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Abstract—In this paper, we analyze the performance of su-
perposition coding for Gaussian broadcast channels with finite
blocklength. To this end, we adapt two different achievability
bounds, the dependence testing and the κβ bounds introduced by
Polyanskiy et al. in 2010 to the broadcast setting. The distinction
between these bounds lies in fixing either the input or the output
distributions of the channel. For the first case of the dependence
testing bound, an upper bound on the average error probability
of the system is derived whereas for the latter, lower bounds on
the maximal code sizes of each user are presented.1

I. INTRODUCTION

It is well known that, superposition coding is optimum for
degraded Gaussian broadcast channels (BC) in the asymptotic
regime which is guaranteed by the vanishing error probability
as the blocklength is allowed to grow boundlessly [1], [2].
In general, classical information theory studies and analyzes
fundamental limits of communication systems subject to inter-
ference and channel noise using coding schemes that require
asymptotically large blocklengths. In this case, the channel
coding rate is obtained through the expectation of the mutual
information random variable or the information density (to be
defined later) based on the input distribution. The information
density is a theoretic notion, some measure, of the channel
depending on the input signal and the channel noise.

There is a practical requirement for coding with finite
blocklength to which the classical information theory results
are no longer applicable. The loss in the channel capacity due
to coding with finite blocklength is explained with a second
order statistic of the information density, namely the channel
dispersion term denoted V for a single user channel. In [3],
the author has shown that, the following equality holds for the
single-user discrete-memoryless channels

logM∗(n, ε) = nC −Q−1(ε)
√
nV +O(log n) (1)

where n, ε, M and C denote the blocklength, the error
probability, the maximum code size and the channel capacity,
respectively. In [4], the above result is generalized to various
point-to-point channel models including the AWGN channel
where the channel dispersion term is defined as a function of
the signal-to-noise ratio.

In [5], the authors extended the use of the channel dispersion
term to multi-user channels and studied three network infor-
mation problems as the Slepian–Wolf problem, the multiple-
access (MAC) and asymmetric broadcast (ABC) for discrete
channels only. In the multiuser settings of [5] the scalar dis-
persion term V , is shown to be a positive semi-definite matrix
and inner bounds for the (n, ε)-capacity regions of the discrete
memoryless MAC and ABC are presented. In [6], maximum
achievable rate regions are presented for the Gaussian MAC.
The result of [6] depends only on the first and second order
statistic of the relevant mutual information random variables

1This work was supported by Orange Labs under Grant no:F05151 and by
the French National Research Agency project ARBURST.

represented by a scalar distribution where the authors firstly
present the multi-access adaptation of the dependence testing
bound by Polyanskiy et al. which constitutes the inspiration
of the results presented in the first part of this paper.

In this paper, we consider a two–receiver degraded Gaussian
broadcast channel (BC) in the setting of superposition coding
with finite blocklength and we adapt the so-called dependence
testing (DT) bound to the broadcast setting through random
coding and threshold decoding to provide an upper bound on
the average error probability of the system. To this end, we
derive the channel dispersion terms for each error event that is
defined through the information density functions based on
the asymptotic capacity region. The overall bound consists
of three different error events as the mis-detection, confusion
and the input signals being confined to a pre-defined set. We
derive the probability distributions of the channel dispersion
terms for the mis-detection and confusion errors along with
the corresponding parameters in order to derive the error
probabilities. In addition, κβ achievability bounds based on a
binary hypothesis test to choose between two possible output
distributions are derived on the maximal code sizes of both
users. Section II describes the channel model for the addressed
problem that is followed by the broadcast adaptation of the
DT bound in section III. Lastly, in Section IV we give a short
reminder of the original κβ bound in an AWGN P2P channel
which is followed by its generalization to a degraded Gaussian
BC in the setting of superposition coding.

II. SYSTEM MODEL

We consider the following real-valued channel model

Yj,i = Xi + Zj,i, (2)

for j = 1, 2 and i = 1, · · · , n where Xi corresponds to the
encoded messages that are m1 ∈ [1, 2, · · · ,M1] and m2 ∈
[1, 2, · · · ,M2], respectively subject to the channel noise terms
Z1,i ∼ N (0, N1) and Z2,i ∼ N (0, N2) and the following
channel transition probability density

PY nj |Xn(ynj |xn) = (2πNj)
−n/2e

−
‖ynj −x

n‖2

2Nj . (3)

User j decodes message mj using the observation Y nj . We
assume that the channel of user 2, the weaker user, has the
larger of the two noise variances, i.e. N2 > N1. For the
achievable schemes considered here, the stronger user decodes
the message m2 prior to decoding its own message. We define
the average error probability based on either user to be in error

ε = Pr [m̂1 6= m1 ∪ m̂2 6= m2] (4)

which is further bounded by the union bound as follows

ε ≤ ε1 + ε2 (5)



where εj = Pr [m̂j 6= mj ] with m̂j being the estimated mj

on the corresponding user. The error probability in decoding
message 1 is expanded as

ε1 = Pr
[
{ ˆ̂m2 6= m2}

]
Pr
[
{m̂1 6= m1}|{ ˆ̂m2 6= m2}

]
+ Pr

[
{ ˆ̂m2 = m2}

]
Pr
[
{m̂1 6= m1}|{ ˆ̂m2 = m2}

]
(a)

≤ ε11 + ε21 (6)

where ˆ̂m2 denotes the estimate of message 2 on user 1. In
step (a),we denote ε11 = Pr

[
{m̂1 6= m1}|{ ˆ̂m2 = m2}

]
and

ε21 = Pr
[
{ ˆ̂m2 6= m2}

]
. This expansion is based on succes-

sive decoding.
We consider two different cases for this channel model

depending on the bounding technique either fixing the input
distribution as in the case of DT bound or with fixed output
distribution as the κβ bound. These two cases are studied in
the following subsections starting with the DT bound.

A. Random codebooks

This subsection presents the detailed model considered
for the broadcast adaptation of the DT bound on the error
probability. Here we have an input and two outputs with the
n-letter channel model given as in (2) where

Xn = Xn
1 +Xn

2 (7)

with Xn
j ∼ N (0, PjIn) for P1 = αP and P2 = ᾱP for

α ∈ (0, 1) and ᾱ = 1− α.
The decoding rule is set for the threshold decoding as

i(xn; yn) > γ (8)

where γ is some threshold and the information density or the
mutual information random variable denoted i(.; .) is defined
as

i(xn; yn) = log
dPY n|Xn(yn|xn)

dPY n(yn)
(9)

Here P (.|.) and P (.) respectively denote conditional and
marginal distributions.

Definition II.1. An (n,M1,M2, ε, P ) code is composed of
the messages m1 ∈ [1, 2, · · · ,M1] and m2 ∈ [1, 2, · · · ,M2]
encoded into n i.i.d. sequences X1 and X2 that are chosen
randomly according to N(0, αP ) and N(0, ᾱP ), respectively
with the following average power constraints

1

M1

M1∑
i=1

E‖x1,i‖2 ≤ nαP,
1

M2

M1∑
i=1

E‖x2,i‖2 ≤ nᾱP (10)

and the average probability of error defined by (4).

B. Peak power

For the broadcast adaptation of the κβ bound [4], we assume
codebooks constructed as in (7) subject to the power constraint
defined as

‖xn(m1,m2)‖2 =

n∑
i=1

|x1,i(m1,m2) + x2,i(m2)|2 ≤ nP,

(11)
∀m1,m2 where we assume equal power per codeword for the
cloud center X2,i(m2) for i = 1, · · · , n, m2 = 1, · · · ,M2

and m1 = 1, · · · ,M1 s.t.
n∑
i=1

|x2,i(m2)|2 = nP2, ∀m2. (12)

For X1,i(m1,m2), we have

‖xn(m1,m2)‖2 = ‖x1(m1,m2)‖2 + ‖x2(m2)‖2

+ 2〈x1(m1,m2), x2(m2)〉
(a)
= nP1(m1,m2) + nP2 + 2nρ(m1,m2)

√
P1(m1,m2)P2

≤ nP (13)

with ρ(m1,m2) ∈ [−1, 1] through the following definition
n∑
i=1

x2
1,i(m1,m2) = nP1(m1,m2), ∀m1,m2. (14)

If we choose Xn
1 (m1,m2) in the null space of Xn

2 (m2) for
each m2 then we can assign a constant power P1(m1,m2) =
P − P2. Note that this is not orthogonal multiplexing but the
effective dimensionality of the codebook Xn

1 (m1,m2) is n−
1 for each m2. This model is considered for the κβ bound
covered in Section IV. The feasible set of permissible inputs
Fn is defined as

Fn := {xn : ‖xn‖2 ≤ nP} ⊂ Rn (15)

III. DEPENDENCE TESTING BOUND –SUPERPOSITION
CODING AND THRESHOLD DECODING

The dependence testing bound on the error probability of a
P2P channel presented in [4, Theorem 20] is adapted to the
model defined in Section II-A for a two–receiver Gaussian BC.
The next theorem reminds the reader of the classical result by
[1], [2], [7] for this channel in the asymptotic regime.

Theorem III.1. The capacity region of the Gaussian BC is
given as

R1 ≤ C
(
αP

N1

)
, R2 ≤ C

(
ᾱP

αP +N2

)
(16)

where α is a constant confined in [0, 1] and ᾱ = 1 − α. The
Shannon capacity C(.) is defined for a signal-to-noise ratio of
P as C(P ) = 1

2 log(1 + P ).

The aim of this part is to provide a finite blocklength
adaptation of this result and to introduce an achievability bound
on the system error probability. We state our first result with the
following theorem which provides the broadcast adaptation of
[4, Theorem 20] using the mutual information functions in (16)
achieving the capacity region of Theorem III.1. The average
error probability defined in (4) with (6) is upper bounded based
on the decoding rule (8).

Theorem III.2. An (n,M1,M2, ε, P ) code exists for the
channel as described in Definition II.1 with the average error
probability satisfying

ε ≤ Pr [i(Xn
2 ;Y n2 ) < γ2] + η2 Pr

[
i(Xn

2 ; Ȳ n2 ) > γ2

]
(17)

+ Pr [i(Xn;Y n1 |Xn
2 ) < γ1] + η1 Pr

[
i(Xn; Ȳ n1 |Xn

2 ) > γ1

]
(18)

+ Pr [i(Xn
2 ;Y n1 ) < γ2] + η2 Pr

[
i(Xn

2 ; Ȳ n1 ) > γ2

]
(19)

+ Pr[Xn /∈ F ] (20)

where Ȳ nj follows the same distribution as the output signal
Y nj but is independent of the input Xn, the thresholds are set
as γj = log ηj and ηj = (Mj − 1)/2 for j = 1, 2 and F
denotes the set of permissible inputs.

Proof. The capacity region of the two-receiver Gaussian BC
given by Theorem III.1 is achieved through the information
densities i(Xn;Y n1 |Xn

2 ) and i(Xn
2 ;Y n2 ) for user 1 and 2,

respectively. i(Xn;Y n1 |Xn
2 ) and i(Xn

2 ;Y n2 ) are defined using



(9). Expectation of these information densities bring out the
mutual information functions that compose the asymptotic
capacity region in Theorem III.1. Unlike the asymptotic case,
the error event for decoding message 2 using the observation of
the strong user Y n1 cannot be ignored with the corresponding
error probability ε21 as shown by (6). Applying the threshold
decoding rule defined by (8) to these three functions, we obtain

i(Xn
2 ;Y n2 ) > γ2, (21)

i(Xn;Y n1 |Xn
2 ) > γ1, (22)

i(Xn
2 ;Y n1 ) > γ2. (23)

Combining the dependence testing bound proposed in [4,
Theorem 20] with (21), (22) and (23) yields (17), (18) and
(19), respectively. The proposed bound consists of three types
of errors. The first case of mis-detection, which is shown by
the first terms in (17)-(19), corresponds to the information
density of a correct pair of input-output to remain below the
threshold. In the second case, the confusion error, shown by
the second terms in (17)-(19), occurs when a pair exceeds the
threshold where the output does not depend on the input signal
that was transmitted. The probabilities (17), (18) and (19) are
ε2 = Pr [m̂j 6= mj ], ε11 = Pr

[
{m̂1 6= m1}|{ ˆ̂m2 = m2}

]
and

ε21 = Pr
[
{ ˆ̂m2 6= m2}

]
, respectively. Lastly, due to the input

signal defined by (7), we have Pr[Xn /∈ F ] given by (20) as
the last error event of the proposed bound that represents the
probability of the channel input Xn not being chosen from the
feasible set denoted F .

Hereafter, starting with decoding message 2 on the weaker
user, we evaluate the probabilities of each error event consid-
ered in the proposed bound in detail.

1) Decoding m2 : This scheme uses successive decoding
where initially message 2 is decoded using the observation
of Y n2 . This event is represented by the information density
i(Xn

2 ;Y n2 ). The terms in the first line of Theorem III.2 are
evaluated in the following starting with the mis-detection error
event i(Xn

2 ;Y n2 ) < γ2. We derive i(Xn
2 ;Y n2 ) as

1

n
i(Xn

2 ;Y n2 ) =
1

n
log

PY n2 |Xn2 (Y n2 |Xn
2 )

PY n2 (Y n2 )

=
1

n
log

(2π)−n/2(αP +N2)−n/2e
− ‖Y

n
2 −X

n
2 ‖

2

2(αP+N2)

(2π)−n/2(P +N2)−n/2e
− ‖Y n2 ‖

2

2(P+N2)

=
1

n
log

[(
P +N2

αP +N2

)n/2
e
‖Y n2 ‖

2

2(P+N2)
− ‖Y

n
2 −X

n
2 ‖

2

2(αP+N2)

]

= C

(
ᾱP

αP +N2

)
+

1

n
log e

(
‖Y n2 ‖2

2(P +N2)
− ‖Y

n
2 −Xn

2 ‖2

2(αP +N2)

)
(24)

Let us denote the additional term to the Shannon capacity
C
(

ᾱP
αP+N2

)
by v22. (24) is rewritten as

1

n
i(Xn

2 ;Y n2 ) = C (ᾱP/(αP +N2)) + v22 (25)

As for v22, we get

v22
(a)
=

1

n
log e

[
f1‖Xn

1 +Xn
2 + Zn2 ‖2 + f2‖Xn

1 + Zn2 ‖2
]

(b)
=

1

n
log e

[
f1‖Xn

2 + Z̃n2 ‖2 + f2‖Z̃n2 ‖2
]

=
1

n
log e

[
f1‖Xn

2 ‖2 + (f1 + f2)‖Z̃n2 ‖2 + 2f1〈Xn
2 , Z̃

n
2 〉
]

=
1

n
log e

n∑
i=1

[
X2,i Z̃2,i

]
A
[
X2,i Z̃2,i

]T
(c)
=

1

n
log e

n∑
i=1

[µ1,i µ2,i ] P2AP2[µ1,i µ2,i ]T (26)

In step (a) we substituted f1 = [2(P + N2)]−1, f2 =
−[2(αP +N2)]−1, in step (b) we defined Z̃n2 = Xn

1 +Zn2 and
in step (c), the standard Gaussian random variables µ1,i, µ2,i

are introduced where A and P2 are 2× 2 matrices given by

A =

[
f1 f1

f1 f1 + f2

]
, (27)

and P2 = diag
(√

ᾱP ,
√
αP +

√
N2

)
. The eigenvalues of

the matrix product A′ = P2AP2 yield λ1 =
√
ᾱP

2
√

(P+N2)
,

λ2 = −λ1. Rewriting A′ through its eigen decomposition
UΛUT where Λ is a diagonal matrix with the eigenvalues on
the diagonal elements and U is the corresponding eigenvector,
we define [µ̃2

1,i, µ̃
2
2,i]

T which is the product UT [µ1,i, µ2,i]
T .

Using λ1 and λ2, the dispersion term v22 yields

v22 =
1

n
log e× λ1

n∑
i=1

(µ̃2
1,i − µ̃2

2,i). (28)

The weighted difference of chi-squares with n degrees of
freedom follows the variance-gamma distribution2 with the
location parameter m and asymmetry parameter denoted by b
are both 0 and δ = θ =

√
P+N2

ᾱP . Substituting v22 into (25),
the probability of mis-detection error in decoding m2 on user
2 yields

Pr [i(Xn
2 ;Y n2 ) < γ2] = Pr

v22 <
γ2 − nC

(
ᾱP

αP+N2

)
log e


(29)

The confusion error event represents the case where the
information density exceeds the threshold according to the
decoding rule (8) where the channel output does not depend
on the input signal that is transmitted over the channel.
More precisely, for a codeword Cnk from a given codebook
(Cn0 , C

n
1 , · · · , CnMj−1) for user j, the confusion error event

represents the information density of interest to exceed the
threshold with Cnl given that the input is Cnk for all l < k. In
decoding m2, we have for the confusion error event

1

n
i(Xn

2 ; Ȳ n2 ) =
1

n
log

PY n2 |Xn2 =Cnk
(Y n2 |Xn

2 = Cnk )

PY n2 (Y n2 )

=
1

n
log

(2π)−n/2(2(αP +N2))−n/2e
− ‖Y

n
2 −C

n
l ‖

2

2(αP+N2)

(2π)−n/2(2(P +N2))−n/2e
− ‖Y n2 ‖

2

2(P+N2)

= C

(
ᾱP

(αP +N2)

)
+ vc,2. (30)

2The variance-gamma distribution with λ > 0 degrees of freedom, the
real-valued location parameter m and the asymmetry parameter b, is defined
as

f(t) =
θ2λ|t−m|λ−1/2Kλ−1/2(δ|t−m|)

√
πΓ(λ)(2δ)λ−1/2

eb(t−m), −∞ < t <∞

where Kλ and Γ denote the modified Bessel function of the second kind and
the gamma function, respectively for real δ, θ =

√
δ2 − b2 > 0.



The additional term vc,2 is further derived as

vc,2 =
1

n
log e

(
g1‖Cnk + Z̃n2 ‖2 + g2‖Cnk − Cnl + Z̃n2 ‖2

)
=

1

n
log e

n∑
i=1

[Ck,iCl,iZ̃2,i]Ac[Ck,iCl,iZ̃2,i]
T

=
1

n
log e

n∑
i=1

[µ1,iµ2,iµ3,i]Pc2AcPc2[µ1,iµ2,iµ3,i]
T

where g1 = [2(P +N2)]−1 and g2 = −[2(αP +N2)]−1 with
Pc2 = diag(

√
ᾱP ,
√
ᾱP ,
√
αP +

√
N2)

Ac =

(g1 + g2) −g2 (g1 + g2)
−g2 g2 −g2

(g1 + g2) −g2 (g1 + g2)

 (31)

and µj,i ∼ N(0, 1) for j = 1, · · · , 4. We remind the reader
that Z̃n2 = Xn

1 + Zn2 . The non-zero eigenvalues of the

matrix product Pc2AcPc2 are λc1 =
−
(
ᾱP+
√
ᾱP (P+N2)

)
2(αP+N2) and

λc2 =
−ᾱP+

√
ᾱP (P+N2)

2(αP+N2) . The dispersion term vc,2 is obtained
in the following form which constitutes a weighted sum of chi-
squared variables with n degrees of freedom, a special case of
the gamma distribution.

vc,2 =
1

n
log e

n∑
i=1

[λc1µ
2
1,i + λc2µ

2
2,i] (32)

The confusion error probability for decoding m2 on user 2 is

Pr
[
i(Xn

2 ; Ȳ n2 ) > γ2

]
= Pr

vc,2 > γ2 − nC
(

ᾱP
αP+N2

)
log e


(33)

Let us denote the threshold functions in the right hand sides
(r.h.s.) of (29) and (33) by ζ2. Combining (29) and (33), we
obtain the total error probability in decoding message 2 given
by (17), which in fact is ε2 = Pr [m̂2 6= m2].

ε2 = Pr [v22 < ζ2] + η2 Pr [vc,2 > ζ2] (34)

2) Decoding m1 : In order to reconstruct m1, in the setting
of superposition coding, the strong user that is subject to
a channel with a smaller noise variance, firstly decodes m2

with i(Xn
2 ;Y n1 ). Note that in the asymptotic case, the error

probability for this event is insignificant. In a similar fashion
to i(Xn

2 ;Y n2 ), we have for i(Xn
2 ;Y n1 )

1

n
i(Xn

2 ;Y n1 ) = C

(
ᾱP

αP +N1

)
+ v21 (35)

where v21 follows a variance-gamma distribution with n

degrees of freedom, m = b = 0 and δ = θ =
√

P+N1

αP .
Substituting v21 into (35), the probability of mis-detection
error in decoding m2 on user 1 yields

Pr [i(Xn
2 ;Y n1 ) < γ2] = Pr [v21 < ζ21] (36)

with ζ21 =
γ2−nC

(
ᾱP

αP+N1

)
log e . As for the confusion error

probability of decoding message 2 on the stronger user, we
have

Pr
[
i(Xn

2 ; Ȳ n1 ) > γ2

]
= Pr [vc,21 > ζ21] (37)

where vc,21 = 1
n log e

∑n
i=1[λc5µ

2
1,i + λc6µ

2
2,i] for µ2

1,i and
µ2

2,i being chi-squared variables with n degrees of freedom,

λc5 =
−
(
ᾱP+
√
ᾱP (P+N1)

)
2(αP+N1) and λc6 =

−ᾱP+
√
ᾱP (P+N1)

2(αP+N1) . The

total error probability in decoding m2 on the first user given
by (19) becomes

ε21 = Pr [v21 < ζ21] + η2 Pr [vc,21 > ζ21] (38)

which is equivalent to ε21 = Pr
[

ˆ̂m2 6= m2

]
. The derivation

follows the same way as in (30). Therefore it is omitted due
to space limitations.

For the stronger user to decode its intended message m1

using the observation of Y n1 given the information of Xn
2 ,

we derive the relevant information density to evaluate the
probability of mis-detecting m1 as

1

n
i(Xn;Y n1 |Xn

2 ) =
1

n
log

PY n1 |Xn1 ,Xn2 (Y n1 |Xn
1 , X

n
2 )

PY n1 |Xn2 (Y n1 |Xn
2 )

= C (αP/N1) + v11 (39)

The additional term v11 yields

v11 =
1

n
log e

[
f3‖Xn

1 + Zn1 ‖2 + f4‖Zn1 ‖2
]

=
1

n
log e

n∑
i=1

[X1,i Z1,i] B [X1,i Z1,i]
T

(d)
=

1

n
log e

n∑
i=1

[µ1,i µ4,i] P1BP1[µ1,i µ4,i]
T (40)

for f3 = 1
2(αP+N1) and f4 = − 1

2N1
and in step (d) we define

the standard Gaussian random variables µ1,i, µ4,i with 2 × 2
matrices B and P1 given by

B =

[
f3 f3

f3 f3 + f4

]
, (41)

and P1 = diag
(√

αP ,
√
N1

)
. The eigenvalues of B′ =

P1BP1 are λ4 = 1
2

√
αP

αP+N1
and λ5 = − 1

2

√
αP

αP+N1
. Finally

we obtain the channel dispersion term v11 in the following
form

v11 =
1

n
log e× λ4

n∑
i=1

(µ̃2
1,i − µ̃2

4,i) (42)

since λ4 = −λ5 and µ̃l,i’s for l = 1, 4 are obtained through
substitution of the eigen decomposition of B′. v11 follows the
variance gamma distribution with n degrees of freedom, m =

b = 0 and δ = θ =
√

αP+N1

αP .
In the evaluation of the achievability bound proposed in

Theorem III.2 in order to derive the confusion error probability
in detecting m1, we have

1

n
i(Xn; Ȳ n1 |Xn

2 ) = C (αP/N1) + vc,1 (43)

The dispersion term vc,1 is obtained in the
form of 1

n log e
∑n
i=1[λc3µ̃

2
1,i + λc4µ̃

2
2,i] with

λc3 = −αP+
√
αP (αP+N1)

2N1
and λc4 =

−αP+
√
αP (αP+N1)

2N1
.

Finally, summing up the probabilities of mis-detection and
confusion for user 1 to detect its intended message m1, we
obtain

ε11 = Pr [v11 < ζ11] + η1 Pr [vc,1 > ζ11] . (44)

for ζ11 =
γ1−nC

(
αP
N1

)
log e .

Given the power constraint (10), the probability of the input
being confined to the set Fn yields Pr{Xn /∈ Fn} = 0. In
summary, combining ε2, ε21 and ε11 respectively given by
(34), (38) and (44), the derivation of the achievability bound
of Theorem III.2 is complete.



IV. κβ BOUND–ACHIEVABILITY

The idea behind the κβ bound is the optimality of the binary
hypothesis testing problem and the Neyman-Pearson lemma. In
this part, we adapt the κβ bound proposed in [4, Theorem 41]
to the Gaussian BC. The degraded channel can be considered
as two AWGN P2P channels since the channel between the
transmitter and the weak receiver is the cascade of the channel
from the transmitter to the strong receiver and the one from
the strong receiver to the weak receiver. The input distribution
is no longer limited to the Gaussian distribution. To apply
superposition coding and obtain the two-user equivalent of the
κβ bound, we consider the mutual information functions from
Section III.

Let PY nj denote N (0, σ2
Yj

In) with σ2
Yj

= P + Nj for j =
1, 2. Using the definition of (9), i(Xn

2 ;Y n2 ) under PY n2 is given
as

Gn2 =
n

2
log σ2

Y2
− nP2

P1 +N2

log e

2

+
1

2
log e

n∑
i=1

[
(1− σ2

Y2
)S2
i + 2

√
P2/(P1 +N2)σY2

Si

]
(45)

where Si ∼ N (0, 1) for i = 1, · · · , n. Under the conditional
distribution PY n2 |Xn2 the same function yields

Hn2
=
n

2
log(σ2

Y2
) +

nP2

P1 +N2

log e

2σ2
Y2

+
log e

2σ2
Y2

n∑
i=1

[(
1− σ2

Y2

)
S2
i + 2

√
P2/(P1 +N2)Si

]
(46)

In a similar manner, the mutual information random variable
i(Xn;Y n1 |Xn

2 ) under PY ′n1
becomes

Gn1 =
n

2
log σ2

Y ′1
− nP1

N1

log e

2

+
1

2
log e

n∑
i=1

[
(1− σ2

Y ′1
)S2
i + 2

√
P1/N1σY ′1Si

]
(47)

where we define Y ′n1 = Y n1 −Xn
2 with σ2

Y ′1
= P1 +N1 since

P2 is subtracted off the sum power P . Under the conditional
distribution PY ′n1 |Xn1 we obtain the information density as

Hn1
=
n

2
log(σ2

Y ′1
) +

P1

N1

log e

2σ2
Y ′1

+
log e

2σ2
Y ′1

n∑
i=1

[(
1− σ2

Y ′1

)
S2
i + 2

√
P1/N1Si

]
(48)

Lastly, i(Xn
2 ;Y n1 ) is respectively denoted by Gn3

and Hn3
un-

der PY n1 and PY n1 |Xn2 , which will not be given here explicitly.
Using Theorem 40 of [4] for the degraded Gaussian BC, we

define β functions as follows

βa,k = Pr[Gnk ≥ γk] (49)

where Pr[Hnk ≥ γk] = ak for ak = 1 − εk as defined by
(4) and with any positive γk and k = 1, 2, 3. The resulting
achievability bound for the Gaussian BC is stated in the next
theorem.

Theorem IV.1. For any εk, n ≥ 1, τk ∈ [0, 1], k = 1, 2, 3,
and the chosen PYj for j = 1, 2 with Fn as defined by (15),
the maximal code sizes denoted M∗j of the jth user in a two

receiver Gaussian degraded BC are bounded by

M∗1 ≥
κτ1,1(Fn, PY n1 )

β1−ε1+τ1,1(x, PY n1 )
(50)

M∗2 ≥ max

{
κτ2,2(Fn, PY n2 )

β1−ε2+τ2,2(x, PY n2 )
,

κτ3,3(Fn, PY n2 )

β1−ε3+τ3,3(x, PY n2 )

}
(51)

where
κτk,k(Fn, PY nj ) = P0,k

[
p1,k(r)

p0,k(r)
≥ ψk

]
(52)

with ψk satisfying P1,k

[
p1,k(r)
p0,k(r) ≥ ψk

]
= τk.

The probability distributions p0,k(r) and p1,k(r)
are defined as p0,k(r) = 1

Γ(n/2)ω
n/2
k

rn/2−1er/ωk

and p1,k(r) = 1
2e(r+υk)/2( r

υk
)n/4−1/2In/2−1(

√
υkr)

with the modified Bessel function of the first kind
Ib(y) = (y/2)b

∑∞
j=0

(y2/4)l

l!Γ(b+l+1) and the following parameters
for k = 1, ω1 = 2(N1 + P1) and υ1 = nP1

N1
, for k = 2,

ω2 = 2(N2 + P ) and υ2 = nP2

P1+N2
whereas for k = 3,

ω3 = 2(N1 + P ) with υ3 = nP2

P1+N1
.

Proof. Detailed proofs of the general case for a P2P-AWGN
channel can be found in the original paper [4, Theorems 25,
40 and 42]. β1−εk+τk,k(x, PY nj ) for a = 1− εk + τk given by
(49) is derived using the functions (45)-(48). As for evaluating
κτk,k’s the following definitions on the distribution of the
output signals P0,k and the distribution of the output given
the input P1,k are set using superposition coding as follows

P0,1 ∼
n∑
i=1

(P1 +N1)S2
i , P1,1 ∼

n∑
i=1

(√
P1 +

√
N1Si

)2

P0,2 ∼
n∑
i=1

(P +N2)S2
i , P1,2 ∼

n∑
i=1

(√
P2 +

√
(P1 +N2)Si

)2

P0,3 ∼
n∑
i=1

(P +N1)S2
i , P1,3 ∼

n∑
i=1

(√
P2 +

√
(P1 +N1)Si

)2

V. DISCUSSION

We introduced the dependence testing and the κ−β bounds
for the two-receiver Gaussian BC. Both types of bounds can
be easily extended to scenarios with k-users for k ≥ 2. It is
clear that unlike the well-known optimality of superposition
coding for Gaussian BC, k user adaptation of the proposed
bounds in Theorems III.2 and IV.1 would perform poorly due
to the additional error event using the successive cancellation.
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