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Design of integral controllers for nonlinear systems
governed by scalar hyperbolic partial differential

equations
Ngoc-Tu Trinh, Vincent Andrieu, and Cheng-Zhong Xu?

Abstract—The paper deals with the control and regulation
by integral controllers for the nonlinear systems governed by
scalar quasi-linear hyperbolic partial differential equations. Both
the control input and the measured output are located on the
boundary. The closed-loop stabilization of the linearized model
with the designed integral controller is proved first by using the
method of spectral analysis and then by the Lyapunov direct
method. Based on the elaborated Lyapunov function we prove
local exponential stability of the nonlinear closed-loop system
with the same controller. The output regulation to the set-point
with zero static error by the integral controller is shown upon
the nonlinear system. Numerical simulations by the Preissmann
scheme are carried out to validatethe robustness performance of
the designed controller to face tounknown constant disturbances.

Index Terms—Boundary control, PI controller, hyperbolic
system, Lyapunov function, partial differential equations, expo-
nential stability, numerical simulation.

I. INTRODUCTION

The paper is concerned with the control of nonlinear
systems governed by scalar quasi-linear hyperbolic partial
differential equations. This type of systems appear in many
industrial applications and in study of traffic flow. For instance,
quasi-linear hyperbolic equations include Burgers equations
[8] which are employed in modeling turbulent fluid motion.
Another example is given by the equation employed by
Lighthill-Whitham in [21] to describe traffic flow on long
crowded roads. Finally scalar conservation laws can also be
regarded as a particular simpler case of quasi-linear hyperbolic
systems under some regularity assumptions (see for instance
[2], [6]).

The problem of controlling systems governed by hyperbolic
partial differential equations (PDE) with both inputs and
outputs on the boundary has attracted a considerable amount
of studies [14], [5], [13]. Interested readers can find a nice
literature review on the fields in the section 2 of [10] and in [2].
Many available results have established appropriate boundary
conditions to ensure asymptotic or exponential stability of the
equilibrium state as in [20], [15], [9], [10], [18] and [31] or
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[32] (most of them in C1 topology but also in the H2 topology,
see [9]).

In these papers the boundary conditions are given as a
function of the output. In other words, it is the static control
law that has been investigated. As it is well-known, one of the
drawbacks of this type of controllers is the lack of regulation
effect in the presence of constant perturbations. This motivates
the introduction of integral actions in the control law by using
a dynamic output feedback.

In this paper, our objective is to design an integral controller
to guarantee asymptotic stability of the equilibrium of the
nonlinear closed-loop system and the output regulation to a
given set-point. The idea of using dynamic output feedback
control for infinite dimensional systems is inspired by the
works of [25], [26] and [30], with implementation of integral
action for infinite-dimensional linear systems. These results
have been further developed in recent publications for lin-
earized hyperbolic systems, by using Lyapunov techniques in
[33] and [12], by using Laplace transformation in frequency
domain in [1] and by using a semi-group approach in [33] and
[29]. The backstepping method has been exploited in [19] to
elaborate PI (proportional and integral) controllers in the same
context. For nonlinear systems, the work of Tamasoiu [27]
considers a PI controller with damping for a scalar hyperbolic
system. However it loses the regulation effect because of the
damping required in the PI controller. It is also interesting
to note that asymptotic stabilization of entropy solutions to
scalar conservation laws has been recently studied by Perrollaz
in [24] and by Balandin et al. in [3]. In particular they have
considered the stabilization problem of weak entropy solutions
by boundary control and internal control around a constant
equilibrium state for a scalar 1D conservation law with strictly
convex flux. In [24] an internal state feedback control law has
been designed to asymptotically stabilize the entropy solutions
around a constant equilibrium in the topologies L1 and L∞.
A stabilizing nonlocal boundary control law (depending on
time and the whole initial data) has been proposed in [3] to
get asymptotic stability of the constant equilibrium in the L2

topology.
In our work, we consider a 1D scalar conservation law

with strictly increasing flux. We are interested in the classical
solutions of the system around an equilibrium state. We
propose a boundary integral output feedback controller to
asymptotically stabilize the system. The local stability and
the regulation effect for the nonlinear closed-loop system are
proven in the H2 topology by using Lyapunov techniques. The
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contribution of our paper is threefold: (i) inspired from [9]
we construct a new Lyapunov functional to prove exponential
stabilization of the closed-loop system with the designed
integral controller; (ii) we provide a mathematical proof of the
regulation effect with zero static error offered by the integral
action of the dynamical control law; (iii) the Preissmann
scheme is implemented to realize numerical simulations for
the nonlinear closed-loop PDE system.

The paper is organized as follows. Section II is devoted to
the statement of the regulation problem and the announcement
of the main result. Section III presents the proof of the main
result. More precisely, in Section III-A asymptotic stabilization
of the linearized system is considered by proposing a Lya-
punov functional; In Section III-B the stabilization problem
is solved for the nonlinear system by extending the proposed
Lyapunov functional. Numerical simulations to validating the
theoretical results are implemented in Section IV by apply-
ing the Preissmann numerical scheme. Finally Section V is
devoted to our conclusions.

II. STATEMENT OF THE PROBLEM AND MAIN RESULT

In this paper, we consider a 1D quasi-linear hyperbolic
system of the form :

∂ψ

∂t
(x, t) + F̃ (ψ(x, t))

∂ψ

∂x
(x, t) = 0, x ∈ (0, L), t ∈ R+,

(1)
where L is a positive constant, ψ : (0, L) × R+ → R is the
state in C([0,∞), H2(0, L)), and F̃ : R→ R is a C2 function
such that F̃ (σ) > 0 ∀ σ ∈ R. The initial condition is given by
ψ(·, 0) = ψ0 ∈ H2(0, L). Notice that H2(0, L) is the usual
Sobolev space defined by

H2(0, L) = {f ∈ L2(0, L) | f ′, f
′′
∈ L2(0, L)}

where L2(0, L) denotes the usual Hilbert space of square
summable functions on the open set (0, L). The Sobolev space
H2(0, L) is normed by

‖f‖2H2 =

∫ L

0

(|f(x)|2 + |f ′(x)|2 + |f
′′
(x)|2)dx

∀ f ∈ H2(0, L).

We consider the control u on the boundary x = 0, i.e.,

ψ(0, t) = u(t) , t ∈ R+ .

The output we wish to regulate is also located on the boundary
and eventually corrupted by an additive unknown disturbance,
i.e.

y(t) = ψ(L, t) + wo , t ∈ R+ ,

where wo ∈ R is an unknown constant. Our control objective
is to design a dynamic output feedback control law in order to
achieve asymptotic stabilization of the closed loop system and
to ensure that the output y(t) converges to a desired set-point
yr ∈ R, as t→∞.

In our study, the control action u(t) has the structure of
an integral controller. We assume that an unknown constant

disturbance may corrupt the control. Hence we write the
control law as follows

u(t) = −kIζ(t) + wc , ζ̇(t) = y(t)− yr
where wc ∈ R is an unknown constant and kI is a positive
constant called tuning parameter.

To summarize, the closed-loop system with disturbances is
governed by the following PDE :

∂ψ

∂t
(x, t) = −F̃ (ψ(x, t))

∂ψ

∂x
(x, t)

ζ̇(t) = ψ(L, t)− yr + wo

ψ(0, t) = −kIζ(t) + wc

ψ(x, 0) = ψ0(x), ζ(0) = ζ0.

(2)

We are studying a nonlinear infinite-dimensional system con-
trolled by an integral controller faced with unknown constant
disturbances on the control and the output. The purpose of the
paper is to find sufficient conditions on the control parameter
kI > 0 such that the three objectives are realized : (a) the
closed-loop system (2) is well posed; (b) asymptotic stability
of the closed-loop system is guaranteed; and (c) the regulation
property holds

lim
t→∞

|y(t)− yr| = 0. (3)

As only the classical solutions are considered, in the fol-
lowing we restrict ourselves to study the solutions from the
initial data (ψ0, ζ0) in H2(0, L)×R which satisfy the C0 and
C1 compatibility conditions :{

ψ0(0) = −kIζ0 + wc
F̃ (ψ0(0))ψ′0(0) = kI(ψ0(L)− yr + wo).

(4)

To be simple the initial data with the compatibility condition
satisfied up to the required order are called compatible initial
data throughout the paper. From now on, the state space X for
(2) is the Hilbert space X = H2(0, L)×R equipped with the
norm ‖(f, z)‖2X = ‖f‖2H2 +z2. Note that due to the constants
w0, wc and yr, (ψ, ζ) = (0, 0) is not a steady state of the
closed-loop system. In fact the equilibrium denoted (ψ∞, ζ∞)
is defined as follows

ψ∞ = yr − wo, ζ∞ = k−1I (wo + wc − yr). (5)

Let BX((f, z), δ) denote the open ball in X centered at (f, z)
with radius δ > 0, i.e.,

BX((f, z), δ) = {(ψ, ζ) ∈ X | ‖(ψ, ζ)− (f, z)‖X < δ} .

Then the main result of the paper is stated as follows.
Theorem 1: There exist positive real constants k∗I and δ

such that, for each kI ∈ (0, k∗I ), and for every (yr, wo, wc) ∈
R3 and every compatible (ψ0, ζ0) ∈ BX((ψ∞, ζ∞), δ), the
following assertions hold true :

1) The closed-loop system (2) has a unique solution
(ψ, ζ) ∈ C([0,∞), X);

2) The solution of the closed-loop system (2) converges
exponentially to the equilibrium state (ψ∞, ζ∞) in the
state space X as t → ∞, and the disturbed output is
regulated to the desired set-point yr, i.e.,

lim
t→∞

|y(t)− yr| = 0 .
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3) There exist real constants M > 0 and ω > 0 such that

‖(ψ(·, t)− ψ∞, ζ(t)− ζ∞)‖X 6

Me−ωt‖(ψ0 − ψ∞, ζ0 − ζ∞)‖X ∀t > 0.

Remark :
The equilibrium state is some constant state determined by
yr, wo and wc. Though it is unknown a priori, the state of
the closed-loop system is bounded because of the asymptotic
stability property of the equilibrium. Moreover the output
is always regulated to the set-point independently of the
unknown disturbances. It is the virtue of the integral controller
that allows to suppress the static error and hence achieves
output regulation. A more general situation is explained in the
paper [33]. J

Remark :
The solution considered in Theorem 1 is a classical solution

in the sense of Li and Yu [20]. However the topology used
here is the topology induced by the Hilbert H2 norm instead
of the C1 norm. Moreover, we have only local exponential
stability of the equilibrium of the closed-loop system. For
initial compatible data outside some neighborhood of the
equilibrium, the classical solution to the Cauchy problem (2)
may not be extended on the whole positive time axis. J

The proof of Theorem 1 is given in the next section.
Our proof is based on the construction of an appropriate
Lyapunov functional. The direct Lyapunov approach allows us
to consider the tuning parameter kI relatively bigger than the
classical method (see [11], [25] and [30]). The proposed upper
bound on kI is computed directly from the given system. This
may be the advantage of our approach with respect to that of
the literature [25], [30], [33].

III. PROOF OF THE MAIN RESULT

To prove Theorem 1 we consider the following transforma-
tion :

φ(x, t) = ψ(x, t)− ψ∞ , ξ(t) = ζ(t)− ζ∞ (6)

where ψ∞ and ζ∞ are defined in (5). Then we obtain a
perturbation free nonlinear closed-loop system as follows :

φt(x, t) = −F (φ(x, t))φx(x, t) (7)
ξ̇(t) = φ(L, t) (8)

φ(0, t) = −kIξ(t) (9)
φ(x, 0) = φ0(x) = ψ0(x)− ψ∞ (10)
ξ(0) = ξ0 = ζ0 − ζ∞ (11)

where φt(x, t) denotes the time partial derivative of φ(x, t),
and we have defined F (φ) = F̃ (φ + ψ∞). In the new
coordinates, the output is written as

y(t) = φ(L, t) + yr.

Hence the output regulation to yr is achieved if

lim
t→∞

|φ(L, t)| = 0.

To guarantee the output regulation of the disturbed nonlinear
system (2), we design the integral controller so as to ensure
local asymptotic stabilization to the origin of the equivalent
system (7)-(11).

In the following, the integral stabilization problem of the
equivalent system is considered first for the linearized case in
Section III-A and then for the nonlinear case in Section III-B.
Finally the complete proof of Theorem 1 is presented in
Section III-C.

A. Linear hyperbolic system

The purpose of this Section is to study stability property
of the origin for the nonlinear hyperbolic system with an
integral controller on the boundary as described in (7)-(11). To
begin with, we consider the particular case where the system
is linear, i.e., F does not depend on φ. This is the case if
for instance the considered system is obtained by the tangent
linearization of the nonlinear system around the equilibrium
state. In this subsection, we consider the following linear
system :

φt = −rφx , r > 0 (12)
ξ̇ = φ(L, t), φ(0, t) = −kIξ(t) (13)

φ(x, 0) = φ0(x), ξ(0) = ξ0. (14)

To the system (12)-(14) is associated the state space Z which
is the Hilbert space Z = L2(0, L)×R equipped with the scalar
product

〈(φa, ξa), (φb, ξb)〉Z =

∫ L

0

φa(x)φb(x)dx+ ξaξb

∀ ((φa, ξa), (φb, ξb)) ∈ Z2.

and we denote by ‖ · ‖Z its associated norm. The first
stability result is obtained by employing the Laplace transform
approach.

Proposition 1: The closed-loop linear system (12)-(14) is
exponentially stable in Z w.r.t. L2 norm if and only if kI ∈(

0,
rπ

2L

)
.

The proof of this result can be obtained from [4, p.444,
Chapter 13] or from [16, Appendix Theorem A.5]. For the
reader’s convenience a simple proof is given in Appendix A.

By frequency-domain analysis it is possible to establish
some necessary and sufficient conditions on the parameter kI
for asymptotic stability of the equilibrium to the linear closed-
loop system (12)-(14). However the approach is no longer
applicable when dealing with a general nonlinear system. This
is the reason why we introduce a Lyapunov functional for
the linear system which allows us to tackle the nonlinear
hyperbolic system in the following section.

The Lyapunov functional candidate V : Z → R has the
following form :

V (φ, ξ) =

∫ L

0

[
φ2(x)e−µx + q1ξφ(x)e−

µx
2

]
dx+ q2ξ

2 (15)

where µ > 0 and qi > 0 ∀ i = 1, 2. Consider the function
Π : [0, 2] → R such that Π(z) =

√
z(2− z)e−z/2. We have
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Π(2 −
√

2) ' 0.3395 that is the maximum value of Π(z) in
[0, 2].

Given T > 0 and a function φ : (0, L) × (0, T ) → R, we
use the notation φ(t) := φ(·, t) when there is no ambiguity.
Assume that the initial condition is smooth enough so that the
solution of (12)-(14) is continuously differentiable with respect
to time t and space x. Then, by differentiating V (φ(t), ξ(t))
with time along the solution and by using integration by parts
we get

V̇ (φ(t), ξ(t)) = −re−µLφ2(L, t)− kI r(q1 − kI)ξ2(t)

− µr
∫ L
0
e−µxφ2(x, t)dx

+
(

2q2 − q1re−
µL
2

)
ξ(t)φ(L, t)

− µq1r

2
ξ(t)

∫ L
0
e−

µx
2 φ(x, t)dx

+ q1φ(L, t)
∫ L
0
e−

µx
2 φ(x, t)dx.

(16)
Lemma 1: Let k∗I =

(
r

2L

)
Π(2 −

√
2). Take kI ∈ (0, k∗I )

and µ ∈ (0, (2 −
√

2)/L] such that
(
r

2L

)
Π(µL) > kI . Let

q1 = 2kI and let q2 = rkIe
−µL/2. Then there exist positive

constants M > 1 and α > 0 such that

M−1||(φ, ξ)||2Z 6 V (φ, ξ) 6M ||(φ, ξ)||2Z ∀ (φ, ξ) ∈ Z,
(17)

and for every smooth compatible (φ0, ξ0) ∈ Z

V̇ (φ(t), ξ(t)) 6 −αV (φ(t), ξ(t))−
(
re−µL

2

)
φ2(L, t). (18)

Proof : Rewrite V (φ, ξ) as follows

V (φ, ξ) =

∫ L

0

[
φ(x)e−µx/2

ξ√
L

]>
P

[
φ(x)e−µx/2

ξ√
L

]
dx

where

P =

[
1

√
Lq1
2√

Lq1
2 q2

]
.

We claim that the matrix P is positive definite. Indeed, we
have
det(P ) =

LkI

{
rΠ(µL)

2L
− kI +

r

2L
e−µL/2

(
2−

√
µL(2− µL)

)}
.

Since
(
r

2L

)
Π(µL) > kI and µL < 2, it is easy to see that

det(P ) > rkI
2 e−

µL
2 . Hence there is some real constant M > 1

such that the inequality (17) holds.
By substituting the given q1 and q2 into (16) we have the

following

V̇ (φ(t), ξ(t)) = −re−µLφ2(L, t)− µr
∫ L
0
e−µxφ2(x, t)dx

− k2Irξ
2(t)− µrkIξ(t)

∫ L
0
e−

µx
2 φ(x, t)dx

+ 2kIφ(L, t)
∫ L
0
e−

µx
2 φ(x, t)dx.

(19)

By using the Young and Cauchy-Schwarz inequalities we get

2kIφ(L, t)

∫ L

0

e−
µx
2 φ(x, t)dx

6

(
re−µL

2

)
φ2(L, t) +

(
2Lk2Ie

µL

r

)∫ L

0

e−µxφ2(x, t)dx

(20)

and∣∣∣∣∣µrkIξ(t)
∫ L

0

e−
µx
2 φ(x, t)dx

∣∣∣∣∣
6

(
rk2I
2

)
ξ2(t) +

(
rµ2L

2

)∫ L

0

e−µxφ2(x, t)dx. (21)

Substituting (20) and (21) into (19) leads us to the following
inequality

V̇ (φ(t), ξ(t)) 6 −
(
re−µL

2

)
φ2(L, t)−

(
k2Ir

2

)
ξ2(t)

−
( r

2L
Π(µL) + kI

)( r

2L
Π(µL)− kI

)
Jφ,ξ (22)

where

Jφ,ξ =

(
2L

r

)
eµL

∫ L

0

e−µxφ2(x, t)dx.

By the choice of µ, we have r
2LΠ(µL) − kI > 0. It follows

from (22) that there exists a positive real number M1 such
that

V̇ (φ(t), ξ(t)) 6 −M1

(
ξ2(t) +

∫ L
0
e−µxφ2(x, t)dx

)
−

(
re−µL

2

)
φ2(L, t).

(23)
The required inequality (18) is true by (23) and (17). 2

Remark :
It can be noticed that the set of parameter kI which makes
the Lyapunov functional decreasing along solutions is smaller
than the set of parameter obtained from Proposition 1. Hence,
in the linear context our Lyapunov approach is conservative.
However the Lyapunov functional allows us to deal with
nonlinear systems as it will be shown in the next Section.

J

B. Nonlinear system

In this section, we consider the problem for the nonlinear
system (7)-(11) with F (0) = r > 0. By the designed integral
controller the nonlinear closed-loop system (7)-(11) is written
as follows

φt + F (φ)φx = 0

ξ̇ = φ(L, t)

φ(0, t) = −kIξ
φ(x, 0) = φ0(x), ξ(0) = ξ0.

(24)

Let us set :

s(x, t) = φx(x, t) , p(x, t) = φxx(x, t).
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By successive derivatives and compatibility conditions we find
that the dynamics of s(x, t) and p(x, t) are governed by the
following PDE, respectively,

st + F (φ)sx = −F ′(φ) s2

F (φ(0, t))s(0, t) = kIφ(L, t)

s(x, 0) = φ′0(x)

(25)

and
pt + F (φ)px = −3F ′(φ) s p− F ′′(φ) s3

F 2(φ(0, t))p(0, t) = kIF (φ(L, t))s(L, t)
−2kIF

′(φ(0, t))φ(L, t)s(0, t)

p(x, 0) = φ′′0(x).

(26)

Now we use the idea presented in [9] to extend the Lya-
punov functional from the linear system (in L2 norm) to the
nonlinear system (in H2 norm). Therefore local asymptotic
stability of the equilibrium state and the set-point output regu-
lation will be proved for the nonlinear closed-loop system (24).
To do that, we consider the Lyapunov functional candidate
S : X → R+ such that

S(φ, ξ) = V (φ, ξ) + q3V1(φx) + q4V1(φxx) (27)

where V (φ, ξ) is defined in (15) with q1 and q2 given in
Lemma 1 and

V1(φx) =

∫ L

0

e−µxφ2x(x)dx (28)

with the real positive constants q3 and q4 to be determined
later.

For the moment we assume that all the required regularity
is satisfied and carry out formal computations.

Lemma 2: The time derivative of V (φ(t), ξ(t)) along each
regular trajectory of the nonlinear system (24) is written as
follows

V̇ (φ(t), ξ(t))

= −re−µLφ2(L, t)− k2Irξ2(t)− µr
∫ L

0

e−µxφ2(x, t)dx

−µrkIξ(t)
∫ L

0

e−
µx
2 φ(x, t)dx+2kIφ(L, t)

∫ L

0

e−
µx
2 φ(x, t)dx

− φ3(L, t)F1(φ(L, t))e−µL + φ3(0, t)F1(φ(0, t))

+

∫ L

0

e−µx [F ′(0) + φ(x, t)F2(φ(x, t))]φx(x, t)φ2(x, t)dx

− µ
∫ L

0

e−µxF1(φ(x, t))φ3(x, t)dx

− 2kIξ(t)

∫ L

0

e−µx/2F1(φ(x, t))φ(x, t)φx(x, t)dx (29)

where
F (z) = F (0) + F1(z)z
F ′(z) = F ′(0) + F2(z)z

(30)

with F1(z) =
∫ 1

0
F ′(λz)dλ and F2(z) =

∫ 1

0
F
′′
(λz)dλ.

Proof : By differentiating V (φ(t), ξ(t)) along each regular
trajectory of (24) the following identity holds true

V̇ (φ(t), ξ(t)) = −
∫ L

0

2e−µxφ(x, t)F (φ(x, t))φx(x, t)dx

− q1

∫ L

0

e−µx/2F (φ(x, t))φx(x, t)ξ(t)dx

+ q1

∫ L

0

e−µx/2φx(x, t)dxφ(L, t) + 2q2ξ(t)φ(L, t).

By integration by parts and by using the boundary condition
(24) and the parameters q1 and q2 given in Lemma 1 as well
as the relations (30) we prove the required identity (29). 2

Similarly we may prove the following lemmas.
Lemma 3: With the same notations as in Lemma 2, the time

derivative of V1(φx(t)) along every regular trajectory of the
nonlinear system (24)-(25) is written as follows

V̇1(φx(t)) = −re−µLs2(L, t) + r−1k2Iφ
2(L, t)

− rµ
∫ L

0

e−µxs2(x, t)dx− k2IF3(φ(0, t))φ(0, t)φ2(L, t)

− e−µLF1(φ(L, t))φ(L, t)s2(L, t)

−
∫ L

0

[(F (φ(x, t)))x + µF1(φ(x, t))φ(x, t)] e−µxs2(x, t)dx

(31)

where F3(z) =

∫ 1

0

F ′(λz)

F 2(λz)
dλ.

Lemma 4: With the same notations as in Lemma 2, the time
derivative of V1(φxx(t)) along each regular trajectory of the
nonlinear system (24)-(26) is written as follows

V̇1(φxx(t)) =

− e−µLF (φ(L, t))p2(L, t) +
k2IF

2(φ(L, t))

F 3(φ(0, t))
s2(L, t)

− µ
∫ L

0

e−µxF (φ(x, t))p2(x, t)dx

+
4k2I (F ′(φ(0, t))2

F 3(φ(0, t))
φ2(L, t)s2(0, t)

− 4k3IF (φ(L, t))F ′(φ(0, t))

F 4(φ(0, t))
s(L, t)φ2(L, t)

− 5

∫ L

0

e−µxF ′(φ(x, t))s(x, t)p2(x, t)dx

− 2

∫ L

0

e−µxF
′′
(φ(x, t))s3(x, t)p(x, t)dx. (32)

Let T > 0. For each function (φ, ξ) ∈ C([0, T ];C1[0, L]×
R) we define

‖(φ, φx, ξ)‖T,∞ = sup
t∈[0,T ]

|ξ(t)| +

+ sup
x ∈ [0, L]
t ∈ [0, T ]

|φ(x, t)| + sup
x ∈ [0, L]
t ∈ [0, T ]

|φx(x, t)|.

By combining results of Lemma 1-4 the following theorem is
obtained.

Theorem 2: Let the parameters kI , µ, q1 and q2 be
determined as in Lemma 1. Then there are positive real
constants q3, q4, δ and β such that, for each function (φ, ξ) ∈
C([0, T ];C3[0, L] × R) ∩ C1([0, T ];C2[0, L] × R) satisfying
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the PDE (24)-(26) and the condition ‖(φ, φx, ξ)‖T,∞ < δ, the
following differential inequality holds true

Ṡ(φ(t), ξ(t)) 6 −βS(φ(t), ξ(t)) ∀ t ∈ [0, T ]. (33)

Moreover there exists a positive constant K > 1 such that

K−1‖(φ, ξ)‖2X 6 S(φ, ξ) 6 K‖(φ, ξ)‖2X ∀ (φ, ξ) ∈ X.
(34)

Proof : Without loss of generality we assume that δ 6 1.
For the sake of simplicity we write CT = ‖(φ, φx, ξ)‖T,∞.
By Lemma 2, Lemma 1 and the Cauchy-Schwarz inequality
there exists a positive constant K1 > 0 such that

V̇ (φ(t), ξ(t)) 6 −αV (φ(t), ξ(t))− (r/2)e−µLφ2(L, t)+

+K1CT

[∫ L

0

e−µxφ2(x, t)dx+ ξ2(t) + φ2(L, t)

]
. (35)

Similarly, by Lemma 3 there exists a positive constant K2 > 0
such that

V̇1(φx(t)) 6 −(re−µL −K2CT )s2(L, t)

+ r−1k2Iφ
2(L, t)− rµ

∫ L

0

e−µxs2(x, t)dx

+K2CT

(
φ2(L, t) +

∫ L

0

e−µxs2(x, t)dx

)
. (36)

Similarly, by Lemma 4 there exists a positive constant K3 > 0
such that

V̇1(φxx(t)) 6

− (re−µL −K3CT )p2(L, t) + (r−2k2I +K3CT )s2(L, t)

+K3CTφ
2(L, t) +K3CT

∫ L

0

e−µxs2(x, t)dx

− (rµ−K3CT )

∫ L

0

e−µxp2(x, t)dx. (37)

As CT can be made as small as we like with δ, adding the
inequalities (35)-(37) and taking δ, q3 and q4 sufficiently small
lead us directly to the following differential relation

Ṡ(φ(t), ξ(t)) 6 −α
2
V (φ(t), ξ(t))

− q3rµ

2

∫ L

0

e−µxs2(x, t)dx

− q4rµ

2

∫ L

0

e−µxp2(x, t)dx. (38)

Therefore the theorem is proved by using (17), (27) and (38).
2

C. Proof of Theorem 1

With Theorem 2, we are now ready to prove the main result
of the paper.
Proof of Theorem 1 : We first prove the local existence of
a unique solution to the closed-loop system (7)-(11) for each

compatible initial state (φ0, ξ0) in H2(0, L)×R. The closed-
loop control system (7)-(11) is governed by the following PDE
coupled with an ODE through the boundary as follows:{

φt = −F (φ)φx, ξ̇ = φ(L, t)

φ(0, t) = −kIξ, (φ(x, 0), ξ(0)) = (φ0(x), ξ0).
(39)

Recall that X = H2(0, L) × R is equipped with the norm
‖(f, z)‖2X = ‖f‖2H2 + z2. Assume that the initial condition
(φ0, ξ0) is in BX(0, δ), δ > 0 and satisfies the C0 and C1

compatibility conditions as in (24) and (25).
By using the Theorem 1.2 and the Propositions 1.3-1.5 in

[28, pp.362-365], or [17, Theorem II] we deduce the existence
of a unique solution to (39) for some δ > 0 and T > 0 :

(φ, ξ) ∈ C([0, T ];H2(0, L)×R) ∩ C1([0, T ];H1(0, L)×R).

The reader is referred to [9] and [2, Appendix B] for a rigorous
proof to the initial boundary case.

Now we prove local exponential stability of the null state
to (39). Notice that each compatible w0 = (φ0, ξ0) ∈ X
admits a sequence of w0,n = (φ0,n, ξ0,n) ∈ H4(0, L) × R
satisfying the Ck compatibility condition, k = 0, 1, 2, 3, such
that limn→∞ ‖w0,n − w0‖X = 0 (cf. [7, p.130]). Hence
it is sufficient for us to prove the exponential stability for
w0 ∈ H4(0, L) × R. As the solution depends continuously
on the initial condition (see [17, Theorem III]), then the
exponential decay of solution from compatible w0 ∈ X is
proved by taking the limit.

Indeed, take a compatible w0 ∈ (H4(0, L)×R)∩BX(0, δ).
As stated above the system (39) has a unique solution w(t) in
H4(0, L)× R (cf. [28]) such that

w ∈ C([0, T ];H4(0, L)× R) ∩ C1([0, T ];H3(0, L)× R)

where w(t) = (φ(t), ξ(t)). By the continuous embedding (cf.
[7, p.167]) Hn(0, L) ↪→ Cn−1[0, L] ∀ n > 1 integer, we have
the solution

w ∈ C([0, T ];C3[0, L]× R) ∩ C1([0, T ];C2[0, L]× R).

Let ‖w0‖X < δ1 for some δ1 > 0. We choose δ1 >
0 sufficiently small such that ‖w0‖X < Kδ1 implies
‖(φ, φx, ξ)‖T,∞ < δ with smaller T if necessary (cf. [23,
Theorem 2.2 , p.46]). Notice that K and δ are defined in our
Theorem 2. Then direct application of Theorem 2 allows us
to get ‖w(T )‖X < Kδ1. Since the system is autonomous, the
same argument can be used on the time interval [T, 2T ]. By
successive iterations we obtain the differential inequality (33)
satisfied for all t > 0. By (33)-(34) we find positive constants
M and ω such that

‖w(t)‖X 6Me−ωt‖w0‖X ∀ w0 ∈ BX(0, δ1).

The regulation effect is automatically guaranteed, since w ∈
C([0,∞);H2(0, L) × R). Hence the proof of Theorem 1 is
complete. 2
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Fig. 1: Evolution of ψ(x, t)

Fig. 2: Evolution of input u(t)

IV. NUMERICAL SIMULATIONS

The performance of the integral controller on the linearized
system has been studied through numerical simulations and
discussed in the paper [29]. Here the simulations are done
on the nonlinear system to validate the theoretical results
of Theorem 1. These simulations are realized by using the
discretization method with the Preissmann scheme [22]. The
details of the method have been presented in our paper [29]
with the following parameters : N, θ, ∆t and ∆x. Note that
N is the number of discretized space intervals, ∆t and ∆x are
the time discretization step and the space discretization step,
respectively, and the weight parameter θ ∈ [0.5, 1] is made
use of to compute the value of a function from its neighbor
values. In this section, the parameters take the following

values: L = 50m, N = 100, θ = 0.55, and
∆t

∆x
= 0.5.

Moreover, to simulate the nonlinear closed-loop system (2),
the following flux function and numerical values are applied:
F (ψ) = ψ2 + 3, kI = 0.05, and yr = 0.5. The constant
perturbations on the output and on the control are given by
wo = 0.1 and wc = 0.05, respectively.

Figure 1 shows asymptotic stability of the nonlinear closed-
loop system and illustrates the evolution of the state ψ(x, t).

Fig. 3: Evolution of error |y(t)− yr|

Fig. 4: Evolution of output y(t)

Moreover the regulation of the output y(t) to the desired set-
point yr is illustrated by Figure 3 and Figure 4. Finally Fig-
ure 2 shows the evolution of the control input u(t) perturbed
by wc. As clearly indicated by the simulations, by virtue of the
integral action the output converges to the set-point as t→∞
independently of the constant perturbations.

V. CONCLUSIONS

We have considered the design of stabilizing integral con-
trollers for the nonlinear systems described by scalar hyper-
bolic PDE. First we have proposed an interval of integral
gain for stabilization and then proved exponential stability of
the linearized system controlled by the designed controller.
Moreover, for the linearized system we have been able to
establish a necessary and sufficient condition for the integral
gain to get exponential stability of the controlled system in the
L2 norm. Then we have proved local exponential stability of
the nonlinear controlled system by the same integral controller
in the H2 norm. Both of two main proofs have used Lyapunov
techniques with the Lyapunov functions in the quadratic form.
The regulation of the output to the set-point is automatically



IEEE TRANSACTIONS ON AUTOMATIC CONTROL 8

guaranteed from the local exponential stability of the closed-
loop system in H2 norm. Numerical simulations for the
nonlinear closed-loop system have been carried out to validate
the performance of the controlled system. In the future, the
work is to extend the design of stabilizing PI controllers for
networks of scalar systems governed by nonlinear hyperbolic
PDE.

APPENDIX

A. Proof of Proposition 1

A necessary and sufficient condition for exponential stability
of the system (12)-(14) is that all the poles of the transfer
function have negative real part (see [34], [4, Chapter 13],
or [16, Appendix Theorem 3.5]). To formulate the transfer
function, we set v(t) as the new control input with y(t) as the
output :

φ(0, t) = −kIξ(t) + v(t), y(t) = φ(L, t). (40)

By taking the Laplace transform in (12)-(14), we obtain:

sφ̂+ rφ̂x = 0 (41)

sξ̂ = φ̂(L, s), (42)

φ̂(0, s) = −kI ξ̂(s) + v̂(s) , ŷ(s) = φ̂(L, s) (43)

From (41) we have the solution φ̂(x, s) = φ̂(0, s)e−sr
−1x.

Combining it with (42) and (43), we obtain:

ŷ(s) = φ̂(L, s) = φ̂(0, s)e−sLr
−1

=

e−sLr
−1

(−kI ξ̂(s) + v̂(s)) = e−sLr
−1

(
−kI

ŷ(s)

s
+ v̂(s)

)
Hence, (

1 +
kI
s
e−sLr

−1

)
ŷ(s) = e−sLr

−1

v̂(s)

Therefore we get the transfer function as follows:

G(s) =
ŷ(s)

v̂(s)
=

s

kI + sesLr−1

The poles of transfer function are solutions of the following
equation :

kI + sesLr
−1

= 0 (44)

We set
µ = sLr−1 and α = kILr

−1. (45)

Note that α > 0. The characteristic equation now becomes

α+ µeµ = 0 (46)

The proposition is proved if we show that the equation (46) has
all the solutions µ in the left-half complex plane <e(µ) < 0

if and only if α ∈ (0,
π

2
).

Let set µ = σ+ iη, where σ, η ∈ R. Then (46) is rewritten as
follows :

(σ + iη)eσ+iη + α = 0

By separating the real part and the imaginary part, we obtain:

− eσ(σcos(η)− ηsin(η)) = α (47)

ηcos(η) + σsin(η) = 0 (48)

We consider the following two cases.
• If sin(η) = 0, by (48), η cos(η) = 0 implies η = 0.

From (47), we have α = −σeσ . The last equation has no
solution σ > 0 whatever is α > 0. Hence each solution
σ is negative if and only if α ∈ (0, π/2).

• If sin(η) 6= 0, from (48),

σ = −ηcos(η)

sin(η)
(49)

Thus α = H(η) where

H(η) =
η

sin(η)
exp

(
−ηcos(η)

sin(η)

)
Because H(η) is a pair function, we only need to consider
the case where η > 0. Thus α > 0 if and only if sin(η) >
0. As η > 0 and sin(η) > 0, we set η = γ+ 2kπ, where
γ ∈ (0, π) and k ∈ N.
Now considering the function H(η), we have :

∂H(η)

∂η
= e

−ηcos(η)

sin(η) sin2(η)− ηsin(2η) + η2

sin3(η)

One can easily check that sin2(η)− ηsin(2η) + η2 > 0

for all η > 0. Therefore,
∂H(η)

∂η
> 0. Hence, on each

interval (2kπ, 2kπ+π), the function H(η) is continuous
and monotonic increasing. Moreover we have

lim
η→(2k+1)π−

H(η) = +∞, lim
η→2kπ+π

2

H(η) = 2kπ +
π

2
.

In addition, lim
η→2kπ+

H(η) = 0 ∀ k ∈ N and k > 0, and

lim
η→0

H(η) = e−1. By (49) and η = γ + 2kπ,we have

σ < 0 if and only if γ ∈ (0, π2 ). Obviously σ > 0 if
γ ∈ [π2 , π). Therefore σ < 0 if and only if the equation
H(η)−α = 0 has all its solutions in ∪∞k=0(2kπ, 2kπ+ π

2 ).
Since α needs to be in one interval including 0, we have
α ∈ (0, π2 ).

From the two cases, the proposition is proved.
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