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Background 
Study of meta-transcriptomic datasets involving non-model organisms represents bioinformatic 

challenges. The production of chimeric sequences and our inability to distinguish the taxonomic 

origins of the sequences produced are inherent and recurrent difficulties in de novo assembly 

analyses. The study of holobiont transcriptomes shares similarities with meta-transcriptomic, and 

hence, is also affected by challenges invoked above. Here we propose an innovative approach to 

tackle such difficulties which was applied to the study of marine holobiont models as a proof of 

concept. 

Results 
We considered three holobionts models, of which two transcriptomes were previously assembled 

and published, and a yet unpublished transcriptome, to analyze their raw reads and assign them to 

the host and/or to the symbiont(s) using Short Read Connector, a k-mer based similarity method. 

We were able to define four distinct categories of reads for each holobiont transcriptome: host 

reads, symbiont reads, shared reads and unassigned reads. The result of the independent 

assemblies for each category within a transcriptome led to a significant diminution of de novo 

assembled chimeras compared to classical assembly methods. Combining independent functional 

and taxonomic annotations of each partner’s transcriptome is particularly convenient to explore the 

functional diversity of an holobiont. Finally, our strategy allowed to propose new functional 

annotations for two well-studied holobionts and a first transcriptome from a planktonic Radiolaria-

Dinophyta system forming widespread symbiotic association for which our knowledge is limited.  

Conclusions 
In contrast to classical assembly approaches, our bioinformatic strategy not only allows biologists 

to studying separately host and symbiont data from a holobiont mixture, but also generates 

improved transcriptome assemblies. The use of Short Read Connector has proven to be an 

effective way to tackle meta-transcriptomic challenges to study holobiont systems composed of 

either well-studied or poorly characterized symbiotic lineages such as the newly sequenced marine 

plankton Radiolaria-Dinophyta symbiosis and ultimately expand our knowledge about these marine 

symbiotic associations.    
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In its scientific acceptation, symbiosis is defined as the living together of unlike organisms 1 

whatever the nature of their relationship [1], ranging from parasitism to mutualism. Symbiosis is a 2 

widespread phenomenon in the biosphere and plays crucial roles in evolution and ecology. One of 3 

the most popular examples of mutualism is the interaction between fungi and land plants, where 4 

fungi form mycorrhizae that help land plants to retrieve nutrients from soil [2]. In the ocean, benthic 5 

coastal ecosystems are structured and supported by symbiotic associations involving 6 

multipartners such as corals (Cnidaria, i.e. multicellular eukaryotes), microalgae (Dinophyceae, 7 

Symbiodinium spp., i.e. unicellular eukaryotes), and Bacteria. Breakdown of this symbiosis 8 

ultimately leads to coral bleaching (the loss of photosynthetic symbionts), dramatically affecting 9 

the whole reef ecosystems [3]. While coral bleaching has been largely studied, there is a growing 10 

evidence that other partners are involved in the holobiont system, and contribute to make coral 11 

reef persisting in oligotrophic seas. For instance, symbiotic association between sponges 12 

(Porifera, i.e. multicellular eukaryotes) and Bacteria (prokaryotes) allows Bacteria to grow within 13 

the mesohyl matrix of the sponge where they can be metabolically active and persist in a highly 14 

oligotrophic habitat. The symbiotic interactions between sponges and bacteria are currently poorly 15 

understood from the genomic point of view [4]. Symbiotic associations involving two unicellular 16 

eukaryotes are also widespread in the oceanic plankton [5–7,9]. For instance, the cosmopolitan 17 

mutualistic associations between heterotroph Radiolaria (host) and endosymbiotic microalgae play 18 

significant ecological and biogeochemical roles in the oceans [8] but the underlying genomic basis 19 

of such associations remains uncharacterized. Although not cultivable in vitro, nucleic acids 20 

extraction is nevertheless possible on such symbiotic partnerships, and this recently allowed 21 

shedding light on the identity of the partners and their co-evolutionary history [6, 7]. Several 22 

symbiotic microalgae have been identified using such molecular approaches, and many of them 23 

belong to the eukaryote Dinophyta [9]. Mainly because of their highly complex and large genomes, 24 

the lack of reference genomes for both Dinophyta and Radiolaria make their study challenging for 25 

de novo assembly and functional annotation [10, 11]. The study of the RNA mixture from a 26 
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holobiont system, being composed of the host and its symbiotic microbial communities offers the 27 

opportunity to characterized functional aspects through their expressed genes, and so in different 28 

abiotic conditions/decoupling the functional/metabolic role of each partner.  29 

Currently, RNA-seq approaches are the best available tools to obtain large amount of genomic 30 

information from uncultured organisms isolated in the environment [12, 13]. RNA sequencing for a 31 

holobiont is now possible [14–16] and has promoted the development of sequencing projects [17] 32 

for non-model organisms. Non-model holobiont RNA-seq datasets corresponds to a mixture of 33 

data coming simultaneously from the host and from the symbiont(s). Studying such datasets share 34 

similarities with meta-transcriptomics and requires de novo assembly of transcripts sequences, 35 

which implies large computational resources and has the potential to introduce biases such as 36 

generating numerous chimeric sequences resulting from the mis-assembly of RNA fragments from 37 

the host and from the symbiont(s) [18, 19]. A variety of analysis strategies has been developed to 38 

address meta-transcriptomic challenges. Some of these strategies avoid the assembly step to 39 

focus on identifying abundant species and significant functional differences between meta-40 

transcriptomes directly from raw data [20, 21]. Other strategies use statistical tools and machine 41 

learning algorithms to improve the quality of de novo assembly of meta-transcriptome by learning 42 

from their abundance information [22].  43 

Here we developed an original strategy aiming at improving de novo assembly for newly 44 

generated holobiont sequence dataset. We chose to use the Short Read Connector software in its 45 

Counter version (SRC_c) [23]. SRC_c is a fast kmer-based method initially developed to estimate 46 

the similarity between numerous (meta)genomic datasets by extracting their common sequences. 47 

We focused on holobiont transcriptomes for which a priori no or little genomic knowledge has been 48 

previously produced for host and symbionts, and we used SRC_c to compare these holobiont 49 

sequences to publicly available databases. Our strategy is to use SRC_c to assign at best 50 

holobiont sequences either to the host or to the symbionts before the de novo assembly step (Fig. 51 
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1). It allows then independent assembly of the datasets and prevents the potential mis-assemblies 52 

of reads from diverse origin. 53 

We applied our strategy to disentangle the sequences and then de novo assemble the 54 

transcriptome of three distinct marine holobiont systems (Fig 2). Two of them were already 55 

assembled and published. The first model (M1) involves a Cnidaria host (Orbicella faveolata, 56 

belonging to the Metazoa) and Dinophyta symbionts (Symbiodinium spp., a unicellular eukaryote 57 

belonging to the Alveolata) forming a mutualistic association [24, 25]. This symbiotic association 58 

represents the best-known example of symbiosis in marine ecosystems, and many studies have 59 

been made trying to understand coral bleaching events (i.e. the loss of symbionts) [26, 27]. The 60 

coral holobiont also encompass other microorganisms consisting of bacteria, archaea, fungi, 61 

viruses [28, 29]. In the second holobiont model (M2) the marine sponge Xestospongia muta 62 

(Porifera) harbors a dense (�40% of its volume) and diverse microbial community including marine 63 

protists (e.g. fungi), archaea and mainly bacteria [30–32]. The symbiotic associations between 64 

sponges and bacteria (suggested to be commensalism [33]) have become a major research focus 65 

to understand how sponges and their microbial communities can perform a variety of functional 66 

roles such as nutrition, cycling of metabolites and host defense allowing them to proliferate in 67 

oligotrophic conditions [34, 35]. We chose a third, yet unpublished, holobiont dataset (M3) 68 

involving two distinct lineages of protists (unicellular eukaryotes): the radiolarian Collozoum sp. as 69 

host and Dinophyta symbionts belonging to the Brandtodinium nutricula species [6]). In this 70 

association, the radiolarian host forms a gelatinous matrix of several centimeters, which contains 71 

hundreds of host cells and thousands of symbiotic microalgae (refer to image). Recent studies 72 

showed that this symbiosis is widely distributed in the ocean and significantly contribute to 73 

biomass and carbon export in the open ocean [36, 37]. As a proof of concept, we these holobiont 74 

transcriptomes datasets, and we compared quantitatively and qualitatively results obtained when 75 

involving SRC_c or not.  76 
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Figure 1 Theoretical overview on the application of SRC_c on holobiont transcriptome. The 
comparisons to (1) host and (2) symbiont reads/sequences library are done against the entire 
holobiont dataset to retrieve host and symbiont similar reads. The 4 resulting subsets (host, 
symbiont, shared and unassigned reads) are then processed independently (de novo assembly 
and downstream analyses) 
  

Results 
 
Choice of holobiont models and building of host and symbiont reference libraries 
 
For each of the three holobiont models (Fig. 2), we built reference sequences libraries 77 

representing host and symbiont(s) by selecting the taxonomically closest organisms available in 78 

public datasets (see Methods, Additional files 1). The M1 host reference library encompasses 22 79 

assembled transcriptomes from Cnidaria (including data from the host species Orbicella faveolata 80 

itself) and the M1 symbiont reference library encompasses 123 RNA-seq reads datasets (including 81 

the presumed major symbiont Symbiodinium spp. [38]). The M2 host reference library involves 4 82 

RNA-seq reads datasets from distinct Porifera genera (and differ from the Xestospongia genus) 83 

whereas the M2 symbiont reference library corresponds to the Tara Oceans metagenomic gene 84 

catalogue (OM-RGC) assembled from the pico-planktonic fractions (< 3 µm) including bacteria or 85 

Archaea [39]. For M3, we used the four Rhizaria transcriptomes published so far to create the 86 

reference host library whereas the same library as for M2 has been used for symbiont references. 87 

All reference libraries described above include assembled transcriptomes, genomes or RNA-seq 88 

raw reads datasets for eukaryotic or prokaryotic holobiont partners (Additional files 1). Their sizes 89 

vary from 4.5 Mbp to 25 Gbp with sequences length from 100 bp to 84 Kbp (Additional files 1). 90 

Figure 2 Pictures of the 3 holobiont models. (A) the Orbicella faveolata holobiont in symbiosis 
(unbleached) in 2010 at reefs of La Parguera, Puerto Rico (credits: [24]). (B) A Xestospongia muta 
specimen in symbiosis on a coral reef near Little Cayman in the Caribbean (credits: Cara Fiore, 
january 14, 2015 http://feedthedatamonster.com). (C) A Collodaria colony with symbionts sampled 
in South Pacific Ocean at station 112.01 of the Tara Pacific expedition in 2011 (credits: Johan 
Decelle). 

 

Disentangling the holobiont sequences 
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Disentangling the holobiont sequences for all three models (M1, M2 and M3), the SRC_c memory 91 

footprint was far lower than our cluster’s capacity (Tab. 1), even for the biggest data set to index 92 

(M2 symbiont library of 25 Gbp has been built with 58.9G of RAM). This induces that any addition 93 

of data can be considered. 94 

Table 1 Performances of SRC_c 

        Time(hh:mm:ss) Memory (Gb) 
Cnidaria-Dinophyta holobiont (M1) all symbionts library (M1a) 15:40:42 34,2 

   
Symbiodinium spp. library (M1b) 01:34:57 6,96 

   
other symbionts library (M1c) 15:08:45 33,7 

      host library 01:06:56 3,9 
Porifera-Bacteria holobiont (M2) symbionts library 21:04:47 58,9 

      host library 02:46:06 9,60 
Radiolaria-Dinophyta holobiont (M3) symbionts library 07:05:28 4,10 

      host library 00:05:57 3,9 
Memory peak and wallclock time of SRC_c indexing and query steps on the several data sets for 

models M1, M2 and M3. 

 

The comparison of holobiont reads to reference host and symbiont sequence libraries enabled to 95 

identify and classify them into four categories (Fig. 1): (1) reads specific to the host, (2) reads 96 

specific to the symbionts (including microalgae, bacteria...), (3) reads which can be assigned to 97 

both reference libraries and (4) reads which do not match any reference library (referred as to 98 

‘unassigned’). For the three holobiont models, the distribution within the four categories is reported 99 

in Tab. 2. 100 

With M1, SRC_c assigned 64.3% of the holobiont reads to the cnidarian host and 7.2% to the 101 

Dinophyta symbiont full library (analysis M1a, Tab. 2). Restricting the symbiont library to the genus 102 

Symbiodinium spp. sequences allowed obtaining similar results with 64.5% of the reads identified 103 

as specific to the host library and 7.1% as specific to the symbiont library (analysis M1b, Tab. 2). 104 

On the contrary, when Symbiodinium spp. is removed from the library, only 0.6% of the holobiont 105 

reads could be assigned to the symbionts and the proportion of reads assigned to the host 106 

increases up to 67.3% (analysis M1c, Tab. 2). Our tests on the symbionts library showed that the 107 
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library content impacted drastically the reads retrieval by SRC_c and demonstrated the sensitivity 108 

of the strategy. Considering these results, we focused on the M1a dataset for downstream 109 

analyses. We also noticed that shared reads (i.e. found in both host and symbiont libraries) always 110 

represent the lowest proportion of holobiont reads (M1a, M2 and M3). 111 

Table 2 SRC_c assignment results for the holobiont models M1, M2 and M3 

    
# reads % reads from  

holobiont 

Orbicella faveolata holobiont 
(M1a) total 775 025 024   

 
assigned to host library 498 008 661 64.26% 

 
assigned to symbiont library 56 011 798 7.23% 

 
shared 32 133 818 4.15% 

  unassigned 188 870 747 24.37% 
Orbicella faveolata holobiont 
(M1b) assigned to host library 500 145 229 64.53% 

 
assigned to symbiont library 54 850 148 7.08% 

 
shared 29 997 250 3.87% 

  unassigned 190 032 397 24.52% 
Orbicella faveolata holobiont 
(M1c) assigned to host library 521 591 231 67.30% 

 
assigned to symbiont library 4 817 450 0.62% 

 
shared 8 551 248 1.10% 

  unassigned 240 065 095 30.98% 
Xestospongia muta holobiont (M2) total 33 220 038   

 
assigned to host library 6 193 678 19.04% 

 
assigned to symbiont library 825 154 10.64% 

 
shared 5 112 031 8.63% 

  unassigned 21 090 174 61.69% 
Collozoum sp. holobiont (M3) total 97 957 794   

 
assigned to host library 3 188 944 3.26% 

 
assigned to symbiont library 23 234 402 23.72% 

 
shared 531 432 0.54% 

  unassigned 71 003 016 72.48% 

SRC_c assignment results for the Cnidaria-Dinophyta holobiont model (M1) against the complete 
Dinophyta library (M1a), the Symbiodinium spp. exclusive library (M1b) and the Dinophyta library 
excluding Symbiodinium spp. (M1c), the Porifera-Bacteria holobiont model (M2) and the 
Radiolaria-Dinophyta holobiont model (M3). 
 

De novo assembly, contigs evaluation and downstream analyses for M1 and M2 
 

.CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/221424doi: bioRxiv preprint first posted online Nov. 17, 2017; 

http://dx.doi.org/10.1101/221424
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

9 

For each holobiont transcriptome, four subsets of reads were independently de novo assembled, 112 

producing contigs from which protein domains were then predicted and functionally annotated 113 

(Fig. 1). For holobiont models M1a and M2, the assembly metrics, statistics and functional 114 

annotations from our contigs are summarized in Tab. 3, and comparison with previous studies are 115 

shown in Fig. 3. 116 

Compared to the studies where these datasets were initially published, our strategy allows 117 

considering more reads (16,818,599 reads for M2) in the assembly step as well as obtaining more 118 

assembled contigs (136,039 contigs for M1a and 78,567 contigs for M2) (Fig. 3). The contigs 119 

metrics show shorter lengths of N50 (580 bp shorter for M1a and 219 bp shorter for M2) (Fig. 3) 120 

compared to the original publication analyses. The M1a contigs display high remapping rates 121 

(>80%) while M2 contigs show mixed results (25% < x < 86%) (Tab. 3). With M1a, a total of 122 

255,223 protein coding domains were predicted for 44.1% of the assembled contigs and functional 123 

annotations were found for nearly 30% of these protein coding domains (Tab. 3). With M2, protein 124 

coding domains were predicted for 39.6% of the contigs, and 54.9% of the domains were 125 

functionally annotated (Tab. 3). In comparison with statistics available in previous studies, we 126 

obtained 1.6 times more functionally annotated contigs for M1a (Fig. 3). This comparison for M2 127 

could not be made since the exact number of annotated contigs in the holobiont assembly has not 128 

been reported by the authors. 129 

 

Figure 3 Overview and comparison to previous studies. The total assembled contigs for 
holobiont model M1a and M2 compared to the assembled meta-transcriptomes from (A) Pinzon et 
al. 2015 [24] and (B) Fiore et al. 2015 [30] respectively are shown. General details about de novo 
assembly and functional annotation (termed FA) features are presented in corresponding tables 
for (A) holobiont model M1a versus Pinzon et al. 2015 [24] meta-transcriptome, and (B) holobiont 
model M2 versus Fiore et al. 2015 [30]. NC means that exact number is not communicated. 
 

To further test the usefulness of the reads sorting before the de novo assembly step, we 130 

compared the contigs assignment of M1a and M2 (column 1 in Tab. 3) with a taxonomic 131 
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assignment performed with MEGAN6 [40]. For M1a, MEGAN6 assigned 71,143 contigs to the host 132 

Orbicella faveolata and 148,409 contigs to the symbiont Symbiodinium spp. (Additional files 2). All 133 

the contigs assigned to Orbicella faveolata with MEGAN6 were also found with the SRC_c 134 

strategy (Tab. 3) but we assigned 19,415 more contigs to the host category. On the contrary, 135 

MEGAN6 assigned 21,197 additional contigs to Symbiodinium spp. compared to our 136 

categorization strategy (Tab. 3, Additional files 2). With M2, MEGAN6 assigned 11 contigs to the 137 

host Xestospongia muta (Additional files 2) which is far less than the 2,654 contigs defined with 138 

the SRC_c strategy (Tab. 3). However, MEGAN6 assigned also 33,810 contigs to Amphimedon 139 

queenslandica, a distinct sponge species which is not supposed to be the host in this holobiont 140 

system. MEGAN6 also succeeded to assign more contigs to Bacteria (21,318 contigs) than the 141 

SRC_c strategy (2,431 contigs) (Tab. 3).   142 

Our functional annotations were compared to initial studies having generated these datasets. As 143 

previous publications do not provide exhaustive lists of the functional annotations and their 144 

corresponding abundance, these comparisons are essentially qualitative. For the O. faveolata host 145 

(M1), we only found similarities in the most abundant annotations (Additional file 3). At biological 146 

processes level, both our study and Pinzón et al. 2015 found abundant metabolic process GO 147 

term (GO:0008152; 819 CDs (coding sequences) and 5,278 genes respectively). At the molecular 148 

function level, our host contigs mainly corresponded to binding protein (GO:0005515; 36,349 CDs) 149 

while Pinzón et al. 2015 mainly found catalytic activity functions (GO:0003824; 3,361 genes). For 150 

M2, rare overlaps are found between Fiore et al. 2015 and our annotations (Additional file 3): at 151 

the biological processes level, 1 of the top 15 host annotations is identical (signal transduction 152 

(GO:0007165)) and 3 of the top 15 symbiont annotations are in common (metabolic process 153 

(GO:0008152); proton transport (GO:0015992) and protein folding (GO:0006457)). 154 

 

Table 3 De novo assembly metrics and downstream analysis of SRC_c resulting subsets 

for holobiont models M1a, M2 and M3. (upload as additional files) 
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Benchmark comparisons on M3: what difference does it make to use SRC_c? 
 
For the holobiont model M3, assembly metrics, abundance of chimera and functional contents 155 

were compared between the SRC_c contig sets (host, symbiont, shared and unassigned) and a 156 

direct de novo assembled transcriptome obtained from holobiont reads considered all together 157 

(this strategy is hereafter called noSRC).  158 

The assembly metrics appear very similar between SRC and noSCR (Tab. 4). A comparable 159 

number of reads were used for the assembly step and a comparable number of assembled contigs 160 

were obtained. The N50 value for the noSRC strategy is slightly longer while the remapping rates 161 

are 5% better with the SRC strategy. Calculation times performed on the same bioinformatic 162 

cluster revealed that the SRC strategy was 40 hours longer. The SRC strategy showed 50% less 163 

chimeras (418 contigs) than the noSRC strategy (777 contigs) with most chimeras contained in the 164 

unassigned set (Tab. 4). We noticed slightly less annotated CDs with the SRC strategy (45,768 165 

against 47,260), however the number and the composition in GO annotations were very similar 166 

(Fig 1 from Additional files 4). We found 253 different biological processes with SRC against 255 167 

with the noSRC strategy, and the top 5 functional annotations in the 3 Gene Ontology levels 168 

(Molecular Function, Biological Process and Cellular Component) are strictly identical (Fig 2 from 169 

Additional files 4). Considering all GO annotations, 686 are common to both strategies while 52 170 

are exclusive to the SRC strategy and 42 to the noSRC strategy (Fig 3 from Additional files 4).   171 

To test the usefulness of the categorization step, all M3 contigs from the SRC strategy were 172 

taxonomically assigned using MEGAN6 (Additional files 5). MEGAN6 assigned 10 contigs to 173 

Collodaria whereas the SRC strategy assigned 683 contigs to the host category. MEGAN6 174 

assigned 1,383 contigs to Dinophyceae compared to the 5,207 contigs categorized as symbionts. 175 

The leftover MEGAN6 contigs were assigned to Bacteria and Archeae (3,799 contigs), Viruses (76 176 

contigs), other-eukaryotes (29,524 contigs) and 127,447 contigs remained unassigned (162,947 177 

unassigned contigs with the categorization strategy). 178 
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Table 4 SRC_c impact on Radiolaria-Dinophyta holobiont model (M3) 

    no SRC SRC 

# reads used in assembly 48 733 956 48 660 697 

# assembled contigs 167 023 168 899 

# predicted cds 
 

75 450 74 017 

# annotated cds 
 

47 260 45 768 

N50 (bp) total 818 702 

host 277 

 
symbiont 

 
324 

 
shared 

 
298 

  unassigned   714 

remapping rates (%) total 85,6 90,5 

 
host  

 
65,2 

 
symbiont 

 
76,2 

 
shared 

 
81,3 

  unassigned   89,7 

# chimera total 777 418 

 
host 

 
4 

 
symbiont 

 
47 

 
shared 

 
0 

  unassigned   367 

Calculation time (min) total 330 2 783 

 
SRC 

 
2 460 

  assembly 330 323 

SRC_c impact on assembled contigs quality and calculation times of Radiolaria-Dinophyta 
holobiont model (M3) compared to a direct meta-transcriptome assembly strategy. In grey are 
displayed the details for SRC_c holobiont categories (host, symbiont, shared and unassigned). 
The “total” values for N50 and remapping rates of the SRC_c strategy were re-calculated on 
pooled contigs from host, symbiont, shared and unassigned subsets. 
 

Discussion 
 

The use of SRC_c to tackle meta-transcriptomic challenges 

 

The strategy proposed here is a practical and scalable solution for transcriptomic assembly of non-179 

model holobiont organisms, from which no or limited genomic information is available. The present 180 

implementation of SRC_c [23] based on reference databases of putative partners involved in the 181 

holobiont consortium, and our analysis strategy, enabled the categorization of holobiont reads into 182 
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4 subsets. Then, these subsets have been independently assembled, limiting potential creation of 183 

chimeras while generating more assembled contigs (Fig. 1). The newly defined shared reads 184 

category represents an added value compared to other holobiont transcriptomic studies and has 185 

been later processed with the same methodology than other categories (Fig. 1). 186 

 

With respect to the reference libraries, as exemplified in M1, when the expected symbiotic partner 187 

(i.e. Symbiodinium spp.) is missing from the reference library, the number of reads assigned to the 188 

symbiont category decreases drastically from 50M reads to nearly 5M reads (Tab. 2). The M2 and 189 

M3 libraries do not contain reference data for the expected host partner, and consequently only a 190 

low proportion of the holobiont reads are assigned to the host (19% and 3%, respectively). 191 

Accordingly, the proportion of unassigned reads is directly linked to both host and symbiont 192 

libraries content with respect to the studied holobiont. Overall, less unassigned reads were 193 

observed when the “correct” actors are involved (M1a: 24.4%) compared to the poorly studied 194 

models (M2: 61.6% and M3: 72.5%). These results highlight the sensitivity and specificity of the 195 

SRC_c requests that relies on the completeness of the database to accurately sort the reads of 196 

the holobiont. The SRC_c assignation step could be further improved by adding more sequences 197 

(i.e. reads, assembled genes or transcripts) from taxonomically close species to the host and 198 

symbiont reference libraries, but also from parasites and viruses that are common in multicellular 199 

and unicellular host cells.  200 

We also compared the metrics of our SRC_c contigs to those from previous studies (M1a and M2) 201 

[24, 30]. With the SRC_c strategy, the amount of reads used for de novo assembly of M2 was 202 

higher than for previous studies (Fig. 3). We found that, not only our strategy allowed defining a 203 

new category of contigs (the “shared” contigs), but also allowed assembling more contigs than 204 

previous studies (Fig. 3). Our contigs metrics showed lower N50 for both models compared to 205 

previous studies, but showed higher remapping rates overall for M1a (up to 90%, (Tab. 3)). 206 

Differences in the number of contigs as well as contigs metrics could be the results of the use of 207 
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distinct de novo assembly software: e.g. M2 data were processed with the CLC workbench [CLC 208 

bio, Boston, MA, USA; (https://www.qiagenbioinformatics.com/)] in the original publication while we 209 

choose the Trinity software [41] otherwise we suggest that SRC_c do not significantly impact 210 

transcriptome assembly. In fact, previous studies had shown that Trinity is able to generate more 211 

assembled contigs than the CLC assembler when applied on the same dataset. It is also known 212 

that assembled contigs from Trinity are shorter than those assembled by CLC but provided similar 213 

proportion of significant hits to the nr database [42].  214 

With M1a, our strategy produced 1.5 times more CDs with a functional annotation (Fig. 3). At that 215 

point we are unable to tell whether this observation can be the consequence of a better suited 216 

assembly strategy (SRC_c treatment and / or assembly software), and / or the use of a different 217 

annotation pipeline, and / or the supplementation of reference annotation databases between 2015 218 

[24] and 2017.  219 

With M3 analyses we can estimate how SRC_c impacts the de novo assembly step and 220 

downstream analyses compared to a more conventional protocol (here called the noSRC strategy) 221 

(Tab. 4). The calculation time for the two protocols showed that the SRC_c strategy increases the 222 

total time with nearly 40 additional hours compared to a classic assembly strategy (Tab. 4). 223 

However, compared to classic strategies, the SRC_c strategy has the tremendous benefit to create 224 

directly 4 independent subsets (two of which are directly assigned to holobionts partners). 225 

Otherwise, minimal differences were found between the two protocols concerning the number of 226 

assembled contigs and, as for M1a and M2, the SRC_c strategy produces shorter contigs 227 

sequences with higher remapping rates but a significant diminution of the number of potential 228 

chimeras was observed. We conclude that the read assignation performed before the assembly 229 

step largely contributes to limit the production of chimeras. This shows that the use of SRC_c 230 

impacts the de novo assembled transcriptome quality and contributes to address one of the most 231 

delicate de novo assembly challenge [43]. The MEGAN6 contigs assignation from M2 shows more 232 

contigs than SRC_c could assign to host and symbiont (Tab. 3 and Additional files 2). In contrast, 233 
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MEGAN6 assigned less contigs to host and symbiont than SRC_c for the M3. We suggest that 234 

SRC_c performs well in non-model organisms context with libraries containing taxonomically close 235 

organisms reference sequences. 236 

 

SRC_c helps us to make new biological assumptions 

 

For all models, the SRC_c strategy led to a higher number of annotated contigs, however as only 237 

partial information on the annotation content were provided separately for the host or the 238 

symbionts in previous publications [24, 30], we were mainly restricted to qualitative comparisons. 239 

Comparing the M1a host transcriptomes to the previous study transcriptome, very few similarities 240 

were found for the most occurring functions, even if the most annotated function is common (i.e. 241 

metabolic process GO). Our 20 most occurring functions include signal transduction functions 242 

(14% of the total annotations) and molecule transport functions (8% of the total annotations) that 243 

do not appear in the most occurring function from [24]. These newly highlighted functions could 244 

help better understanding the Orbicella faveolata host with respect to communication and cellular 245 

exchanges with its partners. We were not able to perform a similar analysis for the symbiont 246 

transcriptome since authors of previous studies focused on the host transcriptome. For M2, only 247 

1/15 and 3/15 common annotations were found for host and symbiont respectively. We suggest 248 

that the divergences in the analytical pipeline used, here Trinity versus CLC for de novo assembly 249 

followed by InterProScan versus FastAnnotator for functional annotation, make the functional 250 

annotations contents hardly comparable between studies. Despite these discrepancies, results 251 

from both analyses must be considered as potentially valuable and have to be checked with 252 

genome alignment when available or through in vitro validation when considering restricted group 253 

of functions (e.g. PCR). 254 

Symbioses involving single cell heterotrophic hosts and photosynthetic symbionts have been 255 

described in the oceanic plankton using morphological and molecular data [5–7, 15]. Radiolarians 256 

and their symbiotic microalgae (e.g. Haptophytes, Dinoflagellates) have an ecological and 257 
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biogeochemical significance [44–47], but little is known about symbiosis establishment and 258 

maintenance. If most microalgal symbionts can be grown in the laboratory as free-living stage 259 

[Meng et al. submitted], the study of radiolarian host only relies on single-cell isolation from the 260 

field [36, 48]. In this study, the radiolarian host belongs to the Collodaria order which is ubiquitous 261 

and abundant in the open ocean [36, 49]. Our knowledge about their ecology and evolution is 262 

limited and hence our analyses represent an opportunity to learn more about the genetic repertoire 263 

of such uncultivable, non-model lineage. Regarding functional annotations, the SRC and the 264 

noSRC strategies provided very similar results but the SRC strategy categorized the GO 265 

annotations among 4 subsets (host, symbiont, shared and unassigned) (Additional files 5), which 266 

can be explored independently, allowing group specific interpretations and biological hypothesis 267 

building for each partner from the holobiont. For instance, symbiont CDs linked to the photosystem 268 

I and II were detected, confirming that SRC_c succeeded to assign reads to photosynthetic actors, 269 

as expected here for the symbiotic partner (Additional files 4). 270 

 

Strategies regarding the use of SRC_c and future perspectives 
 
SRC_c successfully compared different holobiont read sets to large reference libraries in less than 271 

24h, with reasonable computational resources (i.e. 10 CPUs and less than 20Go of RAM). By 272 

setting parameters (i.e. solidity threshold, k-mer size, similarity threshold), we adapted SRC_c to 273 

heterogeneous nature of sequences in libraries (i.e. length, row reads or assembled 274 

genes/transcripts, data volume, k-mers distribution) and to poorly studied systems. When studying 275 

meta-transcriptome reads, selecting abundant k-mers helps to remove the one corresponding 276 

potentially to sequencing errors; however rare sequence k-mers are consequently lost. On the 277 

contrary, when indexing already assembled sequences from genomes or transcriptomes, we do 278 

not expect a redundancy of the k-mers such as in high-throughput sequencing experiments, and 279 

we thus assume that any k-mer is relevant when it comes from a reference sequence. 280 

Accordingly, in this study, we kept the default k-mer solidity threshold value that was appropriate 281 
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when indexing reads (i.e. sequences shorter than 300 bp, with a relatively high coverage), and 282 

lowered it to 1 when indexing longer sequences as ESTs or assembled genes. Due to the 283 

presence of small reads (50 bp) in our holobiont datasets, we also modified the default k-mer size 284 

value of 31 to a value of 25, so that any read contains at least a few k-mers. Usually the k-mer 285 

size is higher [50], however 25 base pairs corresponds to a decent value to ensure the uniqueness 286 

of the read [51]. During the query phase of SRC_c, a query sequence (from a dataset Q) must 287 

contain at least s% positions covered by at least one indexed k-mers (from a dataset B), to be 288 

considered similar to data from the set B [23]. As the s default value is set to 50%, it means that a 289 

read of size l should have at least l×s positions covered by (overlapping or nonoverlapping) 290 

indexed k-mers. Consequently, when a large majority of the reads could not be assigned, our 291 

strategy was to decrease the s parameter from 50 to 40 in order to increase the quantity of 292 

recalled reads.SRC_c implements a heuristic computing a k-mer based similarity. Contrary to 293 

BLAST-like methods, SRC_c relies uniquely on shared k-mers for its similarity computation. It 294 

means that a certain amount of error-free k-mers (i.e. k-mers that do not contain sequencing 295 

errors) must be found in common in order to output sequences, which can make SRC_c less 296 

sensitive compared to alignment methods which authorize mismatches. However contrary to 297 

alignment methods, SRC_c was tailored to scale to very high-volume datasets and comparisons 298 

presented in [23] showed that SRC_c could handle sets of orders of magnitudes higher volumes 299 

than BLAST (Additional files 7). SRC_c's efficiency relies on its particular probabilistic data 300 

structure. The lightweight indexing and query of k-mers is made at the price of rare false positives. 301 

In our case, false positives correspond to k-mers that are not contained in the original indexed 302 

library. Such a false positive rate is controlled and low (Additional files 7). As in this work, the k-303 

mer size was relatively low (i.e. 25), the default value for this parameter was kept ensuring a low 304 

false positives rate. For longer k-mers (i.e. size > 31), we recommend to increase the size of the 305 

fingerprint if more precision is needed. SRC_c can also be used in a no-false positive mode that 306 

requires more memory, but that is still less costly than a hash table as demonstrated in [23].  307 
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In our tests, SRC_c helps to retrieve holobiont reads similar to host or symbiont close species. 308 

Previous tools like COMMET [50] already proposed such computation, although their data 309 

structure makes difficult the use of k-mers of small size, as computation time would be drastically 310 

impacted. SRC_c was chosen for its simple output and its adaptability to the heterogeneous 311 

nature of the libraries studied. This is simply made by adapting the k-mer lowest occurrence and 312 

size parameters. 313 

Future works on SRC_c parameters settings could include more extensive exploration of the 314 

impact of the similarity threshold parameter on the sensitivity of our approach. In this regard, if the 315 

reads similarity rate to the libraries could be relaxed, it may decrease the number of unassigned 316 

reads in particular for poorly studied models. A second strategy would be to implement an iterative 317 

enriching strategy to maximize the proportion of holobiont reads assigned to the host or to the 318 

symbiont. This strategy can allow to assign more sequences in the case of non-model organisms. 319 

After a first assignment round with SRC_c, holobiont reads linked to an identified group 320 

(host/symbiont) can be added to the reference libraries. Then, based on these new enriched 321 

libraries, a second run of SRC_c can be performed on the holobiont reads. This can be 322 

implemented as an iterative pipeline: at each round, more reads will be assigned to the host or 323 

symbiont categories and will then be used as reference libraries. Finally, the approach proposed 324 

here has been applied to holobiont systems (between 2 partners) but it could be used to address 325 

larger metatranscriptomic datasets composed of more complex assemblages. Depending on the 326 

SRC_c library content, the user can choose to target either one or more specific species among 327 

the variety that composed such metatranscriptomic datasets. Coupled to our assembly and 328 

downstream analysis strategy, the subsets resulting of the used of SRC_c are processed de novo 329 

allowing the potential discovery of newly assembled transcripts and the exploration of the 330 

functional their functional feature contents without reference genome.    331 

 

Conclusions 
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SRC_c successfully processed a variety of large-scale datasets and offered a pragmatic way to 332 

classify sequences from different holobiont partners before assembly. We showed that our strategy 333 

allows improving assembly metrics, and also helped to reduce drastically the proportion of 334 

chimeras in the newly de novo assembled sequences. Our approach offers an efficient, large 335 

scale, comparison strategy to assemble and study holobionts involving non-model organisms. 336 

Overall, this de novo approach, allowing a taxonomic categorization of functionalities, can reveal 337 

the link between identity and function, which is necessary to better understand the functioning and 338 

contribution of each partner in holobiont systems. 339 

 

Methods 
 
Radiolaria-Dinophyta holobiont model (M3) sampling, RNA-seq library and sequencing 
 

The Collodaria colony was sampled in the South Pacific Ocean at the station 112.01 (coordinates 340 

in decimal degrees: latitude -23.3, longitude -133.9) during the Tara Oceans expedition in 2011 341 

[52]. The radiolarian colony of few centimeters diameter was collected in situ at the subsurface 342 

(1m deep) with a plastic jar, preventing disruption of the colony and aggregation of other 343 

planktonic organisms. Live observations through the binocular were performed to verify that no 344 

organisms were accidentally attached to the colony before preservation. The collected colony was 345 

directly isolated in 15 mL of RNAlater (ThermoFisher Scientific, Waltham, MA) and preserved at -346 

20°C. Total RNA extraction was performed using NucleoSpin RNA kit (Macherey-Nagel, Düren, 347 

Germany) starting from a slice (about 1 cm diameter) of Collodaria PAC 37 colony. Briefly, frozen 348 

cells were transferred in a 1.5 mL tube containing 100 µL RA1 lysis buffer and grinded for 1 min 349 

with a motor driven pellet pestle previously refrigerated in liquid nitrogen. Then 250 µL RA1 lysis 350 

buffer, previously mixed with 3,5 µL β-mercaptoethanol (1% of total RA1 volume), were added to 351 

the lysed cells and the total volume was transferred to a Nucleospin filter. After centrifugation and 352 

addition of an equal volume of 70% ethanol, the RNA was purified following the manufacturer’s 353 

instructions and finally eluted in 40 µL nuclease-free water. Quantity and quality of extracted RNA 354 
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were assessed by capillary electrophoresis on an Agilent Bioanalyzer (Agilent Technologies, 355 

Santa Clara, CA). 356 

Finally, in order to reduce as far as possible the risk of residual genomic DNA, a further DNase 357 

treatment was applied on the total RNA using Turbo DNA-free kit (Thermo Fisher Scientific), 358 

according to the manufacturer’s protocol. After purification with the RNA Clean and Concentrator-5 359 

kit (ZymoResearch, Irvine, CA), RNA was eluted in 10 µL nuclease-free water and used to 360 

synthetize cDNA with the Ovation RNA-seq System Version 2 (NuGEN, San Carlos, CA), following 361 

the manufacturer’s protocol. After cDNA shearing by Covaris E210 instrument (Covaris, Woburn, 362 

MA), Illumina library was prepared using the SPRIWorks Library Preparation System on a SPRI 363 

TE instrument (Beckmann Coulter Genomics, Danvers, MA), according to the manufacturer’s 364 

protocol without size selection. Ligation products were PCR-amplified using Illumina adapter-365 

specific primers and Platinum Pfx DNA polymerase (ThermoFisher Scientific). After library profile 366 

analysis by Agilent 2100 Bioanalyzer and qPCR quantification (MxPro, Agilent Technologies), the 367 

library was sequenced using 101 base-length read chemistry in a paired-end flow cell on 368 

HiSeq2000 Illumina sequencer (Illumina, San Diego, CA), in order to obtain nearly 50 million 369 

paired end reads. 370 

 
Data retrieval and sequence libraries construction 

 

For each holobiont model, sequence libraries were created based on published data from 371 

taxonomically close organisms to host and symbiont species. Detailed statistics of these reference 372 

libraries can be found in Additional files 1. 373 

For the Cnidaria-Dinophyta holobiont model (M1), the host library includes 20 assembled 374 

transcriptomes (466,582 contigs) of cnidarian organisms [53] and 2 genome-derived ESTs 375 

(201,677 ESTs) of Nematostella vectensis and Orbicella faveolata [54]. The symbiont library is 376 

composed of 123 RNA-seq reads datasets (a total of 5,563,498,607 reads) of Dinophyta from the 377 

MMETSP project [55]. We built 3 versions of the symbiont reference library, one composed of all 378 
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Dinophyta (M1 a), the second exclusively composed of Symbiodinium spp. (15 RNA-seq datasets, 379 

a total of 123,122,726 reads) (M1 b) and the third composed of all Dinophyta except 380 

Symbiodinium spp. (108 RNA-seq datasets, a total of 5,440,375,881 reads) (M1 c). 381 

For the Porifera-Bacteria holobiont model (M2), 4 RNA-seq datasets of poriferan species were 382 

included in the host library (642,229,924 total reads): Amphimedon queenslandica [56] Crella 383 

elegans [57] and both Haliclona amboinensis and Haliclona tubifera [58]. The complete bacterial 384 

gene catalog (40,154,822 assembled gene sequences) derived from the first stations from the 385 

Tara Oceans expedition [39] has been downloaded to constitute the symbiont reference library 386 

(OM-RGC). 387 

For the Radiolaria-Dinophyta holobiont model (M3), we gathered Rhizaria sequences from 4 de 388 

novo assembled holobionts: 7,215 presumed host transcripts were extracted among a total 15,404 389 

de novo assembled transcripts [15]. Host specific sequences were extracted from holobionts 390 

assemblies removing first sequences from prokaryotic origin with a blastn (e-value 1e-3) against 391 

the OM-RGC database, and second, removing symbionts sequences with a  blastx (e-value 1e-3) 392 

against Dinophyta de novo assembled transcriptomes [Meng et al. submitted]. The exhaustive 393 

Dinophyta library created for the M1a was used for the reference symbiont library. 394 

 

Comparing meta-transcriptomes (i.e. holobiont reads) to reference libraries using Short 
Read Counter (SRC_c) 

 

> Presentation of SRC_c  

Short Read Connector Counter (SRC_c) [23] relies on a very lightweight data structure called a 395 

quasi-dictionary that enables to work with voluminous sequence sets. The quasi-dictionary 396 

enables to associate a piece of information to any element from a static set composed of N distinct 397 

elements. It is composed of two parts: a minimal perfect hash function (MPHF) [59] and a 398 

fingerprint table. The MPHF allows to index very efficiently the elements of the set in memory, 399 

such that each element can be associated to any piece of information (i.e. k-mer coverage, 400 
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location in reads, …). The fingerprint table is used to verify the membership of an element to the 401 

indexed set of elements using the MPHF. This way, stranger elements to the MPHF can be filtered 402 

out. The quasi-dictionary is a probabilistic structure with a controlled false positive rate that 403 

depends on the size of the fingerprint. SRC_c needs as input two sets of sequences (that can be 404 

identical). To compare sequences from a query set Q to those from a target set T, the set indexed 405 

in the quasi-dictionary is a set of k-mers from T. Finally, for each sequence S from Q, the number 406 

of k-mers of S shared with T provides a similarity measure of S with the set T. This implies that the 407 

similarity measure given is asymmetrical: it depends on the placement of the k-mers on the reads 408 

of Q, not of those of T. SRC_c is available at https://github.com/GATB/ short read connector, the 409 

commit 94aa6a65b5ddf61eba95108069fae29c41e51fb0 was used for this study. 410 

 

> Application on data 

In this study, SRC_c is used to assign reads from an holobiont transcriptome either to the host or 411 

to the symbionts. We divided the query of the holobiont data set Q in two parts, one that consists 412 

in the comparison of Q reads to a bank (i.e. reference library) of host sequences, and another that 413 

performs the comparison to a bank of symbiont sequences. The sets to index are composed of k-414 

mers from the sequences. In each comparison, two sequence sets are considered. The whole 415 

holobiont set Q and the target bank set B. First, the set B, which contains reads or assembled 416 

sequences and represents sequences close to the host (resp. symbiont), is indexed. During the 417 

indexation phase, the solid set of k-mers (i.e. the set composed of any k-mer which occurrence is 418 

above a user-fixed threshold (the solidity threshold) in the data set) from T is computed using the 419 

DSK [60] method. This set is next indexed in the quasi-dictionary previously described. Then the 420 

reads from the holobiont data set (Q) are queried. For each read, the query phase reports the 421 

abundance of its indexed k-mers. In the meantime, reads are checked to have enough positions 422 

(i.e. more than a given threshold which can be parameterized) for which an indexed k-mer starts 423 

over their length. This enables to add stringency to the query: a read that shares only a few k-mers 424 

with the index is considered not enough similar to the index. Finally, each read from Q (the 425 
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holobiont) which was found similar to T (the host or the symbionts) during the query are returned 426 

in a binary vector and can be extracted to a FASTA format. 427 

 
> Parameters choice 

Parameters from SRC_c must be carefully chosen. First, the solidity threshold is adapted 428 

according to the nature of the sequences in the bank data set. For libraries which sequences are 429 

reads (symbiont libraries for model 1) the default value for the solidity threshold (= 2) was kept. For 430 

longer sequences (host libraries for model 1, sequences of models 2 and 3) the threshold was 431 

adapted and set to 1 when using libraries of assembled sequences or EST (host libraries for 432 

model 1, sequences of models 2 and 3). We chose a k-mer length of 25 according to the smaller 433 

input read length. We set the similarity value s to 50% for models 1 and 3, and decreased it to 434 

40% for model 2. Both query and indexation phases are parallelized in SRC_c. For this study 435 

analyses were performed on a Linux system with 40 cores, with the option -t 0 (maximal number of 436 

available threads is used) and 250 GB of memory. 437 

 

Read filtering, de novo assembly and downstream analysis 
 

All read subsets resulting from the SRC_c step were first filtered (sequences trimming and 438 

cleaning) with the Trimmomatic program [61] (v0.36) and custom parameter 439 

SLIDINGWINDOW:10:20. Filtered reads were assembled using the de novo transcriptome 440 

assembly program Trinity [41] (v2.4.0) with default parameters. The newly assembled contigs 441 

metrics were calculated with the Transrate program [62] (v1.0.3).  Additional downstream analyses 442 

include protein coding domain prediction using Transdecoder [63] (v3.0.1) and functional 443 

annotation with InterProScan 5 [64] (v5.24-63), both with default parameters. The pipeline used for 444 

the steps described above is publicly available on a GitHub repository 445 

https://github.com/arnaudmeng/dntap [53, Meng et al. submitted].  446 

 

Taxonomic assignment with MEGAN6 
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The contigs sequences were compared to the nr database (August 2017 version) with the 447 

DIAMOND software [66] (v0.28.22.84) using default parameters for BLASTx comparison and a e-448 

value of 1e-3. The resulting alignments were processed with the daa2rma tool script provided with 449 

MEGAN6 and GeneInfo Identifier (GI) were mapped to alignments using the gi_taxid.bin file 450 

(version of May 2017). Finally, taxonomic assignment has been calculated with default parameters 451 

using the MEGAN LCA (Last Common Ancestor) algorithm and were visualized through the 452 

MEGAN6 software.  453 

 

Chimeras identification 
 

We followed the protocol described in [67]. 50,000 randomly sampled de novo assembled contigs 454 

for the M3 (with the SRC strategy and without SRC strategy) were compared to the 7,215 Rhizaria 455 

presumed contigs from [15] and 3,494,295 coding domains from de novo assembled contigs of 54 456 

dinoflagellates transcriptomes [Meng et al. submitted]. The comparison was made using the 457 

BLASTx program [68] (e-value 1e-3).  The tools scripts detect_chimera_from_blastx.py from [67] 458 

was applied to resulting alignments to detect potential chimeras.  459 
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Additional Files 
 

Additional file 1 SRC_c library content information and data sources. Table with detailed 
information of SRC_c libraries contents. The type of data and the total library sizes are displayed.  
It includes taxonomic contents and links to data repositories for holobiont models M1, M2 and M3 
and data that constitute SRC_c reads/sequences libraries. 

 

Additional file 2 Taxonomic assignment of SRC assembled contigs with MEGAN6 for the 
holobiont models M1 and M2. 

 

Additional file 3 details of common GO annotations M1 and M2 our contigs versus previous 
studies  

 

Additional file 4 Comparison of functional annotations between SRC assembled transcriptomes 
and a de novo assembled transcriptome without the use of SRC_c in the case of holobiont model 
M3. Details of the functional annotations results for the SRC strategy applied to M3, the tables 
displayed correspond to the top 15 GO annotations found in host, symbiont, shared and 
unassigned transcriptomes for the three levels of annotations (MF: Molecular Functions, BP: 
Biological Process and CC: Cellular Component).  

 

Additional file 5 Radiolaria-Dinophyta meta-transcriptome taxonomic assignment with MEGAN6. 
Table of taxonomic assignation of the 167,023 de novo assembled contigs from the assembly 
without SRC reads sorting of the holobiont model M3. 
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unassigned 314 546 54.39% 201 19 174 732 558 46% 83.6% 67 509 21.5% 25.9% 89 533 28.5% 58 188 18.5%
total 578 333 184 975 255 223 171 939
host 2 654 2.33% 201 1 921 299 311 42% 44.4% 215 8.1% 17.6% 707 26.6% 593 83.9%

symbiont 2 431 2.14% 201 5 001 406 396 46% 25% 411 16.9% 4.7% 1 072 44.1% 988 92.2%
shared 2 324 2.04% 201 751 301 299 54% 86.4% 8 0.3% 22.3% 163 7% 30 18.4%

unassigned 106 377 93.49% 201 8 811 748 572 39% 73.2% 29 520 27.8% 59.1% 43 150 40.6% 23 127 53.6%
total 113 786 30 154 45 092 24 738 54.9%
host 693 0.41% 201 1 209 277 303 42% 65.2% 44 6.3% 10.6% 123 17.7% 49 7.1%

symbiont 5 207 3.08% 201 1 777 324 328 54% 76.2% 618 11.9% 32% 1 468 28.2% 942 18.1%
shared 52 0.03% 201 639 298 308 39% 81.3% 0 0% 18.6% 6 11.5% 5 9.6%

unassigned 162 947 96.48% 201 10 569 714 580 41% 89.7% 49 032 30.1% 73.2% 72 420 44.4% 44 772 27.5%
total 168 899 49 694 74 017 45 768

Cnidaria-Dinophyta holobiont (M1a)

Porifera-Bacteria holobiont (M2)

Radiolaria-Dinophyta holobiont (M3)
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