
HAL Id: hal-01643250
https://hal.science/hal-01643250

Submitted on 9 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Hybrid Simulation Approach for Fast and Accurate
Timing Analysis of Multi-Processor Platforms

Considering Communication Resources Conflicts
Sébastien Le Nours, Adam Postula

To cite this version:
Sébastien Le Nours, Adam Postula. A Hybrid Simulation Approach for Fast and Accurate Timing
Analysis of Multi-Processor Platforms Considering Communication Resources Conflicts. Journal of
Signal Processing Systems, 2018, 90 (12), pp.1667-1685. �10.1007/s11265-017-1315-x�. �hal-01643250�

https://hal.science/hal-01643250
https://hal.archives-ouvertes.fr

A Hybrid Simulation Approach for Fast and Accurate Timing Analysis
of Multi-Processor Platforms Considering Communication Resources
Conflicts

Sébastien Le Nours · Adam Postula

Abstract In the early design phase of embedded systems,
discrete-event simulation is extensively used to analyse time
properties of hardware-software architectures. Improvement
of simulation efficiency has become imperative for tackling
the ever increasing complexity of multi-processor execution
platforms. The fundamental limitation of current discrete-
event simulators lies in the time-consuming context switch-
ing required in simulation of concurrent processes. In this
paper, we present a new simulation approach that reduces
the number of events managed by a simulator while preserv-
ing timing accuracy of hardware-software architecture mod-
els. The proposed simulation approach abstracts the simu-
lated processes by an equivalent executable model which
computes the synchronization instants with no involvement
of the simulation kernel. To consider concurrent accesses to
platform shared resources, a correction technique that ad-
justs the computed synchronization instants is proposed as
well. The proposed simulation approach was experimentally
validated with an industrial modeling and simulation frame-
work and we estimated the potential benefits through vari-
ous case studies. Compared to traditional lock-step simula-
tion approaches, the proposed approach enables significant
simulation speed-up with no loss of timing accuracy. A sim-
ulation speed-up by a factor of 14.5 was achieved with no
loss of timing accuracy through experimentation with a sys-
tem model made of 20 functions, two processors and shared
communication resources. Application of the proposed ap-
proach to simulation of a communication receiver model led
to a simulation speed-up by a factor of 4 with no loss of

S. Le Nours
University of Nantes, UMR CNRS 6164 IETR
Polytech Nantes, La Chantrerie, 443060 Nantes
E-mail: sebastien.le-nours@univ-nantes.fr

A. Postula
University of Queensland, School of Information Technology and
Electrical Engineering, Brisbane, Australia

timing accuracy. The proposed simulation approach has po-
tential to support automatic generation of efficient system
models.

Keywords Timing analysis ·Workload models · Discrete-
event simulation ·Multi-processor platforms

1 Introduction

More and more embedded systems are designed on multi-
processor platforms to satisfy the growing computational
demand of real-time applications. Multi-processor platforms
are made of heterogeneous components: computation resources
(e.g., general purpose processors, specialised processors, ded-
icated hardware accelerators), communication resources (e.g.,
buses, interfaces), and storage resources (e.g., shared mem-
ories, cache memories). Verification that timing constraints
are fully satisfied requires extensive analysis of software run-
ning on execution platform. Analysis should be performed
early in the design cycle to detect potential design issues
and to prevent costly design iterations. However, resource
sharing in multi-processor platforms leads to complex inter-
actions among components that makes timing analysis very
challenging. It is therefore essential to facilitate creation of
high level models of hardware-software architectures that
should deliver both reasonable evaluation time and good ac-
curacy.

The emergence of the transaction level modeling (TLM)
paradigm has facilitated the description of platform resources
at higher levels of abstraction than the traditional register
transfer level [5]. This paradigm relies on an explicit separa-
tion between computation and communication mechanisms.
TLM allows low level details of computation and commu-
nication to be hidden and significant simulation speed-up is
thus achieved compared to cycle-accurate models, as illus-
trated in [31] and [12]. In this context, system-level design

2 Sébastien Le Nours, Adam Postula

approaches have been proposed to analyze application ex-
ecution onto high level models of platforms [13]. Such ap-
proaches extensively make use of discrete-event simulation
to analyze the influence of application execution on plat-
form resources under various working scenarios. In discrete-
event simulation, simulation events correspond to specific
synchronization instants among processes of the system model.
The aim of a discrete-event simulation kernel is to correctly
manage the time ordered sequence of events among the sim-
ulated processes and the advancement of the simulation time.
However, synchronizations among processes cause time- con-
suming context switches in the simulation kernel, that can
significantly reduce the simulation speed and lead to unac-
ceptable evaluation time.

In this paper, we introduce a simulation approach that
limits the number of simulation events and still preserves
the timing accuracy of performance models of hardware-
software architectures. The approach we propose consists in
abstracting some of the processes of a system model into an
equivalent executable model as seen by the simulation ker-
nel. The created executable model incorporates the expres-
sions of the instants when the platform resources are used,
and thus the synchronization instants among the abstracted
elements are computed during simulation without context
switching of the processes. In this paper, we adopt the timed
Petri net formalism to formulate the synchronization instants
among the abstracted system elements. The originality of
this simulation approach lies in the evaluation of the syn-
chronization instants with no involvement of the simulation
kernel. However, when the number of events managed by
the simulation kernel is reduced, one potential issue is pos-
sible degradation of models accuracy. The problem is that
access conflicts at platform shared resources are invisible
and the delays caused by access conflicts cannot be simu-
lated. We present a simulation technique that preserves the
influence of shared resources with a limited number of simu-
lation events. The proposed technique uses knowledge about
application and platform to correctly adjust the computed
synchronization instants in the case of contention at shared
resources. In the scope of this paper, we illustrate the appli-
cation of the proposed simulation approach to data flow ori-
ented systems with shared communication resources. Such
systems are characterised by data-dependent application work-
loads and simulation is commonly used to evaluate the in-
fluence of workload variability and effect of resource shar-
ing on system performance. We implemented and validated
the proposed simulation approach and the related techniques
using Intel CoFluent Studio modeling framework [15] and
SystemC simulation language [14]. Various experiments were
led to estimate the achieved simulation speed-up and to eval-
uate the timing accuracy. Besides, we examined the scal-
ability of the approach and we evaluated the influence of
its complexity. A simulation speed-up by a factor of 14.5

was achieved with no loss of timing accuracy for a system
model made of 20 functions and two processors. For a sys-
tem model made of 100 functions the proposed simulation
approach led to a simulation speed-up by a factor of 4 with
timing accuracy preserved. In this paper, the benefits of the
simulation approach are demonstrated through the study of
an heterogeneous architecture of a communication receiver
implementing the physical layer of the long term evolution
(LTE) protocol. Simulation speed-up by a factor of 4 was
achieved with no loss of timing accuracy.

This paper is organized as follows. In Section 2, we give
an overview of relevant related work. We present the princi-
ples of the proposed approach in Section 3. The computation
technique of synchronization instants is described in Section
4. The correction technique is detailed in Section 5. We val-
idate our approach and show experimental results in Section
6. We conclude this paper in Section 7.

2 Background and related work

In this section, we first provide a brief review of the main
concepts associated with the traditional simulation-based per-
formance evaluation approaches. Next, we give an overview
of the main research related to our work.

2.1 Simulation of architecture performance models

Following the Y-chart modeling approach [9], a system model
is formed by a combination of an application model and a
platform model. In the early design phase, full description
of application functionalities is not mandatory and work-
load models of the application are considered. A workload
model expresses the computation and communication loads
that an application causes when executed on platform re-
sources. An application workload model is structured as a
network of concurrent communicating processes. Processes
use abstract primitives to model communication and data
processing (e.g., read, write, execute). Different communi-
cation policies can be implemented to describe the way data
are transferred and the dependencies between processes (e.g.,
rendezvous policy, FIFO policy with finite or infinite capac-
ity). Fig. 1 depicts a didactic example of a system model. In
this example, processes F1 and F2 are allocated to proces-
sor P1 and processes F3 and F4 are allocated to processor
P2. The platform model could also include dedicated hard-
ware resources to support process execution. The behaviour
of each process is given in the right part of Fig. 1. In Fig.
1, relation M2 is communicated through shared communi-
cation bus N by interfaces IF1 and IF2. Relation M4 is com-
municated through shared communication bus N by inter-
faces IF3 and IF4. The interfaces temporarily store data and
manage transfers through the communication bus. A shared

A Hybrid Simulation Approach. . . 3

F1 F3

F2

M1 M2

M4
M3

M5

Application
model

Platform
model P1 P2

Communication
bus N

while(1) {
 read(M2,token);
 execute(token);
 read(M4,token);
 execute(token);
 write(M5,token);
}

while(1) {
 read(M1,token);
 execute(token);
 write(M2,token);
 execute(token);
 write(M3,token);
}

Mapping

F4

F1

F2

F3

while(1) {
 read(M3,token);
 execute(token);
 write(M4,token);
}

M6

F4
while(1) {
 read(M5,token);
 if (token.DataSize>Threshold)
 execute(token);
 else
 //NOP
 write(M6,token);
}

IF1 IF2IF3 IF4

Shared memory

Bus
arbiter

IF5

Fig. 1 Example of a system model based on three views: application, platform, and mapping.

memory is also shown. Schedulers are not illustrated in Fig.
1 since in the following we will focus on data flow oriented
applications, with non-preemptive static order scheduling.

Academic system-level design approaches such as SCE
[10], Sesame [11], SystemCoDesigner [17], and the ones
presented in [1] and [19] were proposed to support the cre-
ation process of performance models of hardware-software
architectures. Industrial frameworks such as Intel CoFlu-
ent Studio [15], Space Codesign [33], and Visualsim from
Mirabilis Design [25] can also be cited.

In the existing approaches, captured workload models
are generated as executable descriptions and then simulated.
Different approaches can be considered to generate and sim-
ulate system models. In the trace-driven simulation approach
[23], a platform model is driven by the traces caused by the
application model execution. A trace represents the work-
load imposed by a communication or a data processing prim-
itive of the application on a platform element. A trace con-
tains information on the communication and computation
operations performed by the application process (e.g., size
of communicated data). The execution time of each load
primitive is approximated as a delay and the values of these
delays are variable and data-dependent. Delays are com-
monly expressed by analytical formulas and typically esti-
mated from measurements on real prototypes or analysis of
low level simulations, as illustrated in [19,26]. The evolu-
tion of a system model is thus a result of processing the
computation and communication loads by the platform re-
sources. During simulation, the simulation kernel schedules
the execution of processes and manages the advancement of
the simulation time. Simulation events occur at specific in-
stants when processes synchronize between each other. Fig.
2 illustrates some of the events observed during simulation

of the example depicted in Fig. 11. In the considered exam-
ple, delays can be variable and data dependent. As for exam-
ple, in Fig. 2 the execution time of the execute statement
of F1 is variable. In Fig. 2, instants xi(k) denote the interme-
diate synchronization instants involved in the system model
execution. As for example, xWrM2S(k) denotes the k-th in-
stant at which a write operation starts at interface IF1. The
instants related to communication through relation M2 are
detailed in Fig. 2. For clarity reasons, the instants related to
relations M1, M3, M4, M5, and M6 are not detailed. In the
following, we denote the instant when an event occurs in
the input of the system model by u and the instant when an
event occurs in the output of the system model by y. In Fig.
2, u(k) denotes the k-th instant at which F1 receives a mes-
sage through relation M1 and y(k) denotes the k-th instant at
which F4 produces a message through relation M6.

Simulation of system models allows the influence of plat-
form shared resources on application execution to be ana-
lyzed. Concurrent accesses at shared resources lead to con-
tentions, and thus additional delays are caused during sim-
ulation of the system model. As an illustration of this phe-
nomenon, let us consider that the platform interfaces cannot
simultaneously be used for read/write operations and data
transfer. In Fig. 2, the rectangle in grey highlights the situ-
ation when IF1 is used for data transfer and the write oper-
ation is delayed. Contention at shared resources can signif-
icantly impact the execution of an application and therefore
it must be thoroughly investigated in the system model sim-
ulation. As this requires more time-consuming calls to the
simulation kernel the overall simulation speed can be sub-
stantially decreased.

1 In Fig. 2 and in the following of the article, the term ”simulation
time” designates the logical time managed by the simulator.

4 Sébastien Le Nours, Adam Postula

Simulation
time ts

u(k)=xM1(k) xM1(k+1)
=u(k+1)

xWrM2S(k) xM3(k)

F1:read();
F1:execute();

P1

Platform
resources

xM4(k) xM5(k) xM6(k)
=y(k)

y(k+1)=xM6(k+1)

Calls to the simulation kernel

xNM2S(k)
xNM2E(k) xRdM2E(k)

F2:write();F1:execute(); F1:write();
F2:read();
F2:execute();

P2

N

F1:write(); F1:read();
F1:execute();

F3:read(); F3:execute();F3:read();
F3:execute();

F3:write();
F4:read();
F4:execute();

F4:write();

xF1Op1E(k)

IF1

IF2

Fig. 2 Discrete-event simulation of the system model with calls to the simulation kernel.

2.2 Improvement of simulation efficiency

Various approaches have been proposed to limit the number
of simulation events while maintaining acceptable accuracy
of system models.

The SystemC TLM2.0 standard [14] defines two coding
styles to allow timing behaviour of architectures to be mod-
eled at different abstraction levels: the approximately-timed
coding style (TLM-AT) and the loosely-timed coding style
(TLM-LT). Following the TLM-AT coding style, processes
of the system model are annotated with specific delay values
used in calls to the wait function. This coding style leads
to a lock-step simulation that provides good accuracy but
it causes excessive task switching overheads. To overcome
this issue, the TLM-LT coding style supports the temporal
decoupling method that allows processes to run ahead in a
local time with no use of the simulator. The definition of a
global quantum is thus needed to impose an upper limit on
the time a process is allowed to run ahead of simulation time.
However, this method leads to degraded timing accuracy be-
cause delays due to access conflicts at shared resources are
not simulated. The approach presented in this paper can be
considered as intermediate between these two coding styles.
Compared to the TLM-AT coding style, the number of calls
to the simulator is decreased by grouping some of the pro-
cesses of the system model and by computing during sim-
ulation the values of delays. Similarly to TLM-LT, the pre-
sented approach allows the number of events managed by
the simulation kernel to be reduced. A simulation technique
is introduced in this paper to consider delays due to potential
access conflicts at shared resources.

Bobrek et al. [4] present a hybrid approach that com-
bines discrete-event simulation with analytical models. It

aims at decreasing the simulation time of multi-processor
platforms with minimum impact on accuracy compared to
cycle-accurate models. The application processes are simu-
lated for a period of time by ignoring contention at shared
resources. An analytical model is then used to assign time
penalties to the competing processes that access to shared
resources. The time penalties shift the execution time of the
processes running on shared resources. A similar approach
is presented by Chen et al. in [7]. It details an analytical
model that gives the contention delay under different multi-
processor platform configurations and bus utilization rates.
This analytical model is used during simulation of the bus
model and it prevents full scheduling of events. Compared
to these two approaches, our method aims to greatly reduce
the number of context switches among processes managed
by the simulation kernel.

In [28], Savoiu et al. present an approach to improve
simulation performance of SystemC models. This approach
consists in restructuring SystemC models to limit the num-
ber of calls to the simulator. SystemC models are first con-
verted into Petri nets to be analyzed. Reduction methods are
then applied to create an equivalent Petri net but with a lim-
ited number of cycles. Finally, an improved SystemC model
is obtained from the reduced Petri net. In our approach, we
also consider Petri nets as an intermediate representation for
workload models. We use this intermediate representation to
compute the synchronization instants among the elements of
the system model with no use of the simulator. However, we
do not consider here the possible reduction of the obtained
Petri nets.

In [20], Künzli et al. present a hybrid approach to im-
prove performance evaluation of data flow oriented systems.
The presented approach combines analytical models of sys-

A Hybrid Simulation Approach. . . 5

tem components and simulation to achieve good compro-
mise between simulation speed and accuracy. Analytical mod-
els are based on the real-time calculus (RTC) formalism pre-
sented in [6]. This formalism is based on the concept of ar-
rival curves and service curves that respectively characterise
workload and processing capabilities of system components.
For a given event stream, arrival curves express lower and
upper bounds on the number of events arriving in any time
interval. In [20], simulation traces are analyzed to determine
arrival curves. The curves are then passed to the formal anal-
ysis method and the results from the analysis method are
transformed into event traces used for simulation. Compared
to a simulation model, execution of hybrid models is signif-
icantly sped-up because the number of calls to the simulator
is limited. Our proposed approach can also be considered
as a hybrid approach that combines simulation and formal
models. In contrast to [20], our approach does not focus on
prediction of best and worst cases.

The result-oriented modeling (ROM) approach has been
proposed by Schirner and Dömer in [29,30] to improve the
simulation speed-accuracy tradeoff in discrete-event mod-
els of communication resources and operating systems. The
principle of this approach is to optimistically predict the in-
stants when modeled elements evolve, using available in-
formation about resources. The estimated instants are then
adapted during simulation in the case of disturbing influ-
ences such as pre-emption of shared resources. In our pro-
posed approach, the simulation instants are not estimated but
computed during simulation. Compared to ROM, this ap-
proach allows more events to be saved and potentially better
simulation efficiency.

In [18], simulation constructs are proposed to support
creation of accuracy adaptive transaction level models. The
created models incorporate multiple levels of timing accu-
racy and levels can be changed statically at the start of sim-
ulation or at runtime. Our proposed approach also considers
a reduced number of timing annotations but with no degra-
dation of timing accuracy.

In [34] and [24], simulation techniques are presented
that address the timing accuracy problem in temporally de-
coupled transaction level models. In [34], a central instance
keeps track of all transactions that are potentially influenced
by other processes and that have not yet synchronized their
local time. Once a synchronization point is reached, conflict-
ing transactions are arbitrated and execution times can be re-
vised with a posteriori knowledge. In [24], an analytical tim-
ing estimation method is proposed. According to the consid-
ered arbitration policy of shared resources, some analytical
expressions are defined that give time penalties. Resource
usage and resource availability are used to derive the delay
formulas. These formulas are then used during simulation to
correct the end of each synchronization request. In the same
way as in [34,24], our approach performs retroactive timing

correction but does not consider TLM-LT models. Besides,
we use knowledge about application and platform to reduce
the required calls to the simulation kernel.

Razaghi and Gerstlauer present in [27] a conservative
simulation approach for multi-core operating system model
called automatic timing granularity adjustment (ATGA). ATGA
is used to control the advancement of the simulation time
and to invoke the simulation kernel whenever a task pre-
emption is required. In predictive mode, the state of running
periodic tasks is monitored to determine instants when pre-
emption occurs among tasks. A fallback mode is also imple-
mented that enables asynchronously interrupting long time
periods. In our approach, the advancement of the simulation
time is done according to computations performed during
simulation. Adaptation of the computed instants is required
in the case of conflicting accesses at shared resources.

The main thrust of the proposed simulation approach is
to reduce the number of required calls to the simulation ker-
nel and to keep accurate the influence of shared resources.
The idea of instantaneous computation of synchronization
instants was first presented and evaluated in [22] but we did
not present how computation could be performed systemat-
ically. Besides, the necessity to correct computed instants in
the case of shared resources was not considered in [22]. We
introduced the idea of correction of synchronization instants
in the case of shared resources in [21] but with no details
about the implementation of this method. In this article, we
present more details of our existing work with the following
contributions:

– We present the adoption of the timed Petri net formalism
for both the computation and correction of synchroniza-
tion instants. This formalism is adopted to better justify
the feasibility of the computation and correction meth-
ods. Some Petri net patterns are introduced to capture the
time dependencies among elements of a system model.

– We detail the implementation of the proposed hybrid
simulation approach, combining formal and simulation
models.

– Based on the timed Petri net formalism, we present the
implementation of the correction technique and evalua-
tion of the scalability of this technique.

– We illustrate application of the proposed simulation ap-
proach through a case study inspired from communica-
tion systems.

3 Principles of the proposed simulation approach

Compared to the existing simulation approaches, the pro-
posed simulation approach uses knowledge about applica-
tion and platform to limit the number of required calls to
the simulation kernel. We consider that some parts of a sys-
tem model can be abstracted and replaced by an equiva-

6 Sébastien Le Nours, Adam Postula

lent executable model. This executable model presents the
same evolution as the abstracted elements from an exter-
nal viewpoint, but the number of events managed by the
simulation kernel is reduced. The equivalent model incorpo-
rates the expressions of the synchronization instants among
the abstracted elements2. In section 4, we adopt the timed
Petri net formalism to express the time dependencies among
the abstracted elements and the related synchronization in-
stants. This formal representation is used to compute the
synchronization instants during simulation and to determine
the execution order between the abstracted processes. This
approach allows data-dependent behaviors to be considered
(e.g., behavior with delays that depend on exchanged data,
behavior with condition on production or reception of data).
Data dependencies can be formulated through the created
timed Petri net and influence execution of the equivalent ex-
ecutable model. The key point of our approach is that the
synchronization instants are instantaneously computed dur-
ing simulation, i.e. with no involvement of the simulation
kernel.

Fig. 3 illustrates the idea of instantaneous computation
in comparison with the execution depicted in Fig. 2. In Fig.
3, instants y(k) and y(k + 1) are respectively computed at
instants u(k) and u(k + 1). The computation of intermedi-
ate synchronization instants xi and synchronization instant y
at the output of the executable model is denoted by action
Compute_y(). Compared to the execution depicted in Fig.
2, intermediate synchronization instants xi are locally com-
puted and stored but no intermediate event is caused during
the model execution. The simulation is thus faster because
the number of calls to the simulation kernel is reduced, while
timing accuracy is preserved. Time dependencies among the
synchronization instants can be formulated by the following
state equations:

X(k) = f (X(k),X(k−1), . . . ,X(k−a),u(k), . . . ,u(k−b))

(1)

y(k) = g(X(k), . . . ,X(k− c),u(k), . . . ,u(k−d)) (2)

X(k) denotes the set of intermediate synchronization instants
xi(k) among the abstracted elements. f reflects the depen-
dencies between current intermediate instants X(k), previ-
ous intermediate instants, and synchronization instants at
the input of the system model. g reflects the dependencies
between current synchronization instants y(k) at the out-
put of the system model, intermediate synchronization in-
stants, and synchronization instants at the input of the sys-
tem model. For illustration purposes and with no loss of gen-
erality, we will only discuss models with one input and one
output. In the following, state equations (1) and (2) will be
expressed through a timed Petri net.

2 Besides, application functionalities can be incorporated into the
proposed equivalent model.

The presented approach reduces the number of events
managed by the simulation kernel. In the case of shared re-
sources, a disturbing influence3 can cause the computed syn-
chronization instants to become inaccurate because delays
due to access conflicts at shared resources are not simulated.
We propose to utilize the expression of synchronization in-
stants to detect potential conflicts at shared resources and to
correct the erroneous computed instants. This idea is illus-
trated in Fig. 4, where the shaded rectangles correspond to
the intervals of time when a shared resource is used. xS(k)
and xE(k) correspond to the instants when the usage of the
shared resource starts and ends4. Instants xS(k), xE(k), and
y(k) are computed at instant u(k) using the approach illus-
trated in Fig. 3. In part (a) of Fig. 4, a disturbing influence
occurs before xS(k) and it causes usage of the shared re-
source. In the case of a shared resource for which simulta-
neous usage is not possible (i.e. with limited concurrency),
computed instants xS(k), xE(k), and y(k) become incorrect.
Application of the proposed correction technique is shown
in part (b) of Fig. 4. The key idea of the correction technique
is to re-evaluate state equations (1) and (2) when the dis-
turbing influence occurs. We recall that these equations cap-
ture the influence of shared resources and the related delays.
The disturbing influence is taken into account straight and it
modifies some of the intermediate instants. The state equa-
tions are thus re-evaluated with new initial values and in-
ternal state X(k) is adjusted accordingly. Output simulation
instant y(k) is also corrected. The correction is performed
instantaneously with no involvement of the simulation ker-
nel. This correction is denoted in part (b) of Fig. 4 by action
Correct_y(). In the situation depicted in part (b) of Fig. 4,
xS(k) is corrected and set to the instant when the resource is
available. This corrected instant is denoted by xc

S(k). Based
on this corrected value, previously computed instants xE(k)
and y(k) are recalculated through equations (1) and (2), re-
sulting in xc

E(k) and yc(k). With this technique, the delays
due to contention at shared resources are inserted with no in-
volvement of the simulation kernel. Accurate evaluation can
thus be achieved with a reduced set of events. In the scope
of this paper, we will illustrate the application of this ap-
proach for shared communication resources. Similarly, con-
tention at computation and memory resources could also be
addressed.

The presented simulation approach combines thus in-
stantaneous computation and correction of synchronization
instants. We successively detail these two techniques in the
following of this paper.

3 Disturbing influence designates any simulation event that causes
contention at a shared resource.

4 As an example, in Fig. 2 interface IF1 is used for data exchange
through communication bus N. xS(k) could represent the k-th instant
when a data transfer through node N starts.

A Hybrid Simulation Approach. . . 7

/Compute_y() /Compute_y()

Simulation
time tsu(k) u(k+1) y(k) y(k+1)

Instantaneous computations

Fig. 3 Proposed hybrid simulation approach with instantaneous computation of synchronization instants.

/Compute_y()

Simulation
time tsu(k)

Disturbing influence

y(k)xS(k) xE(k)

/Compute_y()

Simulation
time tsu(k) y(k)xS(k) xE(k)xS

c(k) xE
c(k)

/Correct_y()

yc(k)

(a)

(b)

Contention

Correction of computed instants

Instantaneous
computation

Instantaneous
computation

Fig. 4 (a) Simulation with erroneous computed instants in the case of a shared resource, (b) simulation with correction of computed instants.

4 Computation of synchronization instants

We describe the technique for computing synchronization
instants. The timed Petri net formalism is adopted to formu-
late the synchronization instants among the abstracted el-
ements of the system model. We first give some basic con-
cepts related to timed Petri nets. Second, we present the con-
struction of timed Petri nets from system models. Third, we
explain the way expression of synchronization instants and
executable models are combined.

4.1 Timed Petri nets

Petri nets represent a powerful modeling language that is
well adapted for formal description of discrete-event sys-
tems. Timed Petri nets represent a timed extension of Petri
nets for which time is expressed as minimal durations on the
sojourn of tokens in places [2]. A timed Petri net is defined
as a tuple T = (P,Q,• (.),(.)•,µ0,T,ρ) where:

– P = p1, . . . , pm is a finite, non-empty set of places,
– Q = q1, . . . ,qn is a finite, non-empty set of transitions,
– •(.) ∈ (N|P|)|Q| is the backward incidence function,
– (.)• ∈ (N|P|)|Q| is the forward incidence function,
– µ0 ∈ N|P| is the initial marking of the net,
– T ∈ R|P| is the set of holding times of places,
– ρ ∈ N|P| is the set of switching sequences attached to

places.
Each transition q is characterised by its backward and for-
ward incidence functions. They indicate the weight of each

arc that connects a place and a transition. A marking µ of
the net is an element of N|P| such that µ(p) is the num-
ber of tokens in place p. Each place has an infinite capacity.
Basically, a transition q is enabled if each upstream place
contains at least one token. A firing of an enabled transition
removes one token from each place of its upstream places
and adds one token to each of its downstream places. In a
more general way, weights are attached to arcs. A transi-
tion is thus enabled if the upstream places contain at least
the number of tokens given by the weight of the connecting
arcs. Similarly, after the firing of a transition, a downstream
place receives the number of tokens given by the weight of
the connecting arc. In the following, when not indicated, the
weight of the arc is equal to 1. The holding time of a place
is the time a token must spend in the place before contribut-
ing to the enabling of the downstream transitions. Holding
times can depend on the index of the firing. Each place p
that has several downstream transitions receives a switching
sequence ρ(p). It defines the transition to which the token
must be routed. Only tokens such that ρ(p) = q should be
taken into account by q. Fig. 5 illustrates a simple timed
Petri net with seven places and six transitions. In the situa-
tion depicted in Fig. 5, tokens are initially set into places p4
and p6.

We denote x j(k) j = 1, . . . , |Q|,k≥ 0, as the instant when
transition q j is enabled for the k-th time. Relationships be-
tween transition instants can basically be expressed using
two operators: addition and maximization. Addition expresses
a time lag according to an holding time. Maximization re-

8 Sébastien Le Nours, Adam Postula

q2 p3

q3

q4

p4

Tp5

q5p5

q1q0 p0
p1

p2

Tp3Tp1

Tp2

Tp0

p6

Fig. 5 Example of a timed Petri net with seven places and six transi-
tions.

flects the effect of synchronization. With the initial marking
depicted in Fig. 5, the transition instants are given as fol-
lows:

x1(k) = max(Tp0(k)+ x0(k),x2(k−1))

x2(k) = Tp1(k)+ x1(k)

x3(k) = Tp2(k)+ x1(k)

x4(k) = max(Tp3(k)+ x2(k),x3(k−1))

x5(k) = Tp5(k)+ x4(k)

Considering X(k) as the vector formed by transition instants
x j(k) of the timed Petri net, the transition instants can be ex-
pressed through state equations similar to (1) and (2). The
state equations are obtained by considering input transition
instant u(k) as x0(k) and output transition instant y(k) as
x5(k)5. Extensive presentation of the theoretical framework
that justifies and analyzes such state equations for timed
Petri nets can be found in [2]. In the scope of this paper,
we adopt the state equation notation to conveniently explain
the developed simulation techniques.

4.2 Construction of a timed Petri net

The timed Petri net notation is adopted here to formulate the
time dependencies among the elements of a system model
and the related synchronization instants. A timed Petri net
is constructed by successively considering the application
description, the mapping, and the platform constraints. El-
ementary timed Petri net patterns must be defined for each
statement of the system model. The timed Petri net related to
the system model is then obtained by connecting the patterns
together. First, connection between patterns is done con-
sidering the behavioral description of each process and the
structural description of the application. Second, the timed
Petri net associated with the system model is formed con-
sidering the mapping and platform constraints. A similar ap-
proach was adopted in [32] considering the enhanced func-
tion flow block diagram (EFFBD) notation. In this paper, we

5 In this simple example, we obtain state equations with a = 1, b =
c = d = 0. Besides, y(k) does not depend on u(k) in equation (2).

q(Op) q(/Op)p(Op)p0(Op)

TOp

Fig. 6 Petri net pattern of the computation statement.

do not use a specific notation for the system model and we
give patterns for some elementary modeling statements.

As previously illustrated, application workload models
are made of three categories of modeling statements:

– the computation statement (e.g., execute) models the data
processing in application processes,

– the communication statements (e.g., read, write) model
the communication protocols among processes of the ap-
plication,

– the control statements (e.g., alternative, iteration) describe
the control flow of each elementary process of the appli-
cation.

We associate a Petri net pattern with each statement of the
application model. Each pattern n can formally be defined
by a Petri net T n. The Petri net related to an application
model is obtained by connecting each elementary pattern n.
The timed Petri net associated with the system description
is then formed by considering the mapping and the platform
constraints. First, delays due to execution of application on
platform resources are taken into account. Holding times are
added to places of the Petri net to represent computation and
communication delays. Second, the limited concurrency of
platform resources is considered by adding supplementary
places and arcs to the created Petri net. These places and arcs
cause additional conditions to enable Petri net transitions.
In the following, we present patterns with time constraints.
These patterns correspond thus to elements of the applica-
tion model that are allocated to computation or communica-
tion resources. Each pattern begins with an entry place and
ends with a transition. Dashed lines represent possible con-
nections with other patterns.

The pattern associated with the computation statement is
represented in Fig. 6. Transitions q(Op) and q(Op) denote
the instants at which the computation starts and ends. Place
p(Op) denotes the execution of the computation whereas
p0(Op) represents the condition before the beginning of the
computation. Duration TOp represents the execution time of
the operation for the considered computation resource. TOp
can be variable and data dependent and it can be expressed
by an analytical formula.

According to the communication protocol between pro-
cesses of the application, different patterns can be associated
with the communication statements. Part (a) of Fig. 7 illus-
trates the pattern for the rendezvous communication proto-
col. Transition q(Rd) represents the instant when the writer

A Hybrid Simulation Approach. . . 9

(a) (b)

q(Rd)

q(/Rd)

p(M) p(Rd)

q(Wr)

q(/Wr)

p(Wr)

p0(Wr) p0(Rd)

q(Rd)

q(/Rd)

p(Ack)

p(Rd)

q(Wr)

q(/Wr)

p(Wr)

p0(Wr) p0(Rd)
p(Req)

TWr TRd TWr TRd

Fig. 7 Petri net pattern of the communication statements: (a) ren-
dezvous protocol, (b) FIFO protocol with infinite capacity.

q(i,0) q(/i)p0(i)

inf

q(i) p(i)

p(i,0)

p(/i)

Fig. 8 Petri net pattern of the infinite loop statement.

q(f,0) q(/f)p0(f)

N

q(f) p(f)

p(f,0)

p(/f) q(le)p(le)

N

Fig. 9 Petri net pattern of the finite loop statement.

and the reader are synchronized and the data transfer is done.
Part (b) of Fig. 7 illustrates the pattern for the FIFO protocol
with infinite capacity. Transitions q(Wr) and q(Rd) denote
the instants at which write and read operations start. TWr and
TRd represent the duration of write and read operations for
the considered computation resource. They can also be vari-
able and data dependent and they can be expressed by an
analytical formula.

The infinite iteration statement is depicted in Fig. 8. Tran-
sitions q(i,0) and q(i) denote the instants when one iteration
starts and ends. Place p(i,0) is needed because only one it-
eration can take place at the same time. Symbol in f means
that an infinite number of tokens is added to place p(i) when
q(i) is enabled.

The pattern associated with the finite iteration statement
is represented in Fig. 9. Symbol N represents the number
of iterations of the loop. Transition q(le) denotes the instant
when N iterations of the loop have been performed. Place
p(f ,0) indicates that only one iteration can take place at the
same time.

The alternative statement indicates which set of instruc-
tions is executed, according to conditions. The pattern asso-
ciated with the alternative statement is represented in Fig.
10. The switching sequence ρ(p(a)) indicates the selection
between transitions q(a1,0) and q(a2,0) when a token is
into place p(a).

q(a1,0)

q(/a)p0(a) q(a) p(a) p(/a)

q(a2,0)

(p(a))ρ

Fig. 10 Petri net pattern of alternative statement.

We illustrate now the modeling of a shared resource with
limited concurrency. We consider here the situation where
communication between processes is done through two in-
terfaces and a communication bus. As in the example of Fig.
1, we assume that data transfers and read/write operations
cannot be performed simultaneously. Fig. 11 illustrates the
pattern in the case of a direct data transfer with no usage
of a shared memory. The considered bus arbitration policy
corresponds to a First Come First Serve (FCFS) policy but
other arbitration policies could be modeled. TWr represents
the duration of the write operation into the interface, TRd rep-
resents the duration of the read operation from the interface.
TN represents the transfer duration through communication
bus N. Places p(IF1) and p(IF2) model the limited concur-
rency of interfaces IF1 and IF2. In Fig. 11, once transition
q(Wr) is enabled, tokens that are stored in p(M) cannot be
processed until q(Wr) is enabled. A similar pattern could
be built in the case of a computation resource with limited
concurrency.

The presented patterns are used to create a timed Petri
net in association with the elements of a system model. As
an illustration, Fig. 12 represents the timed Petri net related
to the example depicted in Fig. 1. The depicted Petri net
is obtained by connecting together the patterns related to
the communication, computation, and control statements. In
Fig. 12, the FIFO communication protocol with infinite ca-
pacity is considered. The communications through relations
M2, M3, M4, and M5 are detailed. TNM2 and TNM4 represent
the transfer durations through communication bus N. In Fig.
12, all the considered delays can be variable and data de-
pendent. Places p(IF2) and p(IF4) express that data trans-
fer and read operation cannot be performed simultaneously
by interfaces IF2 and IF4. Places p(IF1) and p(IF3) and
related arcs are not depicted in Fig. 12 for clarity reasons.
In Fig. 12, a switching sequence, denoted by ρ(p(a)), is
attached to place p(a). It models the alternative statement
used in process F4 of Fig. 1. The created timed Petri net
highlights the time dependencies among the elements of the
system model and the related synchronization instants. Es-
pecially, it gives the time dependencies between the transi-
tion instants that are related to the input and the output of the
system model (i.e. transitions q(M1) and q(M6) in Fig. 12).

10 Sébastien Le Nours, Adam Postula

TRd

read

q(Rd) p(Rd) q(/Rd)

p0(Rd)data transfer

q(N) p(N) q(/N)

TN

write

q(Wr) p(Wr)

TWr

q(/Wr)

p(IF2)p(IF1)

p(M)

p0(Wr)

Fig. 11 Petri net pattern in the case of a communication through two interfaces and a communication bus.

F1 / P1

inf TF1Op1 TF1Op2

F4 / P2
inf

TF4Op1

TWrM2 TWrM3

TRdM5

execute write execute write

read

execute

p0(i) p(i)q(i) q(i,0) q(M1)
p(F1Op1)

q(F1Op1) q(/F1Op1) q(WrM2)
p(WrM2)

q(/WrM2) q(F1Op2) q(/F1Op2)
p(F1Op2)

q(WrM3)
p(WrM3)

q(/WrM3) q(/i)p(/i)

p(M3)

p0(i) q(i) p(i) q(i,0) q(RdM5)
p(RdM5)

q(/RdM5)

q(F4Op1)

p(F4Op1)

q(/F4Op1)

p(/i) q(/i)

p(M5)

p(a) q(M6)p(/a)q(a)

q(a1,0)

q(a2,0)

q(/a)

inf TF2Op1TRdM3 TWrM4

read execute write

p0(i) p(i)q(i) q(i,0)
p(RdM3)

q(RdM3) q(/RdM3)
p(F2Op1)

q(F2Op1) q(/F2Op1) q(WrM4)
p(WrM4)

q(/WrM4) q(/i)p(/i)

inf TF3Op1 TF3Op2TRdM2 TRdM4 TWrM5

read execute read execute write

p0(i) p(i)q(i) q(i,0)
p(RdM2)

q(RdM2) q(/RdM2)
p(F3Op1)

q(F3Op1) q(/F3Op1) q(RdM4)
p(RdM4)

q(/RdM4)q(F3Op2) q(/F3Op2)
p(F3Op2)

q(WrM5)
p(WrM5)

q(/WrM5) q(/i)
p(/i)

F2 / P1

F3 / P2

TNM2 TNM4

q(NM4)q(/NM4)

M2 M4 / N

q(NM2)q(/NM2)
p(NM2) p(NM4)

p(IF2) p(IF4)

))((apρ

Fig. 12 Timed Petri net associated with the architecture model depicted in Fig. 1.

We use this formal model to compute the synchronization
instants among the elements of the system model.

4.3 Combination between formal and executable models

The dependencies among transition instants can be practi-
cally captured through a directed graph, that we call a tem-
poral dependency graph. A temporal dependency graph ex-
presses the dependencies among the transition instants of the
created timed Petri net. It can also be seen as a convenient
way to express the evolution of X(k) and y(k) and to imple-
ment state equations (1) and (2). The nodes of a temporal

dependency graph correspond to the transition instants of
the created timed Petri net. The arcs give the dependencies
among the transition instants. The weights associated with
the arcs correspond to the delays between the transition in-
stants. In the following, storage of the computed transition
instants is done through a one dimensional array denoted
by G, which size is denoted by kG. G aims to temporarily
store the set of intermediate instants that are involved in the
computation of synchronization instants X(k) and y(k). As
an illustration, Fig. 13 depicts a part of the temporal depen-
dency graph related to the timed Petri net of Fig. 12 and the
related array G. In this example, the complete temporal de-

A Hybrid Simulation Approach. . . 11

pendency graph contains 46 nodes. The transition instants
are successively computed by traversing a temporal depen-
dency graph. Traversing of the temporal dependency graph
is performed in accordance with the created timed Petri net.
Some of the computations performed when traversing the
temporal dependency graph depicted in Fig. 13 are given
below:

u(k) = max(xM1(k),xM3WrE(k−1));

xF1Op1S(k) = xM1(k);

xF1Op1E(k) = xF1Op1S(k)+TF1Op1(k));

xaS(k) = xM5RdE(k);

if (token.DataSize > Threshold){
xa1(k) = xaS(k);

xF4Op1S(k) = xa1(k);

xF4Op1E(k) = xF4Op1S(k)+TF4Op1S(k);

xaE(k) = xF4Op1E(k);

}

else{
xa2(k) = xaS(k);

xaE(k) = xa2(k);

}
y(k) = xM6(k) = xaE(k);

In the proposed approach, the system model is simulated
through an executable model that presents the same evolu-
tion as the abstracted processes from the external viewpoint.
This executable model uses the synchronization instants at
the input of the system model to compute the intermediate
synchronization instants and the synchronization instants at
the output of the system model. The computation uses the
constructed temporal dependency graph and related array
G. The evolution of the executable model mainly depends
on two categories of time interval:

– the minimal interval of time before an output is pro-
duced, denoted by Ty,

– the minimal interval of time before an input can be con-
sumed, denoted by Tu.

Fig. 14 gives the structural and behavioural description of
the executable model for the example of Fig. 1. Two pro-
cesses are handled by the simulation kernel. The input pro-
cess, denoted by Reception, receives input data and com-
putes the synchronization instants through action Compute_y().
This action uses array G to locally compute and store the
synchronization instants. The computed synchronization in-
stants are then copied in a variable denoted by XS. XS is a
two dimensional array that temporarily stores the computed
synchronization instants that have not yet been achieved dur-
ing simulation. The dimensions of array XS have ranges 0 to

kG− 1, and 0 to kS− 1. kS sets of synchronization instants
can thus be stored in data structure XS. The ouput process,
denoted by Emission, is activated each time a new output
instant has been computed. The k-th output data is produced
at instant y(k). In Fig. 14, the k-th input data can be received
when instant xM3WrE(k−1) is achieved. Intervals of time Tu
and Ty correspond to the duration of state s1 in processes
Reception and Emission. The k-th set of synchronization in-
stants stored in XS is released when y(k) is achieved. This
is denoted by action Release_XS() in Fig. 14. The exe-
cutable model depicted in Fig. 14 can be adopted for system
models with one input and one output. It can be extended to
consider multiple inputs and multiple outputs.

The upper part of Fig. 15 illustrates the execution of the
equivalent model over the simulation time. When a new data
is received through relation M1 at instant xM1(k), the value
of output evolution instant xM6(k) is instantaneously com-
puted and stored. Intervals of time Tu and Ty are determined
through action Compute_y(). The evolution over the simu-
lation time of the equivalent executable model only depends
on computed values Ty and Tu. The intermediate synchro-
nization instants are also computed at instant xM1(k). The
lower part of Fig. 15 represents the computed intermediate
synchronization instants. This observation is performed us-
ing a local time called observation time, denoted by to. The
evolution of the resource usage between xM1(k) and xM6(k)
is done without using the simulator. In Fig. 15, the correc-
tion technique is not yet considered.

5 Correction of computed synchronization instants

The presented computation technique allows the number of
events managed by the simulation kernel to be reduced. How-
ever, the computed synchronization instants potentially need
to be updated to correctly reflect the influence of shared re-
sources. Fig. 16 illustrates such a potential issue. It focuses
on the situation when a communication node and an inter-
face are used for data transfer. In part (a) of Fig. 16, instants
xRdS and xRdE correspond to the instants when an interface
read operation starts and ends. The shaded rectangle rep-
resents the interval of time when the interface is used for
reading. Instants xRdS(k), xRdE(k), and y(k) are computed
at instant u(k) using the previously presented approach. In
part (b) of Fig. 16, the instants at which a new data trans-
fer starts and ends are computed at instant u(k + 1). They
are denoted by xNMS(k + 1) and xNME(k + 1). In this situ-
ation, the interface is thus simultaneously used to transfer
data through node N and to provide the previously received
data. In the case of an interface with limited concurrency,
these two operations cannot be performed simultaneously
and the computed instants are erroneous. The application
of the proposed correction technique is illustrated in part
(c) of Fig. 16. Once computed, instants xNMS(k + 1) and

12 Sébastien Le Nours, Adam Postula

0
TF1Op1(k)

xF1Op1S(k) xF1Op1E(k) xM2WrS(k)

0

xM1(k) xM2WrE(k) xM5RdE(k)

xF4Op1S(k)

xaE(k)
xa2(k)

0
TWrM2(k) TRdM5(k)

xa1(k)

TF4Op1(k)

0

0

0

0

0

xM6(k-1)xM3WrE(k-1)

xaS(k)
0

xM6(k)=y(k)

xF4Op1E(k)
0

0
xM5RdS(k)

G=[xM1(k), xF1Op1S(k), xF1Op1E(k), xM2WrS(k), …, xM6(k-1), xM6(k)],
kG=46

Fig. 13 Temporal dependency graph used to compute transition instants.

s0

M1
/Compute_y();
/Store(G,XS);

Reception Emission

s0

s1

M6

M1 M6
XS

ts=y(k)

new y(k)

s1

ts=xM3WrE(k-1)
/Release_XS();

Fig. 14 Structural and behavioural description of the equivalent executable model.

u(k)=xM1(k) u(k+1)=xM1(k+1)
Simulation

time ts

(a)

(b)

Ty(k)
Ty(k+1)

/Compute_y()
/Store(): XSn<-G /Compute_y()

/Store(): XSn+1<-G

y(k)=xM6(k)

Tu(k) Tu(k+1)

Observation
time to

TF3Op1(k)

xM3WrE(k)

/Release_XS(): XSn is released

u(k)=xM1(k) xM1(k+1)
=u(k+1)

xWrM2S(k) xM3WrE(k) xWrM2S(k+1)

P1

Platform
resources

xM4(k) xM5(k) xM6(k)
=y(k)

y(k+1)=xM6(k+1)xNM2S(k)
xNM2E(k) xRdM2E(k)

P2

N

IF1

IF2

TF1Op1(k) TWrM2(k) TF1Op2(k) TF2Op1(k) TF1Op1(k+1)

TF3Op2(k) TF4Op1(k)

TNM2(k)

TWrM2(k)

TRdM2(k)

TRdM2(k)

y(k+1)=xM6(k+1)

Fig. 15 Execution of the system model using instantaneous computation of evolution instants, evolution is over the simulation time (a) and the
observation time (b).

xNME(k + 1) are compared to the previously computed in-
stants and a contention at the interface is detected. Instant
xRdS(k) is thus corrected accordingly. The previously com-
puted instants that depend on xRdS(k) are then recomputed.
The recomputation is done using the expression of the syn-
chronization instants. In Fig. 16, these operations are de-

noted by action Correct_y(). The corrected synchroniza-
tion instants are denoted by xc

RdS(k), xc
RdE(k), and yc(k).

The correction technique is implemented in the equiva-
lent executable model presented in Fig. 14. The correction
technique is used during simulation to evaluate a new time
the previously computed instants. This can be perceived as

A Hybrid Simulation Approach. . . 13

/Compute_y()

Simulation

time tsu(k) y(k)xRdS(k) xRdE(k)

/Compute_y()

Simulation

time tsu(k) y(k)xRdS
c(k) xRdE

c(k)

/Correct_y() : correction of XSn and

computation of XSn+1 accordingly

yc(k)

(b)

(c)

Contention

Instantaneous computation with

correction of computed instants

Instantaneous

computation

Instantaneous

computation

/Compute_y()

Simulation

time tsu(k) y(k)xRdS(k) xRdE(k)

(a)

Instantaneous

computation

u(k+1)
xNMS(k+1) xNME(k+1)

u(k+1)
xNMS(k+1) =xNME(k+1)

TRdM

/Compute_y()

/Compute_y()

/XSn<-G

/XSn+1<-G : XSn is now erroneous

Fig. 16 (a) Equivalent model execution with usage of a shared resource, (b) disturbing influence in the case of a shared resource, (c) equivalent
model execution with correction of computed instants.

computing state equations (1) and (2) with new intermediate
instants. When a contention is detected, action Correct_y()
adjusts the previously computed instants stored in data struc-
ture XS. We explain here the use of data structures G and XS
to correct the previously computed instants. As illustrated in
Fig. 16, we consider here that n+1 sets of synchronization
instants are stored in XS when a correction occurs. We de-
note by XSm,n the previously computed instant that must be
corrected. We denote by GS and GE the newly computed in-
stants when usage of a shared resource starts and ends. The
basic steps of the correction process are given as follows:

1. (Contention detection.) If GS <XSm,n <GE , set XSm,n←
GE .

2. (Temporary saving of data structure G.) For each syn-
chronization instant i from 1 to p, set Di← Gi.

3. (Initialize data structure G.) For each synchronization in-
stant i from 1 to p, set Gi← XSi,n.

4. (Recomputation of synchronization instants.) For each
synchronization instant i from p+1 to kG:
(a) Compute Gi.
(b) Set XSi,n← Gi.

5. (Recovery of data structure G.) For each synchronization
instant i from 1 to p, set Gi← Di.

6. (Return data structure XS.) Return XSn.

In step (1), when a contention is detected, previously com-
puted instant XSm,n is corrected and set to GE . In step (2),
the values stored in data structure G are temporarily saved
because G is used for recomputation. In step (3), G is initial-
ized with some of the previously computed instants. We de-
note by p the number of synchronization instants that must
be loaded in data structure G before recomputation. In step
(4), the synchronization instants are successively recomputed
and stored in data structure XS. Recomputation is still done
by traversing the defined temporal dependency graph. Fi-
nally, data structure G is recovered in step (5) to allow the
computation of new intermediate synchronization instants.
In that case, the complexity of the correction technique is
related to the number of synchronization instants to be re-
computed.

In the presented situation, only one set of synchroniza-
tion instants stored in XS is modified. More generally, the
correction of previously computed instants can concern var-
ious sets of synchronization instants. This situation is illus-
trated in Fig. 17. In the upper part of Fig. 17, a disturbing
influence causes xS(k− 1), xE(k− 1), xS(k), and xE(k) to
become erroneous. The correction of the computed instants
is considered in the lower part of Fig. 17. The correction
can be perceived here as using state equations (1) and (2)
to successively compute X(k− 1), y(k− 1), and then X(k),

14 Sébastien Le Nours, Adam Postula

/Compute_y()

ts
u(k)

Disturbing influence

y(k)xS(k) xE(k)

/Compute_y()

ts
u(k) y(k)

/Correct_y(): correction of XSn-1 and XSn

yc(k)

(a)

(b)

Correction of computed instants

xS(k-1) xE(k-1) y(k-1)

xS
c(k-1) xE

c(k-1) yc(k-1) xS
c(k) xE

c(k)

Fig. 17 (a) Disturbing influence in the case of a shared resource, (b)
equivalent model execution with correction of multiple sets of synchro-
nization instants.

y(k). During the correction process, steps (3) and (4) must be
performed iteratively to correct the required sets of synchro-
nization instants stored in XS. Therefore, the complexity of
the correction technique depends on the number of synchro-
nization instants and the number of sets of synchronization
instants to correct. The influence of the complexity of the
correction technique is evaluated in next section.

6 Experiments

Validation of the proposed simulation approach is first pre-
sented. We then estimate the influence of the complexity of
the proposed approach. Finally, the benefits of the simula-
tion approach are highlighted through a case study.

6.1 Validation of the simulation approach

Validation of the proposed simulation approach first con-
cerns the Petri net patterns used for computation of synchro-
nization instants. We considered the industrial modeling and
simulation framework Intel CoFluent Studio [15] to capture
system models and to compare achieved simulation results
when using the proposed simulation approach. Using this
framework, system models are typically described through
three views: application, platform, and mapping views. Once
captured, system models are generated as SystemC descrip-
tions and then their executions can be analyzed. We estab-
lished Petri net patterns for the main modeling statements
supported by Intel CoFluent Studio. The equivalent model
depicted in Fig. 14 was captured to allow simulation with the
proposed approach. The implementation of actions Compute_y()
and Correct_y() corresponded to C++ code developed to
compute and correct synchronization instants. The Petri net
patterns were validated by comparing the achieved simula-
tion results for various system models. Models were simu-
lated with randomly spaced input stimuli and random values

of delays for computation and communication statements.
Models were run on a 2.80 GHz Intel-E5 machine with 8
GBytes RAM.

We consider here the didactic example of Fig. 1 to il-
lustrate the benefits of the proposed approach. In this ex-
ample, the communication interfaces are the only shared
resources of the platform model with limited concurrency,
i.e. read/write operations and data transfers can not be per-
formed simultaneously by each interface. First, we used In-
tel CoFluent Studio to capture the system model of Fig.
1. The achieved model was executed using the trace-driven
simulation adopted in Intel CoFluent Studio and it was con-
sidered as the reference execution. We then used this frame-
work to implement models following the proposed approach.
In the considered example, processes F1, F2, F3, and F4
mapped on platform resources were abstracted in an equiva-
lent model. The model of Fig. 14 was used in three different
scenarios. First, an execution using instantaneous computa-
tion of synchronization instants was considered and no cor-
rection of synchronization instants was implemented. Sec-
ond, an execution using instantaneous computation of syn-
chronization instants was considered with the proposed cor-
rection technique. The correction technique was only used
to adjust the instants when concurrent accesses to interfaces
IF1 and IF2 were detected (i.e., data transfers through re-
lation M2). The third execution was considered with cor-
rection of the computed instants related to data transfers
through relations M2 and M4. The experimental setup con-
sisted of periodically generated data and communication and
computation delays were randomly set for each data pro-
cessed by the system model. We evaluated the accuracy of
the approach by comparing the simulation instants obtained
for 10000 generated data. The accuracy of models was eval-
uated for different occupation rates of the interfaces. Higher
occupation rates caused more conflicts at shared resources
and more corrections were needed. For each model, the er-
ror rate was measured as the number of erroneous synchro-
nization instants over all computed synchronization instants.
Fig. 18 presents the achieved accuracy with and without ap-
plication of the proposed correction technique. As expected,
when no correction was performed, the model accuracy de-
graded because the delays due to access conflicts were not
simulated. When the correction technique was used, the er-
rors were compensated. In the case of correction of instants
related to data transfers through M2 and M4, full error cor-
rection was achieved. In this situation, full error correction
was achieved whatever was the value of the occupation rate.
When the occupation rate of the interfaces increased, differ-
ent sets of synchronization instants were corrected. In Fig.
18, observation (1) corresponds to a situation where two sets
of synchronization instants were corrected. Observations (2)
and (3) respectively correspond to situations where up to

A Hybrid Simulation Approach. . . 15

0

2

4

6

8

10

12

14

16

5 10 15 20 25

No correction

Correction of instants for transfers through M2

Correction of instants for transfers through M2
and M4

Occupation rate (%)

E
rr

or
 r

at
e

(%
)

(3)(2)(1)

Fig. 18 Accuracy of simulation models according to the occupation
rate of the interfaces.

Table 1 Measurement of achieved simulation duration

Execution Simulation duration (s)
Trace-driven simulation 25

State-based model execution with no
correction

1.4

State-based model execution with
correction

1.4

three and five sets of synchronization instants were corrected
during simulation.

The durations of the simulations were measured for 10000
generated data. The considered occupation rate was set at
14.5% which corresponds to the situation where two sets of
synchronization instants are corrected. Each model was exe-
cuted ten times and no significant variation of the execution
time was observed. The average durations are given in Table
1. As expected, the reduction of the number of simulation
events resulted in shorter simulation times. The achieved
simulation speed-up is evaluated to 17.86 with no loss of
timing accuracy. Besides, we observe that in the considered
experiment the correction technique has no significant influ-
ence on the model execution time.

6.2 Influence of the complexity of the approach

In the considered approach, the number of synchronization
instants that are computed, and thus the size of data structure
G, depends on the number of processes of the application
that are abstracted. The complexity of the approach strongly
depends on the number of elements that are abstracted. To
evaluate this relationship, we considered different system
models with the same platform model, but with a varying
number of processes. The organisation of the studied sys-
tems is illustrated in Fig. 19. Architecture models with dif-
ferent sets of processes were successively considered and

F1 F3

F2

M1 M2

M4
M3

M5 F4 M6

2S+4 functions

Fout1 FoutSFinSFin1

P1 P2

Communication bus N

IF1 IF3

Bus
arbiter

IF2 IF4

Application
model

Mapping

Platform
model

Fig. 19 System model with varying number of processes.

Size of data structure G

Si
m

ul
at

io
n

sp
ee

d-
up

0
2
4
6
8

10
12
14
16
18
20

0 100 200 300 400 500 600 700 800 900 1000

(4)
(8)

(20)

(36)

(68)

(100) (132)

Fig. 20 Influence of the complexity of computation and correction
techniques on the achieved simulation speed-up.

captured using Intel Cofluent Studio. The interfaces were
still considered as the only shared resources with limited
concurrency. The proposed approach was adopted for each
system model and simulation efficiency was evaluated. In
every case, timing accuracy was still preserved by applica-
tion of the proposed approach. The simulation runtime was
measured with the same conditions as in the previous exper-
iment. Fig. 20 gives the mean measured simulation speed-
up for the different system models. The achieved simulation
speed-up is given according to the size of data structure G
used to compute and correct synchronization instants. The
number of processes that were abstracted using the proposed
approach is given in parenthesis. The previous observation
considered an application with four processes, the size of
data structure G was 46, and the simulation speed-up was
17.86. As expected, when the number of abstracted pro-
cesses increases the computation and correction techniques
get more influence on the simulation duration. As for ex-
ample, in the situation where 20 processes were abstracted
a simulation speed-up of 14.5 was achieved with no loss of
timing accuracy. In the situation where 100 processes were
abstracted, the size of data structure G was more than 700.
The achieved simulation speed-up was about 4 with still the
same timing accuracy.

This experiment illustrates the influence of the complex-
ity of the computation and correction techniques. Various

16 Sébastien Le Nours, Adam Postula

factors influence the achievable speed-up. One factor is about
the amount of simulation events that can be saved by ab-
stracting some elements of a system model. Therefore, this
approach can be efficiently applied to abstract system mod-
els with long event streams and many communications be-
tween processes. Application of this simulation approach
requires good understanding about the abstracted modeling
statements. It represents thus a potential solution when ex-
isting performance models are reused and combined to con-
sider systems on a larger scale.

6.3 Case study: modeling and simulation of a
communication receiver architecture

The case study concerns the analysis of a communication re-
ceiver implementing part of the LTE physical layer. The LTE
protocol is adopted for fourth generation of mobile radio ac-
cess [8]. The baseband architecture demands high compu-
tational complexity under real-time constraints and multi-
processor implementation is required [16]. This protocol sup-
ports high flexibility to answer varying user demands. The
studied architecture is depicted in Fig. 21. The application
depicted in the upper part of Fig. 21 represents a single in-
put single output (SISO) configuration of a LTE receiver.
The baseband functions of the receiver are OFDM demodu-
lation, channel estimation, equalization, symbol demapping,
turbo decoding, and transport block reassembling. An LTE
symbol is received from the environment each 71428 ns and
OFDM demodulation is performed for each received LTE
symbol. Pilot symbols are inserted in the received data frames
to facilitate channel estimation. The effects of channel prop-
agation are compensated through the equalization function.
Process Symbol Demapper represents the interface between
symbol level processing and bit processing. Channel decod-
ing is performed through a turbo decoder algorithm. Process
Transport Block Reassembly receives a binary data block
through relation Segmented Block. Data blocks are then trans-
mitted to the medium access control layer each 1 ms, when
14 OFDM symbols have been received and processed. Dif-
ferent configurations are supported by the receiver according
to the parameters of the received data frames. The param-
eters concern the size of the LTE symbol, the modulation
scheme, the number of iterations of the channel decoder,
and the number of data blocks allocated to each user. Ta-
ble 2 gives the main possible values of data frame param-
eters. These parameters directly influence the computation
and communication workloads of the application.

The studied platform is made of two computation re-
sources, one communication bus, and four communication
interfaces. The turbo decoder process is implemented as a
dedicated resource whereas other functions are allocated to
a digital signal processor. Functions allocated to processor

Table 2 Parameters of LTE data frames.

Modulation scheme QPSK, 16QAM, 64QAM
Number of active sub-carriers 72, 180, 300, 600, 900, 1200

Number of data blocks 6, 15, 25, 50, 75, 100
Signal bandwith (MHz) 1.4, 3, 5, 10, 15, 20

P1 are thus sequentially executed. The communication of re-
lation Code block is managed by interfaces IF1 and IF2. The
communication of relation Segmented block is managed by
interfaces IF3 and IF4. As previously, we assumed that the
interfaces cannot manage simultaneously data transfer and
read/write operations.

We captured this system model using the Intel CoFlu-
ent Studio framework to evaluate the usage of the compu-
tation and communication resources and to estimate the re-
quired computational complexity. A workload model of the
application was built to capture functions behavior and data
dependencies. We evaluated the number of operations re-
quired for each function [3]. The computational complex-
ity of each function depends on the parameters of the re-
ceived data frames. The system model of Fig. 21 was first
captured through three views and it was simulated using the
trace-driven approach. The proposed simulation approach
was then applied to simulate the architecture model. We used
the presented Petri net patterns to formulate the dependen-
cies among the application processes. We also considered
the limited concurrency of communication interfaces. A tem-
poral dependency graph was created to compute the syn-
chronization instants during simulation. The size of related
array G was 84. The simulated model had the same organi-
zation as in Fig. 14. Part (a) of Fig. 22 illustrates achieved
evolution over the simulation time of functions allocated to
P16. Using the proposed simulation approach, intermediate
synchronization instants among functions were locally com-
puted for each LTE symbol. In the considered case study, a
Transport block was not produced each time a LTE symbol
was received and the intermediate synchronization instants
were thus successively computed and stored before a syn-
chronization instant at the output of the executable model
was computed. Part (b) of Fig. 22 illustrates the computa-
tional complexity over the observation time. The observed
results correspond to the reception of a LTE frame with the
following parameters: modulation scheme: QPSK, number
of active sub-carriers: 300, number of data blocks: 12. A
maximum computational complexity per time unit of 1.6
GOPS was observed for P1 and 221.7 GOPS was observed
for P2. Application of the proposed simulation approach pro-
vided same timing accuracy compared to trace-driven simu-
lation. We evaluated the achieved simulation speed-up with
the same conditions as in the previous experiments. A mean

6 Delays due to communications between functions are not detailed
for clarity reasons.

A Hybrid Simulation Approach. . . 17

OFDM
demodulator

Equalizer

Channel
estimator

Symbol
demapper

Turbo
decoder

Transport
block

reassembly

Application
model

Mapping

LTE
symbol

Data
symbol

Pilot
symbol Estimated

channel factor

Equalized
symbol

Code
block

Segmented
block

Transport
block

P1: specialized processor P2: hardware accelerator

Communication bus N

IF1 IF3

Bus
arbiter

IF2 IF4

Platform
model

Code block

Segmented block

71428 ns

1 ms

14 LTE symbols

1 ms

Processed data

Fig. 21 Evaluated LTE communication receiver.

(a)

u(k) u(k+1) u(k+2)

1,8

1,2

0,6

P1: computational complexity per time unit (GOPS)

Platform
resources

u(k+3)

OFDM
demodulator

(b)

u(k) u(k+1) u(k+2) u(k+3)

Channel
estimator

ts (µs)

to (µs)

Equalizer

y(k)

Fig. 22 Evolution of the resource usage of the studied system over the
simulation time (a) and the observation time (b).

simulation speed-up by a factor of 4 was achieved with no
loss of timing accuracy. Other organizations with the same
application and different mappings could be considered. Us-
ing the proposed approach, graphs with similar complexity
could thus be created and similar simulation speed-up could
be expected.

In this paper, we have presented application of the simu-
lation approach for contention at communication resources.
Other forms of resource contention could be taken into ac-
count. Petri nets are well adapted to express other forms
of resource access policies. In the case of computation re-
sources, Petri nets could be built to describe execution of
multiple functions sharing the same processor. In the pro-
posed approach, instants at which resources are used would

still be locally determined. In our future work, application of
the approach to other scheduling and management policies
will be considered. Besides, according to the application and
platform models, the size of the Petri net, and the related
temporal dependency graph, can significantly increase. One
important limitation of the approach is thus caused by the
size of the required Petri net to appropriately describe re-
source management.

In this paper, the models supporting the proposed sim-
ulation approach were created manually. However, creation
of temporal dependency graphs could be done in a system-
atic way by analyzing the system model. This requires full
validation of patterns related to modeling statements. Timed
Petri net and its implementation through temporal depen-
dency graph represent convenient formalisms to define and
implement patterns. A generation tool could thus assist au-
tomatic generation of simulation models and significantly
reduce the modeling effort. Generation of temporal depen-
dency graphs would take place during the generation phase
of executable simulation models. This tool development is a
part of our future work. The generation process should also
concern the creation of an executable model for the equiv-
alent model presented in Fig. 14. In the future, this equiva-
lent model should be extended to appropriately handle input
asynchronous events caused by interrupts.

7 Conclusion

In this article, we presented a hybrid simulation approach
that improves the simulation efficiency of performance mod-
els of hardware-software architectures. In the scope of this
article, we focused on data flow oriented systems with pos-
sible contentions at shared communication resources. We
have shown that the proposed simulation techniques provide
significant simulation speed-up with no loss of timing accu-
racy.

18 Sébastien Le Nours, Adam Postula

Existing reduction techniques of timed Petri net could
be used for reducing the state-explosion problem of Petri
nets. These techniques aim at reducing the size of a Petri net
while retaining properties. Such techniques would allow the
size of the manipulated graphs to be decreased and applica-
tion of the simulation approach to more complex systems.
Future work will address the development of a generation
tool to support the creation process of simulation models.
Advanced modeling statements and arbitration policies for
multi-processor platforms will also be addressed.

References

1. Arpinen, T., Salminen, E., Hämäläinen, T.D., Hännikäinen, M.:
Performance evaluation of UML-2 modeled embedded streaming
applications with system-level simulation. EURASIP Journal on
Embedded Systems 2009, 826296 (2009)

2. Baccelli, F., Cohen, G., Olsder, G., Quadrat, J.: Synchronization
and linearity, an algebra for discrete event systems. Wiley & Sons
Ltd, New York (1992)

3. Berkmann, J., Carbonelli, C., Dietrich, F., Drewes, C., Xu, W.: On
3G LTE terminal implementation - standard, algorithms, complex-
ities and challenges. In: 2008 International Wireless Communi-
cations and Mobile Computing Conference, pp. 970–975 (2008).
DOI 10.1109/IWCMC.2008.168

4. Bobrek, A., Pieper, J.J., Nelson, J.E., Paul, J., Thomas, D.E.:
Modeling shared resource contention using a hybrid simula-
tion/analytical approach. In: Proc. Design, Automation and Test
in Europe (DATE’04), pp. 1144–1149. Paris, France (2004)

5. Cai, L., Gajski, D.: Transaction level modeling: an overview. In:
In Proc. of the International Conference on Hardware/Software
Codesign and System Synthesis (CODES+ISSS’03), pp. pp. 19–
24. Newport Beach, CA, USA (2003)

6. Chakraborty, S., Künzli, S., Thiele, L.: A general framework
for analyzing system properties in platform-based embedded sys-
tem designs. In: Proc. Design, Automation and Test in Europe
(DATE’03), pp. 190–195. Munich, Germany (2003)

7. Chen, S.Y., Chen, C.H., Tsay, R.S.: An activity-sensitive con-
tention delay model for highly efficient deterministic full-system
simulations. In: In Proc. of Design, Automation and Test in Eu-
rope (DATE’14) (2014)

8. Dahlman, E., Parkvall, S., Skold, J., Beming, P.: 3G evolution:
HSPA and LTE for mobile standard. Elsevier Academic Press,
Amsterdam (2008)

9. Densmore, D., Passerone, R., Sangiovanni-Vincentelli, A.: A
platform-based taxonomy for ESL design. IEEE Design and Test
of Computers pp. 359–374 (2006)

10. Dömer, R., Gerstlauer, A., Peng, J., Shin, D., Cai, L., Yu, H.,
Gajski, D.: System-on-chip environment: A SpecC-based frame-
work for heterogeneous MPSOC design. EURASIP J. Embed.
Syst. 2008(3), pp.1–13 (2008)

11. Erbas, C., Pimentel, A.D., Thompson, M., Polstra, S.: A frame-
work for system-level modeling and simulation of embedded sys-
tems architectures. EURASIP J. Embed. Syst. 2007, pp. 1–11
(2007)

12. Gajski, D.D., Abid, S., Gerstlauer, A., Schirner, G.: Embedded
system design: modeling, synthesis and verification. Springer
(2009)

13. Gerstlauer, A., Haubelt, C., Pimentel, A.D., Stefanov, T., Gajski,
D.D., Teich, J.: Electronic system-level synthesis methodologies.
IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems 28(10), 1517–1530 (2009)

14. IEEE computer society: IEEE standard SystemC language
reference manual. IEEE Std. 1666–2011 (2011). URL
http://standards.ieee.org/getieee/1666/

15. Intel: Intel cofluent studio (2017). URL
http://www.intel.com/content/www/us/en/cofluent/intel-cofluent-
studio.html

16. Jalier, C., Lattard, D., Jerraya, A.A., Sassatelli, G., Benoit, P., Tor-
res, L.: Heterogeneous vs homogeneous MPSoC approaches for
a mobile LTE modem. In: Design, Automation Test in Europe
Conference Exhibition (DATE 2010), pp. 184–189 (2010). DOI
10.1109/DATE.2010.5457213

17. Keinert, J., Streubühr, M., Schlichter, T., Falk, J., Gladigau, J.,
Haubelt, C., Teich, J., Meredith, M.: SystemCoDesigner-an au-
tomatic ESL synthesis approach by design space exploration and
behavior synthesis for streaming applications. ACM Trans. Des.
Autom. Electro. Syst. 14(1), pp.1–23 (2009)

18. Khaligh, R.S., Radetzki, M.: Modeling constructs and kernel for
parallel simulation of accuracy adaptive tlms. In: 2010 Design,
Automation Test in Europe Conference Exhibition (DATE 2010),
pp. 1183–1188 (2010). DOI 10.1109/DATE.2010.5456987

19. Kreku, J., Hoppari, M., Kestilä, T., Qu, Y., Soininen, J., Anders-
son, P., Tiensyrjä, K.: Combining UML2 application and SystemC
platform modelling for performance evaluation of real-time em-
bedded systems. EURASIP Journal on Embedded Systems 2008
(2008)

20. Künzli, S., Poletti, F., Benini, L., Thiele, L.: Combining simula-
tion and formal methods for system-level performance analysis.
In: Design, Automation and Test in Europe (DATE), pp. 236–241.
Munich, Germany (2006)

21. Le Nours, S.: Timing correction technique for fast and accurate
state-based performance models. In: Proc. Forum on specification
and design languages (FDL’15) (2015)

22. Le Nours, S., Postula, A., Bergmann, N.: A dynamic computation
method for fast and accurate performance evaluation of multi-core
architectures. In: Proc. Design, Automation, and Test in Europe
(DATE’14). Dresden, Germany (2014)

23. Lieverse, P., van der Wolf, P., Vissers, K., Deprettere, E.: A
methodology for architecture exploration of heterogeneous signal
processing systems. Journal of VLSI Signal Processing 29, 197–
207 (2001)

24. Lu, K., Muller-Gritschneder, D., Schlichtmann, U.: Analytical
timing estimation for temporally decoupled TLMs considering re-
source conflicts. In: Proc. Design, Automation and Test in Europe
(DATE’13), pp. 1161–1166. Grenoble, France (2013)

25. Mirabilis: Mirabilis visualsim. URL
http://www.mirabilisdesign.com

26. Pimentel, A.D., Thompson, M., Polstra, S., Erbas, C.: Calibration
of abstract performance models for system-level design space ex-
ploration. Journal of Signal Processing Systems 50, pp. 99–114
(2008)

27. Razaghi, P., Gerstlauer, A.: Host-compiled multicore system sim-
ulation for early real-time performance evaluation. ACM Trans.
Embed. Comput. Syst. 13(5s), 166:1–166:26 (2014). DOI
10.1145/2678020. URL http://doi.acm.org/10.1145/2678020

28. Savoiu, N., Shukla, S., Gupta, R.: Improving SystemC simulation
through petri net reductions. In: Proceedings of International Con-
ference on Formal Methods and Models for Co-Design (MEM-
OCODE’05), pp. 131–140 (2005)

29. Schirner, G., Dömer, R.: Result-oriented modeling - a novel tech-
nique for fast and accurate TLM. IEEE Transactions on computer-
aided design of integrated circuits and systems 26(9), 1688–1699
(2007)

30. Schirner, G., Dömer, R.: Introducing preemptive scheduling in ab-
stract RTOS models using result oriented modeling. In: Proc. De-
sign, Automation and Test in Europe (DATE’08), pp. 122–127.
Munich, Germany (2008)

A Hybrid Simulation Approach. . . 19

31. Schirner, G., Dömer, R.: Quantitative analysis of the
speed/accuracy trade-off in transaction level model-
ing. ACM Trans. Embed. Comput. Syst. 8(1), 4:1–
4:29 (2009). DOI 10.1145/1457246.1457250. URL
http://doi.acm.org/10.1145/1457246.1457250

32. Seidner, C., Roux, O.H.: Formal methods for systems engineering
behavior models. IEEE Transactions on industrial informatics 4,
280–291 (2008)

33. SpaceCodesign: Space studio. URL
http://www.spacecodesign.com

34. Stattelmann, S., Bringmann, O., Rosenstiel, W.: Fast and accurate
resource conflict simulation for performance analysis of multi-
core systems. In: Proc. Design, Automation and Test in Europe
(DATE’11). Grenoble France (2011)

