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Abstract

We consider a nonlinear parabolic problem with nonlinear dynamical boundary conditions of
pure-reactive type in a media perforated by periodically distributed holes of size ε. The novelty of
our work is to consider a nonlinear model where the nonlinearity also appears in the boundary. The
existence and uniqueness of solution is analyzed. Moreover, passing to the limit when ε goes to zero,
a new nonlinear parabolic problem defined on a unified domain without holes with zero Dirichlet
boundary condition and with extra-terms coming from the influence of the nonlinear dynamical
boundary conditions is rigorously derived.
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1 Introduction and setting of the problem

Partial differential equations with dynamical boundary conditions have the main characteristic of in-
volving the time derivative of the unknown on the boundary of the domain. Its use dates back at least
to 1901 in the context of heat transfer in a solid in contact with a moving fluid. From the second half of
the 20th century until today, they have been studied in many disciplines (such as, diffusion phenomena
in thermodynamics, phase-transition phenomena in material science, climate science, control theory
and special flows in hydrodynamics).

Several approaches have been used for these problems in a periodically perforated domain, like Ho-
mogenization Theory. Many recent papers in the literature have treated the homogenization of elliptic
problems with nonlinear boundary conditions with prescribed growth. In particular, in Cioranescu et
al. [7], the authors apply the periodic unfolding method in perforated domains to a class of elliptic
problems with nonlinear conditions on the boundary of the holes. The homogenization of quasilinear
elliptic problems in periodically perforated domains with nonlinear Robin boundary conditions has
been considered in Cabarrubias and Donato [1], Chourabi and Donato [2, 3] and Donato et al. [10].

For linear parabolic problems with linear dynamical boundary conditions of pure-reactive type
in periodically perforated domains, the asymptotic behavior of the solution, when the size of the
perforations tends to zero, is studied in Timofte [15]. But to our knowledge, there does not seem to
be in the literature any study of the asymptotic behavior of the solution of nonlinear parabolic models
associated to nonlinear dynamical boundary conditions of pure-reactive type in periodically perforated
domains (up to the stochastic framework, see Wang and Duan [17]).

Let us introduce the model we will be involved with in this paper. Let Ω be a bounded connected
open set in RN (N ≥ 2), with smooth enough boundary ∂Ω. Let Y = [0, 1]N be the representative cell
in RN and F an open subset of Y with smooth enough boundary ∂F , such that F̄ ⊂ Y . We denote
Y ∗ = Y \ F̄ .

For k ∈ ZN , each cell Yk,ε = ε k+ε Y is similar to the unit cell Y rescaled to size ε and Fk,ε = ε k+ε F
is similar to F rescaled to size ε. We denote Y ∗k,ε = Yk,ε \ F̄k,ε. We denote by Fε the set of all the holes

contained in Ω, i.e. Fε = ∪k∈K{Fk,ε : F̄k,ε ⊂ Ω}, where K := {k ∈ ZN : Yk,ε ∩ Ω 6= ∅}.

Let Ωε = Ω\F̄ε. By this construction, Ωε is a periodically perforated domain with holes of the same
size as the period.

We consider the following problem for a nonlinear reaction-diffusion equation with nonlinear dynam-
ical boundary conditions of pure-reactive type on the surface of the holes and zero Dirichlet condition
on the exterior boundary,

∂uε
∂t
−∆uε + κuε + f(uε) = h(x, t) in Ωε × (0, T ),

∂uε
∂~n

+ ε
∂uε
∂t

+ ε g(uε) = ε ρ(x, t) on ∂Fε × (0, T ),

uε(x, 0) = u0
ε(x), for x ∈ Ωε,

uε(x, 0) = ψ0
ε(x), for x ∈ ∂Fε,

uε = 0, on ∂Ω× (0, T ),

(1.1)

where ~n is the outer normal to ∂Fε, T > 0, and

κ > 0, u0
ε ∈ L2 (Ω) , ψ0

ε ∈ L2 (∂Fε) , (1.2)
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h ∈ L2
(
0, T ;L2 (Ω)

)
, ρ ∈ L2

(
0, T ;H1

0 (Ω)
)
, (1.3)

are given.

We also assume that the functions f and g ∈ C (R) are given, and satisfy that there exist exponents
p and q such that

2 ≤ p < +∞, if N = 2 and 2 ≤ p ≤ 2N

N − 2
, if N > 2, (1.4)

2 ≤ q < +∞, if N = 2 and 2 ≤ q ≤ 2N

N − 2
, if N > 2, (1.5)

and constants α1 > 0, α2 > 0, β > 0, and l > 0, such that

α1 |s|p − β ≤ f(s)s ≤ α2 |s|p + β, for all s ∈ R, (1.6)

α1 |s|q − β ≤ g(s)s ≤ α2 |s|q + β, for all s ∈ R, (1.7)

(f(s)− f(r)) (s− r) ≥ −l (s− r)2 , for all s, r ∈ R, (1.8)

and
(g(s)− g(r)) (s− r) ≥ −l (s− r)2 , for all s, r ∈ R. (1.9)

It is easy to see from (1.6) and (1.7) that there exists a constant C > 0 such that

|f(s)| ≤ C
(

1 + |s|p−1
)

, |g(s)| ≤ C
(

1 + |s|q−1
)
, for all s ∈ R. (1.10)

Let us denote

F(s) :=

∫ s

0
f(r)dr and G(s) :=

∫ s

0
g(r)dr.

Then, there exist positive constants α̃1, α̃2, and β̃ such that

α̃1|s|p − β̃ ≤ F(s) ≤ α̃2|s|p + β̃ ∀s ∈ R, (1.11)

and
α̃1|s|q − β̃ ≤ G(s) ≤ α̃2|s|q + β̃ ∀s ∈ R. (1.12)

Remark 1.1. If uε is regular enough, then a compatibility condition for problem (1.1) is that ψ0
ε

must coincide with the restriction to ∂Fε of u0
ε, and therefore the fourth equation in (1.1) is omitted.

Nevertheless, this equation seems necessary for the concept of weak solution (see Definition 3.1).

In this paper, our main motivation is to study the asymptotic behavior, as ε → 0, of the solution
uε of (1.1). As we mentioned before, we only have references in the literature of this approach in the
stochastic context. In that sense, a particularly interesting situation is treated in Wang and Duan [17]
with the help of the two-scale convergence. There, the authors obtain the asymptotic behavior of the
solution of a stochastic partial differential equation with random dynamical boundary conditions, under
the restrictive assumption g(s) = s, i.e. the nonlinearity does not appear in the boundary. However, we
will obtain the asymptotic behavior of the solution of (1.1) where the nonlinearity also appears in the
boundary. We use the energy method of Tartar [14], which has been considered by many authors (see,
for instance, Cioranescu and Donato [4]) and the technique introduced by Vanninathan [16] for the
Steklov problem which transforms surface integrals into volume integrals. This technique was already
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used as a main tool to homogenize the non homogeneous Neumann problem for the elliptic case by
Cioranescu and Donato [4].

In this sense, when ε → 0, we have got a new nonlinear reaction-diffusion equation with constant
coefficient defined on Ω× (0, T ), with zero Dirichlet boundary condition on the boundary, and with a
constant extra-term in front of the derivative which comes from the well-balanced contribution of the
dynamical part of the boundary condition on the surface of the holes.

The structure of the paper is as follows. In Section 2, we give some notations which are used in
the paper. In Section 3, we give a weak formulation of the problem, the concept of weak solution,
and establish the existence and uniqueness of solution using the monotonicity method. Some a priori
estimates are rigorously stablished in Section 4. A compactness result, which is the main key when
we will pass to the limit later, is addressed in Section 5. In Section 6, the main goal of proving the
asymptotic behavior of the solution is finally established in Theorem 6.1.

2 Some notations

In this section, we give some notations which are used in the paper.

We denote by χΩε the characteristic function of the domain Ωε.

We denote by (·, ·)Ωε (respectively, (·, ·)∂Fε) the inner product in L2(Ωε) (respectively, in L2(∂Fε)),
and by |·|Ωε

(respectively, |·|∂Fε
) the associated norm. We also denote (·, ·)Ωε the inner product in

(L2(Ωε))
N .

If r 6= 2, we will also denote (·, ·)Ωε (respectively, (·, ·)∂Fε) the duality product between Lr′(Ωε)
and Lr(Ωε) (respectively, the duality product between Lr′(∂Fε) and Lr(∂Fε)). We will denote | · |r,Ωε

(respectively | · |r,∂Fε) the norm in Lr(Ωε) (respectively in Lr(∂Fε)).

By ‖·‖Ωε
we denote the norm in H1 (Ωε), which is associated to the inner product ((·, ·))Ωε :=

(∇·,∇·)Ωε + (·, ·)Ωε
.

By || · ||Ωε,T we denote the norm in L2(0, T ;H1(Ωε)). By | · |r,Ωε,T (respectively | · |r,∂Fε,T ), we denote
the norm in Lr(0, T ;Lr(Ωε)) (respectively Lr(0, T ;Lr(∂Fε))).

We denote by γ0 the trace operator u 7→ u|∂Ωε . The trace operator belongs to L(H1(Ωε), H
1/2(∂Ωε)),

and we will use ‖γ0‖ to denote the norm of γ0 in this space.

We will use ‖ · ‖∂Ωε to denote the norm in H1/2(∂Ωε), which is given by ‖φ‖∂Ωε = inf{‖v‖Ωε :
γ0(v) = φ}. We remember that with this norm, H1/2(∂Ωε) is a Hilbert space.

Finally, we denote by Hr
∂Ω(Ωε) and Hr

∂Ω(∂Ωε), for r ≥ 0, the standard Sobolev spaces which are
closed subspaces of Hr(Ωε) and Hr(∂Ωε), respectively, and the subscript ∂Ω means that, respectively,
traces or functions in ∂Ωε, vanish on this part of the boundary of Ωε, i.e.

Hr
∂Ω(Ωε) = {v ∈ Hr(Ωε) : γ0(v) = 0 on ∂Ω},

and
Hr

∂Ω(∂Ωε) = {v ∈ Hr(∂Ωε) : v = 0 on ∂Ω}.

Let us notice that, in fact, we can consider an element of H1/2(∂Fε) as an element of H
1/2
∂Ω (∂Ωε).
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Analogously, for r ≥ 2, we denote

Lr
∂Ω(∂Ωε) := {v ∈ Lr(∂Ωε) : v = 0 on ∂Ω}.

Let us notice that, in fact, we can consider the given ψ0
ε as an element of L2

∂Ω(∂Ωε).

Let us consider the space

Hp := Lp (Ωε)× Lp
∂Ω (∂Ωε) , ∀p ≥ 2,

with the natural inner product ((v, φ), (w,ϕ))Hp = (v, w)Ωε + ε(φ, ϕ)∂Fε , which in particular induces
the norm |(·, ·)|Hp given by

| (v, φ) |2Hp
= |v|2Ωε

+ ε|φ|2∂Fε
, (v, φ) ∈ Hp.

For the sake of clarity, we shall omit to write explicitly the index p if p = 2, so we denote by H the
Hilbert space

H := L2 (Ωε)× L2
∂Ω (∂Ωε) .

Let us also consider the space

V1 :=
{

(v, γ0(v)) : v ∈ H1
∂Ω (Ωε)

}
.

We note that V1 is a closed vector subspace of H1
∂Ω (Ωε) ×H1/2

∂Ω (∂Ωε) , and therefore, with the norm
‖(·, ·)‖V1 given by

‖(v, γ0(v))‖2V1
= ‖v‖2Ωε

+ ‖γ0(v)‖2∂Fε
, (v, γ0(v)) ∈ V1,

V1 is a Hilbert space.

In what follows, we shall denote by C different constants which are independent of ε.

3 Existence and uniqueness of solution

We state in this section a result on the existence and uniqueness of solution of problem (1.1). Instead
of working directly with our equation, we will apply a general result which is a slight modification of
Theorem 1.4, Chapter 2 in Lions [12].

In the sequel, we assume that
|(u0

ε, ψ
0
ε)|H ≤ C. (3.13)

Definition 3.1. A weak solution of (1.1) is a pair of functions (uε, ψε), satisfying

uε ∈ C([0, T ];L2(Ωε)), ψε ∈ C([0, T ];L2
∂Ω(∂Ωε)), for all T > 0, (3.14)

uε ∈ L2(0, T ;H1
∂Ω(Ωε)) ∩ Lp(0, T ;Lp(Ωε)), for all T > 0, (3.15)

ψε ∈ L2(0, T ;H
1/2
∂Ω (∂Ωε)) ∩ Lq(0, T ;Lq

∂Ω(∂Ωε)), for all T > 0, (3.16)

γ0(uε(t)) = ψε(t), a.e. t ∈ (0, T ], (3.17)
d

dt
(uε(t), v)Ωε + ε

d

dt
(ψε(t), γ0(v))∂Fε + (∇uε(t),∇v)Ωε + κ(uε(t), v)Ωε

+(f(uε(t)), v)Ωε + ε (g(ψε(t)), γ0(v))∂Fε = (h(t), v)Ωε + ε (ρ(t), γ0(v))∂Fε

in D′(0, T ), for all v ∈ H1
∂Ω(Ωε) ∩ Lp(Ωε) such that γ0(v) ∈ Lq

∂Ω(∂Ωε),

(3.18)

uε(0) = u0
ε, and ψε(0) = ψ0

ε . (3.19)
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Remark 3.2. In view of Theorem 3 in Chapter 5 subsection 5.9.2 in Evans [11], it is not difficult
to prove that it (uε, ψε) satisfies (3.15)–(3.18), then (uε, ψε) satisfies (3.14). The function ψε is the
L2
∂Ω(∂Ωε)-continuous version of γ0(uε) (see (3.23)–(3.25) below).

We have the following result.

Theorem 3.3. Under the assumptions (1.2)–(1.9), there exists a unique solution (uε, ψε) of the problem
(1.1). Moreover, this solution satisfies the energy equality

1

2

d

dt

(
|(uε(t), ψε(t))|2H

)
+ |∇uε(t)|2Ωε

+ κ|uε(t)|2Ωε

+(f(uε(t)), uε(t))Ωε + ε (g(ψε(t)), ψε(t))∂Fε

= (h(t), uε(t))Ωε + ε (ρ(t), ψε(t))∂Fε , a.e. t ∈ (0, T ). (3.20)

Proof. The proof of this result is standard. For the sake of completeness, we give a sketch of a proof.

First, we prove that V1 is densely embedded in H. In fact, if we consider (w, φ) ∈ H such that

(v, w)Ωε + ε(γ0(v), φ)∂Fε = 0, for all v ∈ H1
∂Ω (Ωε) ,

in particular, we have
(v, w)Ωε = 0, for all v ∈ H1

0 (Ωε) ,

and therefore w = 0. Consequently,

(γ0(v), φ)∂Fε = 0, for all v ∈ H1
∂Ω (Ωε),

and then, as H
1/2
∂Ω (∂Ωε) = γ0

(
H1

∂Ω (Ωε)
)

is dense in L2
∂Ω (∂Ωε) , we have that φ = 0.

Now, on the space V1 we define a continuous symmetric linear operator A1 : V1 → V ′1 , given by

〈A1((v, γ0(v))), (w, γ0(w))〉 = (∇v,∇w)Ωε + κ(v, w)Ωε , ∀v, w ∈ H1
∂Ω (Ωε) . (3.21)

We observe that A1 is coercive. In fact, we have

〈A1 ((v, γ0(v)) , (v, γ0(v)))〉 ≥ min {1, κ} ‖v‖2Ωε

=
1

1 + ‖γ0‖2
min {1, κ} ‖v‖2Ωε

+
‖γ0‖2

1 + ‖γ0‖2
min {1, κ} ‖v‖2Ωε

≥ 1

1 + ‖γ0‖2
min {1, κ} ‖(v, γ0(v))‖2V1

, (3.22)

for all v ∈ H1
∂Ω(Ωε).

Let us denote
V2 = Lp (Ωε)× L2

∂Ω (∂Ωε) , V3 = L2 (Ωε)× Lq
∂Ω (∂Ωε) ,

A2 (v, φ) = (f(v), 0), A3 (v, φ) = (0, ε g(φ)), ~h(t) = (h(t), ερ(t)).
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From (1.10) one deduces that Ai : Vi → V ′i , for i = 2, 3.

Observe also that by (1.3),

~h ∈ L2 (0, T ;H) ⊂ L2
(
0, T ;V ′1

)
.

With this notation, and denoting V = ∩3
i=1Vi, p1 = 2, p2 = p, p3 = q, ~uε = (uε, ψε), one has that

(3.14)–(3.19) is equivalent to

~uε ∈ C([0, T ];H), ~uε ∈
3⋂

i=1

Lpi(0, T ;Vi), for all T > 0, (3.23)

(~uε)
′(t) +

3∑
i=1

Ai(~uε(t)) = ~h(t) in D′(0, T ;V ′), (3.24)

~uε(0) = (u0
ε, ψ

0
ε). (3.25)

Applying a slight modification of [12, Ch.2,Th.1.4], it is not difficult to see that problem (3.23)–
(3.25) has a unique solution. Moreover, ~uε satisfies the energy equality

1

2

d

dt
|~uε(t)|2H +

3∑
i=1

〈Ai(~uε(t)), ~uε(t)〉i = (~h(t), ~uε(t))H a.e. t ∈ (0, T ),

where 〈·, ·〉i denotes the duality product between V ′i and Vi.

This last equality turns out to be just (3.20).

Remark 3.4. The assumption κ > 0 is not necessary for the existence and uniqueness of weak solution
to (1.1).

4 A priori estimates

Let us begin with a variant of the Trace Theorem in Ωε.

Lemma 4.1. There exists a positive constant C independent of ε, such that

ε|γ0(v)|pp,∂Fε
≤ C

(
|v|pp,Ωε

+ εp|∇v|pp,Ωε

)
, 1 ≤ p <∞, (4.26)

for any v ∈W 1,p(Ωε), v = 0 on ∂Ω.

Proof. For any function v(y) ∈ W 1,p(Y ∗)N , using the Trace Theorem (see Chapter 5, Section 5.5,
Theorem 1 in Evans [11], for more details), we have for every k ∈ ZN∫

∂(F+k)
|γ0(v)|pdσ(y) ≤ C

(∫
Y ∗+k

|v|pdy +

∫
Y ∗+k

|∇v|pdy
)
, 1 ≤ p <∞, (4.27)

where the constant C depends only on p and Y .
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By the change of variable

y =
x

ε
, dσ(y) = ε−(N−1)dσ(x), ∂y = ε ∂x, (4.28)

we rescale (4.27) from Y ∗ + k to Y ∗k,ε and from F + k to Fk,ε. This yields that, for any function

v(x) ∈W 1,p(Y ∗k,ε)
N , one has

ε

∫
∂Fk,ε

|γ0(v)|pdσ(x) ≤ C

(∫
Y ∗k,ε

|v|pdx+ εp
∫
Y ∗k,ε

|∇v|pdx

)
,

with the same constant C as in (4.27). Summing the inequalities, for every k ∈ K, gives the desired
result (4.26).

Let us obtain some a priori estimates for uε.

Lemma 4.2. Under the assumptions (1.2)–(1.9) and (3.13), there exists a constant C independent of
ε, such that the solution uε of the problem (1.1) satisfies

‖uε‖Ωε,T
≤ C. (4.29)

Proof. By (3.20) and taking into account (1.6), (1.7) and (3.22), we have

d

dt

(
|(uε(t), ψε(t))|2H

)
+

2 min {1, κ}
1 + ‖γ0‖2

(
‖uε(t)‖2Ωε

+ ‖ψε(t)‖2∂Fε

)
+2α1(|uε(t)|pp,Ωε

+ ε |ψε(t)|qq,∂Fε
)

≤ 2β(|Ωε|+ ε |∂Fε|) + |h(t)|2Ωε
+ ε |ρ(t)|2∂Fε

+ |uε(t)|2Ωε
+ ε |ψε(t)|2∂Fε

, (4.30)

where |Ωε| and |∂Fε| denote the measure of Ωε and ∂Fε, respectively.

Integrating (4.30) between 0 and t and using (1.3), we obtain

|(uε(t), ψε(t))|2H +
2 min {1, κ}
1 + ‖γ0‖2

∫ t

0

(
‖uε(s)‖2Ωε

+ ‖ψε(s)‖2∂Fε

)
ds

+2α1

∫ t

0
(|uε(s)|pp,Ωε

+ ε |ψε(s)|qq,∂Fε
)ds

≤ 2βt(|Ωε|+ ε |∂Fε|) + |(u0
ε, ψ

0
ε)|2H +

∫ T

0

(
|h(s)|2Ωε

+ ε |ρ(s)|2∂Fε

)
ds (4.31)

+

∫ t

0
|(uε(s), ψε(s))|2Hds.

By Lemma 4.1 with p = 2, we can deduce

ε |ρ(t)|2∂Fε
≤ C

(
|ρ(t)|2Ωε

+ ε2|∇ρ(t)|2Ωε

)
≤ C||ρ(t)||2Ωε

,

which together with (1.3) gives ∫ T

0

(
|h(s)|2Ωε

+ ε |ρ(s)|2∂Fε

)
ds ≤ C. (4.32)
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On the other hand, the number of holes is given by

N(ε) =
|Ω|

(2ε)N
(1 + o(1)) ,

then using the change of variable (4.28), we can deduce

|∂Fε| = N(ε)|∂Fk,ε| = N(ε)εN−1|∂F | ≤ C

ε
.

And since |Ωε| ≤ |Ω|, we have that

|Ωε|+ ε |∂Fε| ≤ C. (4.33)

Taking into account (3.13), (4.32)-(4.33) in (4.31) and applying Gronwall Lemma, in particular we
obtain that there exists a positive constant C such that

|(uε(t), ψε(t))|2H ≤ C, (4.34)

for all t ∈ (0, T ).

Now, taking into account (3.13), (4.32)-(4.34) in (4.31), we get (4.29).

Now, if we want to take the inner product in (1.1) with u′ε, we need that u′ε ∈ L2(0, T ;H1
∂Ω(Ωε)) ∩

Lp(0, T ;Lp(Ωε)) with γ0(u′ε) ∈ Lq(0, T ;Lq
∂Ω(Ωε)). However, we do not have it for our weak solution.

Therefore, we use the Galerkin method and the following lemma in order to prove, rigorously, new a
priori estimates for uε.

Lemma 4.3 (Lemma 11.2 in Robinson [13]). Let X,Y be Banach spaces such that X is reflexive, and
the inclusion X ⊂ Y is compact. Assume that {um} is uniformly bounded in L∞(0, T ;X),

ess sup
t∈[0,T ]

‖um(t)‖X ≤ C,

and that um ⇀ u weakly in L2(0, T ;X), then

ess sup
t∈[0,T ]

‖u(t)‖X ≤ C.

Furthermore, if u ∈ C([0, T ];Y ), then u(t) ∈ X for all t ∈ [0, T ] and

sup
t∈[0,T ]

‖u(t)‖X ≤ C.

Let us observe that the space H1
∂Ω(Ωε) × H1/2

∂Ω (∂Ωε) is compactly imbedded in H, and therefore,
for the symmetric and coercive linear continuous operator A1 : V1 → V ′1 , where A1 is given by (3.21),
there exists a non-decreasing sequence 0 < λ1 ≤ λ2 ≤ . . . of eigenvalues associated to the operator
A1 with limj→∞ λj = ∞, and there exists a Hilbert basis of H, {(wj , γ0(wj)) : j ≥ 1}⊂ D(A1), with
span{(wj , γ0(wj)) : j ≥ 1} densely embedded in V1, such that

A1((wj , γ0(wj))) = λj(wj , γ0(wj)) ∀j ≥ 1.
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Remark 4.4. It can be proved that if p = q ≥ 2, then span{(wj , γ0(wj)) : j ≥ 1} is densely embedded
in V1 ∩Hp.

Taking into account the above facts, we denote by

(uε,m(t), γ0(uε,m(t))) = (uε,m(t; 0, u0
ε, ψ

0
ε), γ0(uε,m(t; 0, u0

ε, ψ
0
ε)))

the Galerkin approximation of the solution (uε(t; 0, u0
ε, ψ

0
ε), γ0(uε(t; 0, u0

ε, ψ
0
ε))) to (1.1) for each integer

m ≥ 1, which is given by

(uε,m(t), γ0(uε,m(t))) =
m∑
j=1

δεmj(t)(wj , γ0(wj)), (4.35)

and is the solution of

d

dt
((uε,m(t), γ0(uε,m(t))), (wj , γ0(wj)))H + 〈A1((uε,m(t), γ0(uε,m(t)))), (wj , γ0(wj))〉

+(f(uε,m(t)), wj)Ωε + ε(g(γ0(uε,m(t))), γ0(wj))∂Fε

= (h(t), wj)Ωε + ε(ρ(t), γ0(wj))∂Fε , j = 1, . . . ,m, (4.36)

with initial data
(uε,m(0), γ0(uε,m(0))) = (u0

ε,m, γ0(u0
ε,m)), (4.37)

where
δεmj(t) = (uε,m(t), wj)Ωε + (γ0(uε,m(t)), γ0(wj))∂Fε ,

and (u0
ε,m, γ0(u0

ε,m)) ∈ span{(wj , γ0(wj)) : j = 1, . . . ,m} converge (when m → ∞) to (u0
ε, ψ

0
ε) in a

suitable sense which will be specified below.

Lemma 4.5. Suppose that in addition to the assumptions (1.2)–(1.9), we have p = q ≥ 2. Then,
for any initial condition (u0

ε, ψ
0
ε) ∈ V1 ∩Hp, there exists a constant C independent of ε, such that the

solution uε of the problem (1.1) satisfies

sup
t∈[0,T ]

‖uε(t)‖Ωε
≤ C. (4.38)

Proof. Let (u0
ε, ψ

0
ε) ∈ V1 ∩ Hp. For all m ≥ 1, by Remark 4.4, there exists (u0

ε,m, γ0(u0
ε,m)) ∈

span{(wj , γ0(wj)) : 1 ≤ j ≤ m}, such that {(u0
ε,m, γ0(u0

ε,m))} converges to (u0
ε, ψ

0
ε) in V1 and in

Hp. Then, in particular we know that there exists a constant C such that

||(u0
ε,m, γ0(u0

ε,m))||V1 ≤ C, |(u0
ε,m, γ0(u0

ε,m))|Hp ≤ C. (4.39)

For each integer m ≥ 1, we consider the sequence {(uε,m(t), γ0(uε,m(t)))} defined by (4.35)-(4.37) with
these initial data.

Multiplying by the derivative δ′εmj in (4.36), and summing from j = 1 to m, we obtain

|(u′ε,m(t), γ0(u′ε,m(t)))|2H +
1

2

d

dt
(〈A1((uε,m(t), γ0(uε,m(t)))), (uε,m(t), γ0(uε,m(t)))〉)

+(f(uε,m(t)), u′ε,m(t))Ωε + ε(g(γ0(uε,m(t))), γ0(u′ε,m(t)))∂Fε

= (h(t), u′ε,m(t))Ωε + ε(ρ(t), γ0(u′ε,m(t)))∂Fε .
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We observe that

(f(uε,m(t)), u′ε,m(t))Ωε =
d

dt

∫
Ωε

F(uε,m(t))dx,

and

(g(γ0(uε,m(t))), γ0(u′ε,m(t)))∂Fε =
d

dt

∫
∂Fε

G(γ0(uε,m(t)))dσ(x).

Then, we deduce

|(u′ε,m(t), γ0(u′ε,m(t)))|2H +
1

2

d

dt
(〈A1((uε,m(t), γ0(uε,m(t)))), (uε,m(t), γ0(uε,m(t)))〉)

≤ 1

2
|h(t)|2Ωε

+
1

2
|u′ε,m(t)|2Ωε

+ ε
1

2
|ρ(t)|2∂Fε

+ ε
1

2
|γ0(u′ε,m(t))|2∂Fε

− d

dt

∫
Ωε

F(uε,m(t))dx− ε d
dt

∫
∂Fε

G(γ0(uε,m(t)))dσ(x).

Integrating now between 0 and t, taking into account the definition of A1 and (3.22), and using (1.11)
and (1.12), we obtain that∫ t

0
|(u′ε,m(s), γ0(u′ε,m(s)))|2Hds+

min{1, κ}
1 + ‖γ0‖2

‖(uε,m(t), γ0(uε,m(t)))‖2V1

+2α̃1|(uε,m(t), γ0(uε,m(t)))|pHp

≤ max{1, κ}‖(u0
ε,m, γ0(u0

ε,m))‖2V1
+

∫ T

0
(|h(s)|2Ωε

+ ε|ρ(s)|2∂Fε
)ds

+2α̃2|(u0
ε,m, γ0(u0

ε,m))|pHp
+ 4β̃(|Ωε|+ ε|∂Fε|), (4.40)

for all t ∈ (0, T ).

Taking into account (4.39) and using (4.32)-(4.33) in (4.40), we have proved that the sequence
{(uε,m, γ0(uε,m))} is bounded in C([0, T ];V1 ∩ Hp), and {(u′ε,m, γ0(u′ε,m))} is bounded in L2(0, T ;H),
for all T > 0.

If we work with the truncated Galerkin equations (4.35)-(4.37) instead of the full PDE, we note that
the calculations of the proof of Lemma 4.2 can be following identically to show that {(uε,m, γ0(uε,m))}
is bounded in L2(0, T ;V1), for all T > 0.

Moreover, taking into account the uniqueness of solution to (1.1) and using Aubin-Lions compact-
ness lemma (e.g., cf. Lions [12]), it is not difficult to conclude that the sequence {(uε,m, γ0(uε,m))} con-
verges weakly in L2(0, T ;V1) to the solution (uε, γ0(uε)) to (1.1). Since the inclusion H1(Ωε) ⊂ L2(Ωε)
is compact and uε ∈ C([0, T ];L2(Ωε)), it follows using Lemma 4.3 that the estimate (4.38) is proved.

Lemma 4.6. Under the assumptions in Lemma 4.5, assume that f , g ∈ C1(R), h ∈W 1,2(0, T ;L2(Ω))
and ρ ∈ W 1,2(0, T ;H1

0 (Ω)), then there exists a constant C independent of ε, such that the solution uε
of the problem (1.1) satisfies ∥∥u′ε∥∥Ωε,T

≤ C. (4.41)

Proof. We first note that under the conditions imposed we have that

f ′(s) ≥ −l, g′(s) ≥ −l ∀s ∈ R. (4.42)
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As we are assuming that f , g ∈ C1(R), h ∈W 1,2
loc (R;L2(Ω)) and ρ ∈W 1,2

loc (R;H1
0 (Ω)), we can differentiate

with respect to time in (4.36), and then, multiplying by the derivative δ′εmj and summing from j = 1
to m, we obtain

1

2

d

dt
|(u′ε,m(t), γ0(u′ε,m(t)))|2H +

〈
A1((u′ε,m(t), γ0(u′ε,m(t)))), (u′ε,m(t), γ0(u′ε,m(t)))

〉
= −(f ′(uε,m(t))u′ε,m(t), u′ε,m(t))Ωε − ε(g′(γ0(uε,m(t)))γ0(u′ε,m(t)), γ0(u′ε,m(t)))∂Fε

+(h′(t), u′ε,m(t))Ωε + ε(ρ′(t), γ0(u′ε,m(t)))∂Fε .

Then, using (3.22) and (4.42), we have

d

dt
|(u′ε,m(t), γ0(u′ε,m(t)))|2H +

2 min {1, κ}
1 + ‖γ0‖2

∥∥(u′ε,m(t), γ0(u′ε,m(t)))
∥∥2

V1

≤ (2l + 1)|(u′ε,m(t), γ0(u′ε,m(r)))|2H + |h′(t)|2Ωε
+ ε|ρ′(t)|2∂Fε

.

Integrating between r and t

|(u′ε,m(t), γ0(u′ε,m(t)))|2H +
2 min {1, κ}
1 + ‖γ0‖2

∫ t

r

∥∥(u′ε,m(s), γ0(u′ε,m(s)))
∥∥2

V1
ds

≤ |(u′ε,m(r), γ0(u′ε,m(r)))|2H+(2l + 1)

∫ t

r
|(u′ε,m(s), γ0(u′ε,m(s)))|2Hds

+

∫ t

r
(|h′(s)|2Ωε

+ ε|ρ′(s)|2∂Fε
)ds,

for all 0 ≤ r ≤ t. Now, integrating with respect to r between 0 and t,

t|(u′ε,m(t), γ0(u′ε,m(t)))|2H +
2 min {1, κ}
1 + ‖γ0‖2

∫ t

0

∥∥(u′ε,m(s), γ0(u′ε,m(s)))
∥∥2

V1
ds (4.43)

≤ 2(l + 1)

∫ t

0
|(u′ε,m(s), γ0(u′ε,m(s)))|2Hds+

∫ T

0
(|h′(s)|2Ωε

+ ε|ρ′(s)|2∂Fε
)ds,

for all t ∈ (0, T ).

By Lemma 4.1 with p = 2, we can deduce

ε |ρ′(t)|2∂Fε
≤ C

(
|ρ′(t)|2Ωε

+ ε2|∇ρ′(t)|2Ωε

)
≤ C||ρ′(t)||2Ωε

,

which, taking into account that h ∈W 1,2(0, T ;L2(Ω)) and ρ ∈W 1,2(0, T ;H1
0 (Ω)), gives∫ T

0

(
|h′(s)|2Ωε

+ ε |ρ′(s)|2∂Fε

)
ds ≤ C. (4.44)

In particular, taking into account (4.32)-(4.33) in (4.40), we have∫ t

0

∣∣(u′ε,m(s), γ0(u′ε,m(s)))
∣∣2
H
ds ≤ C

(
1 + ‖(u0

ε,m, γ0(u0
ε,m))‖2V1

+ |(u0
ε,m, γ0(u0

ε,m))|pHp

)
,

which, jointly with (4.43)-(4.44), yields that∫ t

0

∥∥(u′ε,m(s), γ0(u′ε,m(s)))
∥∥2

V1
ds ≤ C

(
1 + ‖(u0

ε,m, γ0(u0
ε,m))‖2V1

+ |(u0
ε,m, γ0(u0

ε,m))|pHp

)
, (4.45)
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and using (4.39) we have proved that the sequence {(u′ε,m, γ0(u′ε,m))} is bounded in L2(0, T ;V1), for all
T > 0. Then, the sequence {(u′ε,m, γ0(u′ε,m))} converges weakly in L2(0, T ;V1) to (u′ε, γ0(u′ε)), for all
T > 0, and using the lower-semicontinuity of the norm and (4.45), in particular we get

||u′ε||Ωε,T ≤ lim inf
m→∞

||u′ε,m||Ωε,T

≤ C lim inf
m→∞

(
1 + ‖(u0

ε,m, γ0(u0
ε,m))‖2V1

+ |(u0
ε,m, γ0(u0

ε,m))|pHp

)
= C

(
1 + ‖(u0

ε, ψ
0
ε)‖2V1

+ |(u0
ε, ψ

0
ε)|pHp

)
,

which, jointly with (u0
ε, ψ

0
ε) ∈ V1 ∩Hp, implies (4.41).

4.1 The extension of uε to the whole Ω× (0, T )

Since the solution uε of the problem (1.1) is defined only in Ωε × (0, T ), we need to extend it to the
whole Ω× (0, T ). We denote by ṽ the extension to the whole Ω× (0, T ) for any function v defined on
Ωε× (0, T ). For finding a suitable extension ũε into all Ω× (0, T ), we shall use the following well-known
extension Lemma.

Lemma 4.7 (Lemma 1 in Cioranescu and Saint Jean Paulin [8]). Every function ϕε ∈ H1(Ωε), with
ϕε = 0 on ∂Ω, can be extended to a function ϕ̃ε ∈ H1

0 (Ω), such that

|∇ϕ̃ε|Ω ≤ C|∇ϕε|Ωε ,

where the constant C does not depend on ε.

Let us obtain some a priori estimates for the extension of uε to the whole Ω× (0, T ).

Corollary 4.8. Assume the assumptions in Lemma 4.6. Then, there exists an extension ũε of the
solution uε of the problem (1.1) into Ω× (0, T ), such that

‖ũε(t)‖Ω,T ≤ C, |ũε|p,Ω,T ≤ C, (4.46)

sup
t∈[0,T ]

‖ũε(t)‖Ω ≤ C, (4.47)

|ũ′ε|p,Ω,T ≤ C, (4.48)

where the constant C does not depend on ε.

Proof. Using Lemma 4.7 together with the estimate (4.29) (respectively the estimate (4.38)), we obtain
the first estimate in (4.46) (respectively the estimate (4.47)).

By the Sobolev injection Theorem, if N = 2 we have the continuous embedding H1
0 (Ω) ⊂ Lp(Ω) and

if N > 2 we have the continuous embedding H1
0 (Ω) ⊂ L2N/(N−2)(Ω) which, jointly with the assumption

(1.4), yields the continuous embedding H1
0 (Ω) ⊂ Lp(Ω).

Therefore, the continuous embedding H1
0 (Ω) ⊂ Lp(Ω) implies that using Lemma 4.7 together with

the estimate (4.29), we can deduce the second estimate in (4.46).

Finally, using the continuous embedding H1
0 (Ω) ⊂ Lp(Ω), Lemma 4.7 and the estimate (4.41), we

can deduce the estimate (4.48).
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5 A compactness result

In this section, we obtain some compactness results about the behavior of the sequence ũε satisfying
the a priori estimates given in Corollary 4.8.

Due to the periodicity of the domain Ωε, from Theorem 2.6 in Cioranescu and Donato [5] one has,
for ε→ 0, that

χΩε

∗
⇀
|Y ∗|
|Y |

weakly-star in L∞(Ω), (5.49)

where the limit is the proportion of the material in the cell Y .

Let ξε be the gradient of uε in Ωε × (0, T ) and let us denote by ξ̃ε its extension with zero to the
whole of Ω× (0, T ), i.e.

ξ̃ε =

{
ξε in Ωε × (0, T ),

0 in (Ω \ Ωε)× (0, T ).
(5.50)

Proposition 5.1. Under the assumptions in Lemma 4.6, there exists a function u ∈ L2(0, T ;H1
0 (Ω))∩

Lp(0, T ;Lp(Ω)) (u will be the unique solution of the limit system (6.63)) and a function ξ ∈ L2(0, T ;L2(Ω))
such that for all T > 0,

ũε(t) ⇀ u(t) weakly in H1
0 (Ω), ∀t ∈ [0, T ], (5.51)

ũε(t)→ u(t) strongly in L2(Ω), ∀t ∈ [0, T ], (5.52)

f(ũε(t))→ f(u(t)) strongly in Lp′(Ω), ∀t ∈ [0, T ], (5.53)

g(ũε(t))→ g(u(t)) strongly in Lp′(Ω), ∀t ∈ [0, T ], (5.54)

ξ̃ε ⇀ ξ weakly in L2(0, T, L2(Ω)), (5.55)

where ξ̃ε is given by (5.50).

Moreover, if we suppose that there exists a constant l > 0 such that

(g(s)− g(r)) (s− r) ≤ l (s− r)2 , ∀s, r ∈ R, (5.56)

then
g(ũε(t)) ⇀ g(u(t)) weakly in W 1,p′

0 (Ω), ∀t ∈ [0, T ]. (5.57)

Proof. By (4.46), we see that the sequence {ũε} is bounded in L2(0, T ;H1
0 (Ω)) ∩ Lp(0, T ;Lp(Ω)), for

all T > 0. Let us fix T > 0. Then, there exists a subsequence {ũε′} ⊂ {ũε} and function u ∈
L2(0, T ;H1

0 (Ω)) ∩ Lp(0, T ;Lp(Ω)) such that

ũε′ ⇀ u weakly in L2(0, T ;H1
0 (Ω)), (5.58)

ũε′ ⇀ u weakly in Lp(0, T ;Lp(Ω)). (5.59)

By the estimate (4.47), for each t ∈ [0, T ], we have that {ũε(t)} is bounded in H1
0 (Ω), and since we

have (5.58), we can deduce

ũε′(t) ⇀ u(t) weakly in H1
0 (Ω), ∀t ∈ [0, T ].

Now, we analyze the convergence for the nonlinear term f . By the estimate (4.48), we see that the
sequence {ũ′ε} is bounded in Lp(0, T ;Lp(Ω)), for all T > 0. Then, we have that ũε(t) : [0, T ] −→ Lp(Ω)
is an equicontinuous family of functions.
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By Rellich-Kondrachov Theorem and (1.4), for p ≥ 2, if N = 2 we have the compact embedding
H1

0 (Ω) ⊂ Lp(Ω) and if N > 2, using that p ≤ 2N/(N − 2), we also have the compact embedding
H1

0 (Ω) ⊂ Lp(Ω).

Since, for each t ∈ [0, T ], we have that {ũε(t)} is bounded in H1
0 (Ω), the compact embedding

H1
0 (Ω) ⊂ Lp(Ω), implies that it is precompact in Lp(Ω).

Then, applying the Ascoli-Arzelà Theorem, we deduce that {ũε(t)} is a precompact sequence in
C([0, T ];Lp(Ω)). Hence, since we have (5.59), we can deduce that

ũε′ → u strongly in C([0, T ];Lp(Ω)). (5.60)

Thanks to (1.10), applying Theorem 2.4 in Conca et al. [9] for G(x, v) = f(v), t = p′ and r = p, we
have that the map v ∈ Lp(Ω) 7→ f(v) ∈ Lp′(Ω) is continuous in the strong topologies. Then, taking
into account (5.60), we get

f(ũε′(t))→ f(u(t)) strongly in Lp′(Ω) ∀t ∈ [0, T ].

Similarly, we analyze the convergence for the nonlinear term g and, we can deduce

g(ũε′(t))→ g(u(t)) strongly in Lp′(Ω), ∀t ∈ [0, T ]. (5.61)

In particular, from (5.60), we have

ũε′(t)→ u(t) strongly in Lp(Ω), ∀t ∈ [0, T ], ∀p ≥ 2.

To prove (5.57), let us first note that there exists C > such that

|∇g(ũε(t))|p′,Ω ≤ C. (5.62)

We observe that under the condition (5.56), we have that

g′(s) ≤ l, ∀s ∈ R.

Then, from the estimate (4.47), we get∫
Ω

∣∣∣∣ ∂g∂xi (ũε(t))
∣∣∣∣p′ dx ≤ lp′ ∫

Ω

∣∣∣∣∂ũε(t)∂xi

∣∣∣∣p′ dx ≤ C ∫
Ω
|∇ũε(t)|p

′
dx ≤ C

∫
Ω
|∇ũε(t)|2dx ≤ C,

and we have proved (5.62). Then, from (5.61) and (5.62), we can deduce

g(ũε′(t)) ⇀ g(u(t)) weakly in W 1,p′

0 (Ω), ∀t ∈ [0, T ].

Finally, from the estimate (4.29) and (5.50), we have |ξ̃ε|Ω,T ≤ C, and hence, up a sequence, there
exists ξ ∈ L2(0, T, L2(Ω)) such that ξ̃ε′′ ⇀ ξ weakly in L2(0, T ;L2(Ω)).

By the uniqueness of solution of the limit problem (6.63), we deduce that the above convergences
hold for the whole sequence and therefore, by the arbitrariness of T > 0, all the convergences are
satisfied, as we wanted to prove.
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6 Homogenized model

In this section, we identify the homogenized model.

Theorem 6.1. Assume the assumptions in Proposition 5.1. Let (uε, ψε) be the unique solution of the
problem (1.1). Then, as ε→ 0, we have

ũε(t)→ u(t) strongly in L2(Ω), ∀t ∈ [0, T ],

where ·̃ denotes the extension to Ω× (0, T ) and u is the unique solution of the following problem

(
|Y ∗|
|Y |

+
|∂F |
|Y |

)
∂u

∂t
−

N∑
i,j=1

qi,j
∂2u

∂xi∂xj
+
|Y ∗|
|Y |

(κu+ f(u)) +
|∂F |
|Y |

g(u)

=
|Y ∗|
|Y |

h(x, t) +
|∂F |
|Y |

ρ(x, t), in Ω× (0, T ),

u(x, 0) = u0(x), for x ∈ Ω,

u = 0, on ∂Ω× (0, T ).

(6.63)

The homogenized matrix Q = ((qi,j)), which is constant and positive-definite, is given by

qi,j =
|Y ∗|
|Y |

δi,j −
1

|Y |

∫
Y ∗

∂ηj
∂yi

dy, (6.64)

where the functions ηj are solutions of the system
−∆ηj = 0, in Y ∗,

∂(ηj − yj)/∂n = 0, on ∂F,

ηj is Y − periodic,

(6.65)

where yj are local coordinates in Y ∗.

Proof. We multiply system (1.1) by a test function v ∈ D(Ω), and integrating by parts, we have

d

dt

(∫
Ω
χΩε ũε(t)vdx

)
+ ε

d

dt

(∫
∂Fε

γ0(uε(t))vdσ(x)

)
+

∫
Ω
ξ̃ε∇vdx+ κ

∫
Ω
χΩε ũε(t)vdx

+

∫
Ω
χΩεf(ũε(t))vdx+ ε

∫
∂Fε

g(γ0(uε(t)))vdσ(x) =

∫
Ω
χΩεh(t)vdx+ ε

∫
∂Fε

ρ(t)vdσ(x),

in D′(0, T ).

We consider ϕ ∈ C1
c ([0, T ]) such that ϕ(T ) = 0 and ϕ(0) 6= 0. Multiplying by ϕ and integrating
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between 0 and T , we have

−ϕ(0)

(∫
Ω
χΩε ũε(0)vdx

)
−
∫ T

0

d

dt
ϕ(t)

(∫
Ω
χΩε ũε(t)vdx

)
dt

−εϕ(0)

(∫
∂Fε

γ0(uε(0))vdσ(x)

)
− ε

∫ T

0

d

dt
ϕ(t)

(∫
∂Fε

γ0(uε(t))vdσ(x)

)
dt

+

∫ T

0
ϕ(t)

∫
Ω
ξ̃ε∇vdxdt+ κ

∫ T

0
ϕ(t)

∫
Ω
χΩε ũε(t)vdxdt (6.66)

+

∫ T

0
ϕ(t)

∫
Ω
χΩεf(ũε(t))vdxdt+ ε

∫ T

0
ϕ(t)

∫
∂Fε

g(γ0(uε(t)))vdσ(x)dt

=

∫ T

0
ϕ(t)

∫
Ω
χΩεh(t)vdxdt+ ε

∫ T

0
ϕ(t)

∫
∂Fε

ρ(t)vdσ(x)dt.

For the sake of clarity, we split the proof in three parts. Firstly, for the integrals on Ω we only
require to use Proposition 5.1 and the convergence (5.49), secondly for the integrals on the boundary
of the holes we make use of a convergence result based on a technique introduced by Vanninathan [16].
Finally, we pass to the limit, as ε→ 0, in (6.66).

Step 1. Passing to the limit, as ε→ 0, in the integrals on Ω:

From (5.52)-(5.53) and (5.49), we have respectively, for ε→ 0,∫
Ω
χΩε ũε(t)vdx→

|Y ∗|
|Y |

∫
Ω
u(t)vdx, ∀v ∈ D(Ω),

and ∫
Ω
χΩεf(ũε(t))vdx→

|Y ∗|
|Y |

∫
Ω
f(u(t))vdx, ∀v ∈ D(Ω),

which integrating in time and using Lebesgue’s Dominated Convergence Theorem, gives∫ T

0

d

dt
ϕ(t)

(∫
Ω
χΩε ũε(t)vdx

)
dt→ |Y

∗|
|Y |

∫ T

0

d

dt
ϕ(t)

(∫
Ω
u(t)vdx

)
dt,

κ

∫ T

0
ϕ(t)

∫
Ω
χΩε ũε(t)vdxdt→ κ

|Y ∗|
|Y |

∫ T

0
ϕ(t)

∫
Ω
u(t)vdxdt,

and ∫ T

0
ϕ(t)

∫
Ω
χΩεf(ũε(t))vdxdt→

|Y ∗|
|Y |

∫ T

0
ϕ(t)

∫
Ω
f(u(t))vdxdt.

By (5.52) and (5.49), we have

ϕ(0)

(∫
Ω
χΩε ũε(0)vdx

)
→ ϕ(0)

|Y ∗|
|Y |

∫
Ω
u(0)vdx, ∀v ∈ D(Ω).

By the assumption (1.3), (5.49) and using Lebesgue’s Dominated Convergence Theorem, we get∫ T

0
ϕ(t)

∫
Ω
χΩεh(t)vdxdt→ |Y

∗|
|Y |

∫ T

0
ϕ(t)

∫
Ω
h(t)vdxdt.
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On the other hand, using (5.55), we obtain, for ε→ 0∫ T

0
ϕ(t)

∫
Ω
ξ̃ε∇vdxdt→

∫ T

0
ϕ(t)

∫
Ω
ξ∇vdxdt.

Step 2. Passing to the limit, as ε→ 0, in the surface integrals on the boundary of the holes:

We make use of the technique introduced by Vanninathan [16] for the Steklov problem which
transforms surface integrals into volume integrals. This technique was already used as a main tool to
homogenize the non homogeneous Neumann problem for the elliptic case by Cioranescu and Donato
[4].

By Definition 3.2 in Cioranescu and Donato [4], let us introduce, for any h ∈ Ls′(∂F ), 1 ≤ s′ ≤ ∞,
the linear form µεh on W 1,s

0 (Ω) defined by

〈µεh, ϕ〉 = ε

∫
∂Fε

h
(x
ε

)
ϕdσ, ∀ϕ ∈W 1,s

0 (Ω),

with 1/s+ 1/s′ = 1. It is proved in Lemma 3.3 in Cioranescu and Donato [4] that

µεh → µh strongly in (W 1,s
0 (Ω))′, (6.67)

where 〈µh, ϕ〉 = µh

∫
Ω
ϕdx, with

µh =
1

|Y |

∫
∂F
h(y)dσ.

In the particular case in which h ∈ L∞(∂F ) or even when h is constant, we have

µεh → µh strongly in W−1,∞(Ω).

In what follows, we shall denote by µε1 the above introduced measure in the particular case in which
h = 1. Notice that in this case µh becomes µ1 = |∂F |/|Y |.

Observe that using Corollary 4.2 in Cioranescu et al. [6] with (5.51), we can deduce, for ε→ 0,

ε

∫
∂Fε

γ0(uε(t))vdσ(x) = 〈µε1, ũε|Ωε
(t)v〉 → µ1

∫
Ω
u(t)vdx =

|∂F |
|Y |

∫
Ω
u(t)vdx,

for all v ∈ D(Ω), which integrating in time and using Lebesgue’s Dominated Convergence Theorem,
gives

ε

∫ T

0

d

dt
ϕ(t)

(∫
∂Fε

γ0(uε(t))vdσ(x)

)
dt→ |∂F |

|Y |

∫ T

0

d

dt
ϕ(t)

(∫
Ω
u(t)vdx

)
dt.

Moreover, using Corollary 4.2 in Cioranescu et al. [6] with (5.51), we can deduce, for ε→ 0,

ε

∫
∂Fε

γ0(uε(0))vdσ(x) = 〈µε1, ũε|Ωε
(0)v〉 → µ1

∫
Ω
u(0)vdx =

|∂F |
|Y |

∫
Ω
u(0)vdx, ∀v ∈ D(Ω).

On the other hand, note that using (6.67) with s = 2, taking into account (1.3) and by Lebesgue’s
Dominated Convergence Theorem, we can deduce, for ε→ 0,

ε

∫ T

0
ϕ(t)

∫
∂Fε

ρ(t)vdσ(x)dt =

∫ T

0
ϕ(t)〈µε1, ρ(t)v〉dt→ |∂F |

|Y |

∫ T

0
ϕ(t)

∫
Ω
ρ(t)vdxdt.
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From (5.57) and (6.67), with s = p′, we conclude

ε

∫
∂Fε

g(γ0(uε(t)))vdσ(x) = 〈µε1, g(ũε(t))v〉 →
|∂F |
|Y |

∫
Ω
g(u(t))vdx,

for all v ∈ D(Ω), which integrating in time and using Lebesgue’s Dominated Convergence Theorem,
gives

ε

∫ T

0
ϕ(t)

∫
∂Fε

g(γ0(uε(t)))vdσ(x)dt→ |∂F |
|Y |

∫ T

0
ϕ(t)

∫
Ω
g(u(t))vdxdt.

Step 3. Passing to the limit, as ε→ 0, in (6.66):

All the terms in (6.66) pass to the limit, as ε → 0, and therefore taking into account the previous
steps, we get

−ϕ(0)

(
|Y ∗|
|Y |

+
|∂F |
|Y |

)(∫
Ω
u(0)vdx

)
−
(
|Y ∗|
|Y |

+
|∂F |
|Y |

)∫ T

0

d

dt
ϕ(t)

(∫
Ω
u(t)vdx

)
dt

+

∫ T

0
ϕ(t)

∫
Ω
ξ∇vdxdt+ κ

|Y ∗|
|Y |

∫ T

0
ϕ(t)

∫
Ω
u(t)vdxdt

+
|Y ∗|
|Y |

∫ T

0
ϕ(t)

∫
Ω
f(u(t))vdxdt+

|∂F |
|Y |

∫ T

0
ϕ(t)

∫
Ω
g(u(t))vdxdt

=
|Y ∗|
|Y |

∫ T

0
ϕ(t)

∫
Ω
h(t)vdxdt+

|∂F |
|Y |

∫ T

0
ϕ(t)

∫
Ω
ρ(t)vdxdt.

Hence, ξ verifies(
|Y ∗|
|Y |

+
|∂F |
|Y |

)
∂u

∂t
− divξ +

|Y ∗|
|Y |

(κu+ f(u)) +
|∂F |
|Y |

g(u) =
|Y ∗|
|Y |

h+
|∂F |
|Y |

ρ, in Ω× (0, T ). (6.68)

It remains now to identify ξ. The proof is standard, so we omit it. Following, for example, the
proof of Theorem 4.7 in Cioranescu and Donato [4], we conclude that

ξ = Q∇u, in Ω× (0, T ), (6.69)

where Q = ((qi,j)) is given by (6.64). Then, taking into account (6.69) in (6.68), we have the homoge-
nized model (6.63).

Definition 6.2. A weak solution of (6.63) is any function u, satisfying

u ∈ C([0, T ];L2 (Ω)), for all T > 0,

u ∈ L2(0, T ;H1
0 (Ω)) ∩ Lp(0, T ;Lp (Ω)), for all T > 0,

(
|Y ∗|
|Y |

+
|∂F |
|Y |

)
d

dt
(u(t), v) + (Q∇u(t),∇v) +

|Y ∗|
|Y |

κ(u(t), v) +
|Y ∗|
|Y |

(f(u(t)), v) +
|∂F |
|Y |

(g(u(t)), v)

=
|Y ∗|
|Y |

(h(t), v) +
|∂F |
|Y |

(ρ(t), v),

in D′(0, T ), for all v ∈ H1
0 (Ω) ∩ Lp(Ω),

u(0) = u0.
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Remark 6.3. Applying a slight modification of Theorem 1.4, Chapter 2 in Lions [12], we obtain that
the problem (6.63) has a unique solution.
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[9] C. Conca, J.I. Dı́az, A. Liñán, C. Timofte, Homogenization in chemical reactive flows, Electronic
Journal of Differential Equations, Vo. 2004, No. 40, 1-22 (2004).
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