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STOCHASTIC MIRROR DESCENT DYNAMICS AND THEIR
CONVERGENCE IN MONOTONE VARIATIONAL INEQUALITIES

PANAYOTIS MERTIKOPOULOS∗ AND MATHIAS STAUDIGL]

Abstract. We examine a class of stochastic mirror descent dynamics in the
context of monotone variational inequalities (including Nash equilibrium and
saddle-point problems). The dynamics under study are formulated as a sto-
chastic differential equation driven by a (single-valued) monotone operator and
perturbed by a Brownian motion. The system’s controllable parameters are
two variable weight sequences that respectively pre- and post-multiply the dri-
ver of the process. By carefully tuning these parameters, we obtain global
convergence in the ergodic sense, and we estimate the average rate of conver-
gence of the process. We also establish a large deviations principle showing
that individual trajectories exhibit exponential concentration around this av-
erage.

1. Introduction

Discrete and continuous dynamical systems governed by maximal monotone op-
erators play an important role in optimization, game theory, equilibrium, fixed-
point theory, partial differential equations, among many others. The study of the
relationship between continuous time and discrete time models is an active area of
research, see [1] for a recent overview, and [2] for connections to accelerated meth-
ods. Viewing an iterative algorithm as a discrete version of a continuous dynamical
system shed new light on the properties of this algorithm, offer Lyapunov functions
which are useful for the asymptotic analysis, and suggest new classes of algorithms.
A classical situation arises in the study of (projected) gradient descent dynam-
ics and its connection with Cauchy’s steepest descent algorithm, and the relation
between Mirror descent algorithms and dynamical systems derived from Bregman
projections [3–5]. This paper is concerned with the continuous time analysis of a
random dynamical system which can be formally interpreted as the continuous-time
version of a dual averaging algorithm developed by Nesterov [6, 7]. This algorithm
performs simple gradient descent steps in the unconstrained dual space, and then
projects the iterates from the dual space to the feasible set of the optimization

∗Univ. Grenoble Alpes, CNRS, Inria, LIG, F-38000, Grenoble, France.
] Maastricht University, Department of Quantitative Economics, P.O. Box 616,

NL–6200 MD Maastricht, The Netherlands.
E-mail addresses: panayotis.mertikopoulos@imag.fr, m.staudigl@maastrichtuniversity.nl.
2010 Mathematics Subject Classification. Primary 90C25, 60H10 and ; secondary 90C33,

90C47.
Key words and phrases. mirror descent, variational inequalities, saddle-point problems, sto-

chastic differential equations.
P. Mertikopoulos was partially supported by the French National Research Agency (ANR)

grant ORACLESS (ANR–16–CE33–0004–01) and the COST Action CA16228 "European Network
for Game Theory" (GAMENET). The research of M. Staudigl is partially supported by the COST
Action CA16228 "European Network for Game Theory" (GAMENET). .

1

mailto:panayotis.mertikopoulos@imag.fr
mailto:m.staudigl@maastrichtuniversity.nl


2 STOCHASTIC MIRROR DESCENT IN VARIATIONAL INEQUALITIES

problem. This projection is performed as in the classical mirror descent framework
[3, 8]. In the realm of convex optimization, the dual step effectively computes a
weighted average of the realized gradient of the objective function. This averaging
steps makes this algorithm particularly suited for problems where only noisy infor-
mation is available to the decision maker. For this reason dual averaging has been
successively employed in machine learning and engineering [9, 10].
In the framework of convex optimization we have studied the resulting dynamical
system in detail in [11]. This paper extends this dynamical approach consider-
ably to the setting of general monotone variational inequality problems [12]. In
this paper we study a time-continuous random dynamical system generated by a
primal-dual method in mathematical programming originating from [7] based on
monotone single-valued operators. The method combines a stochastic gradient step
in the unconstrained dual space with a projection step in the primal. The main
results of this paper are as follows: Firstly, we address the existence and uniqueness
of continuous processes satisfying the defining equations of our method. Secondly,
we provide a detailed analysis of the convergence of the trajectories in the determin-
istic as well as in the stochastic case. We provide a set of results on the convergence
of the ergodic average of the solution trajectories, as well as convergence results of
individual trajectories in case where the driving operator is strictly monotone.
Notation. Throughout this paper, X will denote a compact convex subset of an
n-dimensional real space V ∼= Rn with norm ‖·‖. We will also write Y ≡ V∗ for the
dual of V, 〈y, x〉 for the canonical pairing between y ∈ V∗ and x ∈ V, and ‖y‖∗ ≡
sup{〈y, x〉 : ‖x‖ ≤ 1} for the dual norm of y in V∗. We denote the relative interior
of X by ri(X ), and its boundary by bd(X ). Finally, for an extended-real-valued
function f : V → R ∪ {∞}, we define its domain as dom f ≡ {x ∈ V : f(x) <∞}.

2. Setup and preliminaries

2.1. Variational inequalities. Let v : X → Y be a Lipschitz continuous monotone
map, i.e.

‖v(x)− v(x′)‖∗ ≤ L‖x− x′‖,
〈v(x)− v(x′), x− x′〉 ≥ 0,

(H1)

for some L > 0 and for all x, x′ ∈ X . Throughout this paper, we will be interested
in solving the variational inequality (VI) problem:

Find x∗ ∈ X such that 〈v(x), x− x∗〉 ≥ 0 for all x ∈ X . (VI)

Since v is assumed continuous and monotone, this weak (or Minty-type) VI problem
is equivalent to the strong (or Stampacchia-type) VI problem [13, 14]:

Find x∗ ∈ X such that 〈v(x∗), x− x∗〉 ≥ 0 for all x ∈ X . (VI′)

When we need to keep track of X and v explicitly, we will refer to (VI) and/or
(VI′) as VI(X , v). The solution set of VI(X , v) will be denoted as X∗; by standard
results, X∗ is convex, compact and nonempty [12].

Below, we present a selected sample of examples and applications of variational
inequality problems; for a more extensive discussion, see [12, 15, 16].

Example 2.1 (Convex optimization). Consider the problem

minimize f(x),

subject to x ∈ X , (Opt)
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where f : X → R is convex and continuously differentiable on X . If x∗ is a solution
of (Opt), first-order optimality gives

〈∇f(x∗), x− x∗〉 ≥ 0 for all x ∈ X . (2.1)

Since f is convex, v = ∇f is monotone, so (Opt) is equivalent to VI(X ,∇f) [17].

Example 2.2 (Saddle-point problems). Let X 1 ⊆ Rn1 and X 2 ⊆ Rn2 be compact
and convex, and let U : X 1 × X 2 → R be a smooth convex-concave function (i.e.
U(x1, x2) is convex in x1 and concave in x2). Then, the associated saddle-point (or
min-max ) problem is to determine the value of U , defined here as

val = min
x1∈X 1

max
x2∈X 2

U(x1, x2) = max
x2∈X 2

min
x1∈X 1

U(x1, x2). (Val)

That the value of U is well-defined follows from von Neumann’s minimax theorem.
Moreover, letting

v(x1, x2) =
(
∇x1U(x1, x2),−∇x2U(x1, x2)

)
, (2.2)

it is easy to check that v is monotone as a map from X ≡ X 1 × X 2 to Rn1+n2

(because U is convex in its first argument and concave in the second). Then, as in
the case of (Opt), first-order optimality implies that the saddle-points of (Val) are
precisely the solutions of the variational inequality VI(X , v) [7].

Example 2.3 (Convex games). One of the main motivations for this paper comes
from determining the Nash equilibria of games with convex cost functions. To state
the problem, let N = {1, . . . , N} be a finite set of players and, for each i ∈ N ,
let X i ⊆ Rni be a compact convex set of actions that can be taken by player i.
Given an action profile x = (x1, . . . , xN ) ∈ X ≡

∏
i X i, the cost for each player is

determined by an associated cost function ci : X → R. The unilateral minimization
of this cost leads to the notion of Nash equilibrium (NE), defined here as an action
profile x∗ = (xi∗)i∈N such that

ci(x∗) ≤ ci(xi;x−i∗ ) for all xi ∈ X i, i ∈ N . (NE)

Of particular interest to us is the case where each ci is smooth and individually
convex in xi. In this case, the profile v(x) = (vi(x))i∈N of individual gradients
vi(x) = ∇xici(x) forms a monotone map and, by first-order optimality, the Nash
equilibrium problem (NE) boils down to solving VI(X , v) [12, 18].

In the rest of this paper, we will consider two important special cases of (VI),
namely:

(1) Strictly monotone problems, i.e. when

〈v(x′)− v(x), x′ − x〉 ≥ 0 with equality iff x = x′. (2.3)
(2) Strongly monotone problems, i.e. when

〈v(x′)− v(x), x′ − x〉 ≥ γ‖x′ − x‖2 for some γ > 0. (2.4)

Clearly, strong monotonicity implies strict monotonicity (which in turns implies or-
dinary monotonicity). In the case of convex optimization problems, strict (respec-
tively strong) monotonicity corresponds to strict (respectively strong) convexity of
the problem’s objective function. Under either refinement, (VI) admits a unique
solution, which will be referred to as “the” solution of (VI).
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2.2. Stochastic mirror descent dynamics. Mirror descent is an iterative optimiza-
tion algorithm combining first-order oracle steps with a “mirror step” generated
by a projection-type mapping.1 The key ingredient defining this mirror step is a
generalization of the Euclidean distance known as a “distance-generating” function:

Definition 2.1. We say that h : X → R is a distance-generating function on X if
a) h is continuous.
b) h is strongly convex, i.e. there exists some α > 0 such that

h(λx+ (1− λ)x′) ≤ λh(x) + (1− λ)h(x′)− α

2
λ(1− λ)‖x− x′‖2, (2.5)

for all x, x′ ∈ X and all λ ∈ [0, 1].

Given a distance-generating function on X , its convex conjugate is given by

h∗(y) = max
x∈X
{〈y, x〉 − h(x)}, y ∈ Y, (2.6)

and the induced mirror map is defined as

Q(y) = argmax
x∈X

{〈y, x〉 − h(x)}. (2.7)

Thanks to the strong convexity of h, Q(y) is well-defined and single-valued for all
y ∈ Y. In particular, as illustrated in the examples below, it plays a role similar to
that of a projection mapping:

Example 2.4 (Euclidean distance). If h(x) = 1
2‖x‖

2
2, the induced mirror map is the

standard Euclidean projector

Q(y) = argmax
x∈X

{∑n

j=1
yjxj −

1

2

∑n

j=1
x2
j

}
= argmin

x∈X
‖x− y‖22. (2.8)

Example 2.5 (Gibbs–Shannon entropy). If X = {x ∈ Rn+ :
∑n
j=1 xj = 1} is the unit

simplex in Rn, the (negative) Gibbs-Shannon entropy h(x) =
∑n
j=1 xj log xj gives

rise to the so-called logit choice map

Q(y) =
(exp(yj))

n
j=1∑n

k=1 exp(yk)
. (2.9)

Example 2.6 (Fermi–Dirac entropy). If X = [0, 1]n is the unit cube in Rn, the
(negative) Fermi-Dirac entropy h(x) =

∑n
j=1[xj log xj + (1−xj) log xj ] induces the

so-called logistic map

Q(y) =

(
exp(yj)

1 + exp(yj)

)n
j=1

(2.10)

For future reference, some basic properties of mirror maps are collected below:

Proposition 2.2. Let h be a distance-generating function on X . Then, the induced
mirror map Q : Y → X satisfies the following properties:

a) x = Q(y) if and only if y ∈ ∂h(x); in particular, imQ = dom ∂h ⊆ X .
b) h∗ is continuously differentiable on Y and ∇h∗(y) = Q(y) for all y ∈ Y.
c) Q(·) is (1/α)-Lipschitz continuous.

1For the origins of the method, see [8]; the specific variant we consider here is due to and is
commonly referred to as “dual averaging” [7] or “lazy mirror descent (MD)” [19].
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The properties reported above are fairly standard in convex analysis; for a proof,
see e.g. [20, p. 217], [21, Theorem 23.5] and [17, Theorem 12.60(b)]. Of particular
importance is the minimizing argument identity ∇h∗ = Q which provides a quick
way of calculating Q in “prox-friendly” geometries (such as the examples discussed
above).

Now, as mentioned above, mirror descent exploits the flexibility provided by a
(not necessarily Euclidean) mirror map by using it to generate first-order steps
along v. For concreteness, we will focus on the so-called “dual averaging” variant
of mirror descent [7], defined here via the recursion

yt+1 = yt − λtv(xt),

xt+1 = Q(ηt+1yt+1),
(2.11)

where:
1) t = 0, 1, . . . denotes the stage of the process.
2) yt is an auxiliary dual variable that aggregates first-order steps along v.2

3) λt is a variable step-size parameter that pre-multiplies the input at each stage.
4) ηt is a variable weight parameter that post-multiplies the dual aggregate yt.3

Thus, descending to continuous time, we obtain the mirror descent dynamics
dy(t) = −λ(t) v(x(t)) dt,

x(t) = Q(η(t)y(t)),
(MD)

with η(t) and λ(t) serving the same role as before (but are now defined over all
t ≥ 0). In particular, our standing assumption for the parameters λ and η of (MD)
will be that

η(t) and λ(t) are positive, C1-smooth and nonincreasing. (H2)

At a heuristic level, the assumptions above guarantee that the dual process y(t) does
not grow too large too fast, so blow-ups in finite time are not possible. Together
with the basic convergence properties of the dynamics (MD), this is discussed in
more detail in Section 3 below.

Now, the primary case of interest in our paper is when the oracle information
for v(x) in (MD) is subject to noise, measurement errors and/or other stochastic
disturbances. To account for such perturbations, we will instead focus on the
stochastic mirror descent dynamics

dY (t) = −λ(t) [v(X(t)) dt+ dM(t)],

X(t) = Q(η(t)Y (t)),
(SMD)

where M(t) is a continuous martingale with respect to some underlying stochas-
tic basis (Ω,F , (Ft)t≥0,P).4 In more detail, we assume for concreteness that the
stochastic disturbance term M(t) is an Itô process of the form

dM(t) = σ(X(t), t) · dW (t), (2.12)

where:

2The usual initialization is y0 = 0, x0 = Q(0) = argminx∈X h(x), but other initializations are
possible.

3The name “dual averaging” alludes to the choice λt = 1, ηt = 1/t: under this choice of
parameters, xt is a mirror projection of the “dual average” yt = t−1

∑t−1
s=0 v(xs).

4We tacitly assume here that the filtration (Ft)t≥0 satisfies the usual conditions of right con-
tinuity and completeness, and carries a standard d-dimensional Wiener process (W (t))t≥0.
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1) W (t) is a d-dimensional Wiener process adapted to Ft.
2) σ(x, t) is an n× d matrix capturing the volatility of the noise process.
Heuristically, the volatility matrix of M(t) captures the intensity of the noise

process and the possible correlations between its components. For instance, when
d = n and σ is the identity matrix, M(t) is just a standard Wiener process: in
this case, the increments of the noise are independent and identically distributed
(i.i.d.) and they are not correlated across different components. Otherwise, if σ is
not diagonal, M(t) could exhibit nontrivial correlations and/or other dependencies
across components.

In terms of regularity, we will be assuming throughout that σ(x, t) is measurable,
bounded, and Lipschitz continuous in x. Formally, we posit that

supx,t‖σ(x, t)‖ <∞,
‖σ(x′, t)− σ(x, t)‖ ≤ `‖x′ − x‖,

(H3)

where ` > 0 is a positive constant and

‖σ‖ =
√

tr[σσ>] =

√∑n

i=1

∑d

j=1
|σij |2 (2.13)

denotes the Frobenius (matrix) norm of σ. In particular, (H3) implies that there
exists a positive constant σ∗ ≥ 0 such that

‖σ(x, t)‖2 ≤ σ2
∗ for all x ∈ X , t ≥ 0. (2.14)

In what follows, it will be convenient to measure the intensity of the noise affecting
(SMD) via σ∗; of course, when σ∗ = 0, we recover the noiseless, deterministic
dynamics (MD).

3. Deterministic analysis

To establish a reference standard, we first focus on the deterministic regime of
(MD), i.e. when M(t) ≡ 0 in (SMD). We begin with a basic well-posedness result:

Proposition 3.1. Under conditions (H1) and (H2), the dynamical system (MD)
admits a unique global solution.

Proof. Let A(t, y) = −λ(t)v(Q(η(t)y)) for all t ∈ R+, y ∈ Y. Clearly, A(t, y) is
jointly continuous in t and y. Moreover, by (H2), λ(t) has bounded first derivative
and η(t) is nonincreasing, so both λ(t) and η(t) are Lipschitz continuous. Finally,
by (H1), v is L-Lipschitz continuous, implying in turn that

‖A(t, y1)−A(t, y2)‖∗ ≤
Lη(t)λ(t)

α
‖y1 − y2‖∗ for all y1, y2 ∈ Y, (3.1)

where α is the strong convexity constant of h and we used Proposition 2.2 to
estimate the Lipschitz constant of Q.

This shows that A(t, y) is Lipschitz in y for all t, so existence and uniqueness of
local solutions follows from the Picard–Lindelöf theorem. Eq. (H2) further guar-
antees that the Lipschitz constant of A(t, ·) can be chosen uniformly in t, so these
solutions can be extended for all t ≥ 0. �

Given existence and uniqueness of a unique global solution of the dual process,
we can define a semi-flow φ(t, y) : [0,∞) × Y → Y satisfying φ(0, y) = y and
∂φ(t,y)
∂t = A(t, φ(t, y)) for all (t, y) ∈ [0,∞)× Y. This semi-flow induces a Lipschitz

continuous trajectory ξ(t, y) = Q(η(t)φ(t, y)) on the primal space X .
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Now, to analyze the convergence of (MD), we will consider two “gap functions”
quantifying the distance between x(t) and the solution set of (VI):

• In the general case, we will focus on the “dual gap” (or “merit”) function
[12, 22]:

g(x) = max
x′∈X
〈v(x′), x− x′〉. (3.2)

By (H1) and the compactness of X , it follows that g(x) is continuous, non-
negative and convex; moreover, we have g(x) = 0 if and only if x is a
solution of VI(X , v) [13, Proposition 3.1].

• For the saddle point problem described in Example 2.2, we instead look at
the Nikaido-Isoda gap function [23]:

G(p1, p2) = max
x2∈X 2

U(p1, x2)− min
x1∈X 1

U(x1, p2). (3.3)

Since U is convex-concave, it is immediate that G(p1, p2) ≥ g(p1, p2), where the
operator involved in the definition of the dual gap function is given by the saddle-
point operator (2.2). However, it is still true that G(p1, p2) = 0 if and only if the
pair (p1, p2) is a saddle-point.5 Since both gap functions vanish only at solutions of
(VI), we will prove trajectory convergence by monitoring the decrease of the relevant
gap over time. This is achieved by introducing the so-called Fenchel coupling [18],
an auxiliary energy function defined here as

F (x, y) = h(x) + h∗(y)− 〈y, x〉 for all x ∈ X , y ∈ Y, (3.4)

where h∗ denotes the convex conjugate of h.

Remark 3.1. In a certain sense, the Fenchel coupling can be seen as a primal-dual
extension of the well-known Bregman divergence [24, 25]:

D(x, z) = h(x)− h(z)− h′(z;x− z) for all x, z ∈ X . (3.5)

More precisely, we have F (x, y) ≥ D(x,Q(y)) with equality if and only if Q(y) is
interior [18, Prop. 4.3].

Some further key properties of F are summarized in the following proposition
(also proved in [18]):

Proposition 3.2. Let h be a distance-generating function on X . Then:
a) F (x, y) ≥ 0 with equality if and only if x = Q(y); in particular, F (x, y) ≥

α
2 ‖Q(y)− x‖2 for all x ∈ X , y ∈ Y.

b) Viewed as a function of y, F (x, y) is convex, differentiable, and its gradient is
given by

∇yF (x, y) = Q(y)− x. (3.6)
c) For al x ∈ X and all y, y′ ∈ Y, we have

F (x, y′) ≤ F (x, y) + 〈y′ − y,Q(y)− x〉+
1

2α
‖y′ − y‖2∗. (3.7)

We are now in a position to state and prove our first convergence result for
(MD). In the sequel, if there is no danger of confusion we will use the more concise
notation x(t) = ξ(t, y) and y(t) = φ(t, y) for the unique solution to (MD) with
initial condition y ∈ Y.

5Simply note that maxx2∈X2 minx1∈X1 U(x1, x2) ≤ minx1∈X1 maxx2∈X2 U(x1, x2), and
G(p1, p2) = 0 implies that maxx2∈X2 minx1∈X1 U(x1, x2) ≥ minx1∈X1 maxx2∈X2 U(x2, x2).
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Consider the averaged trajectory

x̄(t) =

∫ t
0
λ(s)x(s) ds∫ t
0
λ(s) ds

=
1

S(t)

∫ t

0

λ(s)x(s) ds, (3.8)

where we have set

S(t) =

∫ t

0

λ(s) ds. (3.9)

We then have the following convergence guarantee:

Proposition 3.3. Suppose that (MD) is initialized at y = 0. Then:

g(x̄(t)) ≤ D(h;X )

η(t)S(t)
, (3.10)

where x̄(t) is the averaged trajectory constructed in (3.8) with x(t) = ξ(t, 0), and

D(h;X ) = max
x,x′∈X

{h(x′)− h(x)} = maxh−minh. (3.11)

In particular, if (VI) is associated with a convex-concave saddle-point problem as
in Example 2.2, we have the guarantee:

G(x̄(t)) ≤ D(h1;X 1) +D(h2;X 2)

η(t)S(t)
. (3.12)

In both cases, x̄(t) converges to the solution set of VI(X , v) whenever limt→∞ η(t)S(t) =
∞.

Proof. Given some p ∈ X , let

Hp(t) =
1

η(t)
F (p, η(t)y(t)) (3.13)

denote the “η-deflated” Fenchel coupling between p and y(t) ≡ φ(t, 0). Then, by
Proposition 3.2, a simple differentiation yields

Hp(t)−Hp(0) = −
∫ t

0

λ(s)〈v(x(s)), x(s)−p〉ds−
∫ t

0

η̇(s)

η(s)2
[h(p)−h(x(s))]ds, (3.14)

and, after rearranging, we obtain∫ t

0

λ(s)〈v(x(s)), x(s)− p〉 ds = Hp(0)−Hp(t)−
∫ t

0

η̇(s)

η(s)2
[h(p)− h(x(s))] ds

≤ Hp(0) +D(h;X )

(
1

η(t)
− 1

η(0)

)
. (3.15)

Now, let xc = argmin{h(x) : x ∈ X} denote the “prox-center” of X . Since η(0) > 0
and y(0) = 0 by assumption, we readily get

Hp(0) =
F (p, 0)

η(0)
=
h(p) + h∗(0)− 〈0, p〉

η(0)
=
h(p)− h(xc)

η(0)
≤ D(h;X )

η(0)
. (3.16)

From the monotonicity of v, we further deduce that

g(x̄(t)) ≤ 1

S(t)
max
p∈X

∫ t

0

λ(s)〈v(x(s)), x(s)− p〉 ds. (3.17)

Thus, substituting (3.16) in (3.15), maximizing over p ∈ X and plugging the result
into (3.17) gives (3.10).
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Suppose now that (VI) is associated to a convex-concave saddle-point problem
as in Example 2.2. In this case. we can replicate the above analysis for each
component xi(t), i = 1, 2, of x(t) to obtain the basic bounds∫ t

0

λ(s)〈∇x1U(x(s)), x1(s)− p1〉 ds ≤ D(h1;X 1)

η(t)
,∫ t

0

λ(s)〈−∇x2U(x(s)), x2(s)− p2〉 ds ≤ D(h2;X 2)

η(t)
.

(3.18)

Using the fact that U is convex-concave, this leads to the value-based bounds∫ t

0

λ(s)[U(x(s))− U(p1, x2(s))] ds ≤ D(h1;X 1)

η(t)
,∫ t

0

λ(s)[U(x1(s), p2)− U(x(s))] ds ≤ D(h2;X 2)

η(t)
.

(3.19)

Summing these inequalities, dividing by S(t), and using Jensen’s inequality gives

U(x̄1(t), p2)− U(p1, x̄2(t)) ≤ D(h1;X 1) +D(h2;X 2)

η(t)S(t)

The bound (3.12) then follows by taking the supremum over p1 and p2, and using
the definition of the Nikaido–Isoda gap function. �

The gap-based analysis of Proposition 3.3 can be refined further in the case of
strongly monotone VI problems. In this case, we have:

Proposition 3.4. Let x∗ denote the (necessarily unique) solution of a γ-strongly
monotone problem VI(X , v). Then,

‖x̄(t)− x∗‖2 ≤
D(h;X )

γ

1

η(t)S(t)
. (3.20)

In particular, x̄(t) converges to x∗ whenever limt→∞ η(t)S(t) =∞.

Proof. By Jensen’s inequality, the strong monotonicity of v and the assumption
that x∗ solves VI(X , v), we have:

γ‖x̄(t)− x∗‖2 ≤
γ

S(t)

∫ t

0

λ(s)‖x(s)− x∗‖2 ds (Jensen)

≤ 1

S(t)

∫ t

0

λ(s)〈v(x(s))− v(x∗), x(s)− x∗〉 ds (γ-monotonicity)

≤ 1

S(t)

∫ t

0

λ(s)〈v(x(s)), x(s)− x∗〉 ds (optimality of x∗)

≤ D(h;X )

η(t)S(t)
, (3.21)

where the last inequality follows as in the proof of Proposition 3.3. The bound
(3.20) is then obtained by dividing both sides by γ. �

The two results above are in the spirit of classical ergodic convergence results
for monotone VI problems as in [7, 26, 27]. In particular, taking η(t) =

√
L/(2α)

and λ(t) = 1/(2
√
t) gives the upper bound

g(x̄(t)) ≤ D(h;X )

√
L

αt
, (3.22)
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which is of the same order as the O(1/
√
t) guarantees obtained in the references

above. However, the bound (3.17) does not have a term which is antagonistic to η(t)
or λ(t), so, if (MD) is run with constant λ and η, we get an O(1/t) bound for g(x̄(t))
(and/or ‖x̄(t)−x∗‖ in the case of strongly monotone VI problems).6 This suggests
an importang gap between continuous and discrete time; for a similar phenomenon
in the context of online convex optimization, see the regret minimization analysis
of [28].

We close this section with a (nonergodic) trajectory convergence result for strictly
monotone problems:

Proposition 3.5. Let x∗ denote the (necessarily unique) solution of a γ-strongly
monotone problem VI(X , v). If Hypotheses (H1)–(H2) hold and the parameters λ
and η of (MD) satisfy

inft λ(t) > 0 and inft η(t) > 0, (3.23)

then limt→∞ x(t) = x∗ for any initialization y(0) ∈ Y of (MD).

Proof. Let x̂ be an ω-limit point of x(t) and assume for the purposes of obtaining a
contradiction that x̂ 6= x∗. Then, by assumption, there exists an open neighborhood
O of x̂ and a positive constant a > 0 such that

〈v(x), x− x∗〉 ≥ a for all x ∈ O. (3.24)

Furthermore, since x̂ is an ω-limit of x(t), there exists an increasing sequence (tk)k∈N
such that tk ↑ ∞ and x(tk) → x̂ as k → ∞. Thus, relabeling indices if necessary,
we may assume without loss of generality that x(tk) ∈ O for all k ∈ N.

Now, for all ε > 0, we have

‖x(tk + ε)− x(tk)‖ = ‖Q(Y (tk + ε))−Q(Y (tk))‖

≤ 1

α
‖Y (tk + ε)− Y (tk)‖∗

≤ 1

α

∫ tk+ε

tk

λ(s)‖v(x(s))‖∗ ds

≤ 1

α
max
x∈X
‖v(x)‖∗

∫ tk+ε

tk

λ(s) ds ≤ ελ̄

α
max
x∈X
‖v(x)‖∗, (3.25)

where λ̄ = λ(0) denotes the maximum value of λ(t). As this bound does not depend
on k, we can choose ε > 0 small enough so that x(tk + s) ∈ O for all s ∈ [0, ε] and
all k ∈ N. Thus, letting H(t) = η(t)−1F (x∗, η(t)y(t)) and using (3.15), we obtain

H(tn)−H(t0) = −
n∑
k=1

∫ tk

tk−1

λ(s)〈v(x(s)), x(s)− x∗〉 ds+D(h;X )

(
1

η(tn)
− 1

η(t0)

)

≤ −aλ
n∑
k=1

(tk − tk−1) +D(h;X )

(
1

η(tn)
− 1

η(t0)

)
= −aελn+D(h;X )

(
1

η(tn)
− 1

η(t0)

)
, (3.26)

6In fact, even faster convergence can be guaranteed if (MD) is run with increasing λ(t). In
that case however, well-posedness is not immediately guaranteed, so we do not consider increasing
λ here.
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where we set λ = inft λ(t) > 0. Given that inft η(t) > 0, the above implies that
limn→∞H(tn) = −∞, contradicting the fact that F (x∗, y) ≥ 0 for all y ∈ Y. This
implies that x̂ = x∗; by compactness, x(t) admits at least one ω-limit point, so our
claim follows. �

4. Analysis of the stochastic dynamics

In this section, we turn to the stochastic system (SMD). As in the noise-free
analysis of the previous section, we begin with a well-posedness result, stated for
simplicity for deterministic initial conditions of the form Y (0) = y0 for a fixed
y0 ∈ Y:

Proposition 4.1. Fix an initial condition y0 ∈ Y. Then, under Hypotheses (H1)–(H3)
and up to a P-null set, the stochastic dynamics (SMD) admit a unique strong solu-
tion (Y (t))t≥0 such that Y (0) = y0.

Proof. Let B(t, y) = −λ(t)σ(Q(η(t)y), t) so (SMD) can be written as

dY (t) = A(t, Y (t)) dt+B(t, Y (t)) dW (t), (4.1)

with A(t, y) defined as in the proof of Proposition 3.1. By (H2) and (H3), B(t, y)
inherits the boundedness and regularity properties of σ; in particular, by Eq. (H1),
it follows that B(t, y) is uniformly Lipschitz in y. Under the same assumptions,
A(t, y) is also uniformly Lipschitz in y (cf. the proof of Proposition 3.1). Our
claim then follows by standard results in the well-posedness of stochastic differential
equations [29, Theorem 3.4]. �

We denote by Y (t, y) the unique strong solution of the Itô stochastic differential
equation (4.1) with initial condition y ∈ Y. The corresponding primal trajecto-
ries are generated by applying the mirror map Q to the dual trajectories, so that
X(t, y) = Q(η(t)Y (t, y)) for all (t, y) ∈ R+ × Y. If there is no danger of confu-
sion, we will consistently suppress the dependence on the initial condition in both
random processes.

We now give a brief overview of the results we obtain in this section. First, in
Section 4.1, we use the asymptotic pseudotrajectory (APT) theory of Benaïm and
Hirsch [30] to establish almost sure trajectory convergence of (SMD) to the solution
of VI(X , v) provided that v is strictly monotone and the oracle noise in (SMD) is
vanishing at a rather slow, logarithmic rate. This strong convergence result relies
heavily on the shadowing property of the dual trajectory and its deterministic
counterpart φ(t, y). (see Section 4.1). On the other hand, if the driving noise
process is persistent, we cannot expect the primal trajectory X(t) to converge
– some averaging has to be done in this case. Thus, following a long tradition on
ergodic convergence for mirror descent, we investigate in Section 4.2 the asymptotics
of a weighted time-average ofX(t). Finally, we complement our ergodic convergence
results with a large deviation principle showing that the ergodic average of X(t) is
exponentially concentrated around its mean (Section 4.3).

4.1. The small noise limit. We begin with the case where the oracle noise in (SMD)
satisfies the asymptotic decay condition ‖σ(x, t)‖ ≤ β(t) for some nonincreasing
function β : R+ → R+ such that∫ ∞

0

exp

(
− c

β2(t)

)
dt <∞ for all c > 0. (H4)
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For instance, this condition is trivially satisfied if σ(x, t) vanishes at a logarithmic
rate, i.e. β(t) = o(1/

√
log(t)). Under this decay rate condition (H4), and working

for simplicity with constant η(t) = λ(t) = 1, the stochastic approximation theory
of Benaïm and Hirsch [30, Proposition 4.1] implies that any strong solution Y (t)
of (SMD) is an asymptotic pseudotrajectory (APT) of the deterministic dynamics
(MD) in the following sense:

Definition 4.2. Let φ : R+ × Y → Y, (t, y) 7→ φ(t, y), denote the semiflow induced
by (MD) on Y. A continuous curve Y : R+ → Y is said to be an asymptotic
pseudotrajectory (APT) of (MD) if

lim
t→∞

sup
0≤s≤T

‖Y (t+ s)− φ(s, Y (t))‖∗ = 0 for all T > 0. (APT)

In words, Definition 4.2 states that an APT of (MD) tracks the solutions of (MD)
to arbitrary accuracy over arbitrarily long time windows. Thanks to this property,
we are able to establish the following global convergence theorem for (SMD) with
vanishing oracle noise:

Theorem 4.3. Assume that v is strictly monotone and let x∗ denote the (necessarily
unique) solution of VI(X , v). If Hypotheses (H1)–(H4) hold and (SMD) is run with
constant λ(t) = η(t) = 1, we have

P
(

lim
t→∞
‖X(t, y)− x∗‖ = 0

)
= 1 ∀y ∈ Y. (4.2)

The proof of Theorem 4.3 requires some auxiliary results which we provide below.
We begin with a strong recurrence result for neighborhoods of the (unique) solution
x∗ of VI(X , v) under (MD):

Lemma 4.4. With assumptions as in Theorem 4.3, let O be an open neighborhood
of x∗ in X and define the stopping time

tO(y) = inf{t ≥ 0 : ξ(t, y) ∈ O}, (4.3)

Then tO(y) <∞ for all y ∈ Y.

Proof. Fix the initialization y ∈ Y of (MD), let y(t) = φ(t, y) and x(t) = ξ(t, y) =
Q(φ(t, y)) denote the induced solution orbit of (MD), and let H(t) = F (x∗, y(t)).
Then, by Proposition 3.2 and the chain rule applied to (MD), we get

H(t) = H(0)−
∫ t

0

〈v(x(s)), x(s)− x∗〉 ds. (4.4)

Since v is strictly monotone and x∗ solves VI(X , v), there exists some a ≡ aO > 0
such that

〈v(x), x− x∗〉 ≥ a for all x ∈ X \ O. (4.5)

Hence, if tO(y) =∞, we would have

H(t) ≤ H(0)− at for all t ≥ 0, (4.6)

implying in turn that limt→∞H(t) = −∞. This contradicts the fact that H(t) ≥ 0,
so we conclude that tO(y) <∞. �

Next, we extend this result to the stochastic regime:
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Lemma 4.5. With assumptions as in Theorem 4.3, let O be an open neighborhood
of x∗ in X and define the stopping time

τO(y) := inf{t ≥ 0|X(t, y) ∈ O}, (4.7)

Then, τO(y) is finite (a.s.) for all y ∈ Y.

Proof. Suppose there exists some initial condition y0 ∈ Y such that P(τO(y0) =
∞) > 0. Then there exists a measurable set Ω0 with P(Ω0) > 0 and such that
τO(ω, y0) = ∞ for all ω ∈ Ω0. Now, define H(t) = F (x∗, Y (t, y0)) and set X(t) =
X(t, y0). By the weak Itô lemma (B.1) proven in Appendix B, we get

H(t)−H(0) ≤ −
∫ t

0

〈v(X(s)), X(s)−x∗〉ds+
1

2α

∫ t

0

‖σ(X(s), s)‖2ds+Ix∗(t) (4.8)

where Ix∗(t) =
∫ t

0
〈X(s)−x∗, σ(X(s)dW (s)〉 is a continuous local martingale. Since

v is strictly monotone, the same reasoning as in the proof of Lemma 4.4 yields

H(t) ≤ H(0)− at+ Ix∗(t) +
σ2
∗

2α
(4.9)

for some a ≡ aO > 0 and for all t ∈ [0, τO(y)). Furthermore, by an argument based
on the law of the iterated logarithm and the Dambis–Dubins–Schwarz time-change
theorem for martingales as in the proof of Theorem 4.6, we get

Ix∗(t)/t→ 0 almost surely as t→∞. (4.10)

Combining this with the estimate for H(t) above, we get limt→∞H(t) = −∞ for
P-almost all ω ∈ Ω0, i.e. for at least some ω ∈ Ω. This contradicts the fact that
H(t) ≥ 0 by construction, and our claim follows. �

The above result shows that the primal process X(t) hits any neighborhood of
x∗ in finite time (a.s.). Thanks to this important recurrence property, we are finally
in a position to prove Theorem 4.3:

Proof of Theorem 4.3. Fix some ε > 0 and let Nε = {x = Q(y) : F (x∗, y) < ε}. Let
y ∈ Y be arbitrary. We first claim that there exists a deterministic time T ≡ T (ε)
such that F (x∗, φ(T, y)) ≤ max{ε, F (x∗, y) + ε}.

Indeed, consider the hitting time

tε(y) = inf{t ≥ 0 : x(t) ∈ Nε}, (4.11)

where x(t) ≡ ξ(t, y) = Q(φ(t, y)). By Lemma 4.4, we have tε(y) < ∞. Moreover,
observe that

d

dt
F (x∗, φ(t, y)) = −〈v(x(t)), x(t)− x∗〉 ≤ 0 for all y ∈ Y. (4.12)

Now, the strict monotonicity of v and the fact that x∗ solves (VI) implies that there
exists a positive constant κ ≡ κε > 0 such that 〈v(x), x−x∗〉 ≥ κ for all x ∈ X \Nε.
Hence, combining this with (4.12), we readily see that

F (x∗, φ(t, y))− F (x∗, y) ≤ −κt for all t ∈ [0, tε(y)). (4.13)

Now, set T = ε/κ. If T < tε(y), we immediately conclude that

F (x∗, φ(T, y))− F (x∗, y) ≤ −ε. (4.14)

Otherwise, if T ≥ tε(y), we again use the descent property (4.12) to get

F (x∗, φ(T, y)) ≤ F (x∗, φ(tε(y), y)) ≤ ε. (4.15)
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In both cases we have F (x∗, φ(T, y)) ≤ max{ε, F (x∗, y)− ε}, as claimed.
To proceed, pick δ ≡ δε > 0 such that

δε diam(X ) +
δ2
ε

2α
< ε, (4.16)

where diam(X ) = max{‖x′−x‖2 : x, x′ ∈ X} denotes the Euclidean diameter of X .
By Proposition 4.1 of [30], the strong solution Y of (4.1) (viewed as a stochastic
flow) is an APT of the deterministic semiflow φ with probability 1. Hence, we can
choose an (a.s.) finite random time θε such that sups∈[0,T ]‖Y (t+s)−φ(s, Y (t))‖∗ ≤
δε for all t ≥ θε. Combining this with item (c) of Proposition 3.2, we then get

F (x∗, Y (t+ s, y)) ≤ F (x∗, φ(s, Y (t, y)))

+ 〈Y (t+ s, y)− φ(s, Y (t, y)), Q(φ(s, Y (t, y)))− x∗〉

+
1

2α
‖Y (t+ s, y)− φ(s, Y (t, y))‖2∗

≤ F (x∗, φ(s, Y (t, y))) + δε diam(X ) +
δ2
ε

2α
≤ F (x∗, φ(s, Y (t, y))) + ε, (4.17)

where the last inequality follows from the estimate (4.16).
Now, choose a random time T0 ≥ max{θε(y), tε(y)} and T = ε/κ as above.

Then, by definition, we have F (x∗, Y (T0, y)) ≤ 2ε with probability 1. Hence, for
all s ∈ [0, T ], we get

F (x∗, Y (T0 + s, y)) ≤ F (x∗, φ(s, Y (T0, y))) + ε ≤ F (x∗, Y (T0, y)) + ε ≤ 3ε. (4.18)

Since F (x∗, φ(T, Y (T0, y))) ≤ max{ε, F (x∗, Y (T0, y))− ε} ≤ ε, we also get

F (x∗, Y (T0 + T + s, y)) ≤ F (x∗, φ(s, Y (T0 + T, y))) + ε

≤ F (x∗, Y (T0 + T, y)) + ε

≤ 3ε, (4.19)

and hence
F (x∗, Y (T0 + s, y)) ≤ 3ε for all s ∈ [T, 2T ]. (4.20)

Using this as the basis for an induction argument, we readily get

F (x∗, Y (T0 + s, y)) ≤ 3ε for all s ∈ [nT, (n+ 1)T ], (4.21)

with probability 1. Since ε was arbitrary, we obtain F (x∗, Y (t, y)) → 0, implying
in turn that X(t)→ x∗ (a.s.) by Proposition 3.2. �

4.2. Ergodic Convergence. We now proceed with an ergodic convergence result in
the spirit of Proposition 3.3. To state it, set

S(t) =

∫ t

0

λ(s) ds and L(t) =

√∫ t

0

λ2(s) ds, (4.22)

and let

X̄(t) =
1

S(t)

∫ t

0

λ(s)X(s) ds, (4.23)

denote the “ergodic average” ofX(t). Our main result may then be stated as follows:
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Theorem 4.6. Under Hypotheses (H1)–(H3), we have:

g(X̄(t)) = O
(

1

η(t)S(t)

)
+O

(∫ t
0
λ2(s)η(s) ds

S(t)

)
+O

(
L(t)

√
log logL(t)

S(t)

)
, (4.24)

with probability 1. In particular, X̄(t) converges (a.s.) to the solution set of
VI(X , v) provided that a) limt→∞ η(t)S(t) =∞; and b) limt→∞ η(t)λ(t) = 0.

The proof of Theorem 4.6 relies crucially on the following lemma, which provides
an explicit estimate for the decay rate of g(X̄(t)), both for generic VI problems and
convex-concave saddle-point problems:

Lemma 4.7. If (SMD) is initialized at y0 = 0 and Hypotheses (H1)–(H3) hold, then:

g(X̄(t)) ≤ D(h;X )

η(t)S(t)
+
σ2
∗

2α

∫ t
0
λ2(s)η(s) ds

S(t)
+
I(t)

S(t)
(4.25)

where I(t) = supp∈X Ip(t) and

Ip(t) =

∫ t

0

λ(s)〈p−X(s), σ(X(s), s) · dW (s)〉. (4.26)

In particular, if (VI) is associated with a convex-concave saddle-point problem as
in Example 2.2, we have

G(X̄1(t), X̄2(t)) ≤ Dsp

η(t)S(t)
+

σ2
∗

2αsp

∫ t
0
λ2(s)η(s) ds

S(t)
+
J(t)

S(t)
, (4.27)

where we have set Dsp = D(h1;X 1) +D(h2;X 2), 1/αsp = 1/α1 + 1/α2, and J(t) =
supp1∈X 1,p2∈X 2{Ip1(t) + Ip2(t)}.
Remark 4.1. The initialization assumption in Lemma 4.7 is not crucial: we only
make it to simplify the explicit expression (4.25). If (SMD) is initialized at a
different point, the proof of Lemma 4.7 shows that the bound (4.25) is correct only
up toO(1/S(t)). Since all terms in (4.25) are no faster thanO(1/S(t)), initialization
plays no role in the proof of Theorem 4.6 below.

Proof of Lemma 4.7. Fix some p ∈ X and let Hp(t) = η(t)−1F (p, η(t)Y (t)) as in
the proof of Proposition 3.3. Then, by the weak Itô formula (B.1) in Appendix B,
we have

Hp(t) ≤ Hp(0)−
∫ t

0

η̇(s)

η(s)2
Hp(s) ds+

1

η(t)

∫ t

0

〈X(s)− p, η̇(s)Y (s)〉 ds

+

∫ t

0

〈X(s)− p, dY (s)〉+
1

2α

∫ t

0

λ2(s)η(s)‖σ(X(s), s)‖2 ds.

(4.28)

To proceed, let

Rp(t) =

∫ t

0

λ(s)〈v(X(s)), X(s)− p〉 ds, (4.29)

so
∫ t

0
〈X(s)−p, dY (s)〉 = −

∫ t
0
λ(s)〈X(s)−p, v(X(s))ds+ dM(s)〉 = −Rp(t)+Ip(t),

with Ip(t) given by (4.26). Then, rearranging and bounding the second term of
(4.28) as in the proof of Proposition 3.3, we obtain

Rp(t) ≤ Hp(0)−Hp(t) +D(h,X )

(
1

η(t)
− 1

η(0)

)
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+ Ip(t) +
1

2α

∫ t

0

λ2(s)η(s)‖σ(X(s), s)‖2 ds

≤ Hp(0) +D(h;X )

(
1

η(t)
− 1

η(0)

)
+ Ip(t) +

σ2
∗

2α

∫ t

0

λ2(s)η(s) ds. (4.30)

With (SMD) initialized at y0 = 0, Eq. (3.16) gives Hp(0) ≤ D(h;X )/η(0). Thus,
by Jensen’s inequality and the monotonicity of v, we get

〈v(p), X̄(t)− p〉 =
1

S(t)

∫ t

0

λ(s)〈v(p), X(s)− p〉 ds

≤ 1

S(t)

∫ t

0

λ(s)〈v(X(s)), X(s)− p〉 ds =
Rp(t)

S(t)

≤ D(h;X )

η(t)S(t)
+
σ2
∗

2α

∫ t
0
λ2(s)η(s) ds

S(t)
+
Ip(t)

S(t)
. (4.31)

The bound (4.25) then follows by noting that g(X̄(t)) = maxp∈X 〈v(p), X̄(t)− p〉.
Now, assume that (VI) is associated to a convex-concave saddle point problem

as in Example 2.2. As in the proof of Proposition 3.3, we first replicate the analysis
above for each component of the problem, and we then sum the two components to
get an overall bound for the Nikaido–Isoda gap function G. Specifically, applying
(4.31) to (2.2), we readily get∫ t

0

λ(s)〈vi(X(s)), Xi(s)− pi〉 ≤ D(hi;X i)
η(t)S(t)

+
σ2
∗

2αi

∫ t
0
λ2(s)η(s) ds

S(t)
+
Ipi(t)

S(t)
, (4.32)

where i ∈ {1, 2}. Moreover, combining Jensen’s inequality with the fact that U is
convex-concave yields

U(X̄1(t), p2)− U(p1, X̄2(t)) ≤ 1

S(t)

∫ t

0

λ(s)[U(X1(s), p2)− U(p1, X2(s))] ds

≤ 1

S(t)

∫ t

0

λ(s)〈∇x1U(X(s)), X1(s)− p1〉 ds

− 1

S(t)

∫ t

0

λ(s)〈∇x2U(X(s)), X2(s)− p2〉 ds

≤ Dsp

η(t)S(t)
+

σ2
∗

2αsp

∫ t
0
λ2(s)η(s) ds

S(t)
+
Ip1(t) + Ip2(t)

S(t)
,

(4.33)

with the last ineqality following from (4.32). Our claim then follows by maximizing
over (p1, p2) and recalling the definition (3.3) of the Nikaido–Isoda gap function. �

Clearly, the crucial unknown in the bound (4.25) is the stochastic term I(t): to
obtain convergence of X̄(t) to the solution set of VI(X , v), the term I(t) must grow
slower than S(t). As we show below, this is indeed the case:

Proof of Theorem 4.6. By Lemma 4.7 and Remark 4.1, it suffices to show that the
term I(t) grows as O(L(t)

√
log logL(t)) with probability 1. To do so, let φp = [Ip]
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denote the quadratic variation of Ip;7 then, the rules of stochastic calculus yield

dφp(t) = dIp(t) · dIp(t)

= λ2(t)

n∑
i,j=1

d∑
k=1

(Xi(t)− pi)(Xj(t)− pj)σik(X(t), t)σjk(X(t), t) dt

≤ ‖X(t)− p‖22σ2
∗λ

2(t) ≤ diam(X )2σ2
∗λ

2(t), (4.34)

where diam(X ) = max{‖x′ − x‖2 : x, x′ ∈ X} denotes the Euclidean diameter of
X . Hence, for all t ≥ 0, we get the covariation bound

φp(t) ≤ diam(X )2σ2
∗

∫ t

0

λ2(s) ds = O(L2(t)). (4.35)

Now, let φp(∞) = limt→∞ φp(t) ∈ [0,∞] and set

τp(s) =

{
inf{t ≥ 0 : φ(t) > s} if s ≤ φp(∞),

∞ otherwise.
(4.36)

The process τp(s) is finite, non-negative, non-decreasing and right-continuous on
[0, φp(∞)); moreover, it is easy to check that φp(τp(s)) = s∧φp(∞) and τp(φp(t)) =
t [31, Problem 3.4.5]. Therefore, by the Dambis–Dubins–Schwarz time-change the-
orem for martingales [31, Thm. 3.4.6 and Pb. 3.4.7], there exists a standard, one-
dimensional Wiener process (Bp(t))t≥0 adapted to a modified filtration F̃s = Fτp(s)

(possibly defined on an extended probability space), and such thatBp(φp(t)) = Ip(t)
for all t ≥ 0 (except possibly on a P-null set).

Hence, for all t > 0, we have

Ip(t)

S(t)
=
Bp(φp(t))

S(t)
=

Bp(φp(t))√
φp(t) log log φp(t)

×
√
φp(t) log log φp(t)

S(t)
. (4.37)

By the law of the iterated logarithm [31], the first factor above is bounded almost
surely; as for the second, (4.35) gives

√
φp(t) log log φp(t) = O(L(t)

√
log logL(t)).

Thus, combining all of the above, we get

I(t)

S(t)
=

maxp∈X Ip(t)

S(t)
= O

(
L(t)

√
log logL(t)

S(t)

)
, (4.38)

so our claim follows from (4.25).
To complete our proof, note first that the condition limt→∞ η(t)S(t) =∞ implies

that limt→∞ S(t) = ∞ (given that η(t) is nonincreasing). Thus, by de l’Hôpital’s
rule and the assumption limt→∞ λ(t)η(t) = 0, we also get S(t)−1

∫ t
0
λ2(s)η(s)ds = 0.

Finally, for the last term of (4.24), consider the following two cases:
(1) If limt→∞ L(t) < ∞, we trivially have limt→∞ L(t)

√
log logL(t)

/
S(t) = 0

as well.
(2) Otherwise, if limt→∞ L(t) =∞, de l’Hôpital’s rule readily yields

lim
t→∞

L2(t)

S2(t)
= lim
t→∞

λ2(t)

2λ(t)S(t)
=

1

2
lim
t→∞

λ(t)

S(t)
= 0, (4.39)

7Recall here that the quadratic variation of a stochastic process M(t) is defined as [M(t)] =
lim|Π|→0

∑
1≤j≤k(M(tj)−M(tj−1))2, where the limit is taken over all partitions Π = {t0 = 0 <

t1 < · · · < tk = t} of [0, t] with mesh |Π| ≡ maxj |tj − tj−1| → 0 [31].
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by the boundedness of λ(t). Another application of de l’Hôpital’s rule gives

lim
t→∞

L3(t)

S2(t)
= lim
t→∞

(L2(t))3/2

S2(t)
=

3

4
lim
t→∞

λ2(t)L(t)

λ(t)S(t)
=

3

4
lim
t→∞

λ(t)L(t)

S(t)
= 0, (4.40)

so

lim sup
t→∞

L(t)
√

log logL(t)

S(t)
≤ lim sup

t→∞

√
L3(t)

S2(t)
= 0. (4.41)

The above shows that, under the stated assumptions, the RHS of (4.24) converges
to 0 (a.s.), implying in turn that X̄(t) converges to the solution set of VI(X , v) with
probability 1. �

4.3. Large deviations. In this section we study the concentration properties of
(SMD) in terms on the dual gap function. First, recall that for every p ∈ X
we have the upper bound

Rp(t) ≤
D(h;X )

η(t)
+
σ2
∗

2α

∫ t

0

λ2(s)η(s) ds+ Ip(t). (4.42)

with Rp(t) and Ip(t) defined as in (4.29) and (4.26) respectively. Since Ip(t) is a
continuous martingale starting at 0, we have E[Ip(t)] = 0, implying in turn that

E[〈v(p), X̄(t)− p〉] ≤ D(h;X )

S(t)η(t)
+

σ2
∗

2αS(t)

∫ t

0

λ2(s)η(s) ds =
K(t)

2S(t)
, (4.43)

where

K(t) =
2D(h;X )

η(t)
+
σ2
∗
α

∫ t

0

λ2(s)η(s) ds. (4.44)

Hence, taking the supremum over all p ∈ X and using Jensen’s inequality, we get
the mean gap bound

E[g(X̄(t)] ≤ K(t)

2S(t)
. (4.45)

Markov’s inequality therefore implies that

P(g(X̄(t)) ≥ δ) ≤ 1

δ

K(t)

2S(t)
for all δ > 0. (4.46)

The bound (4.46) provides a first estimate of the probability of observing a large
gap from the solution of (VI), but because it relies only on Markov’s inequality,
it is rather crude. To refine it, we provide below a “large deviations” bound that
shows that the ergodic gap process g(X̄(t)) is exponentially concentrated around
its mean value:

Theorem 4.8. Suppose (H1)–(H3) hold. Then, for all δ > 0 and all t > 0, we have

P(g(X̄(t)) ≥ Q0(t) + δQ1(t)) ≤ exp(−δ2/4), (4.47)

where

Q0(t) =
K(t)

S(t)
, (4.48a)

and

Q1(t) =

√
κσ∗ diam(X )L(t)

S(t)
, (4.48b)

with κ > 0 a positive constant depending only on the set X and the norm ‖·‖.
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To prove Theorem 4.8 we need some groundwork first. To that end, define the
auxiliary processes

Z(t) =

∫ t

0

λ(s)σ(X(s), s) dW (s), (4.49)

and
P (t) = Q(η(t)Z(t)). (4.50)

We then have:

Lemma 4.9. For all p ∈ X we have∫ t

0

λ(s)〈p− P (s), σ(X(s), s) dW (s)〉 ≤ D(h;X )

η(t)
+
σ2
∗

2α

∫ t

0

λ2(s)η(s) ds. (4.51)

Proof. The proof follows the same lines as Lemma 4.7. Specifcially, given a reference
point p ∈ X , define the process H̃p(t) = 1

η(t)F (p, η(t)Z(t)). Then, by the weak Itô
formula (B.1) in Appendix B, we have

H̃p(t) ≤ H̃p(0)−
∫ t

0

η̇(s)

η(s)2
H̃p(s) ds+

1

η(t)

∫ t

0

〈ξ(s)− p, η̇(s)Z(s)〉 ds

+

∫ t

0

〈P (s)− p, dZ(s)〉+
1

2α

∫ t

0

λ2(s)η(s)‖σ(X(s), s)‖2 ds

≤ −
∫ t

0

η̇(s)

η(s)
[h(p)− h(P (s))] ds

+

∫ t

0

λ(s)〈P (s)− p, σ(X(s), s) dW (s)〉+
σ2
∗

2α

∫ t

0

λ2(s)η(s) ds. (4.52)

We thus get,∫ t

0

λ(s)〈p− P (s), σ(X(s), s) dW (s)〉 ≤ H̃p(0) +D(h;X )

(
1

η(t)
− 1

η(0)

)
+

∫ t

0

λ2(s)η(s)

2α
σ2
∗ ds

≤ D(h;X )

η(t)
+

∫ t

0

λ2(s)η(s)

2α
σ2
∗ ds, (4.53)

as claimed. �

We are now ready to establish our large deviations principle for (SMD):

Proof of Theorem 4.8. For p ∈ X and t > 0 fixed, we have

Rp(t) ≤
D(h;X )

η(t)
+
σ2
∗

2α

∫ t

0

λ2(s)η(s) ds+

∫ t

0

λ(s)〈p−X(s), σ(X(s), s) dW (s)〉

=
D(h;X )

η(t)
+
σ2
∗

2α

∫ t

0

λ2(s)η(s) ds+

∫ t

0

λ(s)〈p− P (s), σ(X(s), s) dW (s)〉

+

∫ t

0

λ(s)〈P (s)−X(s), σ(X(s), s) dW (s)〉

≤ 2D(h;X )

η(t)
+
σ2
∗
α

∫ t

0

λ2(s)η(s) ds+

∫ t

0

〈P (s)−X(s), σ(X(s), s) dW (s)〉,

(4.54)
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where we used (4.51) to obtain the last inequality. Now, to proceed, let

∆(t) =

∫ t

0

λ(s)〈P (s)−X(s), σ(X(s), s) dW (s)〉. (4.55)

The process ∆(t) is a continuous martingale starting at 0 which is almost surely
bounded in L2. In particular, it allows us to give an upper bound on Rp(t)
which is independent of the reference point p ∈ X . Indeed, recalling that K(t) =

2D(h;X )/η(t) + α−1σ2
∗
∫ t

0
λ2(s)η(s) ds, we see that

Rp(t) ≤ K(t) + ∆(t), (4.56)

and hence

g(X̄(t)) ≤ K(t) + ∆(t)

S(t)
∀t > 0. (4.57)

This implies that for all ε, t > 0,

{g(X̄(t) ≥ ε} ⊆ {∆(t) ≥ εS(t)−K(t)},
and hence

P[g(X̄(t)) ≥ ε] ≤ P[∆(t) ≥ εS(t)−K(t)].

It remains to bound the right-hand side of the above expression. To this end,
observe that for all b, θ > 0, the Schwarz inequality gives us

E[exp(θ∆(t))] = E[exp(θ∆(t)− b〈∆〉t) exp(b〈∆〉t)]

≤
√
E[exp(2θ∆(t)− 2b〈∆〉t)]

√
E[exp(2b〈∆〉t)].

Setting b = θ2, the expressions inside the first expected value is just the stochastic
exponential of the process (θ∆(t))t≥0. A straightforward computations shows that

〈∆〉t =

∫ t

0

λ2(s)‖σ(X(s), s)>(P (s)−X(s))‖22 ds

≤ κ
∫ t

0

λ2(s)‖σ(X(s), s)‖2‖P (s)−X(s)‖2 ds

≤ κσ2
∗ diam(X )2L(t)2

=: ϕ(t).

The constant κ is a universal factor accounting for the equivalence of the Euclidean
norm and the norm ‖·‖ on X . Given the a.s. boundedness of the quadratic variation
on each compact interval, the process {(∆(t),Ft); t ≥ 0} is a true martingale with
expected value 1. Hence,

E[exp(θ∆(t))] ≤
√
E[exp(2θ2〈∆〉t)] ≤ exp(θ2ϕ(t)). (4.58)

Using all these facts, we see that for all Ω > 0

P[∆(t) ≥ Ω] = P[exp(θ∆(t)) ≥ exp(θΩ)]

≤ exp(−θΩ)E[exp(θ∆(t))] (Markov Inequality)

= exp(−θΩ + θ2ϕ(t)) (4.58).

Minimizing this with respect to θ gives for all t > 0 and Ω > 0

P[∆(t) ≥ Ω] ≤ exp

(
− Ω2

4ϕ(t)

)
.



STOCHASTIC MIRROR DESCENT IN VARIATIONAL INEQUALITIES 21

If we introduce the functions (4.48a)-(4.48b), we finally arrive at the expression

P(g(X̄(t)) ≥ Q0(t) + δQ1(t)) ≤ P(∆(t) ≥ Q0(t)S(t) + δQ1(t)S(t)−K(t))

≤ P(∆(t) ≥ δ
√
ϕ(t))

≤ exp(−δ2/4), (4.59)

as claimed. �

5. Conclusion

This paper examined a continuous-time dynamical system for solving mono-
tone variational inequality problems with random inputs. The key element of our
analysis is the identification of a energy-type function, which allows us to prove
ergodic convergence of generated trajectories in the deterministic as well as in the
stochastic case. Future research should extend the present work in the following
dimensions. First, it is not clear yet how the continuous-time method will help us in
the derivation of a consistent numerical scheme. A naive Euler-discretization might
potentially lead to a loss in speed of convergence (see [2]). Second, it is of great
interest to relax the monotonicity assumption we made on the involved operator.
We are currently investigating these extensions.

Appendix A. Estimates

In this appendix we collect some simple facts on the analysis of convex differ-
entiable functions with Lipschitz continuous gradients. Denote by C1,1

L (Rn) the
totality of such functions, with L being the Lipschitz constant of the gradient map-
ping ∇ψ:

‖ψ(y + δ)− ψ(y)‖∗ ≤ L‖δ‖∗ ∀y, δ ∈ Rn.

Proposition A.1. Let ψ ∈ C1,1
L (Rn) be convex. Then ψ is almost everywhere twice

differentiable with Hessian ∇2ψ and

0 ≤ ∇2ψ(y) ≤ L Id . Leb− a.e.. (A.1)

Proof. For every ψ ∈ C1,1
L (Rn), the well-known descent lemma ([32], Theorem 2.1.5)

implies that

ψ(y + δ) ≤ ψ(y) + 〈∇ψ(y), δ〉+
L

2
‖δ‖2∗ ∀y, δ ∈ Rn. (A.2)

By Alexandrov’s theorem (see e.g. [33], Lemma 6.6), it follows that ψ is Leb-almost
everywhere twice differentiable. Hence, there exists a measurable set Λ such that
Leb(Λ) = 0, and for all ȳ ∈ Rn \ Λ there exists (p, P ) ∈ Rn × Rn×nsym such that

ψ(ȳ + y) = ψ(ȳ) + 〈p, y〉+
1

2
〈Py, y〉+ θ(ȳ, y), (A.3)

where lim‖y‖∗→0
θ(ȳ,y)
‖y‖2∗

= 0. We have p = ∇ψ(ȳ) and identify P with the a.e.
defined Hessian ∇2ψ(ȳ). On the other hand, convexity implies

ψ(ȳ + y) ≥ ψ(ȳ) + 〈∇ψ(ȳ), y〉 ∀ȳ, y ∈ Rn. (A.4)

Choosing y = te, where e ∈ Rn is an arbitrary ‖·‖∗-unit vector and t > 0, it follows

− 1

t2
θ(ȳ, te)

(A.4)
≤ 1

t2
[ψ(ȳ + te)− ψ(ȳ)− 〈∇ψ(ȳ), te〉]− 1

t2
θ(ȳ, te)



22 STOCHASTIC MIRROR DESCENT IN VARIATIONAL INEQUALITIES

(A.3)
=

1

2
〈∇2ψ(ȳ)e, e〉

(A.2)
≤ L

2
− 1

t2
θ(ȳ, te).

Letting t→ 0+ we get

0 ≤ 1

2
〈∇2ψ(ȳ)e, e〉 ≤ L

2
∀ȳ ∈ Rn \ Λ, (A.5)

which implies ∇2ψ(ȳ) ≤ L Id. �

Appendix B. Results from stochastic analysis

The following result is the generalized Itô formula used in the main text.

Proposition B.1. Let Y be an Itô process in Rn of the form

Yt = Y0 +

∫ t

0

Fs ds+

∫ t

0

Gs dW (s).

Let ψ ∈ C1,1
L (Rn) be convex. Then for all t ≥ 0 we have

ψ(Yt) ≤ ψ(Y0) +

∫ t

0

〈∇ψ(Ys), dYs〉+
L

2

∫ t

0

‖Gs‖2 ds

Proof. Since ψ ∈ C1,1
L (Rn) is convex, Proposition A.1 shows that ψ is almost ev-

erywhere twice differentiable with Hessian ∇2ψ. Furthermore, this Hessian matrix
satisfies 0 ≤ ∇2ψ(y) ≤ L Id, for all y ∈ Rn outside a set of Lebesgue measure 0.
Introduce the mollifier

ρ(u) :=

{
c exp

(
−1

1−‖u‖2∗

)
if ‖u‖∗ < 1,

0 if ‖u‖∗ ≥ 1.

Choose the constant c > 0 so that
∫
Rn ρ(u) du = 1. For every ε > 0 define

ρε(u) = ε−nρ(u/ε),

ψε(y) = ψ ~ ρε(y) :=

∫
Rn

ψ(y − u)ρε(u) du.

Then ψε ∈ C∞(Rn) and the standard form of Itô’s formula gives us

ψε(Yt) = ψε(Ys) +

∫ t

s

〈∇ψε(Yr), dYr〉+
1

2

∫ t

s

tr
[
∇2ψε(Yr)GrG

>
r

]
dr

= ψε(Ys) +

∫ t

s

〈
∫
Rn

∇ψ(z)ρε(Yr − z) dz, dYr〉

+
1

2

∫ t

s

∫
Rn

tr
[
∇2ψ(z)GrG

>
r

]
ρε(Yr − z) dr dz.

Since tr(∇2ψ(z)GrG
>
r ) ≤ L‖Gr‖2, we get

ψε(Yt) ≤ ψε(Ys) +

∫ t

s

〈
∫
Rn

∇ψ(z)ρε(Yr − z) dz, dYr〉+
L

2

∫ t

s

‖Gr‖2 dr.

Letting ε → 0+, using the uniform convergence of the involved data, proves the
result. �
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Remark B.1. Applying this result to the dual process of (SMD) and using (A.5),
gives for Fs = −λ(s)v(Xs) and Gs = −λ(s)σ(Xs, s) the following version of the
generalized Itô rule:

ψ(Yt) ≤ ψ(Y0)−
∫ t

0

〈∇ψ(Ys), dYs〉 ds+
1

2α

∫ t

0

‖σ(Xs, s)‖2 ds (B.1)
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