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Abstract

This paper presents the runs that were submitted to the TRECVid
Challenge 2017 for the Video Hyperlinking task. The goal of the task is to
propose a list of video segments, called targets, to complement query video
segments defined as anchors. The data provided with the task encourage
participants to make use of multiple modalities such as the audio track
and the keyframes. In this context, we submitted four runs: 1) BiDNNFull
uses a BIDNN model to combine ResNet with Word2Vec; 2) BiDNNFilter
makes use of the same model and also exploits the metadata to narrow
down the list of possible candidates; 3) BiDNNPinv tries to improve on
the anchor keyframe fusion by using the Moore-Penrose pseudo-inverse
and finally 4) noBiDNNPinv tests on the relevance of not using a BIDNN
to fuse the modalities. Our runs were built based on a pre-trained model
of ResNet as well as the transcripts and the metadata provided by the
organizers of the task. The results show a gain in performance over the
baseline BIDNN model both when the metadata filter was used and when
the keyframe fusion was done with a pseudo-inverse.

1 Introduction

The video hyperlinking task was once again revisited this year in TRECVid
[ABFT17|. Its goal is to create links between different fragments of videos that
share a similar topic. These links are established across a large and diverse
collection of videos. Given a source video fragment, called an anchor, a list of
video segments (or targets) is proposed. In the case of this evaluation, the an-
chors were manually created. And the systems proposed by participants have to
automatically choose video segments relevant to a given anchor. This relevance
or similarity should ideally be based on the semantic content of each video. In
practice, relevance can often be expressed as a similarity criterion.

The challenge is to propose targets that can justifiably be linked to a given
anchor and at the same time avoid redundancy. One of the ways to do it is to
introduce a level of diversity that can offer unexpected yet relevant results.

The creation of hyperlinks consists of two main steps: a segmentation step, in
which target candidate segments are extracted from the entire video dataset; and



a ranking step, in which the most relevant targets are selected for every anchor.
The ranking is based on content analysis and different similarity measures. Both
the segmentation and ranking are subject to many design decisions, each with
its advantages and drawbacks.

For example, one could use a naive segmentation approach compensated
by widely overlapping segments, or a more sophisticated segmentation allowing
for the automatic removal of low-interest video fragments. In the first case,
overlapping segments offer more opportunities to find a good matching video
fragment for the anchor, while the second approach allows for less costly and
faster comparisons at the ranking step due to fewer video pairs to compare.
As for the ranking step, many aspects of the videos can be taken into account:
from what is shown to what is said and from how it is said to how it is shown.
Moreover, the Video Hyperlinking task provides many resources, including au-
tomatic transcripts, keyframes, visual concepts extracted from the keyframes
and user-created metadata.

Our main goal in this year’s submission is to compare multimodal and cross-
modal approaches. We also want to improve the performance of these systems
by exploring additional modalities (i.e. metadata) and experimenting with dif-
ferent fusion techniques for keyframes.

The rest of the paper is organized in the following way. Section 2 presents
the data used in this evaluation and its representation. In Section 3 different
runs are presented. Finally, Section 4 discusses some preliminary results.

2 Data and segmentation

The dataset used in this evaluation was the same as in 2016, namely the BlipTV
dataset [AFM™16]. It contains 14 838 videos of a mean length of around 13
minutes. The videos present a variety of topics from computer science tutorials
and sightseeing guides to homemade song covers. They are provided in many
languages but a vast majority of them are in English. All the videos were used
to train the models regardless of the language, while the anchor video fragments
were exclusively in English.

Our submission to the task can be considered as an evolution of approaches
that were proposed by our team last year [BVST16] and, therefore, both have
several key components in common. As in 2016, all of our four runs use the
automatic transcripts that were provided by LIMSI [GLAO02] to segment the
input videos.

Last year’s segmentation of the videos was expanded to improve coverage
and provide more choices of potential targets. To do so, we chose to keep all
the segments that last between 50 and 60 seconds (approximately half of the
maximum authorized length for the segments) that did not cut the speech. This
was implemented using a constraint programming framework. When there were
no segments between 50 and 60 seconds in a video, the duration boundaries
were extended to 10 and 120 seconds.

As a result, we obtained approximatively 1.1 million segments. As these
segments were created naively and exhaustively, they often overlapped a lot.
Nevertheless, they seem to provide better coverage and more choice than the
segmentation used by our team last year (which was obtained following the pro-
cedure described in [BVS'16]). The latter segmentation was used as well as an



] Single | Average | Max

Models Layer | Dims | P@Q5 | P@10 | P@Q5 | PQ10 | P@5 | PQ10
VGG19 FC8 | 1000 | 41.60 | 41.27 | 43.40 | 41.60 | 42.60 | 41.03
VGG19 FC7 | 4096 | 40.60 | 40.60 | 42.40 | 42.10 | 41.00 | 40.97
VGG19 FC6 | 4096 | 38.80 | 40.43 | 41.00 | 40.60 | 40.00 | 40.73
Inception FC 1000 | 40.40 | 41.83 | 41.00 | 41.39 | 42.60 | 41.73
Inception AP 1024 | 40.40 | 39.27 | 44.00 | 41.70 | 42.60 | 40.83

ResNext-101 | AP 2048 | 41.00 | 39.37 | 41.40 | 40.10 | 41.80 | 39.90
ResNet-200 FC 1000 | 43.80 | 41.57 | 47.20 | 44.37 | 47.60 | 44.87
ResNet-200 AP 2048 | 42.00 | 41.30 | 44.80 | 43.20 | 43.80 | 43.10
ResNet-152 AP 2048 | 44.40 | 41.37 | 45.60 | 41.67 | 45.20 | 40.40

Table 1: Comparison of different visual descriptors using a cosine distance. Tests
were made on the development set.

additional means to increase the number of target candidates. In total, around
1.4 million segments were used, which roughly is a 400% increase compared to
last year.

Once the segments were ready, their transcripts and keyframes were ex-
tracted. Different experiments were made to choose the best vectorial repre-
sentation for both the visual and the transcript modalities. These experiments
as well as the preprocessing and the final embedding for each modality are
described in detail in the 2 following subsections.

2.1 Visual representation

For the visual embeddings, several different deep convolutional neural network
(CNN) architectures were tested as well as layers, from which the embeddings
were obtained. The development anchor set was used in order to make the
selection of a visual representation possible. This experiment was done using
the annotations that were obtained last year. For each annotated target a single
keyframe was extracted and subsequently embedded using different pre-trained
CNN models. The same thing was done for the anchors on the development set.
However in most cases, more than one image was used for each anchor. Each
anchor had a list of annotated target candidates (both correct and not). A
cosine distance measure was used to construct the ranking between the anchors
in the development set and their corresponding annotated targets.

The results of these experiments can be seen in Table 1. Two evaluation
measures were used: precision at 5 (P@5) and precision at 10 (P@10). Next
to the name of the network, the name of the layer is shown from which the
embedding was taken as well as the dimension of that embedding. There were
either average pooling (AP) layers or fully connected layers (FC). A set of
different state-of-the-art deep architectures were tested, including VGG19 [SZ14]
(which was used in the previous evaluation in 2016), Inception [SLJ*15], two
different versions of ResNet [HZRS16] and ResNext [XGD'16].

Because of the large number of segments, each target was represented by a
single keyframe. Conversely, for the anchors on average 3 keyframes were used to
describe each anchor segment. This gave the opportunity to test different fusion



techniques for the anchor representation. At this stage, 3 simple approaches
were considered:

e Using a single keyframe and its vector representation while discarding
the rest.

e Taking the average of all the vectors for a given anchor.

e Using the maximum value of each feature across the vectors for a given
anchor.

Based on the results from Table 1, the fully connected layer from ResNet-200
was chosen along with the max representation for the anchor.

2.2 Transcript representation

The preprocessing of the transcripts consisted of a tokenization step. The model
we used to create the textual embeddings was the same as last year, namely a
word2vec skip-gram model with hierarchical sampling [MSC™13|. It uses a win-
dow size of 5 and produces a representation vector with a size of 100. Other con-
tinuous representations were tested such as doc2vec [LM14] and skip-thought
|[KZS*15]; however no improvements over word2vec were observed.

3 Owur approach

Contrary to our choices in 2016, we decided to put more emphasis on the choice
of visual descriptors, which seems to be a very important component in the
overall performance. Moreover, the use of user-made metadata was explored
and used in one of the runs. All of the above ideas are discussed in greater
detail in the subsequent subsections.

3.1 Crossmodal Bidirectional Joint Learning - Bi:DNN-
Full

In the first run, a bidirectional deep neural network (BiDNN) was trained with
ResNet as a visual descriptor and a Word2Vec as a textual descriptor. This run
is our baseline for testing other improvements to the model.

The BiDNN [VRG16] creates a crossmodal translation between two different
modalities. This is done through the use of two separate neural networks for
each translation while having the weights tied between the middle layer of each
network. This should force the network to learn a common multimodal repre-
sentation. Formally, the structure of the network can be defined as follows. Let
hl(-J ) denote the activation of a hidden layer at depth j in the network 7 (indi-
cating one of the two modalities), x; is the feature vector for a given modality 7

and y; is the corresponding output of the network. The networks can be defined

by their weight matrices Wl-(j ) and their bias vectors bl(-j ) for each layer j. An

activation function f is used to get the final output of each layer. The entire
architecture (with 3 hidden layers where the middle one is the embedding) can
be defined as follows:

WY = fW oz +00) i=1,2 (1)

?



hi? = W@ xhi 4 5) (2)

hi? = FW® i 4 0) (3)
hy? = FVEOT g 40 (4)
hy? = FWT 5 hg? +b57) (5)

0i = JW s b 1Y) (6)

The weight matrices W2 and W®) are used twice because of the weight
tying. The input to the network is 1000 and 100 dimensions for the visual CNN
feature vector and Word2Vec vector, respectively. The network is trained for
300 epochs using stochastic gradient descent with the learning rate of 0.1 and
momentum 0.9. The tanh function was used as the activation function f as well
as a dropout of 0.2. The output embedding is L2-normalized. After embedding
both anchors and targets, the ranking is created based on a cosine distance.

3.2 BiDNN with metadata filter - BiDNNUFilter

For the second run, in order to increase the precision of our system, we de-
cided to use the metadata to filter out and narrow down the list of possible
video candidates for each anchor. For each video, a file of metadata, provided
by the organizers, contains various information like the title of the video, a
short description, a list of tags, its license, informations about the uploader of
the video, etc. This information was created by different uploaders and can,
therefore, greatly vary in quality and quantity from one video to another.

The tags seemed to be a more relevant information source to use as it gives
more precision about the topic of the video. Therefore, using a list of tags as
a filter can allow our system to search for good targets only among the more
relevant videos. To have an idea of the global quality of the tags, we computed
some statistics on the dataset. We found that 77% of the videos had tags and
that the average number of tags per video is 4.71. These numbers seemed quite
low and could greatly reduce the number of target candidates to the point where
there will be not enough diversity among them.

We chose to augment the size of the tag list by using the information in
the descriptions as 86.6% of the videos had a description with a mean length
of approximatively 40 words, stopwords excluded. To transform the written
text of the descriptions to a list of keywords, we extracted verbs, nouns and
adjectives and then went through a step of lemmatization followed by stopword
and hapaxes removal. The augmented list of keywords — composed of the tags
and the words from the description — brought more flexibility to our run.

The model of the second run is the same as in the previous one. The filter
is added at the end of the pipeline where the system compares the vectorial
representation of the anchor with the targets.



3.3 BiDNN with pseudo-inverse - BiDNNPinv

The third run tries to improve on the keyframe aggregation. For each anchor,
several keyframes are extracted from a corresponding video segment. These
images are aggregated to deal with different variations across the video seg-
ments. This was done using the Moore-Penrose pseudo-inverse, inspired by
[SJ15] where it was shown that this approach can improve the search quality.
This aggregation method called memory vectors can be defined in the following
way. Given a set of anchor vectors represented as columns in a d X n matrix
X = [z1,...,7,] where z; € R?, the memory vector m can be described thanks
to the Moore-Penrose pseudo-inverse X as:

m(X) = (X+)T1n = X(XTX)il]-n (7)

where 1,, is a n dimensional vector with all values set to 1. This aggregation
replaced the fusion techniques (average and max) presented in Section 2.1. It
was later used alongside the transcript vector as an input to the BiIDNN to create
embedded crossmodal representations of the anchors. The ranking procedure
follows the same steps as in the BiDNNFull run in Section 3.1.

3.4 Multimodal run with pseudo-inverse - noBiDNNPinv

Finally, the last run tests the usefulness of the BiDNN itself. That is, instead
of using the BiDNN to create a crossmodal representation of two modalities,
a concatenation of the vectors of each modality was used instead. This was
done with the pseudo-inverse memory vectors (described in Section 3.3) and the
transcript vectors from Word2Vec for the anchors. Considering the targets, the
output of ResNet was used instead of the memory vector. The vectors were
L2-normalized before concatenation. As before, the cosine distance was used to
determine the ranking of the targets for each anchor.

4 Results

The evaluation of the task was done via Amazon’s Mechanical Turker following
the procedure described in [ELA'17]. The scores of our runs using different
precision and MAP measures are shown in Table 2.

The run that uses the metadata—BiDNNFilter—obtained the best preci-
sion at 5 and 10, and the run that uses the pseudo-inverse keyframe fusion—
BiDNNPinv—shows the best results for MAP and precision at 20. Moreover,
we can notice that it also had the same precision at 10 as BiDNNFilter and a
very close precision at 5.

Additionally, a significant difference between our runs BiDNNPinv and no-
BiDNNPinv can be observed showing the interest of using the BIDNN model
for this task. However, considering the precision at 5 and 10, noBiDNNPinv
performs better that our baseline BiDNNFull. We cannot conclude anything
with absolute certainty — as both the vectorial representation and the keyframe
fusion method change between the runs, but we can hypothesize that having
a good keyframe fusion computation has more importance that just using a
crossmodal neural network with a simple fusion method.



Runs MAP P@s P@10 P@20

BiDNNFull 0.1334 | 0.6880 | 0.7120 | 0.4240
BiDNNFilter 0.1081 | 0.7600 | 0.7440 | 0.3800
BiDNNPinv 0.1529 | 0.7520 | 0.7440 | 0.4340
noBiDNNPinv | 0.1246 | 0.7280 | 0.7320 | 0.3960

Table 2: The results for the 4 runs submitted using MAP, precision at 5, at 10
and 20.

5 Conclusion

This year’s experiments validate our initial ideas about the importance of a
keyframe fusion method and the relevance of a list of keyword filtering. It will
be interesting to try and combine both of these points into a single model in
order to see if it can outperform the other ones.

We also have shown that both the use of metadata and the use of BIDNN
architectures are relevant and lead to better results. Therefore, trying to in-
corporate the metadata into the neural network architecture can be considered,
using it as a potential third modality. It can however be risky as, contrary to
the visual and textual representations, the metadata is available only on the
video level. There could be a lot of redundancy if this data is used to train a
model on the segment level.
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