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Résumé – Dans cet article, nous étudions les performances atteignables d’une transmission par superposition de codes dans un canal Gaussien
à diffusion avec deux récepteurs et en régime à longueur de codes finie. Dans ce but, nous adaptons la borne atteignable introduite par Polyanskiy
et al. en 2010 pour un canal point à point au canal à diffusion. De plus, une nouvelle borne supérieure (converse) est proposée et caractérise les
débits conjoints non atteignables en fonction de la longueur des codes et pour une probabilité d’erreur donnée.

Abstract – We analyze the achievable performance of superposition coding in a two–receiver Gaussian broadcast channel (BC) with finite
blocklength. To this end, we adapt the achievability bound on maximal code size of a point-to-point (P2P) channel introduced by Polyanskiy
et al. in 2010 to the broadcast setting. Additionally, a new converse bound on maximal code sizes of each user in a two-user Gaussian BC is
introduced for a given probability of error.

1 Introduction
The strongest results from classical information theory hold
for vanishing error probability and asymptotically large block-
lengths or equivalently signal dimensionality in analyzing the
performance limits of communication systems. In the finite-
dimensional case imposed by small payload transmission, many
of the classical error-probability bounds stemming from infor-
mation theoretic results are no longer applicable, especially for
multiuser channels due to delay and complexity limitations. In
the asymptotic regime, the channel coding rate approaches the
mutual information which is the expectation of the information
density or the mutual information random variable based on the
joint probability density function of the input and output. The
mutual information random variable is a theoretic notion, some
measure, of the channel depending on the input signal and the
channel noise to be defined later. It is shown by Strassen in
1962 that the variance of the mutual information random vari-
able, namely the channel dispersion term denoted V , plays a
crucial role for a discrete memoryless channel (DMC) in the fi-
nite blocklength regime and that the logarithm of the maximal
code size M∗(n, ε) is given as a function of the error probabil-
ity ε and the blocklength n as follows

logM∗(n, ε) = nC −Q−1(ε)
√
nV +O(log n) (1)

where C denotes the channel capacity. In [1], Polyanskiy et al.
analyzed the performance of coding with finite blocklength for
various types of point-to-point (P2P) channels.

In [2], the results of [1] is adapted to the Slepian-Wolf prob-
lem, multiple-access channel (MAC) and asymmetric broad-
cast channel (ABC). In [3], maximum achievable rate regions
are presented for the DM–MAC and the Gaussian MAC.

In this paper, we consider a two–receiver degraded Gaussian
broadcast channel (BC) using superposition coding with finite

blocklength and adapt the so-called κβ bound to the two-user
broadcast setting. κβ achievability bounds, which are based on
a binary hypothesis test to choose between two possible output
distributions, are derived on the maximal code sizes for each
user as functions of the error probability and the blocklength.
In addition, we adapt the converse bound on the maximal code
size of the P2P AWGN channel by Polyanskiy et al. to the
two–receiver Gaussian BC.

The next section describes the considered model for the ad-
dressed problem.Section 3 provides a short reminder of the
original κβ bound for the AWGN P2P channel which is fol-
lowed by its generalization to the degraded Gaussian BC in the
setting of superposition coding. New converse bounds on the
code sizes of each user and on their product are presented in
Section 4 in addition to the numerical comparison results of
the obtained bounds.

2 System Model
We consider the real-valued channel model

Yj,i = Xi + Zj,i, (2)

for j = 1, 2 and i = 1, · · · , n where Xi corresponds to the en-
coded messagesm1 ∈ [1, 2, · · · ,M1] andm2 ∈ [1, 2, · · · ,M2],
respectively with the channel noise termsZ1,i ∼ N (0, N1) and
Z2,i ∼ N (0, N2) for N2 > N1 and the following channel tran-
sition probability density

PY n
j |Xn(ynj |xn) = (2πNj)

−n/2e
−
‖yn

j −xn‖2

2Nj . (3)

User j decodes message m̂j from observation Y nj . We as-
sume that the channel of user 2, the weaker user, has the larger
of the two noise variances. For the achievable scheme consid-
ered here, the stronger user decodes the message ˆ̂m2 prior to



decoding its own message. We have the overall average error
probability defined as

ε = ε1 + ε2 (4)

where εj = Pr [m̂j 6= mj ]. For the achievability scheme based
on successive decoding using ˆ̂m2 we have for ε1

ε1 = Pr
[
{ ˆ̂m2 6= m2}

]
Pr
[
{m̂1 6= m1}|{ ˆ̂m2 6= m2}

]
+ Pr

[
{ ˆ̂m2 = m2}

]
Pr
[
{m̂1 6= m1}|{ ˆ̂m2 = m2}

]
≤ ε11 + ε21 (5)

where ε11 = Pr
[
{m̂1 6= m1}|{ ˆ̂m2 = m2}

]
and ε21 =

Pr
[
{ ˆ̂m2 6= m2}

]
. The decoding rule is set for the threshold

decoding as
i(xn; yn) > log η (6)

where η is some threshold and the information density or the
mutual information random variable denoted i(.; .) is defined
as

i(xn; yn) :== log
dPY n|Xn(yn|xn)

dPY n(yn)
(7)

Here P (., .), P (.|.) and P (.) respectively denote joint, condi-
tional and marginal distributions.

For the broadcast adaptation of the κβ bound [1], we also
assume codebooks constructed as Xn = Xn

1 + Xn
2 and we

define the power constraint on the channel input

‖xn(m1,m2)‖2 =

n∑
i=1

|x1,i(m1,m2) + x2,i(m2)|2 ≤ nP,

(8)
∀m1,m2 where we consider the equal power per codeword for
the cloud center X2,i(m2) for i = 1, · · · , n, m2 = 1, · · · ,M2

and m1 = 1, · · · ,M1 s.t.
n∑
i=1

|x2,i(m2)|2 = nP2, ∀m2. (9)

For X1,i(m1,m2) we have

‖xn(m1,m2)‖2 = ‖x1(m1,m2)‖2 + ‖x2(m2)‖2

+ 2〈x1(m1,m2), x2(m2)〉
(a)
= nP1(m1,m2) + nP2 + 2nρ(m1,m2)

√
P1(m1,m2)P2 ≤ nP

(10)

for ρ(m1,m2) confined in [−1, 1] through defining
n∑
i=1

x2
1,i(m1,m2) = nP1(m1,m2), ∀m1,m2. (11)

If we choose Xn
1 (m1,m2) in the null space of Xn

2 (m2) for
each m2 then we can assign a constant power P1(m1,m2) =
P − P2. Note that this is not orthogonal multiplexing but the
effective dimensionality of the codebook Xn

1 (m1,m2) is n−1
for each m2. This model is considered for the κβ bound given
in Section 3.The feasible set of permissible inputs Fn is defined
as

Fn := {xn : ‖xn‖2 ≤ nP} ⊂ Rn (12)

3 κβ bound–Achievability
The idea behind the κβ bound introduced in [1] both for dis-
crete and Gaussian channels is the optimality of the binary
hypothesis testing problem and the Neyman-Pearson lemma.
Imagine the binary hypothesis test between the two possible
distributions, for instance P and Q, a random variable W ∈
W can take on. A randomized test, denoted βa(P,Q) is set
through the transformation PZ|W : W→ {0, 1} where the test
chooses the distribution Q and P for 0 and 1, respectively. As
for the case of codewords with cost constraints where all of
the codewords belong to the feasible set F ⊂ A, A being the
input set, the corresponding measure of performance denoted
κτ (F,QY ) for the hypothesis test is to choose betweenQY and
{PY |X=x}x∈F for 0 < τ < ε. As stated in [1, Theorem 25],
for a discrete P2P channel, there exists an (M, ε) code with
codewords chosen from the feasible set F that satisfies for any
ε ∈ (0, 1)

M ≥ sup
0<τ<ε

sup
QY

κτ (F,QY )

supx∈F β1−ε+τ (x,QY )
(13)

This bound is particularized to the Gaussian channel yielding

M∗(n, ε, P ) ≥ κnτ /βn1−ε+τ (14)

where M∗ denotes the maximal code size and ∀x ∈ F,
βn1−ε+τ (x,QY ) = βn1−ε+τ .

3.1 Two –User Degraded Gaussian BC
In this part, we adapt the κβ bound given above by (14) to
a two receiver degraded Gaussian BC. The degraded channel
can be observed as two AWGN P2P channels since the channel
between the transmitter and the weak receiver is the cascade of
the channel from the transmitter to the strong receiver and the
one from the strong receiver to the weak receiver. Note that
this bounding technique does not constrain the distribution of
the channel input to any particular distribution.

The next theorem reminds the reader of the classical result
from [4, 5] for the capacity region of the two-user Gaussian BC
in the asymptotic regime.

Theorem 1 (Cover 1972, Bergmans 1974). The capacity re-
gion of the Gaussian BC is given as

R1 ≤ C
(
αP

N1

)
, R2 ≤ C

(
ᾱP

αP +N2

)
(15)

where α is a constant confined in [0, 1] and ᾱ = 1 − α. The
Shannon capacity C(.) is defined for SNR P as

C(P ) =
1

2
log(1 + P ) (16)

Using Theorem 1, we define the information densities of the
Gaussian BC i(Xn

2 ;Y n2 ) and i(Xn;Y n1 |Xn
2 ) using (7). Ex-

pectation of these information densities bring out the two mu-
tual information functions that compose the capacity region of
the Gaussian BC given in Theorem 1. Note that unlike the



asymptotic case, the error event that corresponds to decoding
the cloud center using the observation of the strong user can-
not be ignored as shown in (4)-(5) with the corresponding error
probability ε21. Therefore we also take i(Xn

2 ;Y n1 ) into account
in our derivation.

Let us set PY n
j

= N (0, σ2
Yj
In) with σ2

Yj
= P + Nj for

j = 1, 2. The mutual information random variable i(Xn
2 ;Y n2 )

under PY n
2

is given as

Gn2
=
n

2
log σ2

Y2
− nP2

P1 +N2

log e

2

+
1

2
log e

n∑
i=1

[
(1− σ2

Y2
)S2
i + 2

√
P2/(P1 +N2)σY2

Si

]
(17)

where Si ∼ N (0, 1) for i = 1, · · · , n. Under the conditional
distribution PY n

2 |Xn
2

the same function yields

Hn2
=
n

2
log(σ2

Y2
) +

nP2

P1 +N2

log e

2σ2
Y2

+
log e

2σ2
Y2

n∑
i=1

[(
1− σ2

Y2

)
S2
i + 2

√
P2/(P1 +N2)Si

]
(18)

In a similar manner, the mutual information random variable
i(Xn;Y n1 |Xn

2 ) under PY ′n1
where Y ′n1 = Y n1 −Xn

2 yields

Gn1 =
n

2
log σ2

Y ′1
− nP1

N1

log e

2

+
1

2
log e

n∑
i=1

[
(1− σ2

Y ′1
)S2
i + 2

√
P1/N1σY ′1Si

]
(19)

for σ2
Y ′1

= P1 + N1 since P2 is subtracted off the sum power
P . As for the conditional distribution PY ′n1 |Xn

1
we get the in-

formation density as

Hn1
=
n

2
log(σ2

Y ′1
) +

P1

N1

log e

2σ2
Y ′1

+
log e

2σ2
Y ′1

n∑
i=1

[(
1− σ2

Y ′1

)
S2
i + 2

√
P1/N1Si

]
(20)

Lastly, we denote i(Xn
2 ;Y n1 ) by Gn3

and Hn3
under the distri-

butions of PY n
1

and PY n
1 |Xn

2
, respectively. We adapt [1, Theo-

rem 40] to the setting of superposition coding for the degraded
Gaussian BC and define β functions as follows

βa,k = Pr[Gnk
≥ γk] (21)

where Pr[Hnk
≥ γk] = ak for ak = 1 − εk as defined by (4)

and with any positive γk and k = 1, 2, 3.

Theorem 2. For any εk, n ≥ 1, τk ∈ [0, 1], k = 1, 2, 3, and the
chosen PYj for j = 1, 2 with Fn as defined by (12), the max-
imal code sizes denoted M∗j of the jth user in a two receiver
Gaussian degraded BC are bounded by

M∗1 ≥
κτ1,1(Fn, PY n

1
)

β1−ε1+τ1,1(x, PY n
1

)
(22)

M∗2 ≥ max

{
κτ2,2(Fn, PY n

2
)

β1−ε2+τ2,2(x, PY n
2

)
,

κτ3,3(Fn, PY n
2

)

β1−ε3+τ3,3(x, PY n
2

)

}
(23)

where κτk,k(Fn, PY n
j

) = P0,k

[
p1,k(r)
p0,k(r) ≥ ψk

]
with ψk satis-

fying P1,k

[
p1,k(r)
p0,k(r) ≥ ψk

]
= τk. The probability distributions

p0,k(r) and p1,k(r) are defined as

p0,k(r) =
1

Γ(n/2)ω
n/2
k

rn/2−1er/ωk

p1,k(r) =
1

2
e(r+υk)/2(

r

υk
)n/4−1/2In/2−1(

√
υkr)

with the modified Bessel function of the first kind Ib(y) =

(y/2)b
∑∞
j=0

(y2/4)l

l!Γ(b+l+1) and the following parameters for k =

1 ω1 = 2(N1 +P1) and υ1 = nP1

N1
, for k = 2 ω2 = 2(N2 +P )

and υ2 = nP2

P1+N2
whereas for k = 3 ω3 = 2(N1 + P ) with

υ3 = nP2

P1+N1
.

Proof. Detailed proofs of the general case for a P2P-AWGN
channel can be found in the original paper [1, Theorems 25, 40
and 42]. β1−εk+τk,k(x, PY n

j
) for a = 1 − εk + τk given by

(21) is derived using the functions (17)-(20). As for evaluating
κτk,k’s the following definitions on P0,k and P1,k are set using
superposition coding

PY ′n1
= P0,1 ∼

n∑
i=1

(P1 +N1)S
2
i

PY n
2

= P0,2 ∼
n∑

i=1

(P +N2)S
2
i

PY n
1

= P0,3 ∼
n∑

i=1

(P +N1)S
2
i

PY ′n1 |Xn
1
= P1,1 ∼

n∑
i=1

(√
P1 +

√
N1Si

)2
PY n

2 |Xn
2
= P1,2 ∼

n∑
i=1

(√
P2 +

√
(P1 +N2)Si

)2
PY n

1 |Xn
2
= P1,3 ∼

n∑
i=1

(√
P2 +

√
(P1 +N1)Si

)2
for Si ∼ N(0, 1).

4 A Converse Bound
In [6, Theorem 2], it was shown using the classical results of
Sato [7] that in a physically degraded two–user BC the error
probability of the system is upper bounded by the maximum
of the two individual error probabilities per user and lower
bounded by the error probability of the cooperative BC, which
is equivalent to a P2P channel. Here, we have

2 max{ε1, ε2} ≥ ε ≥ εc (24)

where ε1 and ε2 and εc represent the first and second terms
in (4) and the error probability of the cooperative BC, respec-
tively.

[1, Theorem 41] presented a converse bound on the maxi-
mal code size of the P2P-AWGN channel. This bound is de-
rived as a function of two random variables derived based on



i(Xn;Y nc ) which is denoted by Hn and Gn under P (Y nc ) and
P (Y nc |Xn), respectively. The corresponding functions for the
cooperative channel are defined as

Hn =
n

2
log2 (1 + Pc) +

1

2

Pc log e

1 + Pc

n∑
i=1

(
1− S2

i +
2Si√
Pc

)
,

(25)

Gn =
n

2
log2 (1 + Pc)−Pc log e

2

n∑
i=1

(
1 + S2

i − 2

√
1 +

Si
Pc

)
(26)

with Si ∼ N(0, 1) andPc = P/Nc whereNc = min{N1, N2}.
The maximal code size of the AWGN channel for any n and the
average error probability ε is upper bounded by (Pr[Gn ≥ γn])−1

given that Pr[Hn ≥ γn] = 1 − ε is satisfied [1, Theorem
41]. We also define the functions Hnc,j

and Gnc,j
, respec-

tively through (25) and (26) where Pc is replaced by P/Nj for
j = 1, 2.

Theorem 3. For a Gaussian broadcast channel with two re-
ceivers with a power constraint as given by (8), the following
inequalities on the maximal code sizes of user 1 and 2 denoted
M∗1 and M∗2 , respectively hold for any n

M∗1 ≤
1

Pr[Gnc,1
≥ γc,1]

(27)

M∗2 ≤
1

Pr[Gnc,2 ≥ γc,2]
(28)

M∗1M
∗
2 ≤

1

Pr[Gn ≥ γc]
(29)

where the positive thresholds in each inequality γc,1, γc,2 and
γc satisfy Pr[Hnc,1 ≥ γc,1] = 1− ε1, Pr[Hnc,2 ≥ γc,2] = 1− ε2,
Pr[Hn ≥ γc] = 1− εc respectively for 2 max{ε1, ε2} ≥ εc.

Proof. First two inequalities (27) and (28) corresponding re-
spectively to user 1 and 2 are a direct application of the AWGN
bound of [1, Theorem 41] using (25) and (26). For the third
inequality (29) in order to apply the AWGN bound, we use the
channel where the two receivers are allowed to cooperate with
an error probability that cannot exceed the one of the broadcast
channel as shown in [7, 6]. This last inequality corresponds
to the cooperative channel with the product code sizes of the
two users and the corresponding condition on γc depends on
the error probability satisfying (24).

Figure 1 shows the numerical comparison of the converse
bound from Theorem 3 labeled as the outer bound with the
asymptotic capacity region given by Theorem 1 and the super-
position coding applied to the κβ bound where κ is derived
through [1, Lemma 43]. Sato’s bounding technique yields a
very loose bound since the converse is partially outside of the
infinite blocklength capacity. The dotted line represents the
time-sharing between two single-user achievable rates Rj =
1
n logMj where Mj is given by (14) as functions of P1 and
P2, respectively for user 1 and 2. A more fair comparison can
be made by limiting time-sharing to within 1000 dimensions
where n1+n2 = 1000 andRj is (14) as a function of nj . In the

case of an asymmetric channel, the advantage of superposition
coding over orthogonal multiplexing with short blocklength is
significant as in the asymptotic regime.
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Figure 1: Numerical comparison of the obtained bounds for
P = 100, ε = 10−3, N1 = 1 and N2 = 100.
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