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Existence, uniqueness and homogenization of nonlinear parabolic problems with dynamical boundary conditions in perforated media 1 Introduction and setting of the problem Partial differential equations with dynamical boundary conditions have the main characteristic of involving the time derivative of the unknown on the boundary of the domain. Its use dates back at least to 1901 in the context of heat transfer in a solid in contact with a moving fluid. From the second half of the 20th century until today, they have been studied in many disciplines (such as, diffusion phenomena in thermodynamics, phase-transition phenomena in material science, climate science, control theory and special flows in hydrodynamics).

Several approaches have been used for these problems in a periodically perforated domain, like Homogenization Theory. Many recent papers in the literature have treated the homogenization of elliptic problems with nonlinear boundary conditions with prescribed growth. In particular, in Cioranescu et al. [START_REF] Cioranescu | Asymptotic behavior of elliptic problems in perforated domains with nonlinear boundary conditions[END_REF], the authors apply the periodic unfolding method in perforated domains to a class of elliptic problems with nonlinear conditions on the boundary of the holes. The homogenization of quasilinear elliptic problems in periodically perforated domains with nonlinear Robin boundary conditions has been considered in Cabarrubias and Donato [START_REF] Cabarrubias | Homogenization of a quasilinear elliptic problem with nonlinear Robin boundary conditions[END_REF], Chourabi and Donato [START_REF] Chourabi | Homogenization and correctors of a class of elliptic problems in perforated domains[END_REF][START_REF] Chourabi | Homogenization of elliptic problems with quadratic growth and nonhomogenous Robin conditions in perforated domains[END_REF] and Donato et al. [START_REF] Donato | Homogenization of a class of singular elliptic problems in perforated domains[END_REF].

For linear parabolic problems with linear dynamical boundary conditions of pure-reactive type in periodically perforated domains, the asymptotic behavior of the solution, when the size of the perforations tends to zero, is studied in Timofte [START_REF] Timofte | Parabolic problems with dynamical boundary conditions in perforated media[END_REF]. But to our knowledge, there does not seem to be in the literature any study of the asymptotic behavior of the solution of nonlinear parabolic models associated to nonlinear dynamical boundary conditions of pure-reactive type in periodically perforated domains (up to the stochastic framework, see Wang and Duan [START_REF] Wang | Homogenized dynamics of stochastic partial differential equations with dynamical boundary conditions[END_REF]).

Let us introduce the model we will be involved with in this paper. Let Ω be a bounded connected open set in R N (N ≥ 2), with smooth enough boundary ∂Ω. Let Y = [0, 1] N be the representative cell in R N and F an open subset of Y with smooth enough boundary ∂F , such that F ⊂ Y . We denote Y * = Y \ F .

For k ∈ Z N , each cell Y k,ε = ε k+ε Y is similar to the unit cell Y rescaled to size ε and F k,ε = ε k+ε F is similar to F rescaled to size ε. We denote Y * k,ε = Y k,ε \ Fk,ε . We denote by F ε the set of all the holes contained in Ω, i.e. F ε = ∪ k∈K {F k,ε : Fk,ε ⊂ Ω}, where K := {k ∈ Z N : Y k,ε ∩ Ω = ∅}.

Let Ω ε = Ω\ Fε . By this construction, Ω ε is a periodically perforated domain with holes of the same size as the period.

We consider the following problem for a nonlinear reaction-diffusion equation with nonlinear dynamical boundary conditions of pure-reactive type on the surface of the holes and zero Dirichlet condition on the exterior boundary,

                 ∂u ε ∂t -∆ u ε + κu ε + f (u ε ) = h(x, t) in Ω ε × (0, T ), ∂u ε ∂ n + ε ∂u ε ∂t + ε g(u ε ) = ε ρ(x, t) on ∂F ε × (0, T ), u ε (x, 0) = u 0 ε (x), for x ∈ Ω ε , u ε (x, 0) = ψ 0 ε (x), for x ∈ ∂F ε , u ε = 0, on ∂Ω × (0, T ), (1.1)
where n is the outer normal to ∂F ε , T > 0, and

κ > 0, u 0 ε ∈ L 2 (Ω) , ψ 0 ε ∈ L 2 (∂F ε ) , (1.2) h ∈ L 2 0, T ; L 2 (Ω) , ρ ∈ L 2 0, T ; H 1 0 (Ω) , (1.3) 
are given.

We also assume that the functions f and g ∈ C (R) are given, and satisfy that there exist exponents p and q such that

2 ≤ p < +∞, if N = 2 and 2 ≤ p ≤ 2N N -2 , if N > 2, (1.4) 2 ≤ q < +∞, if N = 2 and 2 ≤ q ≤ 2N N -2 , if N > 2, (1.5) 
and constants α 1 > 0, α 2 > 0, β > 0, and l > 0, such that

α 1 |s| p -β ≤ f (s)s ≤ α 2 |s| p + β, for all s ∈ R, (1.6 
)

α 1 |s| q -β ≤ g(s)s ≤ α 2 |s| q + β, for all s ∈ R, (1.7) (f (s) -f (r)) (s -r) ≥ -l (s -r) 2 , for all s, r ∈ R, (1.8) and (g(s 
) -g(r)) (s -r) ≥ -l (s -r) 2 , for all s, r ∈ R. (1.9) 
It is easy to see from (1.6) and (1.7) that there exists a constant C > 0 such that Then, there exist positive constants α 1 , α 2 , and β such that

|f (s)| ≤ C 1 + |s| p-1 , |g(s)| ≤ C 1 + |s| q-1 , for all s ∈ R. ( 1 
α 1 |s| p -β ≤ F(s) ≤ α 2 |s| p + β ∀s ∈ R, (1.11) 
and In this paper, our main motivation is to study the asymptotic behavior, as ε → 0, of the solution u ε of (1.1). As we mentioned before, we only have references in the literature of this approach in the stochastic context. In that sense, a particularly interesting situation is treated in Wang and Duan [START_REF] Wang | Homogenized dynamics of stochastic partial differential equations with dynamical boundary conditions[END_REF] with the help of the two-scale convergence. There, the authors obtain the asymptotic behavior of the solution of a stochastic partial differential equation with random dynamical boundary conditions, under the restrictive assumption g(s) = s, i.e. the nonlinearity does not appear in the boundary. However, we will obtain the asymptotic behavior of the solution of (1.1) where the nonlinearity also appears in the boundary. We use the energy method of Tartar [START_REF] Tartar | Problèmes d'homogénéisation dans les équations aux dérivées partielles[END_REF], which has been considered by many authors (see, for instance, Cioranescu and Donato [START_REF] Cioranescu | Homogénéisation du problème du Neumann non homogéne dans des ouverst perforés[END_REF]) and the technique introduced by Vanninathan [START_REF] Vanninathan | Homogenization of eigenvalues problems in perforated domains[END_REF] for the Steklov problem which transforms surface integrals into volume integrals. This technique was already used as a main tool to homogenize the non homogeneous Neumann problem for the elliptic case by Cioranescu and Donato [START_REF] Cioranescu | Homogénéisation du problème du Neumann non homogéne dans des ouverst perforés[END_REF].

α 1 |s| q -β ≤ G(s) ≤ α 2 |s| q + β ∀s ∈ R. ( 1 
In this sense, when ε → 0, we have got a new nonlinear reaction-diffusion equation with constant coefficient defined on Ω × (0, T ), with zero Dirichlet boundary condition on the boundary, and with a constant extra-term in front of the derivative which comes from the well-balanced contribution of the dynamical part of the boundary condition on the surface of the holes.

The structure of the paper is as follows. In Section 2, we give some notations which are used in the paper. In Section 3, we give a weak formulation of the problem, the concept of weak solution, and establish the existence and uniqueness of solution using the monotonicity method. Some a priori estimates are rigorously stablished in Section 4. A compactness result, which is the main key when we will pass to the limit later, is addressed in Section 5. In Section 6, the main goal of proving the asymptotic behavior of the solution is finally established in Theorem 6.1.

Some notations

In this section, we give some notations which are used in the paper.

We denote by χ Ωε the characteristic function of the domain Ω ε .

We denote by (•, •) Ωε (respectively, (•, •) ∂Fε ) the inner product in L 2 (Ω ε ) (respectively, in L 2 (∂F ε )), and by |•| Ωε (respectively, |•| ∂Fε ) the associated norm. We also denote (•, •) Ωε the inner product in (L 2 (Ω ε )) N .

If r = 2, we will also denote (•, •) Ωε (respectively, (•, •) ∂Fε ) the duality product between L r (Ω ε ) and L r (Ω ε ) (respectively, the duality product between L r (∂F ε ) and L r (∂F ε )). We will denote | • | r,Ωε (respectively | • | r,∂Fε ) the norm in L r (Ω ε ) (respectively in L r (∂F ε )).

By • Ωε we denote the norm in H 1 (Ω ε ), which is associated to the inner product ((•, •))

Ωε := (∇•, ∇•) Ωε + (•, •) Ωε . By || • || Ωε,T we denote the norm in L 2 (0, T ; H 1 (Ω ε )). By | • | r,Ωε,T (respectively | • | r,∂Fε,T ), we denote the norm in L r (0, T ; L r (Ω ε )) (respectively L r (0, T ; L r (∂F ε ))).
We denote by γ 0 the trace operator u → u| ∂Ωε . The trace operator belongs to L(H 1 (Ω ε ), H 1/2 (∂Ω ε )), and we will use γ 0 to denote the norm of γ 0 in this space.

We will use • ∂Ωε to denote the norm in H 1/2 (∂Ω ε ), which is given by φ ∂Ωε = inf{ v Ωε : γ 0 (v) = φ}. We remember that with this norm, H 1/2 (∂Ω ε ) is a Hilbert space.

Finally, we denote by H r ∂Ω (Ω ε ) and H r ∂Ω (∂Ω ε ), for r ≥ 0, the standard Sobolev spaces which are closed subspaces of H r (Ω ε ) and H r (∂Ω ε ), respectively, and the subscript ∂Ω means that, respectively, traces or functions in ∂Ω ε , vanish on this part of the boundary of Ω ε , i.e.

H r ∂Ω (Ω ε ) = {v ∈ H r (Ω ε ) : γ 0 (v) = 0 on ∂Ω}, and H r ∂Ω (∂Ω ε ) = {v ∈ H r (∂Ω ε ) : v = 0 on ∂Ω}.
Let us notice that, in fact, we can consider an element of H 1/2 (∂F ε ) as an element of H

1/2 ∂Ω (∂Ω ε ).
Analogously, for r ≥ 2, we denote

L r ∂Ω (∂Ω ε ) := {v ∈ L r (∂Ω ε ) : v = 0 on ∂Ω}.
Let us notice that, in fact, we can consider the given ψ 0 ε as an element of L 2 ∂Ω (∂Ω ε ). Let us consider the space

H p := L p (Ω ε ) × L p ∂Ω (∂Ω ε ) , ∀p ≥ 2, with the natural inner product ((v, φ), (w, ϕ)) Hp = (v, w) Ωε + ε(φ, ϕ) ∂Fε , which in particular induces the norm |(•, •)| Hp given by | (v, φ) | 2 Hp = |v| 2 Ωε + ε|φ| 2 ∂Fε , (v, φ) ∈ H p .
For the sake of clarity, we shall omit to write explicitly the index p if p = 2, so we denote by H the Hilbert space

H := L 2 (Ω ε ) × L 2 ∂Ω (∂Ω ε ) . Let us also consider the space V 1 := (v, γ 0 (v)) : v ∈ H 1 ∂Ω (Ω ε ) . We note that V 1 is a closed vector subspace of H 1 ∂Ω (Ω ε ) × H 1/2
∂Ω (∂Ω ε ) , and therefore, with the norm

(•, •) V 1 given by (v, γ 0 (v)) 2 V 1 = v 2 Ωε + γ 0 (v) 2 ∂Fε , (v, γ 0 (v)) ∈ V 1 , V 1 is a Hilbert space.
In what follows, we shall denote by C different constants which are independent of ε.

Existence and uniqueness of solution

We state in this section a result on the existence and uniqueness of solution of problem (1.1). Instead of working directly with our equation, we will apply a general result which is a slight modification of Theorem 1.4, Chapter 2 in Lions [START_REF] Lions | Quelques Méthodes de Résolution des Problèmes aux Limites Non linèaires[END_REF].

In the sequel, we assume that

|(u 0 ε , ψ 0 ε )| H ≤ C. (3.13) Definition 3.1. A weak solution of (1.1) is a pair of functions (u ε , ψ ε ), satisfying u ε ∈ C([0, T ]; L 2 (Ω ε )), ψ ε ∈ C([0, T ]; L 2 ∂Ω (∂Ω ε )), for all T > 0, (3.14) 
u ε ∈ L 2 (0, T ; H 1 ∂Ω (Ω ε )) ∩ L p (0, T ; L p (Ω ε )), for all T > 0, (3.15) 
ψ ε ∈ L 2 (0, T ; H 1/2 ∂Ω (∂Ω ε )) ∩ L q (0, T ; L q ∂Ω (∂Ω ε )), for all T > 0, (3.16) γ 0 (u ε (t)) = ψ ε (t), a.e. t ∈ (0, T ], (3.17)            d dt (u ε (t), v) Ωε + ε d dt (ψ ε (t), γ 0 (v)) ∂Fε + (∇u ε (t), ∇v) Ωε + κ(u ε (t), v) Ωε +(f (u ε (t)), v) Ωε + ε (g(ψ ε (t)), γ 0 (v)) ∂Fε = (h(t), v) Ωε + ε (ρ(t), γ 0 (v)) ∂Fε in D (0, T ), for all v ∈ H 1 ∂Ω (Ω ε ) ∩ L p (Ω ε ) such that γ 0 (v) ∈ L q ∂Ω (∂Ω ε ), (3.18) u ε (0) = u 0 ε , and ψ ε (0) = ψ 0 ε . (3.19) Remark 3.2.
In view of Theorem 3 in Chapter 5 subsection 5.9.2 in Evans [START_REF] Evans | Partial Differential Equations[END_REF], it is not difficult to prove that it (u ε , ψ ε ) satisfies (3.15)-(3.18), then (u ε , ψ ε ) satisfies (3.14). The function ψ ε is the

L 2 ∂Ω (∂Ω ε )-continuous version of γ 0 (u ε ) (see (3.23)-(3.25) below).
We have the following result.

Theorem 3.3. Under the assumptions (1.2)-(1.9), there exists a unique solution (u ε , ψ ε ) of the problem (1.1). Moreover, this solution satisfies the energy equality

1 2 d dt |(u ε (t), ψ ε (t))| 2 H + |∇u ε (t)| 2 Ωε + κ|u ε (t)| 2 Ωε +(f (u ε (t)), u ε (t)) Ωε + ε (g(ψ ε (t)), ψ ε (t)) ∂Fε = (h(t), u ε (t)) Ωε + ε (ρ(t), ψ ε (t)) ∂Fε , a.e. t ∈ (0, T ). (3.20)
Proof. The proof of this result is standard. For the sake of completeness, we give a sketch of a proof.

First, we prove that V 1 is densely embedded in H. In fact, if we consider (w, φ) ∈ H such that (v, w) Ωε + ε(γ 0 (v), φ) ∂Fε = 0, for all v ∈ H 1 ∂Ω (Ω ε ) ,
in particular, we have (v, w) Ωε = 0, for all v ∈ H 1 0 (Ω ε ) , and therefore w = 0. Consequently,

(γ 0 (v), φ) ∂Fε = 0, for all v ∈ H 1 ∂Ω (Ω ε ),
and then, as

H 1/2 ∂Ω (∂Ω ε ) = γ 0 H 1 ∂Ω (Ω ε ) is dense in L 2 ∂Ω (∂Ω ε ) , we have that φ = 0.
Now, on the space V 1 we define a continuous symmetric linear operator

A 1 : V 1 → V 1 , given by A 1 ((v, γ 0 (v))), (w, γ 0 (w)) = (∇v, ∇w) Ωε + κ(v, w) Ωε , ∀v, w ∈ H 1 ∂Ω (Ω ε ) . (3.21)
We observe that A 1 is coercive. In fact, we have

A 1 ((v, γ 0 (v)) , (v, γ 0 (v))) ≥ min {1, κ} v 2 Ωε = 1 1 + γ 0 2 min {1, κ} v 2 Ωε + γ 0 2 1 + γ 0 2 min {1, κ} v 2 Ωε ≥ 1 1 + γ 0 2 min {1, κ} (v, γ 0 (v)) 2 V 1 , (3.22) for all v ∈ H 1 ∂Ω (Ω ε ). Let us denote V 2 = L p (Ω ε ) × L 2 ∂Ω (∂Ω ε ) , V 3 = L 2 (Ω ε ) × L q ∂Ω (∂Ω ε ) , A 2 (v, φ) = (f (v), 0), A 3 (v, φ) = (0, ε g(φ)), h(t) = (h(t), ερ(t)).

From (1.10) one deduces that A

i : V i → V i , for i = 2, 3.
Observe also that by (1.3), 

h ∈ L 2 (0, T ; H) ⊂ L 2 0, T ; V 1 .

With this notation, and denoting

V = ∩ 3 i=1 V i , p 1 = 2, p 2 = p, p 3 = q, u ε = (u ε , ψ ε ), one has that (3.14)-(3.19) is equivalent to u ε ∈ C([0, T ]; H), u ε ∈ 3 i=1 L p i (0, T ; V i ), for all T > 0, (3.23) ( u ε ) (t) + 3 i=1 A i ( u ε (t)) = h(t) in D (0, T ; V ), (3.24) u ε (0) = (u 0 ε , ψ 0 ε ). ( 3 
d dt | u ε (t)| 2 H + 3 i=1 A i ( u ε (t)), u ε (t) i = ( h(t), u ε (t)) H a.e. t ∈ (0, T ),
where •, • i denotes the duality product between V i and V i .

This last equality turns out to be just (3.20).

Remark 3.4. The assumption κ > 0 is not necessary for the existence and uniqueness of weak solution to (1.1).

A priori estimates

Let us begin with a variant of the Trace Theorem in Ω ε .

Lemma 4.1. There exists a positive constant C independent of ε, such that

ε|γ 0 (v)| p p,∂Fε ≤ C |v| p p,Ωε + ε p |∇v| p p,Ωε , 1 ≤ p < ∞, (4.26 
)

for any v ∈ W 1,p (Ω ε ), v = 0 on ∂Ω.
Proof. For any function v(y) ∈ W 1,p (Y * ) N , using the Trace Theorem (see Chapter 5, Section 5.5, Theorem 1 in Evans [START_REF] Evans | Partial Differential Equations[END_REF], for more details), we have for every

k ∈ Z N ∂(F +k) |γ 0 (v)| p dσ(y) ≤ C Y * +k |v| p dy + Y * +k |∇v| p dy , 1 ≤ p < ∞, (4.27) 
where the constant C depends only on p and Y .

By the change of variable

y = x ε , dσ(y) = ε -(N -1) dσ(x), ∂ y = ε ∂ x , (4.28) 
we rescale (4.27) from Y * + k to Y * k,ε and from F + k to F k,ε . This yields that, for any function

v(x) ∈ W 1,p (Y * k,ε ) N , one has ε ∂F k,ε |γ 0 (v)| p dσ(x) ≤ C Y * k,ε |v| p dx + ε p Y * k,ε |∇v| p dx ,
with the same constant C as in (4.27). Summing the inequalities, for every k ∈ K, gives the desired result (4.26).

Let us obtain some a priori estimates for u ε . 

d dt |(u ε (t), ψ ε (t))| 2 H + 2 min {1, κ} 1 + γ 0 2 u ε (t) 2 Ωε + ψ ε (t) 2 ∂Fε +2α 1 (|u ε (t)| p p,Ωε + ε |ψ ε (t)| q q,∂Fε ) ≤ 2β(|Ω ε | + ε |∂F ε |) + |h(t)| 2 Ωε + ε |ρ(t)| 2 ∂Fε + |u ε (t)| 2 Ωε + ε |ψ ε (t)| 2 ∂Fε , (4.30) 
where |Ω ε | and |∂F ε | denote the measure of Ω ε and ∂F ε , respectively.

Integrating (4.30) between 0 and t and using (1.3), we obtain

|(u ε (t), ψ ε (t))| 2 H + 2 min {1, κ} 1 + γ 0 2 t 0 u ε (s) 2 Ωε + ψ ε (s) 2 ∂Fε ds +2α 1 t 0 (|u ε (s)| p p,Ωε + ε |ψ ε (s)| q q,∂Fε )ds ≤ 2βt(|Ω ε | + ε |∂F ε |) + |(u 0 ε , ψ 0 ε )| 2 H + T 0 |h(s)| 2 Ωε + ε |ρ(s)| 2 ∂Fε ds (4.31) + t 0 |(u ε (s), ψ ε (s))| 2 H ds.
By Lemma 4.1 with p = 2, we can deduce

ε |ρ(t)| 2 ∂Fε ≤ C |ρ(t)| 2 Ωε + ε 2 |∇ρ(t)| 2 Ωε ≤ C||ρ(t)|| 2 Ωε ,
which together with (1.3) gives

T 0 |h(s)| 2 Ωε + ε |ρ(s)| 2 ∂Fε ds ≤ C. (4.32)
On the other hand, the number of holes is given by

N (ε) = |Ω| (2ε) N (1 + o(1)) ,
then using the change of variable (4.28), we can deduce

|∂F ε | = N (ε)|∂F k,ε | = N (ε)ε N -1 |∂F | ≤ C ε .
And since |Ω ε | ≤ |Ω|, we have that Now, if we want to take the inner product in (1.1) with u ε , we need that u ε ∈ L 2 (0, T ; H 1 ∂Ω (Ω ε )) ∩ L p (0, T ; L p (Ω ε )) with γ 0 (u ε ) ∈ L q (0, T ; L q ∂Ω (Ω ε )). However, we do not have it for our weak solution. Therefore, we use the Galerkin method and the following lemma in order to prove, rigorously, new a priori estimates for u ε . Lemma 4.3 (Lemma 11.2 in Robinson [START_REF] Robinson | Infinite-dimensional dynamical systems[END_REF]). Let X, Y be Banach spaces such that X is reflexive, and the inclusion X ⊂ Y is compact. Assume that {u m } is uniformly bounded in L ∞ (0, T ; X),

|Ω ε | + ε |∂F ε | ≤ C. ( 4 
ess sup t∈[0,T ] u m (t) X ≤ C,
and that u m u weakly in L 2 (0, T ; X), then

ess sup t∈[0,T ] u(t) X ≤ C. Furthermore, if u ∈ C([0, T ]; Y ), then u(t) ∈ X for all t ∈ [0, T ] and sup t∈[0,T ] u(t) X ≤ C.
Let us observe that the space

H 1 ∂Ω (Ω ε ) × H 1/2
∂Ω (∂Ω ε ) is compactly imbedded in H, and therefore, for the symmetric and coercive linear continuous operator

A 1 : V 1 → V 1 ,
where A 1 is given by (3.21), there exists a non-decreasing sequence 0 < λ 1 ≤ λ 2 ≤ . . . of eigenvalues associated to the operator A 1 with lim j→∞ λ j = ∞, and there exists a Hilbert basis of H, {(w j , γ 0 (w j )) : j ≥ 1}⊂ D(A 1 ), with span{(w j , γ 0 (w j )) :

j ≥ 1} densely embedded in V 1 , such that A 1 ((w j , γ 0 (w j ))) = λ j (w j , γ 0 (w j )) ∀j ≥ 1.
Remark 4.4. It can be proved that if p = q ≥ 2, then span{(w j , γ 0 (w j )) :

j ≥ 1} is densely embedded in V 1 ∩ H p .
Taking into account the above facts, we denote by

(u ε,m (t), γ 0 (u ε,m (t))) = (u ε,m (t; 0, u 0 ε , ψ 0 ε ), γ 0 (u ε,m (t; 0, u 0 ε , ψ 0 ε )))
the Galerkin approximation of the solution (u ε (t; 0, u 0 ε , ψ 0 ε ), γ 0 (u ε (t; 0, u 0 ε , ψ 0 ε ))) to (1.1) for each integer m ≥ 1, which is given by

(u ε,m (t), γ 0 (u ε,m (t))) = m j=1 δ εmj (t)(w j , γ 0 (w j )), (4.35)
and is the solution of

d dt ((u ε,m (t), γ 0 (u ε,m (t))), (w j , γ 0 (w j ))) H + A 1 ((u ε,m (t), γ 0 (u ε,m (t)))), (w j , γ 0 (w j )) +(f (u ε,m (t)), w j ) Ωε + ε(g(γ 0 (u ε,m (t))), γ 0 (w j )) ∂Fε = (h(t), w j ) Ωε + ε(ρ(t), γ 0 (w j )) ∂Fε , j = 1, . . . , m, (4.36) 
with initial data

(u ε,m (0), γ 0 (u ε,m (0))) = (u 0 ε,m , γ 0 (u 0 ε,m )), (4.37) 
where δ εmj (t) = (u ε,m (t), w j ) Ωε + (γ 0 (u ε,m (t)), γ 0 (w j )) ∂Fε , and (u 0 ε,m , γ 0 (u 0 ε,m )) ∈ span{(w j , γ 0 (w j )) : j = 1, . . . , m} converge (when m → ∞) to (u 0 ε , ψ 0 ε ) in a suitable sense which will be specified below.

Lemma 4.5. Suppose that in addition to the assumptions (1.2)-(1.9), we have p = q ≥ 2. Then, for any initial condition (u 0 ε , ψ 0 ε ) ∈ V 1 ∩ H p , there exists a constant C independent of ε, such that the solution u ε of the problem (1.1) satisfies

sup t∈[0,T ] u ε (t) Ωε ≤ C. (4.38) Proof. Let (u 0 ε , ψ 0 ε ) ∈ V 1 ∩ H p . For all m ≥ 1, by Remark 4.4, there exists (u 0 ε,m , γ 0 (u 0 ε,m )) ∈ span{(w j , γ 0 (w j )) : 1 ≤ j ≤ m}, such that {(u 0 ε,m , γ 0 (u 0 ε,m ))} converges to (u 0 ε , ψ 0 ε ) in V 1
and in H p . Then, in particular we know that there exists a constant C such that

||(u 0 ε,m , γ 0 (u 0 ε,m ))|| V 1 ≤ C, |(u 0 ε,m , γ 0 (u 0 ε,m ))| Hp ≤ C. (4.39)
For each integer m ≥ 1, we consider the sequence {(u ε,m (t), γ 0 (u ε,m (t)))} defined by (4.35)-(4.37) with these initial data.

Multiplying by the derivative δ εmj in (4.36), and summing from j = 1 to m, we obtain

|(u ε,m (t), γ 0 (u ε,m (t)))| 2 H + 1 2 d dt ( A 1 ((u ε,m (t), γ 0 (u ε,m (t)))), (u ε,m (t), γ 0 (u ε,m (t))) ) +(f (u ε,m (t)), u ε,m (t)) Ωε + ε(g(γ 0 (u ε,m (t))), γ 0 (u ε,m (t))) ∂Fε = (h(t), u ε,m (t)) Ωε + ε(ρ(t), γ 0 (u ε,m (t))) ∂Fε .
We observe that

(f (u ε,m (t)), u ε,m (t)) Ωε = d dt Ωε F(u ε,m (t))dx, and (g(γ 0 (u ε,m (t))), γ 0 (u ε,m (t))) ∂Fε = d dt ∂Fε G(γ 0 (u ε,m (t)))dσ(x).
Then, we deduce

|(u ε,m (t), γ 0 (u ε,m (t)))| 2 H + 1 2 d dt ( A 1 ((u ε,m (t), γ 0 (u ε,m (t)))), (u ε,m (t), γ 0 (u ε,m (t))) ) ≤ 1 2 |h(t)| 2 Ωε + 1 2 |u ε,m (t)| 2 Ωε + ε 1 2 |ρ(t)| 2 ∂Fε + ε 1 2 |γ 0 (u ε,m (t))| 2 ∂Fε - d dt Ωε F(u ε,m (t))dx -ε d dt ∂Fε G(γ 0 (u ε,m (t)))dσ(x).
Integrating now between 0 and t, taking into account the definition of A 1 and (3.22), and using (1.11) and (1.12), we obtain that

t 0 |(u ε,m (s), γ 0 (u ε,m (s)))| 2 H ds + min{1, κ} 1 + γ 0 2 (u ε,m (t), γ 0 (u ε,m (t))) 2 V 1 +2 α 1 |(u ε,m (t), γ 0 (u ε,m (t)))| p Hp ≤ max{1, κ} (u 0 ε,m , γ 0 (u 0 ε,m )) 2 V 1 + T 0 (|h(s)| 2 Ωε + ε|ρ(s)| 2 ∂Fε )ds +2 α 2 |(u 0 ε,m , γ 0 (u 0 ε,m ))| p Hp + 4 β(|Ω ε | + ε|∂F ε |), (4.40) 
for all t ∈ (0, T ).

Taking into account (4.39) and using (4.32)-(4.33) in (4.40), we have proved that the sequence

{(u ε,m , γ 0 (u ε,m ))} is bounded in C([0, T ]; V 1 ∩ H p ), and {(u ε,m , γ 0 (u ε,m ))} is bounded in L 2 (0, T ; H), for all T > 0.
If we work with the truncated Galerkin equations (4.35)-(4.37) instead of the full PDE, we note that the calculations of the proof of Lemma 4.2 can be following identically to show that {(u ε,m , γ 0 (u ε,m ))} is bounded in L 2 (0, T ; V 1 ), for all T > 0.

Moreover, taking into account the uniqueness of solution to (1.1) and using Aubin-Lions compactness lemma (e.g., cf. Lions [START_REF] Lions | Quelques Méthodes de Résolution des Problèmes aux Limites Non linèaires[END_REF]), it is not difficult to conclude that the sequence {(u ε,m , γ 0 (u ε,m ))} converges weakly in L 2 (0, T ; V 1 ) to the solution (u ε , γ 0 (u ε )) to (1.1). Since the inclusion

H 1 (Ω ε ) ⊂ L 2 (Ω ε ) is compact and u ε ∈ C([0, T ]; L 2 (Ω ε )
), it follows using Lemma 4.3 that the estimate (4.38) is proved. Lemma 4.6. Under the assumptions in Lemma 4.5, assume that f , g ∈ C 1 (R), h ∈ W 1,2 (0, T ; L 2 (Ω)) and ρ ∈ W 1,2 (0, T ; H 1 0 (Ω)), then there exists a constant C independent of ε, such that the solution u ε of the problem (1.1) satisfies u ε Ωε,T ≤ C. (4.41)

Proof. We first note that under the conditions imposed we have that

f (s) ≥ -l, g (s) ≥ -l ∀s ∈ R. (4.42)
As we are assuming that f , g ∈ C 1 (R), h ∈ W 1,2 loc (R; L 2 (Ω)) and ρ ∈ W 1,2 loc (R; H 1 0 (Ω)), we can differentiate with respect to time in (4.36), and then, multiplying by the derivative δ εmj and summing from j = 1 to m, we obtain 1 2

d dt |(u ε,m (t), γ 0 (u ε,m (t)))| 2 H + A 1 ((u ε,m (t), γ 0 (u ε,m (t)))), (u ε,m (t), γ 0 (u ε,m (t))) = -(f (u ε,m (t))u ε,m (t), u ε,m (t)) Ωε -ε(g (γ 0 (u ε,m (t)))γ 0 (u ε,m (t)), γ 0 (u ε,m (t))) ∂Fε +(h (t), u ε,m (t)) Ωε + ε(ρ (t), γ 0 (u ε,m (t))) ∂Fε .
Then, using (3.22) and (4.42), we have

d dt |(u ε,m (t), γ 0 (u ε,m (t)))| 2 H + 2 min {1, κ} 1 + γ 0 2 (u ε,m (t), γ 0 (u ε,m (t))) 2 V 1 ≤ (2l + 1)|(u ε,m (t), γ 0 (u ε,m (r)))| 2 H + |h (t)| 2 Ωε + ε|ρ (t)| 2 ∂Fε .
Integrating between r and t

|(u ε,m (t), γ 0 (u ε,m (t)))| 2 H + 2 min {1, κ} 1 + γ 0 2 t r (u ε,m (s), γ 0 (u ε,m (s))) 2 V 1 ds ≤ |(u ε,m (r), γ 0 (u ε,m (r)))| 2 H +(2l + 1) t r |(u ε,m (s), γ 0 (u ε,m (s)))| 2 H ds + t r (|h (s)| 2 Ωε + ε|ρ (s)| 2 ∂Fε )ds,
for all 0 ≤ r ≤ t. Now, integrating with respect to r between 0 and t,

t|(u ε,m (t), γ 0 (u ε,m (t)))| 2 H + 2 min {1, κ} 1 + γ 0 2 t 0 (u ε,m (s), γ 0 (u ε,m (s))) 2 V 1 ds (4.43) ≤ 2(l + 1) t 0 |(u ε,m (s), γ 0 (u ε,m (s)))| 2 H ds + T 0 (|h (s)| 2 Ωε + ε|ρ (s)| 2 ∂Fε )ds,
for all t ∈ (0, T ).

By Lemma 4.1 with p = 2, we can deduce

ε |ρ (t)| 2 ∂Fε ≤ C |ρ (t)| 2 Ωε + ε 2 |∇ρ (t)| 2 Ωε ≤ C||ρ (t)|| 2 Ωε , which, taking into account that h ∈ W 1,2 (0, T ; L 2 (Ω)) and ρ ∈ W 1,2 (0, T ; H 1 0 (Ω)), gives T 0 |h (s)| 2 Ωε + ε |ρ (s)| 2 ∂Fε ds ≤ C. (4.44)
In particular, taking into account (4.32)-(4.33) in (4.40), we have

t 0 (u ε,m (s), γ 0 (u ε,m (s))) 2 H ds ≤ C 1 + (u 0 ε,m , γ 0 (u 0 ε,m )) 2 V 1 + |(u 0 ε,m , γ 0 (u 0 ε,m ))| p Hp ,
which, jointly with (4.43)-(4.44), yields that

t 0 (u ε,m (s), γ 0 (u ε,m (s))) 2 V 1 ds ≤ C 1 + (u 0 ε,m , γ 0 (u 0 ε,m )) 2 V 1 + |(u 0 ε,m , γ 0 (u 0 ε,m ))| p Hp , (4.45)
and using (4.39) we have proved that the sequence {(u ε,m , γ 0 (u ε,m ))} is bounded in L 2 (0, T ; V 1 ), for all T > 0. Then, the sequence {(u ε,m , γ 0 (u ε,m ))} converges weakly in L 2 (0, T ; V 1 ) to (u ε , γ 0 (u ε )), for all T > 0, and using the lower-semicontinuity of the norm and (4.45), in particular we get

||u ε || Ωε,T ≤ lim inf m→∞ ||u ε,m || Ωε,T ≤ C lim inf m→∞ 1 + (u 0 ε,m , γ 0 (u 0 ε,m )) 2 V 1 + |(u 0 ε,m , γ 0 (u 0 ε,m ))| p Hp = C 1 + (u 0 ε , ψ 0 ε ) 2 V 1 + |(u 0 ε , ψ 0 ε )| p Hp , which, jointly with (u 0 ε , ψ 0 ε ) ∈ V 1 ∩ H p , implies (4.41).
4.1 The extension of u ε to the whole Ω × (0, T )

Since the solution u ε of the problem (1.1) is defined only in Ω ε × (0, T ), we need to extend it to the whole Ω × (0, T ). We denote by ṽ the extension to the whole Ω × (0, T ) for any function v defined on Ω ε × (0, T ). For finding a suitable extension ũε into all Ω × (0, T ), we shall use the following well-known extension Lemma.

Lemma 4.7 (Lemma 1 in Cioranescu and Saint Jean Paulin [START_REF] Cioranescu | Homogenization in open sets with holes[END_REF]). Every function

ϕ ε ∈ H 1 (Ω ε ), with ϕ ε = 0 on ∂Ω, can be extended to a function φε ∈ H 1 0 (Ω), such that |∇ φε | Ω ≤ C|∇ϕ ε | Ωε ,
where the constant C does not depend on ε.

Let us obtain some a priori estimates for the extension of u ε to the whole Ω × (0, T ).

Corollary 4.8. Assume the assumptions in Lemma 4.6. Then, there exists an extension ũε of the solution u ε of the problem (1.1) into Ω × (0, T ), such that

ũε (t) Ω,T ≤ C, |ũ ε | p,Ω,T ≤ C, (4.46) 
sup

t∈[0,T ] ũε (t) Ω ≤ C, (4.47) 
|ũ ε | p,Ω,T ≤ C, (4.48) 
where the constant C does not depend on ε.

Proof. Using Lemma 4.7 together with the estimate (4.29) (respectively the estimate (4.38)), we obtain the first estimate in (4.46) (respectively the estimate (4.47)).

By the Sobolev injection Theorem, if N = 2 we have the continuous embedding H 1 0 (Ω) ⊂ L p (Ω) and if N > 2 we have the continuous embedding H 1 0 (Ω) ⊂ L 2N/(N -2) (Ω) which, jointly with the assumption (1.4), yields the continuous embedding H 1 0 (Ω) ⊂ L p (Ω). Therefore, the continuous embedding H 1 0 (Ω) ⊂ L p (Ω) implies that using Lemma 4.7 together with the estimate (4.29), we can deduce the second estimate in (4.46). Finally, using the continuous embedding H 1 0 (Ω) ⊂ L p (Ω), Lemma 4.7 and the estimate (4.41), we can deduce the estimate (4.48).

A compactness result

In this section, we obtain some compactness results about the behavior of the sequence ũε satisfying the a priori estimates given in Corollary 4.8.

Due to the periodicity of the domain Ω ε , from Theorem 2.6 in Cioranescu and Donato [START_REF] Cioranescu | An Introduction to Homogenization[END_REF] one has, for ε → 0, that

χ Ωε * |Y * | |Y | weakly-star in L ∞ (Ω), (5.49) 
where the limit is the proportion of the material in the cell Y .

Let ξ ε be the gradient of u ε in Ω ε × (0, T ) and let us denote by ξε its extension with zero to the whole of Ω × (0, T ), i.e.

ξε = ξ ε in Ω ε × (0, T ), 0 in (Ω \ Ω ε ) × (0, T ).
(5.50) Proposition 5.1. Under the assumptions in Lemma 4.6, there exists a function u ∈ L 2 (0, T ; H 1 0 (Ω)) ∩ L p (0, T ; L p (Ω)) (u will be the unique solution of the limit system (6.63)) and a function ξ ∈ L 2 (0, T ; L 2 (Ω)) such that for all T > 0,

ũε (t) u(t) weakly in H 1 0 (Ω), ∀t ∈ [0, T ], (5.51) ũε (t 
) → u(t) strongly in L 2 (Ω), ∀t ∈ [0, T ], (5.52) 
f (ũ ε (t)) → f (u(t)) strongly in L p (Ω), ∀t ∈ [0, T ], (5.53) 
g(ũ ε (t)) → g(u(t)) strongly in L p (Ω), ∀t ∈ [0, T ], (5.54) ξε ξ weakly in L 2 (0, T, L 2 (Ω)), (5.55) 
where ξε is given by (5.50).

Moreover, if we suppose that there exists a constant l > 0 such that

(g(s) -g(r)) (s -r) ≤ l (s -r) 2 , ∀s, r ∈ R, (5.56) 
then g(ũ ε (t)) g(u(t)) weakly in W 1,p 0 (Ω), ∀t ∈ [0, T ]. (5.57) 
Proof. By (4.46), we see that the sequence

{ũ ε } is bounded in L 2 (0, T ; H 1 0 (Ω)) ∩ L p (0, T ; L p (Ω))
, for all T > 0. Let us fix T > 0. Then, there exists a subsequence

{ũ ε } ⊂ {ũ ε } and function u ∈ L 2 (0, T ; H 1 0 (Ω)) ∩ L p (0, T ; L p (Ω)) such that ũε u weakly in L 2 (0, T ; H 1 0 (Ω)), (5.58) 
ũε u weakly in L p (0, T ; L p (Ω)).

(5.59)

By the estimate (4.47), for each t ∈ [0, T ], we have that {ũ ε (t)} is bounded in H 1 0 (Ω), and since we have (5.58), we can deduce ũε (t) u(t) weakly in H 1 0 (Ω), ∀t ∈ [0, T ]. Now, we analyze the convergence for the nonlinear term f . By the estimate (4.48), we see that the sequence {ũ ε } is bounded in L p (0, T ; L p (Ω)), for all T > 0. Then, we have that ũε (t) : [0, T ] -→ L p (Ω) is an equicontinuous family of functions.

By Rellich-Kondrachov Theorem and (1.4), for p ≥ 2, if N = 2 we have the compact embedding H 1 0 (Ω) ⊂ L p (Ω) and if N > 2, using that p ≤ 2N/(N -2), we also have the compact embedding

H 1 0 (Ω) ⊂ L p (Ω).
Since, for each t ∈ [0, T ], we have that {ũ ε (t)} is bounded in H 1 0 (Ω), the compact embedding H 1 0 (Ω) ⊂ L p (Ω), implies that it is precompact in L p (Ω).

Then, applying the Ascoli-Arzelà Theorem, we deduce that {ũ ε (t)} is a precompact sequence in C([0, T ]; L p (Ω)). Hence, since we have (5.59), we can deduce that ũε → u strongly in C([0, T ]; L p (Ω)).

(5.60)

Thanks to (1.10), applying Theorem 2.4 in Conca et al. [START_REF] Conca | Homogenization in chemical reactive flows[END_REF] for G(x, v) = f (v), t = p and r = p, we have that the map v ∈ L p (Ω) → f (v) ∈ L p (Ω) is continuous in the strong topologies. Then, taking into account (5.60), we get

f (ũ ε (t)) → f (u(t)) strongly in L p (Ω) ∀t ∈ [0, T ].
Similarly, we analyze the convergence for the nonlinear term g and, we can deduce

g(ũ ε (t)) → g(u(t)) strongly in L p (Ω), ∀t ∈ [0, T ]. (5.61) 
In particular, from (5.60), we have ũε (t) → u(t) strongly in L p (Ω), ∀t ∈ [0, T ], ∀p ≥ 2.

To prove (5.57), let us first note that there exists C > such that

|∇g(ũ ε (t))| p ,Ω ≤ C. (5.62) 
We observe that under the condition (5.56), we have that g (s) ≤ l, ∀s ∈ R.

Then, from the estimate (4.47), we get

Ω ∂g ∂x i (ũ ε (t)) p dx ≤ l p Ω ∂ ũε (t) ∂x i p dx ≤ C Ω |∇ũ ε (t)| p dx ≤ C Ω |∇ũ ε (t)| 2 dx ≤ C,
and we have proved (5.62). Then, from (5.61) and (5.62), we can deduce

g(ũ ε (t)) g(u(t)) weakly in W 1,p 0 (Ω), ∀t ∈ [0, T ].
Finally, from the estimate (4.29) and (5.50), we have | ξε | Ω,T ≤ C, and hence, up a sequence, there exists ξ ∈ L 2 (0, T, L 2 (Ω)) such that ξε ξ weakly in L 2 (0, T ; L 2 (Ω)).

By the uniqueness of solution of the limit problem (6.63), we deduce that the above convergences hold for the whole sequence and therefore, by the arbitrariness of T > 0, all the convergences are satisfied, as we wanted to prove.

Homogenized model

In this section, we identify the homogenized model. Theorem 6.1. Assume the assumptions in Proposition 5.1. Let (u ε , ψ ε ) be the unique solution of the problem (1.1). Then, as ε → 0, we have

ũε (t) → u(t) strongly in L 2 (Ω), ∀t ∈ [0, T ],
where • denotes the extension to Ω × (0, T ) and u is the unique solution of the following problem

                     |Y * | |Y | + |∂F | |Y | ∂u ∂t - N i,j=1 q i,j ∂ 2 u ∂x i ∂x j + |Y * | |Y | (κu + f (u)) + |∂F | |Y | g(u) = |Y * | |Y | h(x, t) + |∂F | |Y | ρ(x, t), in Ω × (0, T ), u(x, 0) = u 0 (x), for x ∈ Ω, u = 0, on ∂Ω × (0, T ).
(6.63)

The homogenized matrix Q = ((q i,j )), which is constant and positive-definite, is given by

q i,j = |Y * | |Y | δ i,j - 1 |Y | Y * ∂η j ∂y i dy, (6.64) 
where the functions η j are solutions of the system

         -∆η j = 0, in Y * , ∂(η j -y j )/∂n = 0, on ∂F, η j is Y -periodic, (6.65) 
where y j are local coordinates in Y * .

Proof. We multiply system (1.1) by a test function v ∈ D(Ω), and integrating by parts, we have

d dt Ω χ Ωε ũε (t)vdx + ε d dt ∂Fε γ 0 (u ε (t))vdσ(x) + Ω ξε ∇vdx + κ Ω χ Ωε ũε (t)vdx + Ω χ Ωε f (ũ ε (t))vdx + ε ∂Fε g(γ 0 (u ε (t)))vdσ(x) = Ω χ Ωε h(t)vdx + ε ∂Fε ρ(t)vdσ(x), in D (0, T ).
We consider ϕ ∈ C 1 c ([0, T ]) such that ϕ(T ) = 0 and ϕ(0) = 0. Multiplying by ϕ and integrating between 0 and T , we have

-ϕ(0) Ω χ Ωε ũε (0)vdx - T 0 d dt ϕ(t) Ω χ Ωε ũε (t)vdx dt -εϕ(0) ∂Fε γ 0 (u ε (0))vdσ(x) -ε T 0 d dt ϕ(t) ∂Fε γ 0 (u ε (t))vdσ(x) dt + T 0 ϕ(t) Ω ξε ∇vdxdt + κ T 0 ϕ(t) Ω χ Ωε ũε (t)vdxdt (6.66) + T 0 ϕ(t) Ω χ Ωε f (ũ ε (t))vdxdt + ε T 0 ϕ(t) ∂Fε g(γ 0 (u ε (t)))vdσ(x)dt = T 0 ϕ(t) Ω χ Ωε h(t)vdxdt + ε T 0 ϕ(t) ∂Fε ρ(t)vdσ(x)dt.
For the sake of clarity, we split the proof in three parts. Firstly, for the integrals on Ω we only require to use Proposition 5.1 and the convergence (5.49), secondly for the integrals on the boundary of the holes we make use of a convergence result based on a technique introduced by Vanninathan [START_REF] Vanninathan | Homogenization of eigenvalues problems in perforated domains[END_REF]. Finally, we pass to the limit, as ε → 0, in (6.66).

Step 1. Passing to the limit, as ε → 0, in the integrals on Ω: From (5.52)-(5.53) and (5.49), we have respectively, for ε → 0,

Ω χ Ωε ũε (t)vdx → |Y * | |Y | Ω u(t)vdx, ∀v ∈ D(Ω),
and

Ω χ Ωε f (ũ ε (t))vdx → |Y * | |Y | Ω f (u(t))vdx, ∀v ∈ D(Ω),
which integrating in time and using Lebesgue's Dominated Convergence Theorem, gives

T 0 d dt ϕ(t) Ω χ Ωε ũε (t)vdx dt → |Y * | |Y | T 0 d dt ϕ(t) Ω u(t)vdx dt, κ T 0 ϕ(t) Ω χ Ωε ũε (t)vdxdt → κ |Y * | |Y | T 0 ϕ(t) Ω u(t)vdxdt, and 
T 0 ϕ(t) Ω χ Ωε f (ũ ε (t))vdxdt → |Y * | |Y | T 0 ϕ(t) Ω f (u(t))vdxdt.
By (5.52) and (5.49), we have

ϕ(0) Ω χ Ωε ũε (0)vdx → ϕ(0) |Y * | |Y | Ω u(0)vdx, ∀v ∈ D(Ω).
By the assumption (1.3), (5.49) and using Lebesgue's Dominated Convergence Theorem, we get

T 0 ϕ(t) Ω χ Ωε h(t)vdxdt → |Y * | |Y | T 0 ϕ(t) Ω h(t)vdxdt.
On the other hand, using (5.55), we obtain, for ε → 0

T 0 ϕ(t) Ω ξε ∇vdxdt → T 0 ϕ(t) Ω ξ∇vdxdt.
Step 2. Passing to the limit, as ε → 0, in the surface integrals on the boundary of the holes:

We make use of the technique introduced by Vanninathan [START_REF] Vanninathan | Homogenization of eigenvalues problems in perforated domains[END_REF] for the Steklov problem which transforms surface integrals into volume integrals. This technique was already used as a main tool to homogenize the non homogeneous Neumann problem for the elliptic case by Cioranescu and Donato [START_REF] Cioranescu | Homogénéisation du problème du Neumann non homogéne dans des ouverst perforés[END_REF]. By Definition 3.2 in Cioranescu and Donato [START_REF] Cioranescu | Homogénéisation du problème du Neumann non homogéne dans des ouverst perforés[END_REF], let us introduce, for any h ∈ L s (∂F ), 1 ≤ s ≤ ∞, the linear form µ ε h on W 1,s 0 (Ω) defined by In the particular case in which h ∈ L ∞ (∂F ) or even when h is constant, we have

µ ε h , ϕ = ε ∂Fε h x ε ϕdσ, ∀ϕ ∈ W
µ ε h → µ h strongly in W -1,∞ (Ω).
In what follows, we shall denote by µ ε 1 the above introduced measure in the particular case in which h = 1. Notice that in this case µ h becomes µ 1 = |∂F |/|Y |.

Observe that using Corollary 4.2 in Cioranescu et al. [START_REF] Cioranescu | Homogenization of the Stokes problem with non homogeneous slip boundary conditions[END_REF] with (5.51), we can deduce, for ε → 0, On the other hand, note that using (6.67) with s = 2, taking into account (1.3) and by Lebesgue's Dominated Convergence Theorem, we can deduce, for ε → 0, Step 3. Passing to the limit, as ε → 0, in (6.66):

All the terms in (6.66) pass to the limit, as ε → 0, and therefore taking into account the previous steps, we get It remains now to identify ξ. The proof is standard, so we omit it. Following, for example, the proof of Theorem 4.7 in Cioranescu and Donato [START_REF] Cioranescu | Homogénéisation du problème du Neumann non homogéne dans des ouverst perforés[END_REF], we conclude that ξ = Q∇u, in Ω × (0, T ), (6.69) where Q = ((q i,j )) is given by (6.64). Then, taking into account (6.69) in (6.68), we have the homogenized model (6.63). 

. 12 ) 1 . 1 .

 1211 Remark If u ε is regular enough, then a compatibility condition for problem (1.1) is that ψ 0 ε must coincide with the restriction to ∂F ε of u 0 ε , and therefore the fourth equation in (1.1) is omitted. Nevertheless, this equation seems necessary for the concept of weak solution (see Definition 3.1).

  .25) Applying a slight modification of [12, Ch.2,Th.1.4], it is not difficult to see that problem (3.23)-(3.25) has a unique solution. Moreover, u ε satisfies the energy equality 1 2

Lemma 4 . 2 .

 42 Under the assumptions (1.2)-(1.9) and (3.13), there exists a constant C independent of ε, such that the solution u ε of the problem (1.1) satisfies u ε Ωε,T ≤ C. (4.29) Proof. By (3.20) and taking into account (1.6), (1.7) and (3.22), we have

ε ∂Fε γ 0

 0 (u ε (t))vdσ(x) = µ ε 1 , ũε| Ωε (t)v → µ 1 Ω u(t)vdx = |∂F | |Y | Ω u(t)vdx,for all v ∈ D(Ω), which integrating in time and using Lebesgue's Dominated Convergence Theorem, gives ε Corollary 4.2 in Cioranescu et al.[START_REF] Cioranescu | Homogenization of the Stokes problem with non homogeneous slip boundary conditions[END_REF] with (5.51), we can deduce, for ε → 0,ε ∂Fε γ 0 (u ε (0))vdσ(x) = µ ε 1 , ũε| Ωε (0)v → µ 1 Ω u(0)vdx = |∂F | |Y | Ω u(0)vdx, ∀v ∈ D(Ω).

From ( 5 .

 5 57) and (6.67), with s = p , we concludeε ∂Fε g(γ 0 (u ε (t)))vdσ(x) = µ ε 1 , g(ũ ε (t))v → |∂F | |Y | Ω g(u(t))vdx,for all v ∈ D(Ω), which integrating in time and using Lebesgue's Dominated Convergence Theorem, gives ε

  Ω × (0, T ).(6.68) 

Definition 6 . 2 .

 62 A weak solution of (6.63) is any function u, satisfyingu ∈ C([0, T ]; L 2 (Ω)), for all T > 0, u ∈ L 2 (0, T ; H 1 0 (Ω)) ∩ L p (0, T ; L p (Ω)), for all T > 0, t), v) + (Q∇u(t), ∇v) + |Y * | |Y | κ(u(t), v) + |Y * | |Y | (f (u(t)), v) + |∂F | |Y | (g(u(t)), v) = |Y * | |Y | (h(t), v) + |∂F | |Y | (ρ(t), v),in D (0, T ), for all v ∈ H 1 0 (Ω) ∩ L p (Ω), u(0) = u 0 .

  .33) Taking into account (3.13), (4.32)-(4.33) in (4.31) and applying Gronwall Lemma, in particular we obtain that there exists a positive constant C such that |(u ε (t), ψ ε (t))| 2

H ≤ C, (4.34) for all t ∈ (0, T ). Now, taking into account (3.13), (4.32)-(4.34) in (4.31), we get (4.29).
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Remark 6.3. Applying a slight modification of Theorem 1.4, Chapter 2 in Lions [START_REF] Lions | Quelques Méthodes de Résolution des Problèmes aux Limites Non linèaires[END_REF], we obtain that the problem (6.63) has a unique solution.