C�

pXq) represents the sets of continuous functions from X to
R (resp. R

�

). CbpXq (resp. C�

b pXq) represents the sets of continuous and
bounded functions from X to R (resp. R

�

). MpXq (resp. M�

pXq) represents
the set of finite Radon (resp. positive and finite Radon) measures on X.
MlocpXq (resp M

�

locpXq) represents the set of Radon (resp. positive Radon)
measures on X. For any metric space Y , we denote by CpX,Y q the set of
continuous functions from X to Y .

• We denote by C
1,0,1
b � C

1,0,1
b pR

�

�X � R
�

q (resp. C1,0,1
c ) the set of continu-

ous and bounded (resp. with compact support) functions from R
�

�X � R
�

with continuous and bounded derivatives with respect to the first and third
variables. We define similarly C0,1

b � C
0,1
b pX �R

�

q and C0,1
c � C0,1

c pX �R
�

q.

• For any x P X and ǫ P R
�

�

, we denote by Vpx, ǫq (resp. Vpx, ǫq) the open (resp.
closed) ball centred in x with radius ǫ.

1.2 Preliminaries

We first give the main assumptions on the model. Then we recall some facts about
topology of measure spaces and we conclude by giving some words about the well-
posedness of the dynamics (1) and (2).

Assumptions 1.1.

S � Ω, Ω � R
d is open, bounded, connected with Lipschitz boundary, (A1)

B,D P C�

b pS �R
�

q, Dpx, aq ¥ D ¡ 0, k P C�

b pS �R
�

�Sq, (A2)

p P s0, 1r , c ¡ 0 (A3)
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and there exists ǫ0 ¡ 0 and I � R
�

with
�

I � 0 such that for all x P S and
y P Vpx, ǫ0q X S:

I � supppkpx, y, .qq X supppBpx, .qq. (A4)

Measure theory. We recall some classical definitions and facts about topology
on measures spaces. The Jordan decomposition theorem ensures that for any µ P

MpS �R
�

q, there is µ�, µ� P M�

pS �R
�

q mutually singular, such that µ � µ� �

µ�. The total variation measure is defined by |µ| � µ��µ� and the Total Variation
norm by

}µ}TV � |µ|pS�R
�

q.

The Bounded Lipschitz norm is defined for any µ P MpS �R
�

q by

}µ}BL � sup

#

�

�

�

�

�

»

S �R
�

fpxqµpdxq

�

�

�

�

�

: f PW 1,8
pS �R

�

q, }f}1,8 ¤ 1

+

.

where W 1,8
pS �R

�

q is the set of bounded Lipschitz functions from S �R
�

to R

and }f}1,8 � }f}
8

�Lippfq where Lippfq is the Lipschitz constant of f and }f}
8

�

sup t|fpx, aq| : px, aq P S �R
�

u. We recall (see [21]) that for any sequence µn P

M�

pS �R
�

q and µ P M�

pS �R
�

q, }µn�µ}BL Ñ

nÑ8

0 if and only if for all continuous
and bounded function f from S �R

�

to R,

lim
nÑ8

»

S �R
�

fpxqµnpdxq �

»

S �R
�

fpxqµpdxq,

i.e that µn Ñ µ weakly� in pCbpS �R
�

qq

1 (pCbpS �R
�

qq

1 represents the dual space
of CbpS �R

�

q). We denote by CpR
�

,M�

pS �R
�

qq the space of continuous maps
from R

�

to M�

pS �R
�

q with respect to the Bounded Lipschitz norm.

Well-posedness. We precise the link between the stochastic process (1) and the
partial differential equation (2). We denote xµ, fy �

³

S �R
�

fpx, aqµpdx, daq. Let us

consider a sequence pZK
0 qK¥0 of M�

pS �R
�

q valued random variables of the form

ZK
0 �

1
K

NK
ţ

i�1

δ
pxi,aiq

.

For each K P N
�, let pZK

t qt¥0 be defined as the càdlàg measure-valued process
started at ZK

0 with infinitesimal generator LK given, for any f P C
0,1
b and µ P

M�

pS �R
�

q by

LKFf pµq �

»

S �R
�

Bafpx, aqF
1

pxµ, fyqµpdx, daq (9)

�K

»

S �R
�

"

pF pxµ�
δ
px,0q

K
, fyq � F pxµ, fyqqp1 � pqBpx, aq

�

�

»

S

pF pxµ�
δ
py,0q

K
, fyq � F pxµ, fyqqBpx, aqpkpx, a, yqdy




�pF pxµ�
δ
px,aq

K
, fyq � F pxµ, fyqq pDpx, aq � cxµ, 1yq

*

µpdx, daq
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where Ff pµq :� F pxµ, fyq (we note that the set of functions of the form Ff is
sufficient to characterise the infinitesimal generator, as it is proved in [9]). The
following proposition allows to obtain the solutions of (2) as a large population limit
of the stochastic process ZK . We refer to [19] for the proof.

Proposition 1.2. Assume Assumptions 1.1. Assume that ZK
0 converges in law

to n0 P M�

pS �R
�

q as K Ñ 8. Then, the sequence of processes pZK
qK¥0

converges in law (on finite time interval) to the unique weak solution pntqt¥0 P

CpR
�

,M�

pS �R
�

qq of (2) which satisfies for all f P C1,0,1
b and t P R

�

,
»

S �R
�

ftpx, aqntpdx, daq �

»

S �R
�

f0px, aqn0pdx, daq (10)

�

» t

0

»

S �R
�

�

Bsfs � Bafs �

�

D � c

»

S �R
�

ns

�

fs � G rfss

�

px, aqnspdx, daqds

where G has been defined in (6).

1.3 Main Results

Let us introduce some notations. For any pλ, x, y, aq P s�D,�8r � S2
�R

�

, we
define:

$

'

&

'

%

Rλpx, aq � exp
�

�

³a

0
Dpx, αqdαq � λa

�

,

rλpxq � p1 � pq
³

R
�

Bpx, aqRλpx, aqda,

Kλpx, yq � p
³

R
�

Bpx, aqkpx, a, yqRλpx, aqda.

(11)

For any λ P s�D,�8r, we define the linear operator r̃λ � J̃λ : MpSq Ñ MpSq by

pr̃λ � J̃λqµ � rλpxqµ�

�

»

S

Kλpy, xqµpdyq




dx (12)

and we denote by ρpr̃λ � J̃λq its spectral radius. We now give the main results of
the paper. The first one shows the existence of stationary states for the dynamics
(10), under some assumption on the spectral radius of the operators introduced
above (similarly as in [4]). This assumption is related to the supercriticality of the
associated linear dynamics.

Theorem 1.3. Assume Assumptions 1.1 and ρpr̃0�J̃0q ¡ 1. There exists a non-zero
solution n P M�

pS �R
�

q of:

�f P C
0,1
b ,

»

S �R
�

�

Baf �

�

D � c

»

S �R
�

n

�

f � G rf s

�

px, aqnpdx, daq � 0,

(13)
which is given by

npx, aq � µλ�pdxqRλ�px, aqda

where λ� ¡ 0 is solution of the equation ρpr̃λ� � J̃λ�q � 1 and µλ� P M�

pSq is an
eigenvector of r̃λ� � J̃λ� associated with the eigenvalue ρpr̃λ� � J̃λ�q � 1.

Let us now introduce an additional regularity assumption which allows us to
obtain the continuity of the solutions with respect to the initial conditions (see
Lemma 3.10).
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Assumptions 1.4. B,D PW 1,8
pS �R

�

q and k PW 1,8
pR

�

�S �R
�

q.

We now focus on the case where there exists a stationary measure n which admits
a continuous density (we keep the same notation n for the density).

Theorem 1.5. Assume Assumptions 1.1, 1.4. Assume that ρpr̃0� J̃0q ¡ 1 and that
there exists a solution n P CpS, L1

pR
�

qq of (13). Assume that there exist B, k ¡ 0
such that B ¥ B and k ¥ k. Let pntqt¥0 P CpR�

,M�

pS �R
�

qq be the solution of
(10) started at n0 P M�

pS �R
�

qzt0u. Then we have

lim
tÑ8

}nt � n}TV � 0

and n is the unique stationary measure.

2 Spectral Properties of some Positive Operators

2.1 Position of the Problem and Results

Let us consider a subset S of Rd which satisfies Assumption (A1). We analyse the
spectral properties of the operators r� J, r�G : CpSq Ñ CpSq defined respectively
by (7), (8) and of their analogous operators on measure spaces r̃�J̃ , r̃�G̃ : MpSq Ñ

MpSq defined similarly by

pr̃ � J̃qµ � rpxqµ�

�

»

S

Kpy, xqµpdyq




dx,

pr̃ � G̃qµ � rpxqµ�

�

»

S

Kpx, yqµpdyq




dx.

Assumptions 2.1.
r P CpSq is positive, (A5)

K P CpS �Sq is non-negative, (A6)

Dǫ0, c0 ¡ 0, inf
xPS

�

inf
yPVpx,ǫ0qXS

Kpx, yq




¡ c0. (A7)

Remark 2.2. Assume Assumption (A7), then we have

inf
xPS

�

inf
yPVpx,ǫ0qXS

Kpy, xq




¡ c0. (14)

Indeed, let x P S and y P Vpx, ǫ0q X S. Then x P Vpy, ǫ0q and Kpy, xq ¡ c0.

The following result deals with the spectral properties of the operators introduced
above. We denote by ρpr�Jq the spectral radius of the operator r�J (and similarly
for r � G). The reader can refer to Appendix A for terminology and recalls about
spectral theory. The following theorem is proved in Section 2.2.
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Theorem 2.3. Assume Assumptions 2.1. There exists µ P M�

pSq such that

ρpr �Gqµ � pr̃ � J̃qµ

which satisfies µpAq ¡ 0 for any Borel subset A of S such that LebpAq ¡ 0 (Leb
denotes the Lebesgue measure on S). Moreover, let us denote r � supxPS rpxq and
Σ � tx P S : rpxq � ru. Then we have:

(i) r ¤ ρpr �Gq.

(ii) r   ρpr�Gq if and only if there exists u P CpSq, u ¡ 0 such that µ � upxqdx.
In this case, ρpr�Gq is an eigenvalue of r�J with algebraic multiplicity equals
to one, associated with the eigenfunction u.

(iii) If LebpΣq ¡ 0 or if, LebpΣq � 0 and 1

r�r
R L1

pSq, we have r   ρpr �Gq.

(iv) If ρpr �Gq � r, we have µ � µs
� hpxqdx with h P L1

pSq and either µs
� 0,

or µs
� 0 and supppµs

q � Σ.

(v) ρpr � Jq � ρpr �Gq � ρpr̃ � J̃q � ρpr̃ � G̃q.

Moreover, the same results are true exchanging J and G, J̃ and G̃.

Proof. See Section 2.2.

Remark 2.4. In [6],[7], Coville studies some spectral properties of the operators
introduced above. To do so, he introduces the generalised principal eigenvalue

λppr � Jq � suptλ P R |Dϕ P CpSq, ϕ ¡ 0 such that pr � Jqϕ� λϕ ¤ 0u

which generalises the Perron-Frobenius eigenvalue for irreducible matrices with non-
negative coefficients. The point (iii) is similar to the criterion obtained (in a more
general setting) in [6]. The point (iv) is contained in the results of [7]. The point
(v) is new. It is crucial for the proof of Propositions 3.5 and 3.6.

2.2 Proof of Theorem 2.3

The proof of Theorem 2.3 is given at the end of this section. We start by proving
a lemma in which some well known facts about the operators introduced previously
are recalled. We give a proof for the convenience of the reader. We denote by
ρepr � Jq the essential spectral radius of r � J (see Appendix A).

Lemma 2.5. Assume Assumptions 2.1.

(i) The operators r � J and r �G are positive and irreducible on CpSq.

(ii) The operators J and G are compact on CpSq.

(iii) r � ρepr � Jq � ρepr �Gq.
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Proof. (i): Since r is positive and K is non-negative, r � J and r � G are positive
endomorphisms of CpSq. To prove irreducibility, it suffices to prove that there is
m P N

� such that for all f P C�

pSq and x P S, pr � Jqmfpxq ¡ 0 (see Definition
A.6 and Lemma A.11). Since the set S is compact, there exist n P N

� and pBiq
n
i�1

a
family of balls with radius ǫ0{4 such that S � Y

n
i�1
Bi. Let f P C�

pSq be non-zero
and let I be an open subset of S such that f is positive on I. For all x P S we have

pr � Jqnfpxq ¥

»

I

dx1fpx1qKpx1, x2q

»

S

dx2 . . .

»

S

dxnKpxn, xq

¥ C

»

IXBi1
XS

dx1Kpx1, x2q

»

Bi2
XS

dx2 . . .

»

BinXS

dxnKpxn, xq

where C ¡ 0 and pi1, . . . , inq P J1, nKn satisfies: Bi1
X I has non-empty interior; for

any k P J1, n� 1K, u P Bik
X S, v P Bik�1

X S, Kpu, vq ¡ c0 and for any u P Bn X S,
Kpu, xq ¡ c0. It comes that

pr � Jqnfpxq ¡ 0

and r � J is irreducible. The proof is similar for r �G.
(ii): Let M be a bounded subset of CpSq and let CM be a positive constant such
that for all f PM , }f}

8

  CM . Applying Ascoli’s criterion, we prove that JpMq is
relatively compact in CpSq. Let x P S and f PM , we have

|Jfpxq| ¤ }f}
8

sup
zPS

»

S

Kpy, zqdy

¤ CM sup
zPS

»

S

Kpy, zqdy.

Then the set tJfpxq, f P Mu is bounded and so relatively compact in R. We
check the equi-continuity condition. Let ǫ ¡ 0, since K is uniformly continuous
on S �S, there exists δ ¡ 0 such that if }x1 � x2} � }y1 � y2}   δ, we have
|Kpx1, y1q � Kpx2, y2q|  

ǫ
CM LebpSq

. Let y P S such that }x � y}   δ. For all
f PM , we have

|Jfpyq � Jfpxq| �

�

�

�

�

»

S

fpzqpKpz, yq �Kpz, xqqdz

�

�

�

�

¤ CM

»

S

|Kpz, yq �Kpz, xq|dz   ǫ

which allows us to conclude for the compactness. The proof is similar for G.
(iii): Let us note from Lemma A.12 that the essential spectrum of r is trpxq, x P Su.
Moreover J is compact. We deduce that ρepr � Jq � ρeprq and that r � ρepr � Jq.
The proof is similar for ρepr �Gq.

The following lemma makes a duality link between the operators introduced
above. It is crucial for the proof of Theorem 2.3.

Lemma 2.6. Assume Assumptions 2.1. We have

pr � Jq1 � r̃ � G̃ pr �Gq1 � r̃ � J̃ (15)

where pr � Jq1 is the adjoint operator of r � J and pr �Gq1 is defined similarly.
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Proof. Let f P CpSq and µ P MpSq,
»

S

µpdxqpr � Jqfpxq �

»

S

µpdxq

�

rpxqfpxq �

»

S

Kpy, xqfpyqdy




�

»

S

fpxqrpxqµpdxq �

»

S

�

fpyq

»

S

Kpy, xqµpdxq




dy

�

»

S

fpxq

�

rpxqµpdxq � dx

»

S

Kpx, yqµpdyq




�

»

S

fpxqpr̃ � G̃qµpdxq

where we used Fubini’s Theorem. The proof is similar for pr �Gq1.

The next result is easily adapted from [18, Appendix §2.2.6] (it was originally in-
troduced by Krein-Rutman [14]) and [18, Appendix §3.3.3]. Combined with Lemma
2.6, it is the main tool for the proof of Theorem 2.3.

Proposition 2.7. (i) Let T be a positive endomorphism of CpSq. The spectral
radius ρpT q is an eigenvalue of T 1 associated with an eigenvector which belongs
to M�

pSq.

(ii) Let T be an irreducible endomorphism of CpSq. Then the spectral radius ρpT q
is the only possible eigenvalue of T associated with a non-negative eigenvector.
Moreover, if ρpT q is a pole of the resolvent, it is an eigenvalue of T with
algebraic multiplicity equals to one.

We give now a technical lemma.

Lemma 2.8. Assume Assumptions 2.1. Let x0 P Σ � tx P S : rpxq � ru. There
exists a family prjqj¥0 of C�

pSq which satisfy for all j ¥ 0:

(i) For all x P S, rjpxq ¥ rj�1pxq,

(ii) rjpx0q � rj � r and LebpΣjq ¡ 0, where Σj � tx P S : rjpxq � rju,

(iii) }rj � r}
8

Ñ

jÑ8

0.

Proof. Let x0 P Σ be fixed. For all ǫ ¡ 0 sufficiently small, we define the closed
set Aǫ �

�

Vpx0, ǫq
c
Y Vpx0, ǫ{2q

�

X S and a map gǫ P CpAǫq by gǫpxq � rpxq if
x P Vpx0, ǫq

c and gǫpxq � r if x P Vpx0, ǫ{2q. By Tietze Theorem, we extend
gǫ in a continuous function hǫ on S such that }hǫ}8 � }gǫ}8 We introduce rǫ P

CpSq defined by rǫpxq � maxphǫpxq, rpxqq. It is straightforward to check that: 1)
limǫÑ0 }rǫ � r}

8

� 0; LebpΣǫq ¡ 0; 3) rǫpxq ¥ rpxq and supxPS rǫpxq � r. We
conclude by proving that we can extract a decreasing subsequence of the family rǫ

which converges uniformly to r. To do so, we fix ǫ0 ¡ small and we define a sequence
pǫkqk¥0 by ǫk�1 �

ǫk

2
. We check that the sequence prǫk

qk¥0 is decreasing. Indeed,
let k ¥ 0. If x P Vpx0, ǫk�1{2q, then x P Vpx0, ǫk{4q and rǫk�1

pxq � hǫk�1
pxq � r �

hǫk
pxq � rǫk

pxq. If x P Ac
ǫk�1

we have ǫk�1{2   }x� x0}   ǫk�1 � ǫk{2. So we have
rǫk�1

pxq ¤ r � hǫk
pxq � rǫk

pxq. Finally, if x P Vpx0, ǫk�1q
c, rǫk�1

pxq � rpxq ¤ rǫk
pxq.

So we have proved that for all x P S, rǫk�1
pxq ¤ rǫk

pxq.
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Let us now prove Theorem 2.3.

Proof of Theorem 2.3. By Lemma 2.6 and Proposition 2.7 (i) applied to the endo-
morphism r�G, there exists a non-zero measure µ P M�

pSq such that for all Borel
and bounded functions f : S Ñ R,

»

S

fpxq

�

»

S

Kpy, xqµpdyq




dx�

»

S

fpxqprpxq � ρpr �Gqqµpdxq � 0. (16)

Assume that there exists a largest Borel subset A of S, A � S such that LebpAq ¡ 0
and µpAq � 0. Choosing f � 1A in (16), we deduce that for all x P A,

»

S

Kpy, xqµpdyq � 0. (17)

Let x0 P A be such that Vpx0, ǫ0qXS � A. By Assumption (A7) and (17) we obtain

0 ¥
»

Vpx0,ǫ0qXS

Kpy, x0qµpdyq ¥ c0µpVpx0, ǫ0q X Sq

and µpAYpVpx0, ǫ0qXSqq � 0 which is absurd by definition of A. Since µpSq ¡ 0, we
conclude that for all Borel subset A of S such that Leb(A) ¡ 0, we have µpAq ¡ 0.
(i): By Lemma 2.5 (iii), we have ρepr�Gq � ρeprq � r. It comes that r ¤ ρpr�Gq.
(ii): Assume that r   ρpr�Gq. Let f P CpSq. Then the map x P S ÞÝÑ

fpxq
ρpr�Gq�rpxq

is continuous and bounded. We get
»

S

fpxqµpdxq �

»

S

fpxq

ρpr �Gq � rpxq
pρpr �Gq � rpxqqµpdxq

�

»

S

fpxq

ρpr �Gq � rpxq

�

»

S

Kpy, xqµpdyq




dx

�

»

S

fpxq

³

S
Kpy, xqµpdyq

ρpr �Gq � rpxq
dx.

So we have µ � upxqdx with

upxq �

³

S
Kpy, xqµpdyq

ρpr �Gq � rpxq

a continuous, non-negative function on S. Therefore, for all f P CpSq
»

S

fpxq

�

upxqprpxq � ρpr �Gqq �

»

S

Kpy, xqupyqdy




dx � 0

and we deduce that for all x P S, pr � Jqupxq � ρpr � Gqupxq. Assume that there
exists x0 P S such that upx0q � 0. Then we have

c0

»

Vpx0,ǫ0qXS

upyqdy ¤

»

S

Kpy, x0qupyqdy � 0

which is absurd by the first statement we proved. Then, u is positive on S. Since
ρpr�Gq is an eigenvalue of r�J associated with a positive eigenfunction, Proposition
2.7 (ii) gives that ρpr �Gq � ρpr � Jq. We deduce that ρpr � Jq ¡ r � ρepr � Jq.
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It comes from Proposition A.4 in Appendix that ρpr� Jq is a pole of the resolvent.
Since r�J is irreducible (see Lemma 2.5 (i)), it comes from Proposition 2.7 (ii) that
the algebraic multiplicity of ρpr � Jq is equals to one. Conversely, assume now that
there exists u P C�

pSq such that µ � upxqdx. Then since for all x P S

upxq �
1

ρpr �Gq � rpxq

»

S

Kpy, xqupyqdy

we deduce that r   ρpr �Gq.
(iii): Assume first that LebpΣq ¡ 0. Choosing f � 1Σ in (16) and by the definition
of Σ, we get that

»

Σ

�

»

S

Kpy, xqµpdyq




dx � pρpr �Gq � rqµpΣq.

Since LebpΣq ¡ 0, we know that µpΣq ¡ 0. Since we have infxPS

³

S
Kpy, xqµpdyq ¡ 0,

we deduce that r   ρpr�Gq. Assume now that LebpΣq � 0 and 1

r�r
R L1

pSq. Here,
our calculations are inspired by [6]. Let

A :�
µpSq

infxPS

³

S
Kpy, xqµpdyq

¡ 0

and B ¡ A. There exists F a closed subset of Σc such that

B  

»

F

1
r � rpxq

dx   �8.

Then, the map ǫ P r0,�8r ÞÑ
³

F
1

r�rpxq�ǫ
dx is continuous and strictly decreasing.

So, there exists ǫ0 ¡ 0 such that

A  

»

F

1
r � rpxq � ǫ0

dx.

Choosing fpxq � 1F pxq
1

ρpr�Gq�rpxq
in (16), we have

»

F

1
ρpr �Gq � rpxq

�

»

S

Kpy, xqµpdyq




dx �

»

F

µpdxq ¤ µpSq

and
»

F

1
ρpr �Gq � r � r � rpxq

dx ¤ A.

Since the map ǫ P r0,�8q ÞÑ
³

F
1

r�rpxq�ǫ
dx is strictly decreasing, it comes that

ǫ0   ρpr �Gq � r and r   ρpr �Gq.
(iv): Assume that ρpr�Gq � r. Let µ � µs

�hpxqdx be the Lebesgue decomposition
of the measure µ with h P L1

pSq and µs the singular part of the measure µ, i.e there
exists E a measurable subset of S such that LebpSq � Leb(E) and µs

pEc
q � µs

pSq.
It comes from (16) with f � 1Ec that

»

S

µs
pdxqprpxq � ρpr �Gqq �

»

Ec

µs
pdxqprpxq � ρpr �Gqq � 0.

Assume that µs
� 0, then we deduce that the support of the measure µs is a subset

of Σ.
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(v): Assume first that 1

r�r
R L1

pSq and LebpΣq � 0, or LebpΣq ¡ 0. By (iii) we
get that r   ρpr � Gq. By (ii), we deduce that there exists u P CpSq, u ¡ 0 such
that pr � Jqu � ρpr � Gqu. By Proposition 2.7 (ii), we have ρpr � Jq � ρpr � Gq.
Assume now that 1

r�r
P L1

pSq. Let x0 P Σ. By Lemma 2.8, there is a sequence
prjqj¥0 of C�

pSq which satisfies: 1) }rj � r}
8

Ñ 0; 2) LebpΣjq ¡ 0 and rj � r

(Σj � tx P S : rjpxq � rju); 3) for all x P S, rj�1pxq ¤ rjpxq. By the first
part of the proof of (v), we deduce that ρprj � Jq � ρprj � Gq and we conclude
that ρpr � Jq � ρpr � Gq taking the limit j Ñ 8, using the monotonicity (see
Proposition A.7 (i) in Appendix A) and the upper semi-continuity of the spectral
radius (see Lemma A.8 in Appendix A). The others equalities are proved arguing
that pr � Jq1 � r̃ � G̃ and pr �Gq1 � r̃ � J̃ .

3 The Linear Dynamics

In this section, we apply the results of the previous section to analyse the long-time
behaviour of the solutions pvtqt¥0 P CpR�

,M�

pS �R
�

qq of the linear equation:
#

Btvtpx, aq � Bavtpx, aq � �Dpx, aqvtpx, aq, pt, x, aq P R
�

�S �R
�

,

vtpx, 0q � F rvts pxq, v0 P M�

pS �R
�

q.
(18)

The well posedness of solutions pvtqt¥0 P CpR
�

,M�

pS �R
�

qq is proved in [19]
using the microscopic approach, and in [5] using a deterministic method. We start
by proving that Assumptions 1.1 imply Assumptions 2.1 for rλ and Kλ defined in
(11).

Lemma 3.1. Assume Assumptions 1.1.

1) For all λ P s�D,�8r, the maps rλ and Kλ are well-defined, continuous, re-
spectively positive and non-negative. There exist ǫ0, c0 ¡ 0 such that

inf
xPS

�

inf
yPVpx,ǫ0qXS

Kλpx, yq




¡ c0.

2) Moreover we have:

(i) For all �D   λ1   λ2 and px, yq P S �S, rλ1
pxq ¡ rλ2

pxq and Kλ1
px, yq ¥

Kλ2
px, yq.

(ii) For all λ0 ¡ �D, limλÑλ0
}rλ � rλ0

}

8

� 0 and limλÑλ0
}Kλ �Kλ0

}

8

� 0

(iii) For all λ ¡ �D, let us denote rλ :� supxPS rλpxq. Then the map λ P

s�D,�8r ÞÝÑ rλ is continuous and (strictly) decreasing.

Proof of Lemma 3.1. 1): Let λ ¡ �D, we have
»

R
�

exp
�

�

» a

0

Dpx, αqdα � λa




da ¤

»

R
�

exp p�Da� λaq da   �8.

So, rλ and Kλ are well-defined. Moreover, rλ and Kλ are continuous by dominated
convergence theorem and respectively positive and non-negative by Assumptions
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1.1. The second part of the assertion is a consequence of assumption 1.1.
2) (i): Let λ ¡ �D and x P S. By derivation under the integral,

Bλrλpxq � �p1 � pq

»

R
�

aBpx, aq exp
�

�

» a

0

Dpx, αqdα � λa




da   0.

The proof is similar for Kλ.
(ii): Let λ0 ¡ �D and α P s�D,λ0r. For all x P S and λ ¡ α, we have

|rλpxq � rλ0
pxq| ¤

»

�8

0

Bpx, aq|e�pλ�Dqa
� e�pλ0�Dqa

|da

¤ |λ� λ0|}B}8

»

�8

0

ae�pα�Dqada

where we used that |e�x
� e�y

| ¤ |x� y| if x, y ¥ 0, and which allow us to conclude.
The proof is similar for Kλ.
(iii): Let λ0 ¡ �D and let pλjq be a sequence such that λj Ñ λ0. Let pxjq P S

such that rλj
� rλj

pxjq and let denote x� P S a limit point of pxjq. Using (ii), we
obtain that rλj

Ñ rλ0
px�q � rλ0

. We conclude by proving the strict monotonicity.
Let �D   λ1   λ2. For all x P S we have rλ2

pxq   rλ1
pxq, and so rλ2

pxq   rλ1
.

Since S is compact and rλ2
is continuous, we get that rλ2

  rλ1
.

For any λ P s�D,�8r we define the operators r̃λ� J̃λ, r̃λ� G̃λ : MpSq Ñ MpSq

by

pr̃λ � J̃λqµ � rλpxqµ�

�

»

S

Kλpy, xqµpdyq




dx, (19)

pr̃λ � G̃λqµ � rλpxqµ�

�

»

S

Kλpx, yqµpdyq




dx (20)

and rλ � Jλ, rλ � Gλ : CpSq Ñ CpSq similarly as (7) and (8). By Lemma 3.1, we
deduce that Theorem 2.3 is satisfied for rλ and Kλ. We recall the conclusions in the
following lemma.

Lemma 3.2. Assume Assumptions 1.1. For all λ ¡ �D, there exists µλ P M�

pSq

such that
ρprλ �Gλqµλ � pr̃λ � J̃λqµλ

which satisfies µλpAq ¡ 0 for all A Borel subset of S such that LebpAq ¡ 0. Moreover,
let us denote rλ � supxPS rλpxq and Σλ � tx P S : rλpxq � rλu. Then we have:

(i) rλ ¤ ρprλ �Gλq.

(ii) rλ   ρprλ � Gλq if and only if there exists uλ P CpSq, uλ ¡ 0 such that
µλ � uλpxqdx. In this case, ρprλ � Gλq is an eigenvalue of rλ � Jλ with
algebraic multiplicity equals to one, associated with the eigenfunction u.

(iii) If LebpΣλq ¡ 0 or if, LebpΣλq � 0 and 1

rλ�rλ
R L1

pSq, we have rλ   ρprλ�Gλq.

(iv) If ρprλ � Gλq � rλ, we have µλ � µs
� hpxqdx with h P L1

pSq and either
µs

� 0, or µs
� 0 and supppµs

q � Σ.
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(v) ρprλ � Jλq � ρprλ �Gλq � ρpr̃λ � J̃λq � ρpr̃λ � G̃λq.

Moreover, the same results are true exchanging Jλ and Gλ, J̃λ and G̃λ.

Proof. The proof of this theorem is a direct consequence of Theorem 2.3.

The following assumption allows us to characterise the Malthusian parameter
associated with the linear dynamics.

Assumptions 3.3. There is λ ¡ �D such that ρpr̃λ � J̃λq ¡ 1.

Proposition 3.4. Assume Assumptions 1.1 and 3.3. The map λ P rλ,�8r ÞÝÑ

ρpr̃λ�J̃λq is continuous and (strictly) decreasing. There exists a unique λ� P rλ,�8r
such that ρpr̃λ� � J̃λ�q � 1.

Proof of Proposition 3.4. First, remark that by Lemma 3.2 (v), we have for any
λ P rλ,�8r, ρpr̃λ � J̃λq � ρprλ � Jλq. We divide the proof in three steps.
Step 1: the map λ P rλ,�8r ÞÝÑ ρprλ�Jλq is non-increasing. Let λ ¤ λ1 ¤ λ2.
By Lemma 3.1 2)(i), we get that for all f P C�

pSq,

prλ2
� Jλ2

qfpxq ¤ prλ1
� Jλ1

qfpxq. (21)

By Proposition A.7 (i) in Appendix, the spectral radius is monotone on the set of
positive operators, we conclude that ρprλ2

� Jλ2
q ¤ ρprλ1

� Jλ1
q.

Step 2: The map λ P rλ,�8r ÞÝÑ ρprλ � Jλq is continuous. Let λ0 ¥ λ. We
consider the two possible cases. First, we assume that rλ0

  ρprλ0
�Jλ0

q. We deduce
by Lemma 3.2 (ii) that : ρprλ0

� Jλ0
q is an eigenvalue of rλ0

� Jλ0
with algebraic

multiplicity equals to one. On the other hand, for all λ ¥ λ and f P CpSq, we have

}prλ � Jλqf � prλ0
� Jλ0

qf}
8

¤ p}rλ � rλ0
}

8

� LebpSq}Kλ �Kλ0
}

8

q}f}
8

. (22)

Therefore, we deduce from Proposition A.5 that: (a) there is δ ¡ 0 such that if
|λ � λ0|   δ, there exists an eigenvalue κλ of rλ � Jλ with algebraic multiplicity
equals to one; (b) Pλ ÝÑ P as λÑ λ0 for the operator norm where P , Pλ represent
respectively the projector on the null space of ρprλ0

� Jλ0
qI � rλ0

� Jλ0
and κλI �

rλ � Jλ. Let u be a positive eigenfunction of rλ0
� Jλ0

associated with ρprλ0
� Jλ0

q.
By (b), we have Pλu Ñ Pu � u when λ Ñ λ0. In particular, we deduce that
there is 0   δ1   δ such that if |λ � λ0|   δ1, Pλu is a positive eigenfunction of
rλ � Jλ associated with κλ. Hence, Proposition A.10 (i) gives that if |λ� λ0|   δ1,
ρprλ � Jλq � κλ. In order to conclude, let pλjq be a sequence of rλ,�8r which
converges to λ0. Since the function λ P rλ,�8r Ñ ρprλ�Jλq is bounded, there exists
ρ� P r0,�8r and a subsequence always denoted pλjq such that ρprλj

� Jλj
q Ñ ρ�.

We check that ρ� � ρprλ0
� Jλ0

q. Let u be a positive eigenfunction of rλ0
� Jλ0

.
For all j sufficiently large, we have prλj

�Jλj
qPλj

u � ρprλj
�Jλj

qPλj
u. By (22) and

(b), and taking the limit j Ñ 8, we deduce that prλ0
� Jλ0

qu � ρ�u. So, u is a
positive eigenfunction associated with the eigenvalue ρ�, it comes from Proposition
A.10 (i) that ρ� � ρprλ0

� Jλ0
q. Consider now the case where rλ0

� ρprλ0
� Jλ0

q.
Assume that the map λ P rλ,�8r ÞÝÑ ρprλ � Jλq is not continuous at λ0. So we
have lim infλÑλ0

ρprλ � Jλq   lim supλÑλ0
ρprλ0

� Jλ0
q. Since the spectral radius is

upper semi-continuous (see Lemma A.8 in Appendix A), we deduce that

rλ0
� lim inf

λÑλ0

ρeprλ � Jλq ¤ lim inf
λÑλ0

ρprλ � Jλq   ρprλ0
� Jλ0

q � rλ0
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which is absurd and that concludes the proof of the continuity.
Step 3: strong monotonicity. Let λ ¤ λ1 ¤ λ2. By the first part of this proof,
we have ρprλ1

� Jλ1
q ¥ ρprλ2

� Jλ2
q. Assume that ρprλ1

� Jλ1
q � ρprλ2

� Jλ2
q.

We show that necessarily λ1 � λ2. As before, we distinguish two cases. First
we consider the case where ρprλ1

� Jλ1
q ¡ rλ1

. Since rλ1
� Jλ1

is irreducible and
ρprλ1

� Jλ1
q is a pole of the resolvent of rλ1

� Jλ1
, we deduce by Proposition A.7

(ii) that rλ1
� Jλ1

� rλ2
� Jλ2

and so λ1 � λ2. We now consider the second case
ρprλ1

� Jλ1
q � rλ1

. Assume that λ1   λ2. If there exists λ̃ P rλ1, λ2s such that
ρprλ̃ � Jλ̃q ¡ rλ̃ we conclude that ρprλ1

� Jλ1
q ¥ ρprλ̃ � Jλ̃q ¡ ρprλ2

� Jλ2
q by the

previous part of the proof. Otherwise, we conclude that ρprλ1
� Jλ1

q ¡ ρprλ2
� Jλ2

q

arguing that λ P rλ,�8r ÞÑ rλ is decreasing (see Lemma 3.1 2)(iii)). We deduce
that λ1 � λ2.
Since ρprλ � Jλq ¡ ρeprλ � Jλq � rλ, Assumption 3.3 gives that ρprλ � Jλq ¡ 1 and
we conclude by the intermediate value theorem.

The two following theorems give the existence of principal real eigenelements
associated with the linear dynamics.

Proposition 3.5. Assume Assumptions 1.1 and 3.3.

(i) Let λ P rλ,8r . A non-zero measure N P M�

pS �R
�

q is a solution of

�f P C
0,1
b ,

»

S �R
�

pBaf � pD � λqf � G rf sq px, aqNpdx, daq � 0 (23)

if and only if
Npdx, daq � µλpdxqRλpx, aqda,

where µλ P M�

pSq is non-zero and satisfies pr̃λ � J̃λqµλ � µλ.

(ii) The largest λ P rλ,�8r such that there exists a non-zero measure N P

M�

pS �R
�

q which satisfies (23) is the unique solution of ρpr̃λ � J̃λq � 1.

Proof of Proposition 3.5. (i): Let λ P rλ,�8r and let N P M�

pS �R
�

q be a non-
trivial solution of (23). We decompose N as

Npdx, daq � νpdxqupx, daq.

where ν P M�

pSq and upx, daq be an associated transition measure. We extend
these quantities to the whole set of the following way. Let ν̃ P M�

pR
d
q defined for

all Borel subset A of Rd by ν̃pAq � νpAX Sq; let ũpx, daq defined by ũpx, daq � 0 if
x R S and ũpx,Aq � upx,A X R

�

q if x P S and A is a Borel subset of R. We define
Ñpdx, daq � ν̃pdxqũpx, daq P M�

pR
d
�Rq. We extend continuously the functions

B,D and k to the whole sets R
d
�R, Rd

�R and R
d
�R

d
�R respectively and we

denote by B̃, D̃ and k̃ their extensions. We define

Ṽ �

1S�R
�

px, aq

R̃λpx, aq
Ñ P M

�

loc
pR

d
�Rq
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where R̃λpx, aq P CpR
d
�Rq is defined similarly as Rλpx, aq. Now we compute the

distributional partial derivatives BaṼ . Let f P C8

c pR
d
�Rq,

»

R
d
�R

Bafpx, aqṼ pdx, daq �

»

S �R
�

�

Ba
f

Rλ
� f

D � λ

Rλ




px, aqNpdx, daq

� �

»

S �R
�

G

�

f

Rλ

�

px, aqNpdx, daq

� �

»

R
d

fpx, 0qpP̃ pxqν̃pdxq � 1SpxqQ̃pxqdxq

where we introduced
#

P̃ pxq � p1 � pq
³

R
B̃px, aqũpx, daq

Q̃pxq � p
³

R
d
�R

B̃py, aqk̃py, a, xqũpy, daqν̃pdyq.

It comes that BaṼ � pP̃ ν̃�1SQ̃dxqδ0pdaq. Since the primitives of the zero distribu-
tion are constant functions, we deduce that there exists a distribution T P D1

pR
d
q

such that
Ṽ pdx, daq � pP̃ ν̃ � 1SQ̃dxq1R

�

paqda� T pxq.

Since the support of Ṽ is a subset of S �R
�

, we get that T � 0 and finally

Npdx, daq � pP pxqνpdxq �QpxqdxqRλpx, aqda (24)

where P :� P̃
| S and Q :� Q̃

|S . By (24), we obtain:

P pxqνpdxq � pP pxqνpdxq �Qpxqdxqrλpxq, (25)

and

Qpxqdx � J̃λpPν �Qdyqpdxq. (26)

Denoting µ :� P pxqνpdxq � Qpxqdx, we get by (25) and (26) that µ � pr̃λ � J̃λqµ.
Finally, it comes by (24) that

Npdx, daq � µpdxqRλpx, aqda.

Reciprocally, it is easy to check that such a measure is solution of (23).
(ii): Let λ P rλ,�8r and assume that there exists a non-zero N P M�

pS �R
�

q

which satisfies (23). By (i), we deduce that there is µ P M�

pSq such that N �

µpdxqRλpx, aq and which satisfies pr̃λ � J̃λqµ � µ. We deduce that 1 ¤ ρpr̃λ � J̃λq.
Moreover, if ρpr̃λ � J̃λq � 1 there exists ν P M�

pSq such that pr̃λ � J̃λqν � ν by
Lemma 3.2. That concludes the proof.

Proposition 3.6. Assume Assumptions 1.1 and 3.3.

(i) Let λ P rλ,�8r. A non-zero measure ψ P M
�

loc
pS �R

�

q such that ψpdx, daq �
ϕpdxqmpx, aqda, mpx, .q P L8pR

�

q, ϕpdxq P M�

pSq is a solution of

�f P C0,1
c ,

»

S �R
�

pBaf � pD � λqfqpx, aqφpdx, daq (27)

�

»

S �R
�

fpx, aqG̃ rφs pdx, daq �

»

S

mpx, 0qfpx, 0qϕpdxq,
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where

G̃ rφs � Bpx, aq

�

p1 � pqϕpdxqmpx, 0q � p

»

S

ϕpdyqmpy, 0qkpx, a, yq



da,

if and only if

ψpdx, daq �
da

Rλpx, aq

�

p1 � pqηλpdxq

»

�8

a

Bpx, αqRλpx, αqdα

�p

»

S

ηλpdyq

»

�8

a

Bpx, αqRλpx, αqkpx, α, yqdα




,

where ηλ P M�

pSq is non-zero and satisfies pr̃λ � G̃λqηλ � ηλ.

(ii) The largest λ P rλ,�8r such that there exists a non-zero ψ P M
�

loc
pS �R

�

q

which satisfies (27) is the unique solution of ρpr̃λ � J̃λq � 1.

Proof of Proposition 3.6. The proof is very similar to the previous proof.
(i): Let λ P rλ,�8r and let φ P M�

loc
pS �R

�

q such that

φ � ϕpdxqmpx, aqda

with mpx, .q P L8pR
�

q and ϕ P M�

pSq, be a non-trivial solution of (27). As in the
previous proof, we extend all the quantities to the whole set R

d
�R. We denote

Ũ � 1S �R
�

px, aqR̃λpx, aqφ̃ P M
�

loc
pR

d
�Rq

and we compute the partial distributional derivative BaŨ . We denote ηpdxq �

ϕpdxqmpx, 0q. Let g P C8

c pR
d
�Rq, we have

»

R
d
�R

Bagpx, aqŨ pdx, daq �

»

S �R
�

pBapgRλq � pD � λqpgRλqq px, aqφpdx, daq

� �

»

S �R
�

gpx, aqR̃λpx, aqG̃ rφs pdx, daq �

»

S

gpx, 0qηpdxq.

We deduce that BaŨ �

�

ηδ0 � R̃λG̃ rφs
�

1S �R
�

and

Ũ �

�

ηpdxq �

» a

0

Rλpx, αqG̃ rφs pdx, dαq




1S �R
�

px, aqda.

It comes that

φ �
1

Rλpx, aq

�

ηpdxq �

» a

0

Rλpx, αqG̃ rφs pdx, daq




. (28)

Since φ P M
�

loc
pS �R

�

q with φ � ϕpdxqmpx, aqda and mpx, .q P L8pR
�

q, we have
necessarily

»

�8

0

Rλpx, αqG̃ rφs pdx, dαq � ηpdxq (29)

which is equivalent to

rλpxqηpdxq � dx

»

S

ηpdyqKλpx, yq � ηpdxq. (30)
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By (30) we get that pr̃λ � G̃λqη � η and using (28), (29), (30), it comes that

φ �
da

Rλpx, aq

�

p1 � pqηpdxq

»

�8

a

Bpx, αqRλpx, αqdα

�p

»

S

ηpdyq

»

�8

a

Bpx, αqRλpx, αqkpx, α, yqdα




.

Conversely, it is easy to check that such a measure is a solution of (27). The
proof of (ii) is similar as in the previous proof, since by Lemma 3.2, ρpr̃λ � J̃λq �

ρpr̃λ � G̃λq.

We deduce a corollary which concerns the "regular" case.

Corollary 3.7. Assume Assumptions 1.1, 3.3 and that rλ�   1. There exists a
unique pλ�, N, φq P rλ,�8r � CpS, L1

pR
�

qq � CpS, L8pR
�

qq such that
#

�BaNpx, aq � pDpx, aq � λ�qNpx, aq � 0, px, aq P S �R
�

,

Npx, 0q � F rN s pxq,
³

S �R
�

N � 1,
(31)

#

Baφpx, aq � pDpx, aq � λ�qφpx, aq � G rφs px, aq � 0, px, aq P S �R
�

,
³

S �R
�

Nφ � 1.
(32)

Proof of Corollary 3.7. Let λ� ¥ λ be the unique solution of ρprλ� � Jλ�q � 1 (see
Proposition 3.4). Since rλ�   1 we deduce by Lemma 3.2 (ii) that 1 is a simple
eigenvalue of the operators rλ� � Jλ� and rλ� �Gλ� . Let pN,φq P CpS, L1

pR
�

qq �

CpS, L8pR
�

qq be a solution of (31) and (32) with λ � λ�. We have Npx, 0q, φpx, 0q P
C�

pSq and we deduce by Theorem 2.3 (ii) that Npx, 0q and φpx, 0q are positive
eigenfunctions of rλ� �Jλ� and rλ� �Gλ� associated with the eigenvalue one. Since
this eigenvalue is simple, the conditions

³

S �R
�

N � 1 and
³

S �R
�

Nφ � 1 allow us
to fix N and φ. Assume now that there exists pλ,N 1, φ1q such that λ � λ� and which
satisfies (31) and (32). By Theorems 3.5 and 3.6, it comes that λ   λ�. We deduce
that ρprλ�Jλq ¡ 1. Moreover N 1

px, 0q, φ1px, 0q P C�

pSq are eigenfunctions of rλ�Jλ

and rλ � Gλ associated with the eigenvalue 1, which is absurd by Proposition 2.7
(ii).

We are now able to describe the long-time behaviour of the solutions of the linear
equation (18).

Proposition 3.8. Assume Assumptions 1.1, 1.4, 3.3 and that rλ�   1. Assume
that there exists η ¡ 0 such that for all a P R

�

and px, yq P S2

pBpy, aqkpy, x, aqφpx, 0q ¥ ηφpy, aq. (33)

Let pvtqt¥0 P CpR�

,M�

pS �R
�

qq be the solution of (2) started at v0 P M�

pS �R
�

q.
Then we have

»

S �R
�

φpx, aq|e�λ�tvt �m0N |pdx, daq

¤ e�ηLebpSqt

»

S �R
�

φpx, aq|v0 �m0N |pdx, daq (34)

where m0 �

³

S �R
�

φpx, aqv0pdx, daq.
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The idea of the proof is similar as in [11]. We show the spectral gap property
for initial regular data, and then deduce it for measure initial data, using the two
following Lemmas. The assumption (33) is similar as in [17, Theorem 3.5]. For
any measure µ P MpS �R

�

q, let µ � µa
px, aqdxda � µs

pdx, daq be its Lebesgue
decomposition. We define

xµy �

»

S �R
�

a

1� |µa
px, aq|2dxda� |µs

|pS �R
�

q.

We use the following (semi-)continuity properties. The point (i) is well-known. See
[15, Theorem 5] for (ii).

Lemma 3.9. Let µn, µ P MpS �R
�

q such that µn Ñ

nÑ8

µ weakly� in pCbpS �R
�

qq

1.

Then for all f P CbpS �R
�

q,

(i)

lim inf
nÑ8

»

S �R
�

fpx, aq|µn|pdx, daq ¥

»

S �R
�

fpx, aq|µ|pdx, daq.

(ii) If moreover xµny Ñ

nÑ8

xµy, then

lim
nÑ8

»

S �R
�

fpx, aq|µn|pdx, daq �

»

S �R
�

fpx, aq|µ|pdx, daq.

The following lemma is proved in [5, Theorem 2.4].

Lemma 3.10. Assume Assumptions 1.1, 1.4. There is a constant C ¡ 0 such that
for all v1

0 , v
2
0 P M�

pS �R
�

q and t ¥ 0:

}v1

t � v2

t }BL ¤ eCt
}v1

0 � v2

0}BL

where v1, v2 are the solutions of (18) started at v1
0 , v

2
0 .

We now give the proof of Proposition 3.8.

Proof of Proposition 3.8. It suffices to prove the result for regular initial data, and
then conclude by regularising the initial measure. To analyse the regular case, we
follow the ideas of [17]. So, let pvtqt¥0 be the solution of (18) started at v0 P

L1
pS �R

�

q X C
0,1
b . First, by choosing φ as test function in (10), we obtain the

following invariance:
»

S �R
�

e�λ�tvtpx, aqφpx, aqdxda �

»

S �R
�

v0px, aqφpx, aqdxda (35)

(λ�, φ are defined in Corollary 3.7). We now define htpx, aq :� e�λ�tvtpx, aq �

m0Npx, aq where

m0 �

»

S �R
�

v0px, aqφpx, aqdxda.

It is straightforward to verify that
#

Btphtpx, aqφpx, aqq � Baphtpx, aqφpx, aqq � �htpx, aqG rφs px, aq

htpx, 0qφpx, 0q � φpx, 0qF rhts pxq.
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Using a regularisation method used in [17, Proposition 6.3], we deduce that
#

Btp|ht|px, aqφpx, aqq � Bap|ht|px, aqφpx, aqq � �|ht|px, aqG rφs px, aq

|htpx, 0q|φpx, 0q � φpx, 0q|F rhts pxq|.
(36)

Integrating the first equation in (36) over S �R
�

, we obtain

d
dt

»

S �R
�

|htpx, aq|φpx, aqdxda (37)

�

»

S

φpx, 0q|F rhts pxq|dx�

»

S �R
�

|htpx, aq|G rφs px, aqdxda.

From the equation (37), and using the invariant (35), we deduce that

d
dt

»

S �R
�

|htpx, aq|φpx, aqdxda

�

»

S

|p1� pqφpx, 0q
»

R
�

Bpx, aqhtpx, aqda

�

»

S �R
�

ppBpy, aqkpy, x, aqφpx, 0q � ηφpy, aqqhtpy, aqdady|dx

�

»

S

�

p1 � pq

»

R
�

φpx, 0qBpx, aq|htpx, aq|da

�p

»

S �R
�

Bpx, aqkpx, y, aqφpy, 0q|htpx, aq|dyda

�

dx

Since we assume that for any a P R
�

, px, yq P S2

pBpy, aqkpy, x, aqφpx, 0q ¥ ηφpy, aq,

it comes that

d
dt

»

S �R
�

|htpx, aq|φpx, aqdxda ¤ �η LebpSq
»

S �R
�

|htpx, aq|φpx, aqdxda

and we conclude by Gronwall’s Lemma. Now consider the case v0 P M�

pS �R
�

q.
There is a family of non-negative functions vǫ

0 P C
0,1
b X L1

pS �R
�

q such that }vǫ
0 �

v0}BL Ñ

ǫÑ0
0 and xvǫ

0y Ñ

ǫÑ0
xv0y. By Lemma 3.10, it comes that for each t P R

�

,

}vǫ
t � vt}BL Ñ

ǫÑ0
0. Similarly as in [11], we conclude by using Lemma 3.9, taking the

lim inf in the left side of (34) and the limit ǫÑ 0 in the right side of (34).

Let us prove that the malthusian parameter also plays a main role for the stochas-
tic underlying dynamics. For each K P N

�, let pY K
t qt¥0 be the process with infinites-
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imal generator BK defined, for any f P C0,1
b and µ P M�

pS �R
�

q by

BKFf pµq �

»

S �R
�

Bafpx, aqF
1

pxµ, fyqµpdx, daq (38)

�K

»

S �R
�

"

pF pxµ�
δ
px,0q

K
, fyq � F pxµ, fyqqp1 � pqBpx, aq

�

�

»

S

pF pxµ�
δ
py,0q

K
, fyq � F pxµ, fyqqBpx, aqpkpx, a, yqdy




�pF pxµ�
δ
px,aq

K
, fyq � F pxµ, fyqqDpx, aq

*

µpdx, daq

where Ff pµq :� F pxµ, fyq. The following result is similar as one proved in [12] for
age structured dynamics.

Proposition 3.11. Assume that λ� ¡ 0 and there exists C ¡ 0 such that for all
px, aq P S �R

�

G
�

φ2
�

px, aq �Dpx, aqφ2
px, aq ¤ Cφpx, aq. (39)

(i) Let K P N�. The process V K defined by V K
t :� e�λ�t

xY K
t , φy is a square

integrable martingale and its quadratic variation satisfies E
�

xV K
y

8

�

  �8.
The process V K converges in L2 and almost surely to a non degenerate limit
V K
8

.

(ii) Assume that supKPN
� E

�

xY K
0 , 1y2

�

  �8 and that Y K
0 converges in law to

v0 P M�

pS �R
�

q as K Ñ8. For all ǫ ¡ 0,

lim
KÑ8

P

�

sup
t¥0

|V K
t � xv0, φy| ¡ ǫ




� 0.

Proof. (i): Using a classical semimartingale decomposition for the process Y K proved
in [19], the process V K is a square integrable martingale with quadratic variation

xV K
yt �

1
K

» t

0

e�2λ�s
xY K

s ,G
�

φ2
�

�Dφ2
yds.

Taking the expectation, we deduce from (39) that

E
�

xV K
yt

�

¤

C

K

» t

0

e�λ�s
E

�

e�λ�s
xY K

s , φy
�

ds.

Since e�λ�t
xY K

t , φy is a martingale, we deduce that

E
�

xV K
yt

�

¤

CE
�

xY K
0 , φy

�

K

» t

0

e�λ�sds.

Therefore

E
�

xV K
y

8

�

� O

�

1
K




, (40)
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which proves (i).
(ii): Let ǫ ¡ 0. We have

P

�

sup
t¥0

|xV K
t , φy � xv0, φy| ¡ ǫ




¤ P

�

sup
t¥0

|MK
t | ¡ ǫ




� P
�

|V K
0 � xv0, φy| ¡ ǫ

�

where MK
t is a martingale started at 0 which satisfies E

�

xMK
y

8

�

� O
�

1

K

�

. By
Doob’s inequality, we deduce that

P

�

sup
t¥0

|MK
t | ¡ ǫ




¤

2
ǫ2

sup
t¥0

E
�

|MK
t |

2
�

�

2
ǫ2
E
�

xMK
y

8

�

and we conclude using (40).

As in [1], we can give a concrete example in which the eigenmeasure is singular.
One can note that this phenomenon appears only if p   1. If p � 1, we obtain that
rλ � 0: the operator rλ � Jλ � Jλ is compact and the eigenelements are continuous
functions.

An example of a non regular stable distribution. Let S � R
d which satisfies

(A1). Let Bpx, aq � Bpxq such that 1

B�B
P L1

pSq. Let Dpx, aq � D P R
�

�

and
kpx, y, aq � 1.

Proposition 3.12. Let p0 P s0, 1r such that pp0{p1 � p0qqB
³

S

1

B�Bpxq
dx   1. Let

λ ¥ λ, µλ � µs
� upxqdx P M�

pSq and ηλ � ηs
� vpxqdx P M�

pSq be such that
µλ � pr̃λ � J̃λqµλ and ηλ � pr̃λ � G̃λqηλ. Then for all p P s0, p0r, µs

� 0 and ηs
� 0.

Proof. Let p P s0, p0r and λ ¥ λ. First remark that we have rλpxq � p1 � pq
Bpxq
λ�D

and Kλpx, yq � p
Bpxq
λ�D

. Assume there exists a non negative function v P L1
pSq with

³

S
vpyqdy � 1 such that pr̃λ � G̃λqv � v. We have almost everywhere on S,

rλpxqvpxq �

»

S

Kλpx, yqvpyqdy � vpxq.

We get that almost everywhere on S

vpxq � p
Bpxq

λ�D

1
1 � rλpxq

¤ p
Bpxq

λ�D

1
rλ � rλpxq

�

p

1 � p

Bpxq

B �Bpxq

and we deduce that

1 ¤
p

1� p
B

»

S

1
B �Bpxq

dx   1

which is absurd. So, ηs
� 0. The proof is similar for µs.

4 Proof of the Main Results

We can now give the proof of our main results stated in Section 1.

Proof of Theorem 1.3. It is obvious that stationary states n P M�

pS �R
�

q are
eigenmeasures of the linear operator. Indeed, they are solutions of (23) with λ �

c
³

S �R
�

n. Since ρpr̃0 � J̃0q ¡ 1 we deduce by monotony that λ� ¡ 0 and we can
choose an eigenvector n � µλ�Rλ� which satisfies c

³

S �R
�

n � λ�.
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Proof of Theorem 1.5. The idea is to transform the solution of the non-linear equa-
tion to those of the linear equation. Indeed, let pntqt¥0 P CpR�,M

�

pS �R
�

qq be
the solution of (10) and let us denote ρptq �

³

S �R
�

ntpdx, daq. It is straightforward
to check that

vtpdx, daq � exp
�

c

» t

0

ρpsqds




ntpdx, daq

is a weak solution of the linear equation
#

Btvtpx, aq � Bavtpx, aq � �Dpx, aqvtpx, aq

vtpx, 0q � F rvts pxq, v0 � n0.

Let pλ�, N, φq be the eigenelements given by Corollary 3.7. By the assumptions
of the theorem we get that there exists φ ¡ 0 such that φ ¥ φ. Combining with
Proposition 3.8, we deduce that

lim
tÑ8

}e�λ�tvt �m0N}TV � 0, (41)

and that
ntpx, aq

ρptq
�

e�λ�tvtpx, aq

e�λ�t
³

S �R
�

vt

TV
ÝÑ

tÑ8

Npx, aq. (42)

We now study the long-time behaviour of ρptq. Choosing f � 1 in (10) it comes that

dρ
dt
ptq

�

»

S �R
�

ntpx, aq

�

p1 � pqBpx, aq � pBpx, aq

»

S

kp., yqdy �Dpx, aq




� cρ2
ptq

� ρptq pDptq � λ�q � cρ2
ptq

with

Dptq �

»

S �R
�

ntpx, aq

ρptq

�

p1 � pqBpx, aq � pBpx, aq

»

S

kp., yqdy �Dpx, aq




� λ�.

Using (42) we deduce that Dptq Ñ 0 as tÑ8 and that ρptq Ñ λ�

c
as tÑ8 (using

a similar method as in [16]) that ends the proof.
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A Operator Theory

In this appendix, we recall some well-known results about spectral theory for bounded
linear operators on Banach space and positive operators.

A.1 Resolvent and spectrum

Let pX, }.}q be a complex Banach space. We denote by BpXq the set of all bounded
linear maps from X to X. Let T P BpXq. We denote by }T }op � sup

}x}�1 }T pxq}

the operator norm of T .

Definition A.1. Let T P BpXq.

(i) The resolvent set of T is RpT q � tz P C : pzI � T q�1
P BpXqu. For all

z P RpT q, the linear map RT pzq � pzI � T q�1 is called resolvent of T at point
z.

(ii) The spectrum of T is σpT q � CzRpT q and the spectral radius of T is ρpT q �
supt|z| : z P σpT qu.

(iii) The essential spectrum of T is the set σepT q of z P σpT q which satisfy at least
one of the following condition: (1) the range of zI � T is not closed; (2) z
is not isolated in σpT q; (3) Yn¥1 kerppzI � T qnq is infinite dimensional. The
essential spectral radius of T is ρepT q � supt|z| : z P σepT qu

Remark A.2. There are different definition of the essential spectrum in the liter-
ature, which are not equivalent. The definition we choose has been introduced by
Browder [2].

Definition A.3. Let z0 be a pole of the resolvent. Let

RT pzq �

�8

¸

k��m

akpz � z0q
k (43)

25



be the Laurent expansion of RT near z0 where ak are linear operators on X and
a
�m � 0. The integer m is the order of the pole z0. Then P pT q :� a

�1 is the
projector onto the space kerppzI � T qmq. The dimension of kerppzI � T qmq is called
algebraic multiplicity of z0.

The following characterisation of the essential spectrum is very useful. It is
proved in [2, Lemma 17].

Proposition A.4. Let T P BpXq and z P σpT q. Then, z R σepT q if and only if for
some m P N

�, z is a pole of the resolvent of order m such that kerppzI � T qmq is
finite dimensional.

The following result is adapted from Kato [13, Ch.IV §4. Thm 3.16].

Proposition A.5. Let T P BpXq and z0 P σpT qzσepT q. We denote by αT pz0q the
algebraic multiplicity of z0. Let ǫ ¡ 0. There is δ ¡ 0 such that if }T � S}op   δ,
the two following assertions are satisfied:

(a) There is z P σpSqzσepSq such that αSpzq � αT pz0q.

(b) }P pT q � P pSq}op   ǫ.

A.2 Ordered Banach space

Let pX, }.}q be a real Banach space. Let C � X be a positive cone. We denote
always BpXq for the set of bounded linear maps on X.

Definition A.6. Let T P BpXq.

(i) The operator T is positive if T pCq � C.

(ii) The operator T is irreducible if T is positive and for some scalar z ¡ ρpT q and
for each non-zero u P C, the element

°

�8

k�1
z�nT n

puq is quasi interior to C (see
[18] for the definition of quasi interior point).

(iii) Let T, S P BpXq be positive. We denote T ¤ S if the bounded linear map
S � T is positive.

The following proposition gives some monotonicity properties of the spectral
radius. The point (i) is proved in [3, Theorem 1.1]. The point (ii) is proved in [10,
Theorem 3.9].

Proposition A.7. Let S, T P BpXq be positive such that S ¤ T . We have

(i) ρpSq ¤ ρpT q;

(ii) Assume moreover that ρpT q is a pole of the resolvent of T . Then we have
either T � S or ρpSq   ρpT q.

We deduce a result of upper-semi continuity of the spectral radius. It is classical.

Lemma A.8. Let T P BpXq be positive and let pTkqk¥0 be a non-increasing se-
quence of BpXq such that }Tk � T }

8

Ñ 0 when k Ñ8. Then ρpTkq Ñ

kÑ8

ρpT q.
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Proof. By Proposition A.7 (i), the sequence ρpTkq is non-increasing and is bounded
below by ρpT q. Then, it converges to a limit ρ� ¥ ρpT q. Assume that ρ� ¡ ρpT q.
Since the spectral radius is an element of the spectrum, we deduce that for all k P N

the operator ρpTkqI�Tk is singular (e.g pρpTkqI�Tkq
�1 is not bounded). Moreover,

the set of singular operators being closed, we deduce, taking the limit k Ñ 8 that
ρ�I � T is singular which is absurd since ρ� ¡ ρpT q.

A.3 The space pCpSq, }.}
8

q

Let S be a compact subset of Rd. We now give some results on the Banach space
pCpSq, }.}

8

q where CpSq denotes the set of continuous functions from S to R and
}.}

8

denotes the uniform norm. We denote by C�

pSq the cone of non-negative
functions on S. We recall that the space of (signed) Radon measure MpSq is the
topological dual (the space of continuous linear form) of CpSq and that the set of
positive Radon measure M�

pSq is the dual cone of C�

pSq. For any T P BpCpSqq,
we denote by T 1 P BpMpSqq his adjoint.
The next result is easily adapted from [18, Appendix §2.2.6] (it was originally intro-
duced by Krein-Rutman [14]). It is a generalisation of Perron-Frobenius Theorem
for positive matrices to the infinite-dimensional framework.

Proposition A.9. Let T P BpCpSqq such that T ¥ 0. Then ρpT q is an eigenvalue
of T 1 associated with a positive eigenmeasure µ P M�

pSq.

The following result is proved in [18, Appendix §3.3.3]. It precises the analogy
with the Perron-Frobenius theory.

Proposition A.10. Let T P BpCpSqq such that T is irreducible. Then we have:

(i) The spectral radius ρpT q is the only possible eigenvalue associated with a non-
negative eigenfunction.

(ii) Assume moreover that ρpT q is a pole of the resolvent. Then, ρpT q is a pole of
order one with algebraic multiplicity equals to one.

We give a lemma which characterises the quasi interior points (see [18] for the
definition) of C�

pSq.

Lemma A.11. Let f P CpSq. Then f is quasi interior to C�

pSq if and only if
fpxq ¡ 0 for all x P S.

We give now a result on the spectrum of the multiplication operator.

Lemma A.12. Let r P CpSq be a positive function. Let us denote by r the en-
domorphism of CpSq defined by rfpxq � rpxqfpxq. Then we have σprq � σeprq �

trpxq : x P Su.

Proof. We start by proving that σprq � trpxq : x P Su �: rpSq. Let y P rpSqc. It is
straightforward to verify that the operator f P CpSq ÞÝÑ 1

y�rpxq
f is the inverse of

pyI � rq and is bounded. We deduce that y P Rprq and σprq � rpSq. Conversely, let
y P Rprq and assume y � rpxq with x P S. Let u :� pyI � rq�1 and f P S such that
fpxq � 0. We have fpxq � upyI� rqfpxq � 0 which is absurd and then rpSq � σprq.
The function r being continuous, the set σprq has no isolated point and we deduce
that σprq � σeprq.
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