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We measure the coherent scattering of light by a cloud of laser-cooled atoms with a size comparable to
the wavelength of light. By interfering a laser beam tuned near an atomic resonance with the field scattered
by the atoms, we observe a resonance with a redshift, a broadening, and a saturation of the extinction for
increasing atom numbers. We attribute these features to enhanced light-induced dipole-dipole interactions
in a cold, dense atomic ensemble that result in a failure of standard predictions such as the “cooperative
Lamb shift”. The description of the atomic cloud by a mean-field model based on the Lorentz-Lorenz
formula that ignores scattering events where light is scattered recurrently by the same atom and by a
microscopic discrete dipole model that incorporates these effects lead to progressively closer agreement
with the observations, despite remaining differences.
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The understanding of light propagation in dense media
relies traditionally on a continuous description of the
sample characterized by macroscopic quantities such as
susceptibility or refractive index [1,2]. Their derivation
from a microscopic theory is in general challenging owing
to the interactions between the light-induced dipoles that
can be large when the light is tuned near an atomic
resonance. In dilute media, their role can be analyzed
using the perturbative approach of Friedberg, Hartmann,
and Manassah (FHM) [3], which predicts in particular a
“cooperative Lamb shift” measured recently in inhomo-
geneously broadened media [4,5] and cold dilute atomic
gases [6]. For an atom slab, the FHM approach was shown
to correspond to the low-density limit of the local-field
model introduced by Lorentz [7], which replaces the
action of all the atoms of the medium on a particular
one by an average effective field [1,2], thus ignoring
correlations between the light-induced dipoles. This
mean-field approach leads to the Lorentz-Lorenz formula,
which allows calculating the index of refraction of many
dense media with an excellent accuracy [1,8]. However, it
was pointed out [7,9] that in the absence of inhomo-
geneous broadening, such as in cold atomic ensembles,
the mean-field response may not be valid due to recurrent
scattering where the field radiated by one atom can be
scattered back by another atom [10,11]. Recurrent scatter-
ing should become important when the incident light
(wavelength A = 27/k) is tuned near an atomic resonance,
and the atomic density approaches k3. This calls for an
experiment operating in this regime, where a comparison
between the standard mean-field theories of light scatter-
ing and a microscopic approach, including recurrent
scattering, can be performed.
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Here, we perform this comparison. To do so, we need to
access a quantity relevant to both the macroscopic and the
microscopic approaches. The coherent electric field (E.)
scattered by the cloud fulfills this condition: it is obtained
by averaging the scattered field E . over many realizations
of the spatial random distribution of atoms, and its
evolution is governed by the macroscopic Maxwell’s
equations in the cloud considered as an homogeneous
medium described by a susceptibility. In the case of cold
atomic gases, the near-resonance coherent optical response
has been explored experimentally using mostly dilute,
optically thick ensembles [12-19]. Recently, we studied
the light scattered by a microscopic dense cloud of cold
atoms at 90° of a near-resonant excitation laser [20]. In that
situation, we were sensitive to the incoherent component
{|Eq. — (E)[?) of the scattered light. We could therefore
not compare our results with mean-field predictions for
continuous media, which are only relevant for the coher-
ent part.

In this work, we study the coherent scattering by our
microscopic cloud. The cloud contains up to a few
hundreds laser-cooled rubidium-87 atoms and has a size
smaller than the wavelength of the optical D, transition. We
illuminate the sample with a tightly focused laser with a
waist larger than the cloud size. We access the coherent
scattering by measuring the extinction resulting from the
interference of the laser field with the field scattered by the
cloud. We observe a saturation of the extinction, a broad-
ening of the line, and a small redshift when we vary the
number of atoms from 10 to 180. We show that the
measured shift and width do not agree with the FHM
perturbative approach. The description of the atomic cloud
by a mean-field model based on the Lorentz-Lorenz
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formula also disagrees with our data. Finally, a microscopic
discrete dipole model that incorporates recurrent scattering
leads to a qualitatively closer agreement with our mea-
surements, despite remaining differences.

To study the coherent scattering by our cloud, we detect
the interference in the far field between the laser field E;
and the scattered field E... To do so, we use two identical
aspherical lenses L1 and L2 with a high numerical aperture
(NA = 0.5) mounted in a confocal configuration in a
vacuum chamber [see Fig. 1(a)] [21]. L1 focuses far-off-
detuned laser light onto a waist of 1.2 £0.1 um (1/¢?
radius). This creates a dipole trap (depth: 1 mK) in which
we load N atoms with a temperature of 120 £ 15 uK [22].
We control the number of atoms N within 10% and vary N
between 10 and 180 [23]. The atomic cloud is cigar-shaped,
with calculated transverse and longitudinal root-mean-
square (rms) widths (a,,a,) = (0.2,1.2) yum. The peak
densities range from n = 10" to 2 x 10'* at/cm?. The
uncertainties in the temperature, atom number, and waist
size lead to a systematic uncertainty on the peak density
of a factor of 2. The probe beam is focused down to a waist
of w=1.20+£0.05 ym also by L2 at the position of
the cloud. It is linearly polarized and nearly resonant
with the closed D, transition of rubidium between the
(5812, F =2)and (5P3),, F = 3) levels at A = 2zc/w, =
780.2 nm (linewidth I' = 27 x 6 MHz) [25]. We operate
the probe in the low intensity limit where the atoms respond
linearly to the field: I/l ~0.04 (I = 1.6 mW/cm?).
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FIG. 1. (a) Experimental setup. A microscopic cloud of 8’Rb

atoms is illuminated by a linearly polarized probe laser focused
down to a waist w = 1.2 um. P: polarizer. L: Lens allowing the
mode matching between the laser probe beam and the single-
mode fiber (F) in the absence of atoms. APD: avalanche
photodiode. Inset: cloud rms widths (left) and intensity radiation
pattern (right), calculated using a microscopic approach (see
text). The coherent part, |E.on(@)|?, dominates the incoherent
part, which is more isotropic and is orders of magnitude smaller.
(b) Example of temporal signals recorded on the APD with N =
180 atoms (green line) and without atoms (blue line). The laser is
nearly resonant with the atoms, with a frequency detuning
A =03I". Each run consists of 1000 illuminations with a
duration of 300 ns each. Temporal bins: 6 ns. Gray area: time
interval used for the steady-state analysis.

We collect the probe light transmitted through the cloud
using L1 and couple it into a single-mode fiber connected
to an avalanche photodiode (APD). The temporal signals
are acquired by accumulating single photons using a
counting card with a resolution of 150 ps. A polarization
beam splitter is placed before the single-mode fiber and
aligned at 45° of the probe laser polarization so as to split
the collected light between the fibered APD and a CCD
camera [not shown in Fig. 1(a)].

Our configuration is sensitive to the mode matching
E(w) = [{E(r,w) - g*(r)}dS between the total field E =
E; + E, and the mode g of the single-mode-fibered
detector (dS is a differential area element perpendicular
to the optical axis) [26]. In the absence of atoms, the fiber
mode is matched to the incoming light, i.e., g « E{. In our
experiment, we measure (|€(w)|?), where (-) means an
average over many realizations of the cloud. After averag-
ing, the signal is the sum of two parts [27]: (i) |Eeon(@)[?
due to E; + (Ey), and (i) {(|Eipcon(@)|?) due to the
fluctuating field E. — (E.). In the direction of propaga-
tion of the laser |Eqop(@)]? > (|Eincon(@)]?) [see below and
in Fig. 1(a)], and we are therefore mainly sensitive to the
coherent optical response, which we characterize by a
transfer function S(w) = (£(w)) /& (w) obtained by com-
paring the detected fields with and without atoms.

To measure S(w) in steady state, we proceed in the
following way: after preparing the atoms in the (585,
F =2) level, we switch off the dipole trap light during
500 ns and send a 300 ns probe pulse with a temporal top
hat profile (rise time of 2 ns). We then recapture the cloud in
the trap for 500 ns and repeat this release-probe-recapture
1000 times using the same atomic cloud [30]. This
procedure is typically repeated with 200 different atomic
clouds. A typical signal is shown in Fig. 1(b). It reaches a
steady-state after a transient time of ~26 ns, close to the
lifetime 1/T" of the excited state, during which the atomic
medium gets polarized. We average the signal over a time
interval of 120 ns (gray area) and normalize it with respect
to the case without atoms to obtain the transmission in
steady state for a given probe frequency. We checked that
the scattered light has the same polarization as the probe
light by rotating the polarizer P and observing a signal with
a contrast of 95%, the same as in the absence of atoms. This
feature is characteristic of the coherent scattered field,
and therefore confirms experimentally that |, (@)]> >
{|Eincon(@)|?). Finally, the sequence is repeated for various
probe detunings A = w — wy and atom numbers N. We
obtain the spectra shown in Fig. 2(a).

The derivation of a functional form for S(w) is very hard
in our dense cloud regime. However, in the case of a cloud
with a size smaller than 1/k so that it behaves as a small
dielectric sphere with a polarizability a.(w) we get,
following [26], S(w) = 1 + ika.(w)/(aw?), which we cast
in the form
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FIG. 2. (a) Measured transfer function of the cloud in steady
state versus probe detuning A for N = (10, 83, 180) atoms (top to
bottom); error bars: statistical (one standard deviation), shot noise
limited. Solid lines: Lorentzian fit by |S(w)|%. Dotted lines:
results of the coupled dipole equations including the 12 levels of
the Fy =2 — F. = 3 transition (see text). (b) Comparison be-
tween the predictions of the Lorentz model (solid line) and the
microscopic, 12-level atom model (dotted line) for N =
(1,10, 83, 180) (top to bottom).
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assuming that the polarizability is resonant around a
frequency w. with a width I'.. We fit the spectra shown
in Fig. 2(a) with the Lorentzian function |S(w)|?, using
Eq. (1) and leaving A, A, =w, — @, and I'. as free
parameters. The fit agrees well with the data, confirming
that the functional form of Eq. (1) is appropriate even for
our elongated sample. Figure 3 shows the results of the fits.
For increasing atom numbers, we observe a saturation of
the amplitude A, and therefore of the extinction, an
increasing small redshift and a broadening of the line.
These behaviors can be understood qualitatively as a
consequence of the dipole-dipole interactions between
atoms, on the order of Al'n/k> (see below).

We now compare our results to various models of the
optical response of the cloud. In Refs. [3,31], Friedberg,
Hartmann, and Manassah used perturbation theory to
derive the expressions for a collective decay rate and a
collective shift for various geometries of an atomic ensem-
ble of two-level atoms. There, the collective shift and

150 180
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0 30 60 90 120

Number of atoms

FIG. 3. Fit results of the data of Fig. 2 with the function
|S(@)|?. Error bars are from the fit. (a) Amplitude A. Solid green
line: phenomenological fit to guide the eye, yielding a saturation
(dotted line) at 0.7. (b) Shift of the center frequency
A, = o, — @y. Solid line: linear fit. (c) Full width at half
maximum I'.. Solid line: linear fit. Dashed lines in (b) and
(c): predictions by Friedberg, Hartmann, and Manassah detailed
in the text. The prediction for the width has been offset to match
the data for N = 0.

rate are the real and imaginary parts of the average
dipole-dipole interaction [32]. This theory predicts the
“cooperative Lamb shift” measured in a hot atomic vapor
[5] and in a dilute, optically thick cold atomic sample [6].
For the case of an ellipsoidal cloud with Gaussian density
distribution, the predictions [see formulas (5.2) and (5.3) of
Ref. [31]] are plotted in Figs. 3(b) and 3(c) for our
experimental parameters. Here, we included the rubidium
internal structure by multiplying the prediction of Ref. [31]
by the ratio of multiplicities 7/15 of the Fy, =2 - F, =3
transition [28,33], assuming equal populations in all hyper-
fine Zeeman ground states and a negligible magnetic field
(as is the case in the experiment) [27]. The predictions
differ significantly from the measured values, indicating
that this perturbative approach does not apply for our dense,
cold atomic systems.

To go beyond the FHM perturbative treatment, we now
calculate the optical response as predicted by the Lorentz
local field theory for our dense cigar-shaped cloud. For this
purpose, we replace the cloud by a Gaussian continuous
density distribution n(r) (with rms widths a, and a.) and
calculate the local susceptibility using the Lorentz-Lorenz
formula y(r, ) = n(r)a(w)/[1 — n(r)a(w)/3] [1,2]. Here,
a(w) = i(7/15)(6x/k*)/[1 — i(2A/T)] is the polarizabil-
ity of a single atom, which includes the internal atomic
structure of rubidium as described above, see [27]. We then
define a local permittivity e(r) = 1 + y(r) and use a finite
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element program to calculate the electric field scattered in
the far field by the cloud illuminated by the Gaussian laser
beam. We finally compute the transfer function S(w) taking
for the Gaussian field the usual paraxial expression [27].
The results are shown in Fig. 2(b). The mean-field response
of the cloud predicted by the Lorentz-Lorenz formula
deviates from the data as the number of atoms increases,
featuring in particular a double structure for the largest
atom numbers [34], as well as a large asymmetry (also
observed in the spectrum of transmitted light of an atomic
slab described by the Lorentz-Lorenz formula [7]).

We finally calculate the coherent response of the cloud
using a microscopic model where the atoms are considered
as pointlike dipoles d; randomly positioned according to
the Gaussian spatial distribution, each being driven by the
laser field and the fields scattered by all the other ones
[11,35]. This approach leads to a set of coupled dipole
equations. As in Ref. [20], we include the internal structure
of the atoms by randomly assigning them a given Zeeman
state m; of the (55, 5 F=2) manifold, and we write

d; = DY.,8,Ch)Pj, (o = 1, 0 defines the polarization).
The amplitude of the atomic dipole j associated to the
optical transition |g, m;) — |e,m; + &) is proportional to
the reduced dipole matrix element D, the atomic coherence
P, and the corresponding Clebsch-Gordan coefficient

CE,Z) We solve the steady state set of coupled equations for

the coherences

(A+iT/2)Py = Qi+ .Y CHI TV )Py,
I#j B
where Vi/i = —Vaalpas(ikr — 1) + q5(kr)*]e™™  with
Vaa = 3T /4(kr)? is the dipole-dipole interaction, ps
and g,; are angular functions [20], and Qj, the Rabi
frequency. We calculate the field scattered by the cloud
[yielding the radiation pattern shown in Fig. 1(a)]. We then
compute the interference of this field with the laser field, at
the position of the lens L1, and the transfer function for this
particular configuration of the atomic ensemble and aver-
age over many spatial configurations.

The results of the microscopic model are plotted in
Fig. 2(b) for various detunings and atom numbers, together
with the prediction of the Lorentz local field model. We
observe that both models are in agreement for low values of
N, and predict approximately Lorentzian line shapes. For
large atom numbers, however, they differ quantitatively,
pointing towards the role of recurrent scattering, included
in the microscopic model, to all orders, but not in the
Lorentz model [9-11,36,37]. To the lowest order in density,
for a cloud (density n) of identical atoms with polarizability
a, the contribution of recurrent scattering to the suscep-
tibility is proportional to the number of atom pairs (na)?
inside the scattering volume a. It becomes important when
na ~ 1. The onset of light-induced correlations and the

effect of recurrent scattering as a function of the detuning
and atom density was analyzed in more detail in
[7,10,11,38,39]. In the presence of recurrent scattering
and when n/k3 < 1, the susceptibility takes the form

_ na(w)
1 = na(o)[z + p(o))

x(@) ; (2)

where f(w) is the contribution from recurrent scattering.
Using formula (22) of [10], we get f(w) «x Ba(w)k?, with
B a volume integral challenging to calculate for our
geometry. The lowest order contribution to /3 is independent
of the density. If B ~ 1, the local field correction na/3 is
thus on the same order as the recurrent scattering con-
tribution close to resonance (@ = 6xi/k*), while away from
resonance (ak® < 1), the influence of recurrent scattering
is negligible. Remarkably, when inhomogeneous broad-
ening is introduced (such as the Doppler effect in hot vapor
cells [5]), the resonant frequencies of the dipoles j are
spread over Awp, and S is replaced by the average over j,
(a);k*, and is therefore reduced by a factor I'/ Awrp, [9].
This explains why for any medium where inhomogeneous
broadening is dominant the Lorentz-Lorenz model is
successful, as T'/Awp <1 and thus, f < 1. On the
contrary, in the absence of inhomogeneous broadening,
the Lorentz-Lorenz formula is usually not valid at reso-
nance. In [40], we use the microscopic approach to
calculate the effective dielectric constant of our cloud,
but in the regime n/k* > 1, and found that it does not
follow the Lorentz-Lorenz formula, as expected.

Finally, we compare our measurements to the micro-
scopic model [see Fig. 2(a)]. We observe that the data are
closer to this model than to the Lorentz model, as they do
not show the double structure predicted by the Lorentz
model for the largest atom numbers. This indicates that the
Lorentz model is not valid in our configuration. However,
the measurements exhibit systematically less pronounced
features for the shift, width, and amplitude than predicted
by the microscopic model. On the experimental side, we
have ruled out possible biases, such as the probe beam
alignment [27] and the possible cumulative heating of the
cloud due to the pulsed illumination that could result in a
modification of the cloud volume. On the theoretical side,
the models ignore quantum fluctuations between hypertine
ground states and assume the low light intensity limit,
which may in practice be difficult to fully realize in the
experiments due to secondary radiation by closely spaced
atoms.

As a conclusion, we have measured the coherent
scattering by a dense, cold atomic cloud. We have observed
a failure of standard models, such as the FHM model or the
mean-field Lorentz model. The remaining difference with
the microscopic model shows that a quantitative under-
standing of the light-induced interactions even in a rela-
tively simple situation is still a challenge.
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