
HAL Id: hal-01643297
https://hal.science/hal-01643297v1

Submitted on 12 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Extended overlay architectures for heterogeneous FPGA
cluster management

Mohamad Najem, Théotime Bollengier, Jean-Christophe Le Lann, Loïc
Lagadec

To cite this version:
Mohamad Najem, Théotime Bollengier, Jean-Christophe Le Lann, Loïc Lagadec. Extended overlay
architectures for heterogeneous FPGA cluster management. Journal of Systems Architecture, 2017,
78, pp.1-14. �10.1016/j.sysarc.2017.06.001�. �hal-01643297�

https://hal.science/hal-01643297v1
https://hal.archives-ouvertes.fr


Extended overlay architectures for heterogeneous FPGA cluster 
management 

Mohamad Najem 
a , ∗, Théotime Bollengier a , b , Jean-Christophe Le Lann 

a , Loïc Lagadec a 

a Lab-STICC UMR 6532, ENSTA Bretagne, Brest, France 
b B <> com, Research Institute of Technology, Brest, France 

1. Introduction 

Nowadays, hardware architectures, especially the ones dedi- 

cated for signal and image processing, must offer high performance 

computation, design flexibility, and upgrade capabilities. Recon- 

figurable chips, such as Field Programmable Gate Arrays (FPGAs), 

have been addressed as a reasonable solution in this area, combin- 

ing flexibility, re-programmability, power efficiency, and low devel- 

opment cost [1,2] . 

Moreover, a trend which has recently emerged is the remote- 

use of commodity off-the-shelf (COTS) FPGAs as hardware acceler- 

ation units in a heterogeneous computing cluster [3,4] . Over the 

lifetime of the infrastructure, components of such a cluster are 

gradually updated and replaced to follow the technology evolution 

over time, and FPGAs sales and trends. This results in FPGAs with 

different characteristics and from different vendors being used at 

the same time. However, a bitstream generated for a given FPGA 

cannot be loaded into an FPGA of a different model. It is there- 

fore not possible to blindly dispatch hardware applications in such 

∗ Corresponding author. 

E-mail addresses: mohamad.najem@ensta-bretagne.fr (M. Najem),

theotime.bollengier@ensta-bretagne.fr (T. Bollengier),

jean-christophe.Le_Lann@ensta-bretagne.fr (J.-C. Le Lann),

loic.lagadec@ensta-bretagne.fr (L. Lagadec). 

a FPGA cluster. For this purpose, this paper proposes an FPGA re- 

sources virtualization approach based on overlay architectures. The 

idea is to deploy an intermediate layer of reconfigurable resources, 

the overlay-based virtual FPGA (vFPGA), to hide the realm of the 

infrastructure and offer a unified view of resources. An application 

design targeting the vFPGA is no longer tied to a limited set of FP- 

GAs from the cluster, and can run on any node implementing the 

vFPGA. 

Moreover, the sharing of reconfigurable resources among differ- 

ent applications is a key requirement that gives rise to a higher 

hardware utilization. For this purpose, applications have to be ef- 

ficiently instrumented, hence offer a simple management of such 

a cluster. In this work, we propose to extend the classical overlay 

architectures by adding new features to freely snapshot the state 

of the running application, and enable restoring the circuit back to 

any previously saved state. Hardware task preemptive scheduling 

on a node, application live migration between nodes can then be 

deployed; our complete system can perform load balancing or con- 

solidation, manages application priorities and provides fault toler- 

ance. Moreover, to support early performances estimation, we pro- 

pose some accurate cost models for scheduling and live migration 

time. 

The remainder of this paper is organized as follows. 

Section 2 presents the limitation of existing works from the 

literature, while in Section 3 , the proposed FPGA virtualization 



2 M. Najem et al. / Journal of Systems Architecture 78 (2017) 1–14 

approach is discussed and the classical overlay architectures are 

presented. Section 4 discusses Zeff, the deployment architecture, 

while Section 5 presents our novel overlay features. Section 6 de- 

scribes the complete system supporting live migration and offering 

scheduling of hardware tasks on overlays. Section 7 draws conclu- 

sions and discusses future lines of research. 

2. Related works 

The main goal of this paper is to propose an FPGA virtualization 

solution for an efficient remote-use of FPGAs for general purpose 

computing, which has recently become a new area of interest for 

many researchers. A useful analysis of the difficulty to bringing FP- 

GAs as shareable resources is presented in [5] , where four require- 

ments are identified, including the binary compatibility among FP- 

GAs and resource sharing capabilities. The authors propose to ex- 

pose FPGAs to the cloud stack as a resources pool, which can be 

dynamically managed by a global manager. They clearly highlight 

the need of a virtualization support for an efficient sharing of FPGA 

resources. 

The virtualization of FPGA resources provides more flexibility 

and portability for user applications. Several frameworks are pro- 

posed in the literature, which abstract the physical resources by 

a system layer (or services) providing a virtualized environment to 

access them. In [6] , a paravirtualized Xen Virtual Machine (VM) en- 

vironment provides multiple-user services to access FPGA accelera- 

tors. Moreover, BORPH [7] is also a well known project working on 

UNIX interfaces for creating hardware-based drivers and providing 

FPGA hardware abstractions and management, while the VirtualRC 

platform [8] proposes a uniform hardware/software interface to ac- 

cess FPGAs. Moreover in [9] , authors have proposed the Object- 

Oriented Communication Engine (OOCE), a system-level middle- 

ware for FPGA-SoC heterogeneous architecture. They abstract FPGA 

synthesis flow and acceleration by a set of OS calls. These frame- 

works move a step forward in the virtualization of FPGAs. How- 

ever, such services virtualize (or abstract) the access to the FPGA 

not the resource itself. In other words, FPGAs are not completely 

virtualized in a generic way, and remains an open question how 

to provide an efficient sharing algorithm between heterogeneous 

FPGAs. 

Most of hardware virtualization schemes are based on the dy- 

namic reconfiguration of the FPGA [4,9–11] . The key idea is to de- 

compose the physical FPGA into several reconfigurable regions us- 

ing the Dynamic Partial Reconfiguration (DPR). Each region is con- 

sidered as a single virtualized FPGA resource (vFPGA) making the 

FPGA a multi-tenant device. Additionally, a static region is used to 

connect all vFPGAs in each physical FPGA to the system manager. 

Authors in [10] , have proposed an architecture of four vFPGAs with 

NetFPGA-10G infrastructure in the static region, while in [11] the 

control unit in the static region communicates with the external 

host via a PCI-express interface. Moreover, in [4] , authors have pro- 

posed a prototype framework (RC3E) for integrating vFPGAs in the 

cloud using also a DPR technique. The virtualization of FPGA re- 

sources based on the DPR technique seems very promising, but re- 

mains dependent on the FPGA; it is a service provided by FPGA 

vendors, and applications must be synthesized and programmed 

for a specific FPGA and using vendors tools. Also, DPR-based vFP- 

GAs do not meet application management requirements, especially 

when migration and scheduling techniques are envisioned to in- 

crease the usability of FPGAs [5,11] . 

Furthermore, sharing of FPGA resources is a natural require- 

ment and a promising technique to reuse resources by different 

circuits (configurations). In [12] , authors propose to switch be- 

tween signal processing DVB-T2 tasks in a time multiplexed fash- 

ion using DPR. Another technique is proposed in [13] to share 

circuit-specific DSP blocks from Xilinx. Instead of reconfiguring a 

set of DSP blocks to implement all operations, authors use multiple 

sets of DSP blocks controlled by state machines to ensure that each 

set achieves a high initiation interval. A hardware context-switch 

mechanism is introduced in [14] , where user tasks, designed by 

HLS tools, are modified at design-time: several checkpoints are in- 

serted inside the code and a scan-chain structure is included to 

extract/restore the state of the circuit. A useful approach based 

on FaRM (Fast Reconfigurable Manner) controller for an advanced 

scheduling of hardware tasks on a DPR-based resource is intro- 

duced in [15] . Authors present an architecture with on-chip con- 

trollers and FSMs enabling the pre-loading of the partial bitstream 

in order to reduce PR configuration time overhead. 

From the variety of approaches in the literature, it is clear that 

most works have focused on the virtualization of FPGAs as a soft- 

ware layer. Few efforts have been reported on the hardware ar- 

chitecture of the vFPGA, which is crucial for effective management 

of FPGA resources. A spatial-sharing of FPGAs is provided through 

the DPR technique, while the time-sharing is addressed for some 

application-specific and circuit-specific contexts. DPR-based solu- 

tions can hardly be generalized for whichever task or FPGA. Also, 

the compatibility requirement among DPRs of different FPGAs can- 

not be entirely fulfilled. Despite the effort in reducing resource 

reconfiguration time, DPRs might suffer from a significant recon- 

figuration latency, as they use relatively slow communication in- 

terfaces for the configuration [16] . In this paper, we propose a 

novel approach for the hardware virtualization of FPGAs. vFPGAs 

are overlay-based architectures that can be implemented on any 

FPGA device. Our generic solution homogenizes any cluster of het- 

erogeneous FPGAs. Several overlays architectural features are intro- 

duced to extend the flexibility providing a cost-effective configura- 

tion, thanks to our bitstream pre-loading feature, and a lightweight 

management for running applications. 

3. FPGA virtualization: overlay approach 

Virtualizing FPGAs aims at designing, implementing and run- 

ning hardware applications independently from the FPGA technol- 

ogy and tools. This section presents our proposed method, high- 

lights the advantages of overlay architectures, and introduces most 

of existing architectures from the literature. 

3.1. Overlay-based approach 

We investigate overlay architectures to virtualize heterogeneous 

FPGAs. Overlays have been reported to offer many advantages 

against FPGAs: 

• Bitstream compatibility: Overlays are portable over any physical 

FPGA. Hence, circuits targeting the overlay can be implemented 

on any physical FPGA supporting the virtual layer. All physical 

FPGAs, which have almost different characteristics and from dif- 

ferent vendors, are seen as homogeneous re-configurable over- 

lays for front-end applications. 

• Open-source usage: The ability to deploy a vFPGA, with a fully 

accessible architecture description, allows the developers to use 

any open-source tool targeting such architectures. This allevi- 

ates the need for FPGA vendor tools. 

• Flexibility: As a general rule, being independent from the un- 

derlay, overlays implementations can integrate advanced archi- 

tectural features to provide new capabilities, such as: applica- 

tion monitoring, clock management, bitstream pre-loading, etc . 

Fig. 1 illustrates the proposed approach. It consists on deploying 

a layer between the application and the physical FPGA, the overlay. 

Overlays are re-configurable architectures mapped on top of the 

COTS FPGAs. The proposed overlay-based virtual FPGA is composed 

of three layers (as shown in the Fig. 1 ): 



M. Najem et al. / Journal of Systems Architecture 78 (2017) 1–14 3 

Hypervisor 
Controller or Soft-core 

Manage and Communicate 

with the vFPGA 

Virtual bitstream 

Generation 

Homogeneous  

Virtual FPGAs 

         vFPGA 

(Overlay) 

Board B Board A 

H
y
p

e
rv

is
o

r 

Configuration 

Computation 

Configuration 

Computation 

Virtual 

Synthesis 
Module mult_32b (output<32> 

out) : 

     reg<32> a; 

     reg<32> b; 

{ 

    a = b = X " beef beef "  ; 

    out = a x b; 

            … 

} 

Overlay 
Matrix of reconfigurable 

resources 

Heterogeneous 

Physical resources 

HW Application 

Synthesized 

Application 

Physical  

Synthesis 

Snapshot 

  vFPGA 

Fig. 1. Overview of the proposed FPGA virtualization approach. 

• The computation layer , which is the set of reconfigurable ele- 

ments available to the application. 

• The configuration layer , which configures the computation layer. 

• The snapshot layer , which snapshots the state of the computa- 

tion layer, hence the state of the running application. 

From the application interface, the virtual FPGA corresponds to 

a set of re-configurable elements available to the application which 

targets the vFPGA ( functional architecture ), while the interface with 

the physical FPGA focuses on how the functional architecture is 

implemented and synthesized to the host FPGA. So, the functional 

architecture of the vFPGA and the implementation are indepen- 

dent, hence the concept of FPGA virtualization. 

3.2. Overlay architectures 

Overlays consist of a regular arrangement of Reconfigurable El- 

ements (REs), connected by routing channels of an interconnection 

network. In the literature, overlays have been developed for vari- 

ous applications, and are either fine-grained or coarse-grained archi- 

tectures. Fig. 2 shows a conceptual view for the computation layer 

of island-style overlay architectures. 

3.2.1. Fine-grained overlays 

Fine-grained overlays are FPGA-like architectures [17,19–21] , 

where REs are composed of fine-grain reconfigurable elements, 

such as Configurable Logic Blocks (CLBs). Fig. 2 a) presents a 

generic LUT-based architecture compatible with standard architec- 

tures used in the academic Versatile Place and Route (VPR) tool 

[22] . The basic architecture has Height × Width CLBs, each of which 

has I bits inputs and N bits outputs. A CLB is composed of N Basic 

Logic Elements (BLEs). A BLE has one LUT with K inputs and one 

register that can be bypassed (also called the virtual application 

register). Inputs of BLEs are derived from a global crossbar that has 

I + N inputs (the I CLB inputs plus N feedback signals from the BLEs 

outputs). Each Switch Box (SB) has W unidirectional wires, con- 

nected to other wires from adjacent SB in a configurable way. Each 

element of such fine-grained architecture is configured by one or 

more bits from the configuration register. 

Mapping a fine-grained reconfigurable architecture on top of 

the fine-grained FPGA might suffer from a significant virtualiza- 

tion overhead. However due to large commercial FPGA capacities 

this approach makes sense for some applications be portability as 

important as resources utilization. Despite, several works from the 

literature focus on optimizing the implementation of such a vF- 

PGA on the physical FPGA. Brant and Lemieux have proposed to 

use target specific dynamically re-programmable LUTs available in 

some host architectures (called LUTRAMs) to optimize the imple- 

mentation of their fine-grained overlay ZUMA [17] , getting a ra- 

tio down to 40 physical Look-Up-Table (LUT) per virtual LUT. Dirk 

Koch et al. [19] integrated a fine-grained overlay in the datapath 

of a MIPS processor to get a portable custom instruction set. They 

also propose an optimization of the direct mapping of overlay in- 

terconnection network into the switch fabric of the host FPGA. Be- 

sides, there also exist research effort s that f ocus on overlay integra- 

tion and implementation. Wiersema et al. [21] propose to embed a 

ZUMA-based vFPGA architecture into their configurable system-on- 

chip ReconOS. Moreover, in [20] , authors designed a fine grained 

overlay with extra routing resources to ease the task of their Just- 

In-Time synthesizer. 

3.2.2. Coarse-grained overlays 

The key attraction of coarse-grained overlays is the compu- 

tational, energy, and software-like engineering efficiency. Fig. 2 b) 

shows the basic architecture of coarse-grained overlays; REs con- 

sist of an array of Functional Units (FUs), or Processing Element 

(PEs). FUs can execute common word-level operations, including 

addition, subtraction, and multiplication, compared to the single- 

bit BLE operation in fine-grained architectures. Some architec- 

ture may contain in-tile memories, such as Register files, to hold 

temporary values and instructions. The majority of coarse-grained 

overlays can be restricted to just two classes, using the classifi- 

cation in [16] : spatially-configured, and time-multiplexed overlays. 

The largest group consists of spatially-configured overlays [16,23–

25] , where FU executes a single arithmetic operation and data 

is transferred over a dedicated point-to-point links between FUs. 

Both the FU and the interconnect remain unchanged while an ap- 

plication is executing, thus supporting the execution of pipelined 



4 M. Najem et al. / Journal of Systems Architecture 78 (2017) 1–14 

Fig. 2. Basic overlay architecture: a) LUT-based fine-grained VPR compatible architecture similar to ZUMA [17] , and b) ALU-based coarse-grained architecture [18] . 

Data Flow Graph (DFG) applications. The configuration layer is 

therefore similar to the fine-grained overlay, where a specific reg- 

ister is used to configure the entire architecture for implementing 

a given DFG function. Furthermore, the time-multiplexed coarse- 

grained overlays [26] behave similarly to multi-core architectures; 

each tile (FU) contains a specific instructions memory, that is time- 

multiplexed among multiple operations. 

3.2.3. Summary 

To summarize, the overlay architecture can be seen as a set of 

reconfigurable elements. Fine-grained architectures allow the syn- 

thesis of a large range spectrum of applications, but suffer from a 

significant overhead. Coarse-grained are more cost-effective, but it 

is hard to define a particular configuration that suits a sufficient 

range of applications for the approach to be viable as a stand- 

alone solution. In this paper, we focus on exploitation of overlay 

architectures for virtualizing FPGAs, and to extend their function- 

alities in order to provide an efficient management of applications 

in a heterogeneous cluster. For this purpose, the target overlay, 

which serves as a case study, is a fine-grain architecture similar 

to ZUMA, the most advanced open-source architecture freely avail- 

able today. Furthermore, our work provides a baseline for future 

virtual FPGA approaches that may reduce the performance or area 

overhead through various means. 

3.3. Virtual and physical synthesis 

The overlay HDL description is automatically generated from a 

specification of the computation layer. This specification expresses 

the available resources and their interconnections; the configura- 

tion layer is then automatically derived and eventually added to 

the model. Finally, a model transformation generates VHDL tex- 

tual description of the architecture, allowing the overlay module 

to be instantiated from a user design. The generated RTL code is 

portable, simulation friendly, and synthesizable. The synthesis of 

this RTL model for the physical FPGA corresponds to the physical 

synthesis , and is a step required once each time new FPGA is intro- 

duced to the infrastructure. 

The top part of the Fig. 3 shows the synthesis flow from the 

overlay generation to its physical implementation on the FPGA. 

Synthesizing an application design to the overlay architecture is 

done in different steps. First an RTL synthesizer transforms the ap- 

plication description into a netlist composed of latches and arbi- 

trary logic gates. This netlist is then transformed, optimized and 

mapped to the overlay resources. Next, it is placed and routed 

on the overlay. Finally, the virtual bitstream (vBitstream) is gen- 

erated by extracting the configuration of each one of the overlay’s 

resources according to the placed and routed netlist. These four 

synthesis steps are gathered in one step called “synthesis targeting 

the overlay” at the bottom of the Fig. 3 . 

3.4. Vfpga architecture evolution 

Overlays offer a clear separation of concerns between architec- 

ture (the vFPGA) and implementation (the FPGA) points of view. As 

previously mentioned, this promotes stability over time of the ar- 

chitecture, whichever physical FPGA acts as the host platform. Ob- 

viously, this does not necessarily mean that no new overlay tem- 

plates should be made available. The questions are: when does 

change happen? and How can we ensure that overlays do support 

changes? 

Change may be application driven, with the intent to offer a tai- 

lored overlay to new application needs. Yet, developing new over- 

lays, in order to maximize performances for a class of applications, 

raises no portability issue as the applications are novel with no 

legacy to preserve. Change may also come from relaxing the imple- 

mentation constraints, hence reflecting some improvements in the 

host platform up to the overlay. When the overlays evolve while 

the applications do not, portability is a critical issue. Two direc- 

tions have to be considered for overlays scaling. 

First, a new FPGA, with more abundant resources can host sev- 

eral overlays, appearing as nodes within a hierarchical architecture. 

This leads to update the architecture supervisor, but programming 

tools are kept the same. Second, scaling can be absorbed by re- 

shaping the same template, but then, binary compatibility is lost. 

However, as our framework offers a full control over the design 

phase and operation of overlays, we ensure backward compatibility 

is preserved. This is illustrated in Fig. 4 , in which an A-architecture 

bitstream is implemented over a B-Architecture. A bitstream is first 

read back to produce a netlist, which is placed and routed over 



M. Najem et al. / Journal of Systems Architecture 78 (2017) 1–14 5 

Fig. 3. Two flows: overlay synthesis on the FPGA, and application synthesis on the overlay. 

Fig. 4. Ensuring backward bitstream compatibility. 

the new overlay, prior to bitstream generation. From a functional 

point of view, this appears as a model-to-model transformation. 

This translator can be automatically generated, assuming a tag is 

inserted within the bitstream to identify the target overlay. 

Algorithm 1 illustrates how the netlist is extracted from the 

bitstream. Note that the bitstream can be extremely noisy, only 

Algorithm 1: Generate a netlist 

Data : Nodes, Nets, Sources 
Result : A netlist 
initialize Nets and Nodes as Empty Collections; 

initialize Sources as the set of Used LUTs plus Used IOs; 

while Sources is not empty do 
remove s from Sources; 

register s as Node; 

build p the path from the output pin of s; 

forall the destinations of p do 
add to Sources; 

end 
register p as Net; 

end 

Fig. 5. ZeFF platform overview. 

the information that makes sense is considered (paths ignore any 

route that does not start/end by LUT, register or IO). Depending on 

the new overlay, the netlist is post-processed (technology mapping, 

LUT/flip-flop packing, etc.). 

4. Zeff deployment platform 

As previously discussed, designing of a virtual FPGA (vFPGA) on 

top of COTS FPGAs allows to homogenize any heterogeneous clus- 

ter. However, a natural requirement at this stage is to be able to 

communicate with the vFPGA layer: load a bitstream to the con- 

figuration register, extract the state of the snapshot, stop and run 

the clock, etc. For this purpose, this section introduces the integra- 

tion of the vFPGA in a complete System on Chip (SoC), called Zeff. 

4.1. Hardware platform 

A vFPGA is seen as an element, integrated along with a con- 

figuration controller, some memories and communication devices 

to form a SoC. To this end, Lagadec et al. [27] introduced ZeFF, 

a vFPGA host platform synthesized in the physical FPGA, along 

with its attached virtual FPGA. ZeFF offers monitoring and manage- 

ment facilities (guest configurations and data streams, remote ac- 

cess through a standard Ethernet interface and TCP/IP protocol). As 

shown in Fig. 5 , the SoC platform embeds, among others: a proces- 

sor, some memory controllers ( e.g. . external RAMs, flash memories, 

and SD cards), and some communication peripherals ( e.g. Ethernet, 

UART). 

In this architecture, the vFPGA is wrapped as a peripheral de- 

vice, connected to the system bus. The wrapper has a Wishbone 

interface, which map in memory slave registers: i ) to receive from 

external interfaces the value of the configuration register decoded 

from the vBitstream, ii ) to extract and restore the state of the ap- 

plication, and iii ) run/stop the application clock. Moreover, the vir- 

tual inputs/outputs (vIOs) are also mapped in a specific memory 



6 M. Najem et al. / Journal of Systems Architecture 78 (2017) 1–14 

area. The access to these vIOs is done through a dedicated DMA 

(stream in and out). 

ZeFF SoC is minimalist, in order to let most of the host FPGA 

resources available to the vFPGA. The soft-core processor is a ZPU, 

known to be the smallest 32-bit processor supported by gcc. For 

example, the Zeff platform without vFPGA occupies only 11% of the 

total LUTs and 10% of the total flip-flops on the Xilinx Artix7, and 

7% of the combinatorial functions and 2% of the total registers on 

the Altera Cyclone-IV. Even with its low resource and portability 

constraints, the SoC can run the real time operating system FreeR- 

TOS, the FatFs FAT file system module, and the lwIP TCP/IP stack. 

The embedded software allows to manage the platform and the 

vFPGA through an API and services such as a TFTP server to ex- 

change the vFPGA’s configuration and data files, a minimal web 

server to easily browse the file-system and a local or TELNET shell 

to issue commands. As a result, the vFPGA management API can 

be used from the embedded software, from shell commands for 

human interactions, and through a network protocol on top of TCP 

for remote machine management. 

When porting the whole platform from one FPGA board to an- 

other, some parts of the SoC may have to be changed to adapt to 

different external devices, such as memories or transceivers, which 

can have different IO interfaces between boards. Therefore, the SoC 

is organized around a wishbone shared bus, associated to a ded- 

icated generator, easing the addition and removal of peripherals, 

thus making the platform more flexible. 

4.2. Software platform 

The vFPGA architecture that we integrated into ZeFF allows to 

have full control of the vFPGA clock and to save the execution 

state of the virtual fabric. These features help to abstract applica- 

tions away from the bare metal FPGA, providing introspection ca- 

pabilities and flexibility over execution on the fabric. These control 

mechanisms are orchestrated through ZeFF’s processor, giving the 

software flexibility to manage the virtual hardware execution flow. 

Software management of the vFPGA can be done at different levels, 

bringing the following four use cases: 

(1) The vFPGA and application management can be entirely done 

by the embedded operating systems running on ZeFF. Applica- 

tions are treated on the vFPGA the same way common software 

processes are executed on processors. The OS manages which 

application runs and when, and also manages data processed 

by the vFPGA. 

(2) The vFPGA management can also be done through an API. In 

this case, the application’s developer has to partition his appli- 

cation targeting the vFPGA. He must provide a script making 

use of the API to control the execution of its application seg- 

ments. This is similar to a software application segmented into 

threads, and in which the developer is in charge of synchroniz- 

ing those threads. 

(3) Another classical use of this API is software / hardware co- 

design, where the software part has a more important com- 

putation load and only delegates some parts of the processing 

to the vFPGA. However, ZeFF’s softcore processor (the ZPU) is 

not suited for computation loads. Running software / hardware 

applications on ZeFF requires a more powerful processor to be 

added to the platform via the system bus. It would only pro- 

cess computational tasks, letting the ZPU orchestrate the whole 

platform. 

(4) ZeFF can also serve as an intermediate between the vFPGA and 

a remote machine, receiving data, virtual configurations and vF- 

PGA management orders from the network. A cluster of ZeFF 

platforms could then be connected to and managed by a single 

host computer. 

5. New overlay features 

The perfect mastery of the virtual layer architecture allows to 

integrate features into the virtual fabric that are considered miss- 

ing in the host, increasing the FPGA capabilities, and offering new 

features: Controllability and Introspection. In this section, we pro- 

pose new overlay functionalities enhancing the capacity of appli- 

cations management of overlay architectures. 

5.1. Pre-configuration 

Configuration latency is a challenge in reconfigurable com- 

puting, especially for frequent reconfigurations, as it can offset 

the performance improvement achieved by hardware accelera- 

tion. The configuration layer in the overlay can be implemented 

as a multiple-chain shift register to speed-up the dynamic re- 

configuration. This register contains the application vBitstream, 

which is a contiguous sequence of bits that corresponds to the 

adequate configuration of overlay resources (LUTs, CLBs, FU oper- 

ations, etc. ) to implement a given circuit. However, such improve- 

ment is not sufficient, as the reconfiguration time depends also on 

the communication interface and the size of the vBitstream to be 

shifted. In order to achieve a higher efficiency, we propose to add 

a pre-loading feature to the overlay architecture by duplicating the 

configuration register, as shown in green in Fig. 6 . The idea is to 

start the transfer of the new configuration file (vBitstream), with- 

out affecting the configuration of the executed application. Once 

the transfer is completed, the overlay commutes from the old con- 

figuration to the new one in one clock cycle ( shift config signal) on 

demand. In this way, the latency of the configuration is neglected 

enabling the implementation of cost-effective live migration and 

scheduling algorithms. 

5.2. The snapshot 

In general, applications running on reconfigurable architectures 

can be represented by the resources configuration and the state of 

the application. Authors in [28] report two ways for accessing the 

state of a task that executes on a FPGA: 

• By using the Internal Configuration Access Port (ICAP), which is 

mostly used for the Dynamic Partial Reconfiguration (DPR). This 

solution remains technology and vendor dependent. Addition- 

ally the state is read back along with configuration bits, which 

leads to a slow extraction process. However the mechanism is 

transparent to the application. 

• By decorating applications with some access facilities to state 

bits. This solution is portable, and state extraction is efficient. 

However, every application has to be reworked, and both area 

and frequency are impacted. 

In an overlay context, configuring the vBitstream on the vFPGA 

happens as presented in the previous sub-section, while the state 

of the application is hold on memory elements in the computation 

layer. These memories correspond in this architecture to the virtual 

application registers integrated in each reconfigurable element. In 

order to enable the state extraction and restoring of applications 

running on overlays, a novel feature extends the proposed overlay 

architecture: the state layer. Associating one snapshot for each vir- 

tual application register (as shown in red in the Fig. 6 does this. 

Two global signals control the copy of the application register val- 

ues to their associated snapshot registers (save), or to force the 

snapshot register values to the application registers (restore). All 

snapshot registers are connected to form one or more shift regis- 

ters, similarly to the configuration register, allowing the extraction 

or loading of the overlay state without affecting the execution. Ex- 

tracting or loading a state snapshot requires several clock cycles 



M. Najem et al. / Journal of Systems Architecture 78 (2017) 1–14 7 

Fig. 6. Configuration double-chain shift register, reconfigurable elements and application registers, snapshot mechanism. 

(depending on the number of memory elements). However, saving 

or restoring a snapshot (from the snapshot registers to the appli- 

cation registers) only takes one clock cycle. A dedicated controller 

ensures the communication with the state layer through both the 

overlay state in and state out signals. 

5.3. Clock management 

In order to stop/run the application clock, a modified version of 

the architecture application register is proposed. We integrate an 

enable control signal to ensure the clock gating by: i ) allowing the 

propagation of the information (application clock is running), or ii ) 

blocking the information (application clock is stopped). 

5.4. Hardware cost evaluation 

The previously presented extra features of the overlay archi- 

tecture allow the easy management of application on any FPGA 

device. In this section, we evaluate the cost of these features for 

two FPGAs: the Xilinx Artix-7 X7A100T-1CSG324C (nexys4 board), 

and the Altera Cyclone-V 5CGXFC9A7U19C8 (APF6-SP board). To 

this end, we have considered a case study the ZUMA-like fine- 

grain overlay (see Section 3.2.1 ), with two architectures: ( 1 ) a 10 

× 10 CLBs with 4-input LUTs ( K = 4 ) and 4 LUTs per CLB ( N = 4 ) 

that fit in both FPGAs, and ( 2 ) a 20 × 20 CLBs with 4-input LUTs 

( K = 4 ) and 4 LUTs per CLB ( N = 4 ) that allocates more Cyclone- 

V FPGA resources. The only variable parameter in this experiment 

is the number of wires ( W ) in each routing channel. For a given 

architecture, W has a direct impact on the routability of the over- 

lay and the timing performance of applications; the more wires, 

the less congestion in routing channels. The hardware cost is com- 

puted here as the percentage of the additional occupied resources 

on each host FPGA. 

In this experiment, several syntheses of the overlay, W ranges 

from 8 to 24, have been carried for both FPGAs. The synthesis of a 

reconfigurable architecture on top of a physical FPGA, makes diffi- 

cult for classical tools to determine the maximum circuit frequency 

as all paths depends on the application that has to be later config- 

ured. For this purpose, we have used the concept of Virtual Time 

Propagation Registers (VTPRs), proposed in [29] , to break down 

Fig. 7. Occupied resources in terms of total used slices for the synthesis of a 10x10 

CLBs overlay on Xilinx Artix-7 varying W . 

Fig. 8. Occupied resources in terms of Adaptive Logic Module (ALM) for the syn- 

thesis of a 10x10 CLBs overlay on Altera Cyclone-V varying W . 

physical logic chains into short segments, and prevent any com- 

binatorial loop from appearing on the physical FPGA whatever the 

virtual configuration is. Figs. 7–9 plot the host FPGA resources oc- 

cupied by the overlay: ( i ) without any feature (blue), ( ii ) with snap- 



8 M. Najem et al. / Journal of Systems Architecture 78 (2017) 1–14 

Fig. 9. Occupied resources in terms of Adaptive Logic Module (ALM) for the syn- 

thesis of a 20x20 CLBs overlay on Altera Cyclone-V varying W . 

shot register (green), ( iii ) with pre-configuration register (orange), 

and ( v ) with both features (brown). As shown in these figures, the 

snapshot register has a low-cost compared to the naive implemen- 

tation (blue). The average overhead is about 3.52% for the Artix-7 

and 2% for the Cyclone-V. This cost is due to the additional single- 

bit snapshot shift register added in each reconfigurable element, 

and does not depend on the parameter W . However, it is impor- 

tant to remark that the overhead of the pre-configuration register 

is much higher; the average overhead is about 37.89% for the Artix- 

7 and about 20–30% for the Cyclone-V. In fact, this cost is due to 

the high number of bits required to configure the experimented 

fine-grained overlay. For instance, the vBitstream for this overlay 

with W = 16 has 22,296 bits: 30.5% for the logic elements and 

69.5% for the routing elements. By increasing the number of wires 

in SB channels, the number of required bits for the configuration 

increases. In case of a coarser architecture, the snapshot mecha- 

nism would have a higher overhead, while the pre-configuration 

would have less overhead, as in proportions the state is bigger 

and the configuration is smaller. In fact, the execution state of a 

coarse grained overlay is the output words of each FU, while it is 

composed of only one bit per BLE in a fine grained architecture. 

Also, the configuration selects from few operators per FUs instead 

of a full LUT content, and routing is done word-wise instead of bit- 

wise. 

6. Hardware task management: scheduling and live migration 

As reconfigurable architectures are increasingly integrated in 

hardware designs, sharing of these resources is a key requirement 

that gives rise to a higher hardware utilization. In this section, we 

investigate a possible solution to truly share programmable logic 

in a generic framework, enabling an efficient and cost-effective 

scheduling and live migration of hardware applications in a clus- 

ter of heterogeneous FPGAs. 

6.1. Proposed framework 

A generic and complete system is proposed and shown in the 

Fig. 10 . It is composed of: ( i ) a hardware layer based on the vFPGA 

architecture previously presented in Section 3 integrating the pro- 

posed features from the Section 5 , ( ii ) a hypervisor to control the 

entire system ( Section 4 ) and, ( iii ) the system memory. The pro- 

posed architecture is built upon a smart interface, with master and 

slave interfaces that can be plugged to a wrapper. The slave inter- 

face deals with the control and status registers, while the master 

interface is responsible for accessing the memory. I/O streams are 

stored in double ping-pong buffers inside the on-board memory. A 

Fig. 10. Overview of the proposed framework. 

dedicated I/O stream controller is responsible for the management 

of these buffers. An interrupt is generated each time a complete 

input buffer (’Buff-I’) is consumed, or one output buffer (‘Buff-O’) 

is filled. This IRQ informs the hypervisor to update the buffers in 

the memory. We also allocate an application scratchpad memory 

(‘Mem’) that corresponds to the on-chip ’BRAMs’ in classical FPGA 

designs. 

6.2. Tasks scheduling 

Fig. 11 a) illustrates a typical finite state machine for task execu- 

tion states: (i) Running , the application is executing on the vFPGA, 

(ii) Ready , the application is ready to run and the vFPGA is busy, 

(iii) Blocked , the application is waiting for an event to resume the 

execution on the vFPGA ( e.g. waiting for input data to be provided). 

At this stage, we focus on the infrastructure itself, and therefore on 

the main actions required to set up such a scheduling scenario. 

First, we define the structure ‘Job’ (shown in Fig. 11 b) to repre- 

sent the state of the entire system for each application. It includes 

the following elements: 

• Initialization: It refers to the vBitstream file, and to the status 

registers. 

• State: The state at a given time: (i) the value of the snap- 

shot register (circuit state), (ii) the execution time, and (iii) the 

scratchpad memory. 

• Data: This part contains pointers to the remaining input data to 

manipulate, and to the produced output data. 

This structure is manipulated by a set of functions (the hyper- 

visor), which ensures the management and communication with 

the vFPGA and the initialization of the memory. It can be executed 

on the core, usually combined with FPGA in modern SoC+FPGA de- 

vices, or can be synthesized as a lightweight soft-core IP on the 

FPGA (Zeff core previously presented in Section 4 . As shown in the 

Fig. 11 a, two actions are required in order to set up a scheduling 

algorithm: 

(1) Save Job: is called at each change from the Running state to 

Blocked or Ready . Fig. 11 c) plots the sequence diagram, illustrat- 

ing the set of actions and commands of the hypervisor to save 

the running Job. First, it sends a stop request to the vFPGA con- 

troller to freeze the application clock, and then starts extract- 

ing the value of the snapshot register. The next request is dedi- 

cated to the system memory in order to read the Job scratchpad 

memory and to flush the output buffers (Buff-O1 and Buff-O2). 

Collected data serve to update the Job structure and the input 

and output files. 



M. Najem et al. / Journal of Systems Architecture 78 (2017) 1–14 9 

Fig. 11. The entire software layer and functions: a) remind of the classical scheduler FSM, b) the proposed Job structure, c) the sequence diagram of the save job action, and 

d) the one for the load job action. 

Fig. 12. A Total-copy live migration process. 

(2) Load Job: is requested by the scheduler each time a new job is 

elected to be executed (change to Running state). The sequence 

diagram of this action is shown in the Fig. 11 d). The hypervisor 

initializes the controller registers with a new initialization in- 

formation, such as the number of clock cycles to be executed. 

The application bitstream is then sent to this controller, which 

in turn pushes the value into the configuration register of vF- 

PGA. This step can be done upstream by sending it to the pre- 

configuration register before saving the Job, which results in 

reducing the scheduling overhead. The scratchpad memory is 

next restored and the double input buffers are filled. Lately, a 

request is sent to the controller to start the clock again. 

6.3. Live migration 

Applications live migration is a technique widely used in data- 

centers to move a virtual machine VM from one physical host to 

another. The mechanism is same as for the previously presented 

scheduling, except that the application is restored on a different 

fabric that the one it was previously executing on. The most fre- 

quently used migration algorithm is shown in the Fig. 12 : a Total- 

Copy process transfers the entire state and the data before the pro- 

cess execution resumed on the destination FPGA [30] . 

The following actions are performed successively to migrate a 

Job from FPGA1 to FPGA2: 

(1) Reservation: The cluster manager first searches for the host 

with the lowest workload, and sends a request to reserve the 

resource. 

(2) Stop and Save the Job: The manager realizes the same Save Job 

action, previously specified, in order to stop and update the Job 

structure. 

(3) Job Copy: The entire Job is copied from the host FPGA1 to 

FPGA2. The time required to complete this action depends on: 

i ) the size of the Job, which is a function of the vFPGA specifi- 

cation, and ii ) the cluster network bandwidth. 

(4) Data Copy: The data manipulated by the Job are then copied 

to the FPGA2. The time required to complete this action also 

depends on the size of the data file, and on the network band- 

width. 

(5) Load and Resume Job: At this stage, the manager requests a 

Load Job action to initialize the vFPGA with the new job and 

to resume the execution on the new host. This action is also 

detailed in the previous sub-section. 

6.4. Demonstration: task migration 

This system has been demonstrated in the international confer- 

ence on Design & Architectures for Signal & Image Processing [31] , 

in order to illustrate how to offer: 

• an homogeneous view of a heterogeneous set of FPGAs; 

• the live migration of a hardware application between two 

nodes; 

• fault tolerance of an overlay cluster. 

The setup includes two FPGAs from two vendors (Xilinx and Al- 

tera) as compute nodes, and a host PC as a controller. Fig. 13 shows 

the experimental setup. The two FPGAs are connected to the host 

PC through Ethernet, each one is attached to an ARM processor 

running a local hypervisor, which transfers the host management 

requests to the FPGA. For this demonstration, the processors are 

also used to display the image being processed, so that the audi- 

ence can visualize the progress of the job execution. 

The experimented vFPGA is a 14 × 13 CLBs ZUMA-like overlay 

architecture, and has 728 4-inputs LUTs and FFs. This architecture 

takes: ( i ) 64% of the total LUTs (40935) and 41% of the total FFs 

(52258) on the Xilinx nexys-4 X7A100T-1CSG324C, and ( ii ) 30% of 

the total Logic elements (34352) and 55% of the total FFs (63140) 

on the Cyclone V 5CGXFC9A7U19C8. The size of the vBitstream and 

the snapshot for this vFPGA are 5116 Bytes and 92 Bytes, respec- 

tively. The time required to configure, save and restore the vFPGA 

depends on several parameters and is finely studied in the next 

section. In this demonstration, three image processing applications 

were synthesized, placed and routed for the vFPGA (synthesis re- 

sult are shown in the Table 1 ): ( i ) Sobel creates an image, em- 



10 M. Najem et al. / Journal of Systems Architecture 78 (2017) 1–14 

Fig. 13. Experimental setup of the DASIP demonstration. 

Table 1 

Image processing applications synthesized for a demonstration on a 14 × 13 fine-grained vFPGA. 

Application Virtual Synthesis F max 

vLUTs vFFs pairs vLUT-FF X7A100T-1CSG324C 5CGXFC9A7U19C8 

Sobel 567 (77.9%) 195 (26.8%) 195 (34.4%) 2.7 MHz 1.8 MHz 

Smoothing 340 (46.7%) 116 (15.9%) 116 (34.1%) 3.33 MHz 2.16 MHz 

harpening 376 (51.6%) 244 (64.9%) 132 (35.1%) 3.22 MHz 2.09 MHz 

phasizing edges based on the Sobel-Feldman operator, ( ii ) Smooth- 

ing, which uses a matrix to smooth the image data set, and ( iii ) a 

Sharpening operation of the image. 

The first goal is to show binary compatibility among both FP- 

GAs. To this end, the same vBitstream of one of the applications is 

dispatched by the host PC on both FPGAs. The result of the image 

filtering starts then appearing on both screens at the same time. 

This compatibility is ensured, thanks to the vFPGA overlay archi- 

tecture deployed on both physical FPGAs. 

The live migration is then demonstrated by running the fil- 

ter application on the first node, halting the application execu- 

tion, capturing the execution state of the node’s overlay, and then 

restoring the state of the vFPGA on the second node. The applica- 

tion resumes filtering the image on the second node, as shown in 

the Fig. 13 . 

Finally, distributing computations over a set of nodes offer 

speedup the execution or guarantee fault tolerant. The Fault tol- 

erance at the cluster level is illustrated by running one application 

on one node. The host controller periodically backups the execu- 

tion state of the running node (every second in this demonstra- 

tion). Then the power of the running node is shut down. When the 

host controller notices that the running node have disappeared, the 

node does not respond to heartbeat pings anymore, the host sends 

the Job of the interrupted application along with the last execu- 

tion state backup to the second node. The execution resumes on 

the second node at the last backup. 

6.5. Timing models 

No efficient scheduling nor meaningful task migration can be 

gained without an early knowledge of the reconfiguration time 

overhead. To this end, we have developed the cost model in terms 

of the required time for each component to perform both actions 

save and load job as previously presented. We define first the fol- 

lowing variables: 

• S snap and S config : the size of the snapshot register and the vBit- 

stream (in Bytes), which are functions of the overlay granularity 

and parameters. 

• S scratch and S Buff: the size in bytes of the scratchpad memory, 

and the input buffers (‘Buff-I1’ and ‘Buff-I2’ in the previous 

Fig. 10 . 

• S d out : the size in bytes of the available data in the output buffer 

(‘Buff-O1’ or ‘Buff-O2’). 

6.5.1. Save job 

As can be conducted from Fig. 11 c), the time taken to save the 

Job is a function of the needed time to extract the snapshot reg- 

ister ( T s _ snap ), to save the application scratchpad memory ( T s _ scratch ) 

and to flush out the output buffer ( T s _ Bu f fO ). This function is de- 

scribed in the equation (1) , where T 0 s is the constant part, and 

corresponds to the time required by the hypervisor (or core) to 

execute the request verification code ( e.g. checking the compatibil- 

ity between the bitstream of the application and the available vF- 

PGA architecture, etc. ). The cost model of the snapshot extraction is 

linearly approximated in terms of S snap as shown in this equation, 

where, L r 
v F PGA is the latency for a read operation of one word from 

the hardware layer. T s _ scratch and T s _ Bu f fO are also linear functions of 

the latency for a read operation from the on-board memory L r 
MEM . 

T s = T 0 s + L r 
v F PGA × S snap + L r MEM × S scratch + L r MEM × S d out (1) 

6.5.2. Load job 

The time required to complete the load job action can also be 

conducted from Fig. 11 d). The equation (2) describes it as a func- 

tion of the needed time to: ( i ) configure the vFPGA T config , ( ii ) 

restore the snapshot ( T rest _ snap ), ( iii ) load the application scratch- 

pad memory ( T l _ scratch ) and ( iv ) the time to fill both input buffers 

( T l _ Bu f f I ). T 
0 
l 
is the constant part, and also correspond to the time 

of the job verification. L w 
v F PGA and L 

w 
Mem are the latency for a write 

operation of one word to the hardware architecture and to the 

memory respectively. 

T l = T 0 l + L w 
v F PGA × S con f ig + L w 

v F PGA × S snap + L w Mem × S scratch 

+ L w Mem × Size (2 × S Bu f f ) (2) 

6.6. Reconfiguration time estimation 

This section reports our experiments when evaluating the ac- 

curacy of the proposed cost models, and explores the overhead 

of the implementation of scheduling algorithms in the proposed 

framework. The setup used in our experiments is the APF6-SP 

SoC+FPGA platform from Armadeus, which is composed on the 

i.MX6 Cortex-A9 processor and the 5CGXFC9A7U19C8 Cyclone V 



M. Najem et al. / Journal of Systems Architecture 78 (2017) 1–14 11 

Fig. 14. Model fitting for both: a) Save job time, and b) Load job time. 

Table 2 

Estimated parameters for the APF6 SP target SoC+FPGA. 

Parameters Value [ µ s/32-bit] Constants Value [ µ sec] 

L r 
v FPGA 2.37 T 0 s 1300 

L w 
v FPGA 0.96 T 0 

l 3700 

L r Mem 2.34 – –

L w Mem 0.26 – –

GX FPGA from Altera. I.MX6 implements our proposed hypervisor, 

while the hardware architecture is synthesized for the Cyclone V 

FPGA. PCI-express Gen1 is used for the communication between 

the hypervisor and vFPGA, and the on-board DDR3 is used to im- 

plement the system memories. 

6.6.1. Parameters estimation and models accuracy 

The first experiment aims at estimating the model parameters. 

To this end, we implement the entire system on the APF6-SP plat- 

form, and we use the CLOCK _ MONOTONIC to measure each tim- 

ing component. Several system configurations are also considered 

in order to find the model parameters: S Buff from 1KB to 1MB, 

S scratch from 64 Bytes to 124KB, S config from 1KB to 18KB, and S snap 
from 20 Bytes to 340 Bytes. The Table 2 illustrates the estimated 

parameters by the linear regression from Matlab for more than 

10,0 0 0 measurements. L w 
v F PGA is lower than L 

r 
v F PGA , due to the fact 

that the PCI write burst is generated by the SoC, while the read 

burst was not supported in the experimented architecture. Simi- 

larly, L r mem and L 
w 
Mem are estimated from the access to the on-board 

DDR. 

The model’s accuracy is evaluated based on the following two 

metrics: ( i ) the square of the correlation between the measured 

and estimated values R 2 (closer to 1 indicates the model better 

fits), and ( ii ) Mean Absolute Error (MAE), which is the average of 

the absolute error of the regression (closer to 0 is better). Fig. 14 a) 

and b) plot the estimated time compared to the measured time for 

the save Job and load Job, respectively. As can be noticed, the pro- 

posed cost models accurately estimate the time required to load 

and save jobs: R 2 is higher than 0.99 with a MAE about 0.85 ms 

and 1.36 ms for both T s and T l respectively. 

6.6.2. Equal time round robin scenarios 

At this stage, we aim to evaluate the re-configuration time over- 

head. To this end, we implement classical scheduling algorithms, 

for a 14x13 CLBs ZUMA-like overlay on the APF6 SoC + Cyclone 

V C9 FPGA, with 4 BLEs in each CLB and 4 inputs LUTs. The pre- 

loading feature is first disabled. In our system, the nature of the 

application to be mapped on the overlay is defined by its band- 

width, or the frequency of producing data F out . In this experiment, 

we choose different applications, as shown in the Table 3 , corre- 

sponding to different bandwidths. 

We first implement the Equal Time Round Robin (ETRR) 

scheduling, which is a cyclic executive process without priority. It 

allocates a unique time-slice to each running Job; this is called the 

Quantum (denoted Q ). The execution profile of these jobs for an 

ETRR with Q = 250 ms is shown in Fig. 15 . As it can be noticed 

in this figure, the Job 3, corresponding to the highest F out , fills 5 

times the output buffer, activating an interrupt signal to fill the in- 

put buffer (DMA IN update event) and to empty the output buffer 

(DMA OUT update event). Moreover, the measured time between 

two contexts switch is variable, depending on: ( i ) the time needed 

to empty the output buffer, where the size of the produced data 

is a function of F out , ( ii ) the size of the old application scratchpad 

memory to save, ( iii ) the size of the new application scratchpad 

memory to load, and ( iv ) the time needed to fill the input buffers. 

The measured value total context switch time is between 11 ms to 

50 ms, corresponding to 4%–20% of performance overhead. 

Moreover, we aim at comparing different configurations of ETRR 

to the basic First Come First Serve scheduling (FCFS) algorithm. The 

normalized total execution time is shown in Fig. 16 , which is the 

time taken by all jobs to complete their computation on 4GB of 

input data. FCFS requires 499.5 s to sequentially execute all Jobs, 

while the total time for ETRRs is between 504 and 560 s depend- 

ing on the configuration of the system. From this experiment, we 

conclude that the size of both inputs and output buffers and the 

choice of the Quantum Q have significant impacts on the system 

performance, up to 12% of reconfiguration time overhead. 

6.6.3. Overlay reconfiguration time 

In this paper, we have experimented our virtualization ap- 

proach using a fine-grained vFPGA architecture, which is a naive 

and a generic overlay allowing the synthesis of a large spectrum of 

applications. However, the experimented architecture was not op- 

timized to efficiently exploit physical FPGA resources. In this sec- 

tion, we use the previous timing models to extrapolate the impact 

of the complexity of overlay architectures on both: the total time 

to load a job ( T l ) and the total time to save a job ( T s ). For this pur- 

pose, both the size of the input/output buffers and the scratchpad 

memory are constant in this experiment. We recall that overlay- 

based architectures are characterized by: ( 1 ) the size of their con- 

figuration register ( S config ), and ( 2 ) the size of the snapshot register 

( S snap ). 

Fig. 17 plots each component of the total time for a load job, 

considering different sizes of overlays; we have increased the ma- 

trix size of resource elements on ZUMA-like architecture. As can 

be seen in this figure, the time to configure the overlay ( T config ) 

is the most significant part (more than 90%) of the total time to 

load the job. This motivates the need of a bitstream pre-loading 

mechanism in order to tackle this challenge. The proposed non- 

preemptive pre-loading feature support reducing up to 99% of the 



12 M. Najem et al. / Journal of Systems Architecture 78 (2017) 1–14 

Table 3 

Applications for a 14 × 13 ZUMA-like fine-grained overlay architecture with: 4 BLEs per CLB and LUT4. 

Job App. F out S scratch Description 

id name (KB/s) (Bytes) 

0 cordic 15.2 0 Trigonometric function, 16 bits operations. 

1 IIR filter 11.9 64 IIR filter 4th order, 9 16 bits signed multiplication and addition, 20 bits accumulation. 

2 mult 120 0 Combinatorial multiplication, 16bits operands and 32 bits result. 

3 smult 1031.7 0 Pipelined multiplication, 8 bits operands and 16 bits result. 

4 sobel 83.96 4096 Sobel filter for image processing, 3 × 3 pixels operations and 16 bits per pixel. 

Fig. 15. Execution of the jobs for an ETRR scheduling with Q = 250 ms. 

Fig. 16. The total execution time of different configuration of ETRR compared to the 

FCFS scheduling. 

Fig. 17. The time for a load job: the architecture configuration time ( T config ), the 

time to load both scratchpad and input buffers, and the time to restore the snap- 

shot( T rest _ snap ). 

total reconfiguration time overhead, as the bitstream configura- 

tion is done upstream. Moreover, the time to restore the snapshot 

( T rest _ snap ) modestly increases with the increase in the vFPGA ma- 

trix size: T rest _ snap is estimated to 9.89 ms for the biggest architec- 

ture with 90k LUTs and FFs. 

Moreover, the overlay architecture has only impact on the 

time to save the snapshot for the saving job time. Fig. 18 shows 

both component of the total saving job time, considering different 

sizes of overlay architecture. Indeed, T s _ snap becomes significant for 

Fig. 18. The time for a save job: the time to save the scratchpad memory and to 

empty the output buffer, and the time to save the snapshot ( T s _ snap ). 

biggest overlay architectures, but however this is negligible com- 

pared to the total time of a load job for the same architecture. 

7. Conclusion 

This paper has presented a new hardware virtualization ap- 

proach for heterogeneous FPGA cluster. When FPGA are gradually 

updated and replaced to follow the technology evolution over the 

lifetime of the infrastructure, overlays have demonstrated to im- 

prove portability, speed up reconfiguration, and promote resources 

abstraction. The proposed idea is to map a second layer of recon- 

figurable resources on top of the commercial-of-the-shelf (COTS) 

FPGAs in order to homogenize the infrastructure. This work has 

also demonstrated how slightly extending the overlay architecture 

can bring novel features for sake of improved management of ap- 

plications. The proposed platform was capable of node-to-node ap- 

plication migration. We also presented accurate linear models for 

the estimation of the reconfiguration time overhead. Designing of 

efficient scheduling and live migration algorithms and systems for 

any FPGA platform will use the presented models for the overhead 

estimation: few measurements are required to adapt models’ pa- 

rameters. In future work, we wish to develop power models for the 

dynamic reconfiguration. We will also investigate the development 

of efficient scheduling and load balancing, taking into account both 

performance and power as targets for optimizations. 



M. Najem et al. / Journal of Systems Architecture 78 (2017) 1–14 13 

References 

[1] S. Jayakumar, S. Sumathi, High speed vedic multiplier for image processing us- 
ing fpga, in: 2016 10th International Conference on Intelligent Systems and 
Control (ISCO), 2016, pp. 1–4, doi: 10.1109/ISCO.2016.7727059 . 

[2] G. Bieszczad , Soc-fpga embedded system for real-time thermal image process- 
ing, in: 2016 MIXDES - 23rd International Conference Mixed Design of Inte- 
grated Circuits and Systems, 2016, pp. 469–473 . 

[3] Y. Toyoda, N. Koike, Y. Li, An fpga-based remote laboratory: implementing 
semi-automatic experiments in the hybrid cloud, in: 2016 13th International 
Conference on Remote Engineering and Virtual Instrumentation (REV), 2016, 
pp. 24–29, doi: 10.1109/REV.2016.74 4 4 435 . 

[4] S.A. Fahmy, K. Vipin, S. Shreejith, Virtualized fpga accelerators for efficient 
cloud computing, in: 2015 IEEE 7th International Conference on Cloud Com- 
puting Technology and Science (CloudCom), 2015, pp. 430–435, doi: 10.1109/ 

CloudCom.2015.60 . 
[5] F. Chen, Y. Shan, Y. Zhang, Y. Wang, H. Franke, X. Chang, K. Wang, Enabling 

fpgas in the cloud, in: Proceedings of the 11th ACM Conference on Computing 
Frontiers, in: CF ’14, ACM, New York, NY, USA, 2014, pp. 3:1–3:10, doi: 10.1145/ 

2597917.2597929 . 

[6] W. Wang, M. Bolic, J. Parri, pvfpga: accessing an fpga-based hardware accel- 
erator in a paravirtualized environment, in: 2013 International Conference on 

Hardware/Software Codesign and System Synthesis (CODES+ISSS), 2013, pp. 1–
9, doi: 10.1109/CODES-ISSS.2013.6658997 . 

[7] R. Brodersen, A. Tkachenko, H.K.H. So, A unified hardware/software runtime 
environment for fpga-based reconfigurable computers using borph, in: Pro- 

ceedings of the 4th International Conference on Hardware/Software Code- 

sign and System Synthesis (CODES+ISSS ’06), 2006, pp. 259–264, doi: 10.1145/ 
1176254.1176316 . 

[8] R. Kirchgessner, G. Stitt, A. George, H. Lam, Virtualrc: a virtual fpga platform 
for applications and tools portability, in: Proceedings of the ACM/SIGDA Inter- 

national Symposium on Field Programmable Gate Arrays, in: FPGA ’12, ACM, 
New York, NY, USA, 2012, pp. 205–208, doi: 10.1145/2145694.2145728 . 

[9] J.D. Dondo, J. Barba, F. Rincn, F. Moya, J.C. Lpez, Dynamic objects: supporting 

fast and easy run-time reconfiguration in {FPGAs}, J. Syst. Archit. 59 (1) (2013) 
1–15, doi: 10.1016/j.sysarc.2012.09.001 . 

[10] S. Byma, J.G. Steffan, H. Bannazadeh, A.L. Garcia, P. Chow, Fpgas in the cloud: 
Booting virtualized hardware accelerators with openstack, in: 2014 IEEE 22nd 

Annual International Symposium on Field-Programmable Custom Computing 
Machines, 2014, pp. 109–116, doi: 10.1109/FCCM.2014.42 . 

[11] O. Knodel, R.G. Spallek, Computing framework for dynamic integration of re- 

configurable resources in a cloud, in: 2015 Euromicro Conference on Digital 
System Design, 2015, pp. 337–344, doi: 10.1109/DSD.2015.37 . 

[12] M. Feilen , M. Ihmig , C. Schwarzbauer , W. Stechele , Efficient dvb-t2 decod- 
ing accelerator design by time-multiplexing fpga resources, in: 22nd Interna- 

tional Conference on Field Programmable Logic and Applications (FPL), 2012, 
pp. 75–82 . 

[13] B. Ronak, S.A. Fahmy, Improved resource sharing for fpga dsp blocks, in: 2016 

26th International Conference on Field Programmable Logic and Applications 
(FPL), 2016, pp. 1–4, doi: 10.1109/FPL.2016.7577373 . 

[14] A. Bourge, O. Muller, F. Rousseau, Automatic high-level hardware checkpoint 
selection for reconfigurable systems, in: 2015 IEEE 23rd Annual Interna- 

tional Symposium on Field-Programmable Custom Computing Machines, 2015, 
pp. 155–158, doi: 10.1109/FCCM.2015.8 . 

[15] F. Duhem, F. Muller, P. Lorenzini, Reconfiguration time overhead on field pro- 

grammable gate arrays: reduction and cost model, IET Comput. Digital Tech. 6 
(2) (2012) 105–113, doi: 10.1049/iet-cdt.2011.0033 . 

[16] A.K. Jain , D.L. Maskell , S.A. Fahmy , Are coarse-grained overlays ready for gen- 
eral purpose application acceleration on fpgas? in: Dependable, Autonomic and 

Secure Computing, 14th Intl Conf on Pervasive Intelligence and Computing, 
2nd Intl Conf on Big Data Intelligence and Computing and Cyber Science and 

Technology Congress (DASC/PiCom/DataCom/CyberSciTech), 2016 IEEE 14th Intl 
C, IEEE, 2016, pp. 586–593 . 

[17] A. Brant, G. Lemieux, Zuma: an open fpga overlay architecture, in: 2012 IEEE 
20th International Symposium on Field-Programmable Custom Computing Ma- 

chines, 2012, pp. 93–96, doi: 10.1109/FCCM.2012.25 . 

[18] A.K. Jain , X. Li , P. Singhai , D.L. Maskell , S.A. Fahmy , Deco: a dsp block 
based fpga accelerator overlay with low overhead interconnect, in: Field-Pro- 

grammable Custom Computing Machines (FCCM), 2016 IEEE 24th Annual In- 
ternational Symposium on, IEEE, 2016, pp. 1–8 . 

[19] D. Koch, C. Beckhoff, G.G.F. Lemieux, An efficient fpga overlay for portable 
custom instruction set extensions, in: 2013 23rd International Conference on 

Field programmable Logic and Applications, 2013, pp. 1–8, doi: 10.1109/FPL. 

2013.6645517 . 
[20] R. Lysecky, K. Miller, F. Vahid, K. Vissers, Firm-core virtual fpga for just-in- 

time fpga compilation (abstract only), in: Proceedings of the 2005 ACM/SIGDA 
13th International Symposium on Field-programmable Gate Arrays, in: FPGA 

’05, ACM, New York, NY, USA, 2005, p. 271, doi: 10.1145/1046192.1046247 . 
[21] T. Wiersema , A. Bockhorn , M. Platzner , Embedding fpga overlays into config- 

urable systems-on-chip: reconos meets zuma, in: ReConFigurable Computing 

and FPGAs (ReConFig), 2014 International Conference on, IEEE, 2014, pp. 1–6 . 
[22] V. Betz , J. Rose , Vpr: a new packing, placement and routing tool for fpga re- 

search, in: International Workshop on Field Programmable Logic and Applica- 
tions, Springer, 1997, pp. 213–222 . 

[23] G. Stitt, J. Coole, Intermediate fabrics: virtual architectures for near-instant fpga 
compilation, IEEE Embed. Syst. Lett. 3 (3) (2011) 81–84, doi: 10.1109/LES.2011. 

2167713 . 

[24] D. Capalija , T.S. Abdelrahman , A high-performance overlay architecture for 
pipelined execution of data flow graphs, in: Field Programmable Logic and Ap- 

plications (FPL), 2013 23rd International Conference on, IEEE, 2013, pp. 1–8 . 
[25] J. Benson, R. Cofell, C. Frericks, C.H. Ho, V. Govindaraju, T. Nowatzki, K. Sankar- 

alingam, Design, integration and implementation of the dyser hardware accel- 
erator into opensparc, in: IEEE International Symposium on High-Performance 

Comp Architecture, 2012, pp. 1–12, doi: 10.1109/HPCA.2012.616 894 9 . 

[26] C. Liu, H.C. Ng, H.K.H. So, Quickdough: a rapid fpga loop accelerator de- 
sign framework using soft cgra overlay, in: 2015 International Conference on 

Field Programmable Technology (FPT), 2015, pp. 56–63, doi: 10.1109/FPT.2015. 
7393130 . 

[27] L. Lagadec, J.-C. Le Lann, T. Bollengier, A prototyping platform for virtual re- 
configurable units, in: 2014 9th International Symposium on Reconfigurable 

and Communication-Centric Systems-on-Chip (ReCoSoC), 2014, pp. 1–7, doi: 10. 

1109/ReCoSoC.2014.6 8606 89 . 
[28] K. Jozwik, H. Tomiyama, M. Edahiro, S. Honda, H. Takada, Comparison of pre- 

emption schemes for partially reconfigurable fpgas, IEEE Embed. Syst. Lett. 4 
(2) (2012) 45–48, doi: 10.1109/LES.2012.2193660 . 

[29] T. Bollengier, L. Lagadec, M. Najem, J.-C. Le Lann, P. Guilloux, Soft Timing Clo- 
sure for Soft Programmable Logic Cores: The ARGen Approach, Springer Inter- 

national Publishing, pp. 93–105. 
[30] A. Zarrabi , A generic process migration algorithm, Int. J. Distrib. Parallel Syst. 3 

(5) (2012) 29 . 

[31] T. Bollengier, M. Najem, J.C.L. Lann, L. Lagadec, Demo: overlay architectures 
for heterogeneous fpga cluster management, in: 2016 Conference on Design 

and Architectures for Signal and Image Processing (DASIP), 2016, pp. 239–240, 
doi: 10.1109/DASIP.2016.7853832 . 



14 M. Najem et al. / Journal of Systems Architecture 78 (2017) 1–14 

Mohamad Najem obtained the B.S. and M.S. degrees in electronic and informatics systems from the University of Pierre and Marie Curie, Paris, 
France, in 2008 and 2012 respectively, and the PhD in Automatic and Microelectronic systems from the University of Montpellier, Montpellier, 
France, in 2015. He is currently a Post-Doctoral Fellow at the ENSTA-Bretagne engineering school, and Lab-STICC research institute, Brest, France. 
His current research interests include the monitoring of self-adaptive systems, statistical analysis and the virtualization of FPGAs. 

Théotime Bollengier received the engineering degree from ENSEIRB-MATMECA, Bordeaux, France, in 2013. He is currently a PhD student at IRT 
bcom and at Lab-STICC laboratory (CNRS), ENSTA Bretagne, Brest. His interests include embedded systems, hardware design, reconfigurable com- 
puting architectures. His PhD topic is about reconfigurable architecture hardware virtualization. 

Jean-Christophe Le Lann teaches embedded system design at ENSTA Bretagne, Brest and is a research member of LabSTICC, a major laboratory 

in France. During 9 years (1999,2008) he was HW/SW engineer with Thomson R&D France, developping SoC chips in the field of multimedia 
and video compression. He was also founder and CTO of Modae Technologies, a startup that developped a toolchain for the synthesis at system 

level. His main domain of interest are compiler design, HLS, and Domain Specific Languages for Embedded Systems, ranging from early behavioral 
captures to formal verification. 

Loïc Lagadec received the Ph.D. degree in computer science from the University of Rennes 1, Rennes, France, in 20 0 0, and the Habilitation degree 
from the University of Brest, Brest, France, in 2009. He is a Full Professor at the Laboratory-STICC (CNRS), ENSTA Bretagne, Brest, where he is 

a Research Head of the IT Department. His current research interests include software tools for reconfigurable computing, cyber security, and 

interpreted languages. Prof. Lagadec was a Guest Editor for several special issues of scientific journals. 


