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Abstract. We investigate the design of a master-worker schemes for
adaptive algorithm selection with the following two-fold goal: (i) choose
accurately from a given portfolio a set of operators to be executed in
parallel, and consequently (ii) take full advantage of the compute power
offered by the underlying distributed environment. In fact, it is still an
open issue to design online distributed strategies that are able to opti-
mally assign operators to parallel compute resources when distributively
solving a given optimization problem. In our proposed framework, we
adopt a reward-based perspective and investigate at what extent the av-
erage or maximum rewards collected at the master from the workers are
appropriate. Moreover, we investigate the design of both homogeneous
and heterogeneous scheme. Our comprehensive experimental study, con-
ducted through a simulation-based methodology and using a recently
proposed benchmark family for adaptive algorithm selection, reveals the
accuracy of the proposed framework while providing new insights on the
performance of distributed adaptive optimization algorithms.

1 Introduction

The selection of an accurate algorithm from a given portfolio, as well as the effec-
tive choice of the relevant algorithmic components of a general-purpose search
heuristic, are among the major issues that one has to face in practice when
tackling an optimization problem; in particular, in a black-box optimization sce-
nario when no problem-specific properties can be known beforehand [3]. In fact,
from a theoretical point of view, several parallel compute ressources, possibly dis-
tributed over a large scale environment, are provided, it is even more challenging
to design an efficient distributed cooperative strategy, since the algorithmic de-
sign space gets huge and we still lack knowledge on the optimal mapping of the
implied search computational flows to the available resources. The motivation of
this paper is precisely to investigate these issues by proposing a master-worker
algorithm selection framework and precisely analyzing the impact of its different
possible design components. On the one hand, algorithm selection (or the related
topic of parameter setting), although being one of the oldest research topic in
evolutionary computation [14], is attracting more and more attention [17] due to
its crucial importance and the difficult, and yet unsolved, challenges it implies



in practice. In this work, we are interested in adaptive algorithm selection. In-
deed, there are two main and tightly related methodologies that are commonly
adopted to select an algorithm [9]. In the offline setting, usually called tuning, an
algorithm is first selected, and only then it is executed from scratch on the target
and unseen problem instance. In the online setting, called control, an algorithm
is selected all along the optimization process (see for example [11, 3]). An online
selection scheme is typically and continuously getting feedback from the opti-
mization algorithm being executed, and deciding accordingly on the next choice.
Hence, online algorithm selection can be viewed as an adaptive optimization
algorithm which follows the multi-armed bandit framework where the arms are
the algorithms of the portfolio [5]. The adaptive algorithm selection is then per-
formed as follows. A reward is computed according to the performance observed
when previously executing an algorithm. Then, in every iteration, a reinforce-
ment machine learning is applied in order to select from the portfolio the next
algorithm to execute, typically according to some exploration-exploitation rules.

On the other hand, numerous real wold optimization problems, such as en-
gineering design which are often based on numerical simulation, are computa-
tionally expensive, e.g., one fitness function evaluation can take several min-
utes [19]. Besides, the advent of new compute facilities and the establishment
of robust and large scale massively parallel platforms, such as grids and pay-as-
you-go clouds, open tremendous research opportunities for pushing forward the
development and uptake of parallel and distributed evolutionary optimization
algorithms. In this context, a number of evolutionary optimization models have
been investigated [20], e.g., from centralized to fully decentralized, from fined-
grained (cellular model) to coarse grained (island model). In this work, we adopt
the centralized Master-Worker (M/W) architecture, where each worker process
is basically responsible of executing locally in parallel the actions scheduled for
him by the master (e.g., evaluate a candidate solution), whereas the master pro-
cess is responsible of collecting the local results from the workers (e.g., the fitness
values) and deciding on the next actions to send them (e.g., next candidate so-
lutions to evaluate). It is worth-noticing that this framework is often adopted
in practice, not only due to the simplicity of deploying it over a real test-bed,
but also due to its high accuracy when dealing with computationally expensive
optimization problems [6].

In this context, we argue that a master-worker approach to adaptive algo-
rithm selection requires specific coordination mechanisms in order to achieve
optimal performances. In a sequential setting, the observed rewards are in fact
updated according to the performance of the algorithm executed previously in
the last round by one single process. In a M/W approach, one can benefit from
the set of performances observed by several parallel processes, i.e., the workers.
However, switching to such a scenario requires to carefully define the aggregated
reward with respect to a selected algorithm given a set of observed performance
values instead of just a single one. Additionally, one can adopt either a homoge-
nous strategy in which all workers execute the same algorithm at each iteration
(e.g., the best rewarded one so-far) or instead a heterogeneous strategy where



the workers can execute different algorithms. Several existing machine learning
technics have previously been used and studied in the sequential setting [11], as
well as in the decentralized island model [7, 15]. However, to our best knowledge,
the design and analysis of online selection strategies have not been investigated
within a M/W framework. We argue that the M/W scheme make it more con-
venient, as a first step, to reason about the optimal distributed decisions to
make since the master has the ability of acquiring a global view of the whole
distributed system before selecting the most accurate algorithms to execute in
parallel by the workers. This allows us to focus on the critically important selec-
tion strategy at the master level. To summarize, we propose a M/W algorithm
selection framework contributing to the solving of the following questions:

– How to define a reward function on the master based on the performance of
the algorithm(s) executed by the workers?

– How the master can decide on the set of algorithms to be executed next by
the workers based on the reward function?

– What is the relative quality that can be achieved by different algorithm
selection strategies ?

Our M/W framework is evaluated using a tunable benchmark family and a
simulation-based experimental procedure in order to abstract away the techni-
cal implementation issues, and instead provide a fundamental and comprehen-
sive analysis of the expected empirical parallel performance of the underlying
adaptive algorithm selection. The rest of the paper is organized as follows. In
Section 2, we review some related works. In Section 3, the design components
of our M/W adaptive framework is described in details. In Section 4, we report
our main experimental findings. In Section 5, we conclude the paper and discuss
future research directions.

2 Related works

In the following, we provide an overview of related studies on the algorithm
selection problem in the sequential and distributed setting, as well as a brief
summary of exiting optimization benchmark problems designed at the aim of
evaluating their dynamics and behavior.

2.1 Sequential Adaptive Algorithm Selection

In the sequential setting, a number of reinforcement machine learning technics
have been proposed for the online and adaptive selection of algorithms from
a given portfolio. Back to the early works of Grefenstette [14], one standard
technique consists in predicting the performance of a set of operators using
a simple linear regression and the current average fitness of the population,
which then allows to select the best operator to be chosen according to the
prediction given by the regression. However, recent works embeds this selection



problem into a multi-armed bandit framework dealing more explicitly with the
tradeoff between the exploitation of the best so far identified algorithm, and the
exploration of the remaining potentially under-estimated algorithms.

A simple strategy is the so-called ε-greedy (ε-G) strategy which consists in
selecting the algorithm with the best estimated performance at rate (1 − ε),
and a random one at rate ε. In that case, the performance of an operator i is
estimated with the empirical mean µ̂i of rewards on a sliding window where
only the W previous reward observations are considered. The Upper Confidence
Bound (UCB) strategy [2] is a state-of-the-art framework in machine-learning
which consists in estimating the upper confidence bound of the expected reward
of each arm by µ̂i + C · ei; where µ̂i is the estimated (empirical) mean reward,
and ei is the standard error of the prediction. It then selects the algorithms with
the higher bound (for maximization problem). The parameter C allows to tune
the exploitation/exploration trade-off. In the context of algorithm selection [11]
where the arms could be neither independent nor stationary, the estimation of
the expected reward is refined using a sliding window of size W . The Adaptive
Pursuit (AP) strategy [22] is another technique using an exponential recency
weighted average to estimate the expected reward with a parameter α to tune
the adaptation rate of the estimation. This is used to define the probability pi of
selecting every algorithm from the portfolio. At each iteration, these probability
values are updated according to a learning rate β, which basically allows to
increase the selection probability for the best algorithm, and to decrease it for
the other ones.

One key aspect to design a successful adaptive selection strategy is the es-
timation of the quality of an algorithm based on the observed rewards. Some
authors showed that the maximum reward over a sliding window improves the
performance compared to the mean on some combinatorial problems [11, 4]; but
no fundamental analysis of this result was given. In genetic algorithms, the re-
ward can be computed not only based on the quality but also on the diversity of
the population [18]. In the context of parallel adaptive algorithm selection, the
estimation of quality of each available algorithm is also a difficult question since
not only one but many algorithms instances could be executed in each iteration.

2.2 Parallel Adaptive Algorithm Selection

The Master-Worker (M/W) architecture has been extensively studied in evolu-
tionary computation (e.g., see [8]). It is in fact simple to implement, and does not
require sophisticated parallel operations. Two communication modes are usually
considered. In the synchronous mode, the distributed entities operate in rounds,
where in each round the master communicates actions to the workers and then
waits until receiving a response from every worker before starting a new round,
and so on. In the asynchronous mode, the master does not need to wait for
all workers; but instead can initiate a new communication with a worker, typi-
cally when that worker has terminated executing the previous action and is idle.
When the evaluation time of the fitness function can vary substantially during
the course of execution, the asynchronous mode is generally preferred [24] since



it can substantially improve parallel efficiency. However, the synchronous mode
can allow to have a more global view of the distributed system which can be
crucially important to better coordinate the workers [23].

Adaptive selection approaches designed to operate in a distributed setting are
not new. The island model, which is considered as inherently distributed, has
been investigated in the past. To cite a few, in [21, 12], it is also demonstrated
that a randomly setting the parameters at each iteration in a heterogeneous
manner can outperforms static homogeneous parameter settings. Nonetheless,
embedding a reinforcement machine learning technique instead of random selec-
tion can improve the performance of the adaptive distributed system. In [4], a
dynamic island model is proposed to select online the relevant algorithm. Each
island is associated to one algorithm, and the migration rates of solutions be-
tween islands are controlled by the operators performance of each island. As
commented by the authors, this technique is not designed to fit directly in a
scalable distributed system and requires some further adaptations. In [7, 15], a
distributed adaptive metaheuristic selection framework is proposed which can be
viewed as a natural extension of the island model that was specifically designed
to fit the distributed nature of the target compute platforms. The adaptive se-
lection is performed locally by selecting the best rewarded metaheuristic from
the neighboring nodes (islands) or a random one with small probability like in
ε-greedy strategy. Notice however that we are not aware of any in-depth analysis
addressing the design principles underlying a M/W adaptive algorithm selection
approach. In this work, we propose and empirically analyze the behavior of such
an approach in an attempt to fill the gap between the existing sequential algo-
rithm selection methods and the possibility to deploy them in a parallel compute
environment using a simple, yet effective, parallel scheme like the M/W one.

2.3 Benchmarks: The Fitness Cloud Model

The understanding of the dynamics of a selection strategy according to the
problem at hand is a difficult issue. A number of artificial combinatorial problems
have been designed and used in the literature. We can distinguish between two
main benchmark classes. In the first one, a well-known combinatorial problem in
evolutionary algorithm is used, such as oneMax or long-path problems, with basic
operators, such as bit-flip, embedded in a (1+λ)-EA [5]. This however can only
highlight the search behavior according to few and problem-specific properties.
In the second class of benchmarks, the problem and the stochastic operators are
abstracted. The performance of each available operator is then defined according
to the state of the search [22, 11, 13, 16]. This allows to study important black-box
(problem independent) features such as the number of operators, the frequency
of change of the best operators, the quality difference between operators, etc.

In this work, we use a tunable benchmark, called the Fitness Cloud Model
(FCM), introduced recently in [16]. The FCM is a benchmark from the second
class where the state of the search is given by the fitness of the solution. The
fitness of a solution after applying a search operator is modeled by a random
variable for which the probability distribution depends on the fitness of the



current solution. A normal distribution with tunable parameters is typically
used. More specifically, given the fitness z = f(x) of the current solution x, the
probability distribution of the fitness f(y) of one solution obtained by a specific
operator is defined by: Pr(f(y) = z′ | f(x) = z) ∼ N (µ(z), σ2(z)) where µ(z)
and σ2(z) are respectively the mean and the variance of the normal distribution.
In [16], a simple scenario with two operators is studied. The mean and variance
of the conditional normal distribution are defined as follows: µi(z) = z+Kµi

and
σ2
i (z) = Kσi for each operator i ∈ {1, 2}. Parameters Kµi and Kσi are different

constant numbers. An adaptive algorithm is assumed to start with a search state
where the fitness value is 0, and stops when a fitness value of 1 is reached. Notice
that in the FCM, on the contrary of benchmark of the first class (oneMax, etc.),
one can control the average quality and the variance of each operator as well
the relative difference between the considered operators which are two of the
main features to analyze from the perspective of adaptive selection of operators.
Please refer to [16] for more details on the design and motivation of the FMC
benchmark.

3 M/W Framework Description

First, a portfolio of k (local search) operators is assumed to be given, and no a
priori knowledge is assumed on the behavior of the operators with respect to the
black-box problem under consideration. Naturally, k is an integer value greater or
equal than 2. The global architecture of the proposed adaptive M/W framework
is summarized in Algorithm 1 depicting the high level code executed by the
master and in Algorithm 2 depicting the high level code executed in parallel
by each worker. The overall algorithm operates in different parallel rounds. At
each round, the master sends the best solution x? and the operator identifier θi
assigned to each worker node i. Based on x? and θi, the role of each worker is
to compute a new candidate solution to be send back to master. Although one
could consider and study different alternatives, in this work, a standard (1+ 1)-
EA is simply executed by each worker. In addition, the worker computes a local
reward in order to render the quality of its assigned operator θi. Different kinds
of local rewards can be considered at this stage [10]. In our work, and since an
elitist selection is applied locally by each worker, the local reward of an operator
is the positive improvement observed when applying the (1+1)-EA. The master
waits for all local solutions computed in parallel by the workers, and updates
the global best solution x? to be considered in the next round, and so on. More
importantly, the local rewards collected by the master are used in order to select
a new set of operators to be assigned to the workers in the subsequent rounds,
which actually constitutes the adaptive and core part of our framework. Two
tightly coupled issues are to be handled by the master in order to set up an
effective adaptive mechanism: (i) how to aggregate the local rewards sent by
the workers and (ii) how to select the new set of operators accordingly. This is
described next.



Algorithm 1 Adaptive M/W algorithm for the master node
1: (θ1, θ2, ..., θn)←Selection_Strategy_Initialization()
2: x? ← Solution_Initialization() ; f? ← f(x?)
3: repeat
4: for each worker i do
5: Send Msg(θi, x?, f?) to worker i
6: end for
7: Wait until all messages are received from all workers
8: for each worker i do
9: (ri, xi, f i) ← Receive Msg() from worker i
10: end for
11: x? ← xi; f? ← f i s.t. f i = max{f?, f1, f2, . . . , fn}
12: (R1, R2, ..., Rk) ← Reward_Aggregation((θ1, r1), ..., (θn, rn))
13: (θ1, θ2, ..., θn)← Decision_Strategy(R1, R2, ..., Rk)
14: until stopping criterion is true

Algorithm 2 Adaptive M/W algorithm for each worker node
1: (θ, x?, f?)← Receive Msg() from master
2: x′ ← Apply operator θ on x? ; f ′ ← Evaluate fitness of x′

3: δb ← max(0, f ′ − f?)
4: if f(x?) < f(x′) then
5: x? ← x′ ; f? ← f

′

6: end if
7: Send Msg(δb, x?, f?) to master

3.1 Aggregation of local reward values

On one hand, all adaptive operator selection strategies such as ε-greedy, Adap-
tive Pursuit, Upper Confidence Bound, etc. (see Sec. 2.1) need to get one single
reward value as a feedback when one operator is executed. On the other hand, in
our framework, a set of local rewards are computed by the workers and provides
us with a feedback on the quality of an operator when executed in parallel by
several workers. Unlike sequential algorithms, the set of local rewards observed
in parallel cannot be viewed simply as a sequence of independent rewards that
would be given iteratively to a sequential strategy. Hence, one specific design
component of an adaptive M/W algorithm is the way to aggregate the local re-
ward values into one global reward value. Consequently, we distinguish two main
aggregation strategies: (i) the mean or the (ii) maximum of the local rewards. In
other words, at each round, the (global) reward computed by the master, with
respect to one operator executed by at least one worker, is either the average or
the maximum of the local values sent by the corresponding workers.

Despite their simplicity, the two previous local reward aggregation strategies
are fundamentally different. In fact, assuming that the fitness improvement after
applying a stochastic operator is given by a probability distribution, the mean of
the reward values computed by the n workers allows to estimate the expectation
of this distribution with a high accuracy, whereas the maximum gives information



on its extremes [10]. Additionally, we consider a sliding window of size W to
estimate the expected reward µ̂i in ε-greedy, and UCB as considered in previous
works.

3.2 Homogeneous vs. Heterogeneous Adaptive Selection

As mentioned previously, the master needs to select one operator for each worker.
We consider both (i) a Homogeneous (Ho) adaptive strategy, in which the same
operator is selected by the master and assigned to all worker, and (ii) a Hetero-
geneous (He) adaptive strategy, in which the master selects, possibly different,
operators to be assigned to the workers. The rationale behind a homogeneous
strategy is that in each round there exists one relevant operator providing an
optimal performance, and hence should be executed simultaneously in parallel
by all workers. This a rather exploitation-guided strategy which aims at avoid-
ing to loose function evaluations, and to post-pone the exploration component
to act in-between two consecutive rounds. In contrast, the rationale behind a
heterogeneous strategy is that a set containing a mixture of different operators
is expected to perform better than a set containing the same operator, in the
sense that: (i) the probability of obtaining a better solution when executing dif-
ferent operators in each round is larger, and/or (ii) a relatively small number of
evaluations spent exploring non-necessarily optimal operator(s) at each round
allows to better predict the best operator(s) to select next.

In the homogeneous setting, we consider the three standard selection strate-
gies (cf. Sect. 2.1), namely, ε-greedy, AP, and UCB. The same operator computed
by any of these strategies is assigned by the master to the workers. Notice that
the difference with a sequential selection is the way the reward is computed
by the workers and maintained by the master, which is crucially important for
those methods to operate accurately. In the heterogeneous setting, we consider
to execute either the ε-greedy strategy or the AP strategy iteratively for each
worker. Notice in fact that these two strategies are randomized, i.e., for ε-greedy,
the best operator is selected with rate 1− ε and the other ones with rate ε, and
for AP, each operator is selected proportionally to a rate pi. Hence, by running
iteratively those strategies, the selected operators is likely to be different in each
execution and the master is then able to assign different operators to the workers.
In contrast, running iteratively an UCB selection does not give an heterogenous
strategy due to its deterministic nature (same operator is given at each selection
step). Designing an heterogeneous UCB-based strategy is actually a challenging
open question which is left for future investigations.

4 Experimental analysis

We consider the Fitness Cloud Model as an abstract benchmark. We have three
competing adaptative selection mechanisms (ε-G, UCB, and AP) which com-
bined accordingly with the two considered reward aggregation strategies (mean



Table 1. Parameters setting of the selection strategies

Selection strategy Parameters value
ε-G He. Max. ε = 0.5 W = 400
ε-G He. Mean ε = 0.5 W = 400
ε-G Ho. Max ε = 0.05 W = 4500
ε-G Ho. Mean ε = 0.05 W = 4500

Selection strategy Parameters value
UCB Max. C = 0.005 W = 700
UCB Mean C = 0.05 W = 5000
AP α = 0.2 β = 0.2

and max), and the two homogeneity scenarios (Ho and He), provide us 10 vari-
ants. Moreover, we consider two baseline random strategies, which consist in
selecting the next operator randomly, both in a homogeneous or in a hetero-
geneous setting. In the following, we first start discussing the overall relative
performance, then provide a more focused analysis to better understand the
behavior and the dynamics of the different variants.

4.1 Overall Relative Performance

We adopt a simulation-based approach where we count the number of rounds
performed by the master until reaching the optimal fitness value. This allows us
to abstract away the communication issues and to evaluate the accuracy of the
considered algorithms in adapting the search process to operate optimally. We
consider a portfolio with k = 2 operators. Following the Fitness Cloud Model,
each operator impacts differently the fitness of solution: the first one follows the
normal distribution N (−10−4, 10−4), and the second one N (−10−3, 5 × 10−4).
These distributions are fixed and do not change in the course of the optimization
which is a simple, yet challenging, scenario in order to elicit the behavior of
adaptive algorithms in a black-box scenario. For the sake of presentation, the
choice of the benchmark parameters will be discussed later. The parameter set
of the different selection strategies is given in Table 1. This setting can be shown
to be robust and is in accordance with previous studies [16, 15]. Each variant is
executed 100 times and an overview of the performance in terms of number of
distributed rounds is given in Fig. 1. Three main observations can be made.

Firstly, using the mean reward aggregation function is clearly outperformed
by the maximum reward function. Secondly, the difference between a homoge-
neous and heterogeneous setting is mitigated and depends on the selection it-self.
Thirdly, according to a Mann-Whitney statistical test at confidence level of 5%,
and when comparing the best setting of given selection variant, the UCB strat-
egy appears to be the best one, followed by ε-greedy strategy and are better
than the AP strategy. These first results can be explained by the ability of the
UCB machine-learning inspired strategy to efficiently learn the best operator to
apply in a given round when using the maximum reward. The other strategies, al-
though being competitive, spend some rounds to explore non-relevant operators.
More importantly, all adaptive strategies are found to share a relatively good
performance when the other design components, that is the choice of the reward,
and the heterogeneity, are well tuned. To better understand such a behavior, we
provide next a more throughout analysis.



Fig. 1. Number of rounds to the optimal fitness using operator 1 ∼ N (−10−4, 10−4),
operator 2 ∼ N (−10−3, 5× 10−4) and n = 256 workers.

Fig. 2. Mean (top) and maximum (bottom) reward values with operator 1 ∼
N (−10−4, 10−4), operator 2 ∼ N (−10−3, σ2) and n = 256 workers as a function of
the variance σ2.

4.2 Analysis of the Reward Aggregation Functions

To understand the fundamental difference between using the maximum or the
mean as a reward function, as well as its crucial importance when designing
an adaptive strategy, we consider to study the property of the considered fitness
cloud benchmark in an extended setting. More precisely, let us fix the parameters
of the normal distribution corresponding to the first operator in the portfolio to
µ1 = −10−4 and σ2

1 = 10−4. Let us also fix the mean of the normal distribution
of the second operator to µ1 = −10−3. Since both means are negative, the
fitness value is decreased in expectation by both operators. For the fixed number
of workers, and since the parameters of the normal law does not change in
the course of optimization, operator 1 would always provide the same expected
improvement, i.e., 8.33×10−2 [15], which corresponds to the local reward. Let us
now study how the relative reward value would be for operator 2 if its variance
was set to take different values than in our initial setting. This is summarized
in Fig. 2 showing the expected rewards of both operators when using a mean
aggregation function (top) and a maximum aggregation function (bottom), for
n = 256 workers as a function of a range of variance values σ2 for operator 2.

For both reward aggregation functions, the reward value of operator 2 in-
creases with the variance σ2. Below the value of a = 4.17× 10−4, the reward of
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Fig. 3. Maximum reward value as function of the number of workers n for operator
1 ∼ N (−10−4, 10−4) and different variance values of operator 2 ∼ N (−10−3, σ2):
σ2 = 10−4 (left), σ2 = 5× 10−4 (middle), and σ2 = 7× 10−4 (right).

operator 1 is higher than the reward of operator 2 for both mean and maximum
functions. Hence, an (elitist) operator selection strategy which selects the oper-
ator according to the highest reward value would select the same operator 1, no
matter which aggregation function is used, i.e., there is no difference between
the two aggregation function in the case the difference between the fitness vari-
ances of both operators is relatively large, given that their mean fitness is same.
Similarly, when the variance σ2 of operator is much larger than the variance of
operator 1 (σ2 > b = 5.6× 10−4), the reward value for operator 2 is larger com-
pared to operator 1 no matter the reward aggregation used. Hence, a selection
strategy based on one or the other reward function would likely take the same
decision, i.e., select operator 2. However, the challenging situation is when the
variance σ2 is in the interval [a, b]; since, according to the mean reward function,
operator 1 (resp. 2) is better (resp. worst), but according to the maximum re-
ward function, operator 1 (resp. 2) is worst (resp. better). In this case, it is not
clear that two selection strategies following the mean and the maximum reward
function would select the same operator.

Additionally, the mean reward value does not depend on the number of work-
ers. In fact, increasing the number of local rewards computed by the workers
simply reduces the confidence interval around the global mean reward value. In
contrast, the maximum reward value increases logarithmically with the number
of workers. This is shown in Fig. 3 where three representative examples are con-
sidered (σ2 = 3×10−4 < a, σ2 = 5×10−4 ∈ [a, b], and σ2 = 7×10−4 > b). When
the variance is small or large, the number of workers does not change the rank
of each operator with respect to the maximum reward value. However, when the
variance σ2 is between a and b, the best operator according to the maximum
reward changes: for low number of workers, operator 1 has a highest maximum
reward, whereas operator 2 is preferred when n ≥ 30.

These empirical observations explain why the maximum reward was found
to clearly outperform the mean reward (Sec. 4.1, Fig. 1), since the variance of
the second operator was set to a the value 5×10−4 ∈ [a, b] which corresponds to
a challenging scenario for adaptive selection. In fact, the mean reward can only
measure the expected quality of an operator when executed locally and indepen-
dently by each individual worker, whereas the maximum reward measures the
expected quality of the next solution that would be obtained more globally by
the cooperative master-worker system in one round. In this sense, an accurate
distributed selection strategy has to acquire information about the quality of an
operator when executed cooperatively by all the entities of the system, and not



only on the quality of one operator taken independently of the distributed and
cooperative environment where it can be executed. Hence, the maximum reward
aggregation has to be preferred when the goal of the adaptive master-worker
algorithm is to increase as much as possible the fitness value in each round of
computation which is typically the case of a (1+λ)-EA. More generally, it should
be possible to extend this kind of results for others adaptive M/W algorithms
which are less explorative, i.e., the global reward should then take explicitly into
account an additional diversity measure.

4.3 Analysis of the Heterogeneity Scenarios

The impact of selecting and assigning workers different operators can also be
studied as a function of the relative variance of the portfolio operators. In the
following, we only consider the maximum reward strategy since it was proved
to perform better. For the sake of analysis, let us consider the fitness cloud
benchmark where operator 1 follows N (−10−4, 10−4), and operator 2 follows
N (−10−3, σ2). By varying σ, we compute the maximum global reward, i.e. the
expected improvement of one round of the M/W algorithm when using n = 256
workers, in a heterogeneous setting that would split the workers into those that
execute operator 1 and those that execute operator 2. By varying the proportion
of heterogeneous workers we are then able to compute the optimal number n1 of
workers which should executes operator 1 (the n− n1 executing operator 2) as
a function of operator 2 variance σ2. More precisely, for each value n1 ∈ [0, n],
the average of the maximum reward on 1000 independent rounds is computed,
and the value n1 with the highest maximum reward is selected and reported in
Fig. 4. Clearly, for a wide range of σ values, the optimal value n1 is either 256,
or n1 = 0 for large variance. This indicates that a homogenous setting (with
only operator 1 or 2) is optimal except for a small range of variance (between
3.4× 10−4 and 4.4× 10−4). Moreover when an heterogenous strategy is optimal,
the gain of maximum reward with an homogeneous strategy is very small (cf. Fig.
4 right). Given these observations we can know understand better the relative
performance observed for the different strategies in Fig. 1 for which σ = 5×10−4.

For the baseline random strategy, the heterogeneous setting is clearly better;
since because of the elitism of a (1 + λ)-EA, it is better to select the wrong
operator for half of the workers than one over two rounds. Notice that the base-
line heterogeneous random strategy is never better than any others adaptive
strategies when using the maximum reward. The homogeneous version of the
ε-greedy strategy based on the maximum reward significantly outperforms the
heterogenous version according to the Mann-Whitney test at level 5%. In con-
trast, the heterogenous AP outperforms the homogeneous one. Nevertheless, the
best strategy is UCB which is homogeneous. According to the exploration power
of the strategy, the heterogeneity could help to select the relevant operator; but,
when the selection strategy is able to detect the best operator, and when the
relative expected gain in fitness improvement is small, a homogeneous setting is
to be preferred.
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Fig. 4. Optimal number of workers n1 with operator 1 which maximizes the maxi-
mum reward value for an heterogeneous strategy as a function of variance parameter
σ2. The operator 1 and 2 follow respectively the normal law N (−10−4, 10−4), and
N (−10−3, σ2) for n = 256 workers. Left: optimal number n1. Right: Maximum reward
values for homogeneous strategies with operator 1 and operator 2, and for the optimal
heterogeneous strategy.

5 Conclusions

We conducted an in-depth analysis of the design components of a synchronous
M/W adaptive algorithm selection framework. Our main findings can be sum-
marized as follows. The reward associated to each algorithm, which gives the
feedback measure for the adaptive selection method, must take into account the
performance of the global system, and not only the local performance of each
worker. Except when all algorithms have very close performance, an optimal set
of algorithms is homogeneous. However, with respect to a particular adaptive
strategy, a heterogeneous set could be helpful to continuously enhance its corre-
sponding exploration level. At last, adaptive algorithm selection strategies can
be highly effective when their design components in a master-worker architecture
are well tuned.

Besides, this first work shall allow us to extend our results for expensive real-
world problems, where the evaluation of the fitness function is typically based
on computing intensive simulations, e.g., [1]. Another interesting question is the
design of reward functions for the asynchronous M/W communication mode.
Since a global snapshot of the distributed system is difficult to acquire by the
master in such a setting, the reward function is expected to be critically impor-
tant depending on the different communication to computation trade-offs faced
by the master. It is our hope that the new insights provided by our fundamental
analysis in the synchronous setting will help addressing such challenging issues.
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