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Abstract

Background: Study of meta-transcriptomic datasets involving non-model organisms represents bioinformatic
challenges. The production of chimeric sequences and our inability to distinguish the taxonomic origins of
the sequences produced are inherent and recurrent difficulties in de novo assembly analyses. As the study
of holobiont meta-transcriptomes is affected by challenges invoked above, we propose an innovative bioinformatic
approach to tackle such difficulties and tested it on marine models as a proof of concept.

Results: We considered three holobiont models, of which two transcriptomes were previously published and a yet
unpublished transcriptome, to analyze and sort their raw reads using Short Read Connector, a k-mer based similarity
method. Before assembly, we thus defined four distinct categories for each holobiont meta-transcriptome: host reads,
symbiont reads, shared reads, and unassigned reads. Afterwards, we observed that independent de novo assemblies for
each category led to a diminution of the number of chimeras compared to classical assembly methods. Moreover, the
separation of each partner’s transcriptome offered the independent and comparative exploration of their functional
diversity in the holobiont. Finally, our strategy allowed to propose new functional annotations for two well-
studied holobionts (a Cnidaria-Dinophyta, a Porifera-Bacteria) and a first meta-transcriptome from a planktonic
Radiolaria-Dinophyta system forming widespread symbiotic association for which our knowledge is considerably limited.

Conclusions: In contrast to classical assembly approaches, our bioinformatic strategy generates less de novo assembled
chimera and allows biologists to study separately host and symbiont data from a holobiont mixture. The pre-assembly
separation of reads using an efficient tool as Short Read Connector is an effective way to tackle meta-transcriptomic
challenges and offers bright perpectives to study holobiont systems composed of either well-studied or
poorly characterized symbiotic lineages and ultimately expand our knowledge about these associations.
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Background
In its scientific acceptation, symbiosis is defined as the
living together of unlike organisms whatever the nature
of their relationship [1], ranging from parasitism to mu-
tualism. Symbiosis is a widespread phenomenon in the
biosphere and plays crucial roles in evolution and ecol-
ogy. One of the most popular examples of mutualism is
the interaction between fungi and land plants, where
fungi form mycorrhizae that help land plants to retrieve

nutrients from soil [2]. In the ocean, benthic coastal eco-
systems are structured and supported by symbiotic asso-
ciations involving multipartners such as corals (Cnidaria,
i.e., multicellular eukaryotes), microalgae (Dinophyceae,
Symbiodinium spp., i.e. unicellular eukaryotes), and bac-
teria. Breakdown of this symbiosis ultimately leads to
coral bleaching (the loss of photosynthetic symbionts),
dramatically affecting the whole reef ecosystems [3].
While coral bleaching has been largely studied, there is a
growing evidence that partners involved in this holo-
biont system contribute to make coral reef persistent in
oligotrophic seas [4]. Symbiotic association between
sponges (Porifera, i.e., multicellular eukaryotes) and
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bacteria (prokaryotes) allows bacteria to grow within the
mesohyl matrix of the sponge where they can be meta-
bolically active and persist in a highly oligotrophic habi-
tat. The symbiotic interactions between sponges and
bacteria are currently poorly understood from the gen-
omic point of view [5]. Symbiotic associations involving
two unicellular eukaryotes are also widespread in the
oceanic plankton [5–8]. For instance, the cosmopolitan
mutualistic associations between heterotroph Radiolaria
(host) and endosymbiotic microalgae play significant eco-
logical and biogeochemical roles in the oceans [9], but the
underlying genomic basis of such associations remains
uncharacterized. Although not cultivable in vitro, extrac-
tion of nucleic acids is nevertheless possible on such sym-
biotic partnerships, and this has recently allowed shedding
light on the identity of the partners and their
co-evolutionary history [6, 7]. Several symbiotic microal-
gae have been identified using such molecular approaches,
and many of them belong to the Dinophyta [8]. However,
mainly because of their highly complex and large ge-
nomes, the lack of reference genomes for both Dinophyta
and Radiolaria make their study challenging for de novo
assembly and functional annotation [10, 11].
Currently, RNA-seq is the best available approach to

obtain large amount of genomic information from un-
cultured organisms isolated in the environment [12, 13].
RNA sequencing for a holobiont is now possible [14–16]
and has promoted the development of sequencing
projects [17] for non-model organisms. However
non-model holobiont RNA-seq datasets correspond to a
mixture of data coming simultaneously from the host
and from the symbiont(s) (Fig. 1). Such datasets are a
priori low complexity meta-transcriptomic datasets (i.e.,
that involve a reduce number of actors in comparison to
soil, human gut, or marine microbial samples) and re-
quire de novo assembly of transcripts sequences,
which implies large computational resources and in-
troduces biases such as the creation of numerous
chimeric sequences resulting from the misassembly of
RNA fragments from the host and from the symbi-
ont(s) [18, 19]. A variety of analysis strategies has
been developed to address meta-transcriptomic
challenges. Some of them avoid the assembly step to
focus on identifying abundant species and significant
functional differences between meta-transcriptomes
directly from raw data mapping [20, 21]. Other
strategies use statistical tools and machine learning
algorithms to improve the quality of de novo
meta-transcriptome assembly by learning from their
abundance information [22].
Here, we developed an original strategy aiming at im-

proving the study of meta-transcriptomic datasets from
holobionts. The concept relies on sorting the holobiont
reads before the assembly step in order to distinguish the

different actors (Fig. 1), and afterwards on processing in-
dependent de novo assemblies on each subset. To this
end, we used a highly scalable tool, the Short Read Con-
nector software in its Counter version (SRC_c) [23].
SRC_c is a fast kmer-based method initially developed to
estimate the similarity between numerous (meta-)genomic
datasets by extracting their common sequences. We fo-
cused on holobiont meta-transcriptomes for which a
priori no or little genomic knowledge has been previously
produced for host and symbionts, and we used SRC_c to
compare these holobiont sequences to publicly available
databases. We applied our strategy to disentangle the se-
quences and then de novo assemble the transcriptome of
three distinct marine holobiont systems (Fig. 2). Two of
them were already assembled and published and were
used for qualitative comparison. The first model (M1) in-
volves a Cnidaria host (Orbicella faveolata, belonging to
the Metazoa) and Dinophyta symbionts (Symbiodinium
spp., a unicellular eukaryote belonging to the Alveolata)
forming a mutualistic association [3, 24] (Fig. 2a). This
symbiotic association represents the best-known example
of symbiosis in marine ecosystems, and many studies have
been made trying to understand coral bleaching events
(i.e., the loss of symbionts) [25, 26]. The coral holobiont
also encompass other microorganisms consisting of bac-
teria, archaea, fungi, and viruses [27, 28]. In the second
holobiont model (M2), the marine sponge Xestospongia
muta (Porifera) harbors a dense (∼ 40% of its volume) and
diverse microbial community including marine protists
(e.g., fungi), archaea, and mainly bacteria [29–31] (Fig. 2b).
The symbiotic associations between sponges and bacteria
(suggested to be commensalism [32]) have become a
major research focus to understand how sponges and their
microbial communities can perform a variety of functional
roles such as nutrition, cycling of metabolites, and host
defense allowing them to proliferate in oligotrophic condi-
tions [33, 34]. We chose a third, yet unpublished, holo-
biont dataset (M3) involving two distinct lineages of
protists (unicellular eukaryotes): the radiolarian Collozoum
sp. as host and Dinophyta symbionts belonging to the
Brandtodinium nutricula species [6]. In this association,
the radiolarian host forms a gelatinous matrix of several
centimeters, which contains hundreds of host cells and
thousands of symbiotic microalgae (Fig. 2c). Recent stud-
ies showed that this symbiosis is widely distributed in the
ocean and significantly contributes to biomass and carbon
export in the open ocean [35, 36].
As a proof of concept, we thus sorted the transcrip-

tomic reads of these three holobiont models considering
two major partners (i.e., using two reference libraries:
one for the host and one for the symbiont), and then de
novo assembled each of the subsets. We finally com-
pared qualitatively and quantitatively the results (i.e., as-
sembly metrics, functional and taxonomical annotations,
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presence of chimera) obtained when using SRC_c or not
(Fig. 1; Additional file 1).

Results
Disentangling the holobiont sequences
To perform the sorting of the holobiont sequences for
all three models (M1, M2, and M3), the SRC_c memory
footprint was far lower than our cluster’s capacity
(Table 1), even when indexing the biggest data set (i.e.,
the M2 symbiont library of 25 Gbp has been built with
58.9G of RAM). This reflects that further addition of
data can be considered.
For the three holobiont models, the distribution within

the four categories (i.e., host reads, symbiont reads,
shared reads, and unassigned reads) obtained with the
comparison of holobiont reads to reference host and
symbiont sequence libraries is reported in Table 2.

With M1, SRC_c assigned 64.3% of the holobiont
reads to the cnidarian host and 7.2% to the Dinophyta
symbiont full library (analysis M1a, Table 2). Restricting
the symbiont library to the genus Symbiodinium spp.
sequences allowed obtaining similar results with 64.5%
of the reads identified as specific to the host library and
7.1% as specific to the symbiont library (analysis M1b,
Table 2). On the contrary, when Symbiodinium spp. is
removed from the library, only 0.6% of the holobiont
reads could be assigned to the symbionts, and the
proportion of reads assigned to the host increases up to
67.3% (analysis M1c, Table 2). Our tests on the symbi-
onts library showed that the library content affected
drastically the reads retrieval by SRC_c and demon-
strated the sensitivity of the strategy. Considering these
results, we focused on the M1a dataset for downstream
analyses. We also noticed that shared reads (i.e., found

host
reads

shared
reads

symbiont
reads

unassigned
reads

Host reads/sequences library Symbiont reads/sequences library

De novo assembly & downstream analyses

(1) (2)

holobiont reads

Fig. 1 Theoretical overview on the application of SRC_c on a holobiont meta-transcriptome. The comparisons to (1) host and (2) symbiont reads/
sequences library were done against the entire holobiont dataset to retrieve host and symbiont similar reads. The four resulting subsets (host,
symbiont, shared, and unassigned reads) are then processed independently (de novo assembly and downstream analyses detailed in Material and
Methods and in the Additional file 1).

Meng et al. Microbiome  (2018) 6:105 Page 3 of 15



a b

c

Fig. 2 Pictures of the three holobiont models. a The Orbicella faveolata holobiont in symbiosis at reefs of La Parguera, Puerto Rico, in 2010
(credits: [24]). b A Xestospongia muta specimen in symbiosis on a coral reef near Little Cayman in the Caribbean (credits: Cara Fiore, January 14,
2015, http://feedthedatamonster.com). c A Collodaria colony with symbionts sampled in South Pacific Ocean at station 112.01 of the Tara Oceans
expedition in 2011 (credits: Johan Decelle).

Table 1 Performances of SRC_c

Time(hh:mm:ss) Memory (Gb)

Cnidaria-Dinophyta holobiont (M1) All symbionts library (M1a) 15:40:42 34.2

Symbiodinium spp. library (M1b) 01:34:57 6.96

Other symbionts library (M1c) 15:08:45 33.7

Host library 01:06:56 3.9

Porifera-Bacteria holobiont (M2) Symbionts library 21:04:47 58.9

Host library 02:46:06 9.60

Radiolaria-Dinophyta holobiont (M3) Symbionts library 07:05:28 4.10

Host library 00:05:57 3.9

Memory peak and wallclock time of SRC_c indexing and query steps on the several data sets for models M1, M2, and M3
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in both host and symbiont libraries) always represent the
lowest proportion of holobiont reads (M1a, M2, and
M3).

De novo assembly, contigs evaluation, and downstream
analyses for M1 and M2
For each holobiont meta-transcriptome, four subsets of
reads were independently de novo assembled, producing
contigs from which protein domains were then predicted
and functionally annotated. For holobiont models M1a
and M2, an overview of the analyses is available in the
Additional file 1. The assembly metrics, statistics, and
functional annotations from our contigs are summarized
in Table 3. These metrics were directly compared to the
one obtained in the original publications [24, 29] (Fig. 3).
Compared to previous studies, it is worth noticing that
we used a more up-to-date assembler [37] and a distinct
annotation pipeline (cf. details in the “Methods” section).
Reference databases for sequences annotation have also
evolved since 2015, so the comparison of the quantita-
tive values with previous studies are informative but
have to be interpreted with caution. Our strategy

allowed to obtain more assembled contigs (136,039 more
contigs for M1a and 78,567 more contigs for M2), and
the contigs metrics show shorter lengths of N50 (580 bp
shorter for M1a and 219 bp shorter for M2) (Fig. 3). The
M1a contigs display high remapping rates (> 80%) while
M2 contigs show mixed results (25% < x < 86%) (Table 3).
With M1a, a total of 255,223 protein coding domains
were predicted for 44.1% of the assembled contigs, and
functional annotations were found for nearly 30% of
these protein coding domains (Table 3). With M2, pro-
tein coding domains were predicted for 39.6% of the
contigs, and 54.9% of the domains were functionally an-
notated (Table 3). We obtained 1.6 times more function-
ally annotated contigs compared to [29] (M1a, Fig. 3).
This comparison for M2 could not be made since the
exact number of annotated contigs in the holobiont as-
sembly has not been reported by the authors [24].
To further test the usefulness of the reads sorting be-

fore the de novo assembly step, we compared the contigs
assignment of M1a and M2 (column 1 in Table 3) with a
usual taxonomic assignment performed with MEGAN6
[38] (Additional file 1). For M1a, MEGAN6 assigned

Table 2 SRC_c assignment results for the holobiont models M1, M2, and M3

# Reads % Reads from holobiont

Orbicella faveolata holobiont (M1a) Assigned to host library 498,008,661 64.26

Assigned to symbiont library 56,011,798 7.23

Shared 32,133,818 4.15

Unassigned 188,870,747 24.37

Total 775,025,024

Orbicella faveolata holobiont (M1b) Assigned to host library 500,145,229 64.53

Assigned to symbiont library 54,850,148 7.08

Shared 29,997,250 3.87

Unassigned 190,032,397 24.52

Orbicella faveolata holobiont (M1c) Assigned to host library 521,591,231 67.30

Assigned to symbiont library 4,817,450 0.62

Shared 8,551,248 1.10

Unassigned 240,065,095 30.98

Xestospongia muta holobiont (M2) Assigned to host library 6,193,678 19.04

Assigned to symbiont library 825,154 10.64

Shared 5,112,031 8.63

Unassigned 21,090,174 61.69

Total 33,220,038

Collozoum sp. holobiont (M3) Assigned to host library 3,188,944 3.26

Assigned to symbiont library 23,234,402 23.72

Shared 531,432 0.54

Unassigned 71,003,016 72.48

Total 97,957,794

SRC_c assignment results for the Cnidaria-Dinophyta holobiont model (M1) against the complete Dinophyta library (M1a), the Symbiodinium spp. exclusive library
(M1b), and the Dinophyta library excluding Symbiodinium spp. (M1c); the Porifera-Bacteria holobiont model (M2); and the Radiolaria-Dinophyta holobiont model (M3)
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71,143 contigs to the host Orbicella faveolata and
148,409 contigs to the symbiont Symbiodinium spp.
(Additional file 2). All the contigs assigned to Orbicella
faveolata with MEGAN6 were also found with the SRC_c
strategy (Table 3), but our method assigned 19,415 more
contigs to the host category. On the contrary, MEGAN6
assigned 21,197 additional contigs to Symbiodinium spp.
compared to our categorization strategy (Table 3,
Additional file 2). With M2, MEGAN6 assigned 11 contigs
to the host Xestospongia muta (Additional file 2) which is
far less than the 2654 contigs defined with the SRC_c
strategy (Table 3). However, MEGAN6 assigned also
33,810 contigs to Amphimedon queenslandica, a distinct
sponge species which is not supposed to be the host in
this holobiont system. MEGAN6 also succeeded to assign
more contigs to bacteria (21,318 contigs) than the SRC
strategy (2431 contigs) (Table 3).
Our functional annotations were compared to the one

from the original studies [24, 29] (Additional file 1), but
as previous publications do not provide exhaustive lists
of the functional annotations and their corresponding
abundance, these comparisons are essentially qualitative.
Moreover, to minimize the biases, we focused on the
more abundant annotations. For the O. faveolata host
(M1), similarities were found in the top 15 of the most
abundant annotations (Additional file 3). At the bio-
logical processes level, both our study and [24] found
abundant metabolic process GO term (GO:0008152; 819

CDs (coding sequences) and 5278 genes, respectively).
At the molecular function level, our host contigs mainly
corresponded to binding protein (GO:0005515; 36,349
CDs) while authors of [24] mainly found catalytic activ-
ity functions (GO:0003824; 3361 genes). For M2, rare
overlaps are found between the study in [29] and our an-
notations (Additional file 3): at the biological processes
level, 1 of the top 15 host annotations is identical (signal
transduction (GO:0007165)), and 3 of the top 15 sym-
biont annotations are in common (metabolic process
(GO:0008152); proton transport (GO:0015992) and pro-
tein folding (GO:0006457)).

Benchmark comparisons on M3: what difference does it
make to use SRC_c?
For the holobiont model M3, we performed an entire as-
sembly study of the yet unpublished meta-transcriptome,
using the same assembly and annotation tools in order to
compare, step by step, quantitatively and qualitatively the
impact of using SRC_c (Additional file 1). In this way, as-
sembly metrics, abundance of chimera, and functional
contents were compared between the SRC_c contig sets
(host, symbiont, shared, and unassigned) and a direct de
novo assembled meta-transcriptome obtained from all
holobiont reads (this strategy is hereafter called noSRC).
The assembly metrics appear very similar between

SRC and noSCR (Table 4). A comparable number of
reads were used for the assembly step, and a comparable

a b

Fig. 3 Metrics comparison between our results and the previous studies for the holobionts M1 (Cnidaria-Dinophyta) and M2 (Porifera-Bacteria).
The total assembled contigs for holobionts M1a and M2 compared to the assembled meta-transcriptomes from a Pinzon et al. 2015 [24] and b
Fiore et al. 2015 [30] are shown. General details about de novo assembly and functional annotation (termed FA) features are presented in
corresponding tables for a holobiont M1a versus Pinzon et al. 2015 [24] meta-transcriptome, and b holobiont M2 versus Fiore et al. 2015 [30]. NC
means that the exact number is not communicated.
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number of assembled contigs were obtained. The N50
value for the noSRC strategy is slightly longer while the
remapping rates are 5% better with the SRC strategy.
Calculation times performed on the same bioinformatic
cluster revealed that the SRC strategy was 40 h longer.
The proportion of chimera detected with the SRC strat-
egy fell to 0.247%, whereas it reached 0.465% without
SRC. This reduction is clearly more significant in terms
of number of sequences: 777 chimeras are detected
without SRC, whereas 418 chimeras are detected with
the SRC strategy. Most chimeras were contained in the
unassigned set (Table 4). We noticed slightly less anno-
tated CDs with the SRC strategy (45,768 against 47,260);
however, the number and the composition in GO

annotations were very similar (Additional file 4). We
found 253 different biological processes with SRC
against 255 with the noSRC strategy, and the top 5 func-
tional annotations in the three gene ontology levels (Mo-
lecular Function, Biological Process, and Cellular
Component) are strictly identical (Additional file 4).
Considering all GO annotations, 686 are common to
both strategies while 52 are exclusive to the SRC strategy
and 42 to the noSRC strategy (Fig. 3, Additional file 4).
To test the usefulness of the categorization step, the

M3 contigs from the noSRC strategy were taxonomically
assigned using MEGAN6 (Additional files 1 and 5).
MEGAN6 assigned 10 contigs to Collodaria, whereas
693 contigs were assigned to the host category by the
SRC strategy. MEGAN6 assigned 1383 contigs to Dino-
phyceae compared to the 5207 contigs categorized as sym-
bionts by the SRC strategy. The leftover MEGAN6 contigs
were assigned to bacteria and Archeae (3799 contigs), vi-
ruses (76 contigs), and other-eukaryotes (29,524 contigs),
and 127,447 contigs remained unassigned (162,947 un-
assigned contigs with the categorization using the SRC
strategy).

Discussion
The use of SRC_c to tackle meta-transcriptomic challenges
The strategy proposed here is a practical and scalable so-
lution for transcriptomic assembly of non-model holo-
biont organisms, from which no or limited genomic
information is available.
The present implementation of SRC_c [23] based on

reference databases of putative partners involved in the
holobiont consortium, and our analysis strategy, enabled
the categorization of holobiont reads into four subsets.
With respect to the reference libraries, as exemplified in
M1, when the expected symbiotic partner (i.e., Symbiodi-
nium spp.) is missing from the reference library, the
number of reads assigned to the symbiont category de-
creases drastically from 50M reads to nearly 5M reads
(Table 2). The M2 and M3 libraries do not contain refer-
ence data for the expected host partner, and conse-
quently, only a low proportion of the holobiont reads
are assigned to the host (19 and 3%, respectively). Ac-
cordingly, the proportion of unassigned reads is directly
linked to both host and symbiont libraries content with
respect to the studied holobiont. Overall, less unassigned
reads were observed when the “correct” actors are in-
volved (M1a: 24.4%) compared to the poorly studied
models (M2: 61.6% and M3: 72.5%). These results high-
light the sensitivity and specificity of the SRC_c requests
that relies on the completeness of the database to accur-
ately sort the reads of the holobiont. The SRC_c assigna-
tion step could be further improved by adding more
sequences (i.e., reads, assembled genes, or transcripts)
from taxonomically close species (from existing

Table 4 SRC_c impact on Radiolaria-Dinophyta holobiont
model (M3)

no SRC SRC

# reads used in assembly 48,733,956 48,660,697

# assembled contigs 167,023 168,899

# predicted cds 75,450 74,017

# annotated cds 47,260 45,768

N50 (bp)

total 818 702

host 277

symbiont 324

shared 298

unassigned 714

remapping rates (%)

total 85.6 90.5

host 65.2

symbiont 76.2

shared 81.3

unassigned 89.7

# chimera

total 777 418

host 4

symbiont 47

shared 0

unassigned 367

Calculation time (min)

total 330 2,783

SRC 2,460

assembly 330 323

SRC strategy’s impact on assembled contigs quality and calculation times of the
Radiolaria-Dinophyta holobiont model (M3) compared to a direct meta-
transcriptome assembly strategy (i.e., the noSRC strategy). In gray are displayed
the details for the SRC strategy holobiont categories (host, symbiont, shared, and
unassigned). The “total” values for N50 and remapping rates of the SRC strategy
were re-calculated on pooled contigs from host, symbiont, shared, and
unassigned subsets

Meng et al. Microbiome  (2018) 6:105 Page 8 of 15



databases or newly produced) to the host and symbiont
reference libraries, but also from multiple actors such as
parasites and viruses that are common in multicellular
and unicellular host cells. In this way, as SRC_c is a
highly scalable tool, which has been improved since its
first release [39] (Additional file 6), it is now possible
and it will be relevant for future transcriptomic symbi-
osis studies to involve more than two reference libraries
because symbiotic associations are often more intricate
[27–31]. Involving more actors in the reference libraries
will thus help to reduce step by step the proportion of
unassigned holobiont reads.
We compared the SRC_c contigs metrics to those

from previous studies (M1a and M2) [24, 29]. We found
that not only our strategy allowed defining a new cat-
egory of contigs (the “shared” contigs), but also allowed
assembling more contigs than previous studies (Fig. 3).
Our contigs metrics showed lower N50 for both models
compared to previous studies but showed higher remap-
ping rates overall for M1a (up to 90%, (Table 3)).
For M2, differences in the number of contigs as

well as contigs metrics could be the results of the fol-
lowing: (i) the considered read set (we used the
complete read set, whereas [29] used a reduced one,
cf. details in the “Methods” section) and/or (ii) the
use of distinct de novo assembly software (we used
Trinity [37], whereas authors of [29] used the CLC
workbench [CLC bio, Boston, MA, USA; (https://
www.qiagenbioinformatics.com/)]. Previous studies
had shown that Trinity is able to generate more as-
sembled contigs than the CLC assembler when ap-
plied on the same dataset [40]. It is also known that
assembled contigs from Trinity are shorter than those
assembled by CLC but provided similar proportion of
significant hits against the nr database [40].
With M1a, our strategy produced 1.5 times more CDs

with a functional annotation (Fig. 3). At that point, we
are unable to tell whether this observation can be the
consequence of a better suited assembly strategy (SRC_c
treatment and/or assembly software), and/or the use of a
different annotation pipeline, and/or the supplementa-
tion of reference annotation databases between 2015
[24] and 2017.
With M3 analyses, we could estimate how SRC_c im-

pacts the de novo assembly step and downstream ana-
lyses compared to a more conventional protocol (i.e., the
noSRC strategy) (Table 4, Fig. 3, Additional file 1). The
SRC strategy increased the total calculation time; how-
ever, compared to classic strategies, it allowed to create
directly two subsets directly assigned to holobionts part-
ners. Minimal differences were found between the SRC
and noSRC strategies concerning the number of assem-
bled contigs and, as for M1a and M2, the SRC strategy
produced shorter contigs sequences with higher

remapping rates. The SRC strategy helped to reduce im-
portantly the number of potential chimeras. We con-
clude that the read sorting and assignation performed
before the assembly step largely contributes to address
one of the most delicate de novo assembly challenges
[41]. Overall, the use of SRC_c for M3 might not be in-
deed so impressive in terms of metrics improvement,
but it ensures the production of high-quality de novo as-
sembled sequences (i.e., with high remapping rate and
without chimera), which is crucial when studying
non-model organisms, and which is a real gain for biolo-
gists who plan to perform molecular experiment based
on these newly produced sequences.

The SRC strategy offers new perspectives in functional
annotations of holobiont partners
For all models, the SRC strategy led to a higher number of
annotated contigs; however, as only partial information on
the annotation content were provided separately for the
host or the symbionts in previous publications [24, 29], we
were mainly restricted to qualitative comparisons.
The comparison of the M1a host transcriptomes with

the previous study meta-transcriptome [24] showed very
few similarities for the most occurring functions, even if
the most annotated function is common (i.e., metabolic
process GO). Our 20 most occurring functions include
signal transduction functions (14% of the total annota-
tions) and molecule transport functions (8% of the total
annotations) that do not appear in the most occurring
function from [24]. These newly highlighted functions
could help better understand the Orbicella faveolata
host with respect to communication and cellular ex-
changes with its partners. We were not able to perform
a similar analysis for the symbiont transcriptome since
authors from [24] only focused on the host transcrip-
tome. For M2, only 1/15 and 3/15 common annotations
were found for host and symbiont, respectively. We sug-
gest that the divergences in the analytical pipeline used,
here Trinity versus CLC for de novo assembly followed
by InterProScan versus FastAnnotator for functional
annotation, make the functional annotation contents
hardly comparable between studies. Despite these dis-
crepancies, results from both analyses must be consid-
ered as potentially valuable and have to be checked with
genome alignment when available or through in vitro
validation when considering restricted group of func-
tions (e.g., PCR).
Symbioses involving single cell heterotrophic hosts and

photosynthetic symbionts have been described in the
oceanic plankton using morphological and molecular data
[5–7, 15]. Radiolarians and their symbiotic microalgae
(e.g., Haptophytes, Dinoflagellates) have an ecological and
biogeochemical significance [42–45], but little is known
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about symbiosis establishment and maintenance. If most
microalgal symbionts can be grown in the laboratory as
free-living stage [46], the study of radiolarian host only re-
lies on single-cell isolation from the field [35, 47]. In this
study, the radiolarian host belongs to the Collodaria order
which is ubiquitous and abundant in the open ocean [35,
48]. Our knowledge about their ecology and evolution is
limited, and hence, our analyses represent an opportunity
to learn more about the genetic repertoire of such uncul-
tivable, non-model lineage. Regarding functional annota-
tions, the SRC and the noSRC strategies provided very
similar results but the SRC strategy categorized the func-
tional annotations among four subsets (host, symbiont,
shared, and unassigned) (Additional file 5), which can be
explored independently, allowing group-specific interpre-
tations and biological hypothesis building for each partner
from the holobiont. For instance, symbiont CDs linked to
the photosystem I and II were detected, confirming that
SRC_c succeeded to assign reads to photosynthetic actors,
as expected here for the symbiotic partner
(Additional file 4).

Strategies regarding the use of SRC_c and future perspectives
SRC_c successfully compared different holobiont read sets
to large reference libraries in less than 24 h, with reason-
able computational resources (i.e., 10 CPUs and less than
20Go of RAM). By setting parameters (i.e., solidity thresh-
old, k-mer size, similarity threshold), we adapted SRC_c to
heterogeneous nature of sequences in libraries (i.e., length,
raw reads or assembled genes/transcripts, data volume,
k-mers distribution) and to poorly studied systems. When
studying meta-transcriptome reads, selecting abundant
k-mers helps to remove the one corresponding potentially
to sequencing errors; however, rare sequence k-mers are
consequently lost. On the contrary, when indexing already
assembled sequences from genomes or transcriptomes, we
do not expect a redundancy of the k-mers such as in
high-throughput sequencing experiments, and we thus
assume that any k-mer is relevant when it comes from a
reference sequence.
Contrary to BLAST-like methods, SRC_c relies uniquely

on shared k-mers for its similarity computation. It means
that a certain amount of error-free k-mers (i.e., k-mers
that do not contain sequencing errors) must be found in
common in order to output sequences, which can make
SRC_c less sensitive compared to alignment methods
which authorize mismatches. However, contrary to align-
ment methods, SRC_c was tailored to scale to very high
volume datasets, and comparisons presented in [23]
showed that SRC_c could handle sets of orders of magni-
tudes higher volumes than BLAST (Additional file 6).
SRC_c’s efficiency relies on its particular probabilistic data
structure. The lightweight indexing and query of k-mers is
made at the price of rare false positives. In our case, false

positives correspond to k-mers that are not contained in
the original indexed library. As in this work, the k-mer
size was relatively low (i.e., 25), the default value for this
parameter was kept ensuring a low false positives rate
(Additional file 6). For longer k-mers (i.e., size > 31), we
recommend to increase the size of the fingerprint if more
precision is needed. SRC_c can also be used in a
no-false positive mode that requires more memory,
but that is still less costly than a hash table as dem-
onstrated in [23].
In our tests, SRC_c helps to retrieve holobiont reads

similar to host or symbiont close species. Previous tools
like COMMET [49] already proposed such computation,
although their data structure makes difficult the use of
k-mers of small size, as computation time would be
drastically impacted. SRC_c was thus chosen for its sim-
ple output and its adaptability to the heterogeneous na-
ture of the libraries studied, notably by adapting the
k-mer lowest occurrence and size parameters.
Future works on SRC_c parameters settings could in-

clude more extensive exploration of the impact of the
similarity threshold parameter on the sensitivity of our
approach. In this regard, if the reads similarity rate to
the libraries could be relaxed, it may decrease the num-
ber of unassigned reads in particular for poorly studied
models. A second strategy would be to implement an it-
erative enriching strategy to maximize the proportion of
holobiont reads assigned to the host or to the symbiont.
This strategy can allow to assign more sequences in the
case of non-model organisms. After a first assignment
round with SRC_c, holobiont reads linked to an identi-
fied group (host/symbiont) can be added to the reference
libraries. Then, based on these new enriched libraries, a
second run of SRC_c can be performed on the holobiont
reads. This can be implemented as an iterative pipeline:
at each round, more reads will be assigned to the host
or symbiont categories and will then be used as
reference libraries. Finally, the approach proposed here
has been applied to holobiont systems (between two
partners), but it could be used to address larger
meta-transcriptomic datasets composed of more com-
plex assemblages. Depending on the SRC_c library con-
tent, the user can choose to target either one or more
specific species among the variety that composed such
meta-transcriptomic datasets. Coupled to our assembly
and downstream analysis strategy, the subsets resulting
of the used of SRC_c are processed de novo allowing the
potential discovery of newly assembled transcripts and
the exploration of the functional and metabolic role for
the first time of each partner without reference genome.

Conclusions
SRC_c successfully processed a variety of large-scale data-
sets and offered a pragmatic way to classify sequences
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from different holobiont partners before assembly. We
showed that our strategy allows improving assembly met-
rics in some cases and, in any cases, ensured to reduce the
number of chimeras and to produce high-quality newly de
novo assembled sequences. Our approach offers an effi-
cient strategy to assemble and study holobionts involving
non-model organisms. Overall, this de novo approach,
allowing a taxonomic categorization of functionalities, can
reveal the link between identity and function, which is ne-
cessary to better understand the functioning and contribu-
tion of each partner in holobiont systems. Applying our
strategy will thus provide new insights into future adapta-
tive and evolutionary studies of the symbioses.

Methods
Radiolaria-Dinophyta holobiont model (M3) sampling,
RNA-seq library and sequencing
The Collodaria colony was sampled in the South Pacific
Ocean at the station 112.01 (coordinates in decimal de-
grees: latitude − 23.3, longitude − 133.9) during the Tara
Oceans expedition in 2011 [50]. The radiolarian colony
of few centimeters in diameter was collected in situ at
the subsurface (1 m deep) with a plastic jar, preventing
disruption of the colony and aggregation of other plank-
tonic organisms. Live observations through the binocular
were performed to verify that no organisms were acci-
dentally attached to the colony before preservation. The
collected colony was directly isolated in 15 mL of RNA-
later (ThermoFisher Scientific, Waltham, MA) and pre-
served at − 20 °C. Total RNA extraction was performed
using NucleoSpin RNA kit (Macherey-Nagel, Düren,
Germany) starting from a slice (about 1 cm diameter) of
Collodaria PAC 37 colony. Briefly, frozen cells were
transferred in a 1.5 mL tube containing 100 μL RA1 lysis
buffer and grinded for 1 min with a motor driven pellet
pestle previously refrigerated in liquid nitrogen. Then,
250 μL RA1 lysis buffer, previously mixed with 3.5 μL
β-mercaptoethanol (1% of total RA1 volume), was added to
the lysed cells, and the total volume was transferred to a
Nucleospin filter. After centrifugation and addition of an
equal volume of 70% ethanol, the RNA was purified follow-
ing the manufacturer’s instructions and finally eluted in
40 μL nuclease-free water. Quantity and quality of extracted
RNA were assessed by capillary electrophoresis on an
Agilent Bioanalyzer (Agilent Technologies, Santa Clara, CA).
Finally, in order to reduce as far as possible the risk of

residual genomic DNA, a further DNase treatment was
applied on the total RNA using Turbo DNA-free kit
(Thermo Fisher Scientific), according to the manufac-
turer’s protocol. After purification with the RNA Clean
and Concentrator-5 kit (ZymoResearch, Irvine, CA), RNA
was eluted in 10 μL nuclease-free water and used to
synthetize cDNA with the Ovation RNA-seq System Ver-
sion 2 (NuGEN, San Carlos, CA), following the

manufacturer’s protocol. After cDNA shearing by Covaris
E210 instrument (Covaris, Woburn, MA), Illumina library
was prepared using the SPRIWorks Library Preparation
System on a SPRI TE instrument (Beckmann Coulter
Genomics, Danvers, MA), according to the manufacturer’s
protocol without size selection. Ligation products were
PCR-amplified using Illumina adapter-specific primers
and Platinum Pfx DNA polymerase (ThermoFisher
Scientific). After library profile analysis by Agilent 2100
Bioanalyzer and qPCR quantification (MxPro, Agilent
Technologies), the library was sequenced using 101
base-length read chemistry in a paired-end flow cell on
HiSeq2000 Illumina sequencer (Illumina, San Diego, CA),
in order to obtain nearly 50 million paired end reads. Raw
reads were deposited on the ENA database: https://
www.ebi.ac.uk/ena/data/view/ERX2094044.

Data retrieval and sequence libraries construction
For each of the three holobiont models (Fig. 2), we built
reference sequences libraries representing host and sym-
biont(s) by selecting the taxonomically closest organisms
available in public datasets (Additional file 7).
For the Cnidaria-Dinophyta holobiont model (M1),

the host library includes 20 assembled transcriptomes
(466,582 contigs) of cnidarian organisms [51] (including
data from the host species Orbicella faveolata itself ) and
2 genome-derived ESTs (201,677 ESTs) of Nematostella
vectensis and Orbicella faveolata [52]. The symbiont li-
brary is composed of 123 RNA-seq reads datasets (a
total of 5,563,498,607 reads) of Dinophyta (including the
presumed major symbiont Symbiodinium spp. [53]) from
the MMETSP project [54]. We built three versions of
the symbiont reference library, one composed of all
Dinophyta (M1a), the second exclusively composed of
Symbiodinium spp. (15 RNA-seq datasets, a total of
123,122,726 reads) (M1b), and the third composed of all
Dinophyta except Symbiodinium spp. (108 RNA-seq
datasets, a total of 5,440,375,881 reads) (M1c).
For the Porifera-Bacteria holobiont model (M2), four

RNA-seq datasets of poriferan species were included in the
host library (642,229,924 total reads): Amphimedon queen-
slandica [55], Crella elegans [56], and both Haliclona
amboinensis and Haliclona tubifera [57]. The M2 symbiont
reference library corresponds to the Tara Oceans
meta-genomic gene catalogue (OM-RGC) assembled from
the pico-planktonic fractions (< 3 μm) including Eubacteria
or Archaea [58]. It is composed of the bacterial gene cata-
log (40,154,822 assembled gene sequences) which has been
downloaded from the OM-RGC website (http://ocean-mi-
crobiome.embl.de/companion.html).
For the Radiolaria-Dinophyta holobiont model (M3), we

gathered Rhizaria sequences from four de novo assembled
holobionts: 7215 presumed host transcripts were extracted
among a total of 15,404 de novo assembled transcripts

Meng et al. Microbiome  (2018) 6:105 Page 11 of 15

https://www.ebi.ac.uk/ena/data/view/ERX2094044
https://www.ebi.ac.uk/ena/data/view/ERX2094044
http://ocean-microbiome.embl.de/companion.html
http://ocean-microbiome.embl.de/companion.html


[15]. Host specific sequences were extracted from holo-
bionts assemblies removing first sequences from prokary-
otic origin with a BLASTn (e-value 1e-3) against the
OM-RGC database, and second, removing symbionts se-
quences with a BLASTx (e-value 1e-3) against Dinophyta
de novo assembled transcriptomes [46]. The exhaustive
Dinophyta library created for the M1a was used for the
reference symbiont library.
All reference libraries described above include assem-

bled transcriptomes, genomes, or RNA-seq raw read
datasets for eukaryotic or prokaryotic holobiont partners
(Additional file 7). Their sizes vary from 4.5 Mbp to
25 Gbp with sequences length from 100 bp to 84 Kbp
(Additional file 7).

Comparing meta-transcriptomes (i.e., holobiont reads) to
reference libraries using short read counter
Presentation of SRC_c
Short Read Connector Counter (SRC_c) [23] relies on a
very lightweight data structure called a quasi-dictionary
that enables to work with voluminous sequence sets.
The quasi-dictionary enables to associate a piece of in-
formation to any element from a static set composed of
N distinct elements. It is composed of two parts: a min-
imal perfect hash function (MPHF) [59] and a finger-
print table. The MPHF allows to index very efficiently
the elements of the set in memory, such that each elem-
ent can be associated to any piece of information (i.e.,
k-mer coverage, location in reads). The fingerprint table
is used to verify the membership of an element to the
indexed set of elements using the MPHF. This way,
stranger elements to the MPHF can be filtered out. The
quasi-dictionary is a probabilistic structure with a con-
trolled false positive rate that depends on the size of the
fingerprint. SRC_c needs as input two sets of sequences
(that can be identical). To compare sequences from a
query set Q to those from a target set T, the set indexed
in the quasi-dictionary is a set of k-mers from T. Finally,
for each sequence S from Q, the number of k-mers of S
shared with T provides a similarity measure of S with
the set T. This implies that the similarity measure given
is asymmetrical: it depends on the placement of the
k-mers on the reads of Q, not of those of T. SRC_c is
available at https://github.com/GATB/short_read_con-
nector, the commit 94aa6a65b5ddf61eba95108069fae29-
c41e51fb0 was used for this study.

Application on data
In this study, SRC_c is used to assign reads from a holo-
biont meta-transcriptome either to the host or to the
symbionts. We divided the query of the holobiont data-
set Q in two parts, one that consists in the comparison
of Q reads to a bank (i.e., reference library) of host se-
quences and another that performs the comparison to a

bank of symbiont sequences. The sets to index are com-
posed of k-mers from the sequences. In each compari-
son, two sequence sets are considered: the whole
holobiont set Q and the target bank set B. First, the set
B, which contains reads or assembled sequences and
represents sequences close to the host (resp. symbiont),
is indexed. During the indexation phase, the solid set of
k-mers (i.e., the set composed of any k-mer which oc-
currence is above a user-fixed threshold (the solidity
threshold) in the data set) from T is computed using
the DSK [60] method. This set is next indexed in the
quasi-dictionary previously described. Then, the reads
from the holobiont data set (Q) are queried. For each
read, the query phase reports the abundance of its
indexed k-mers. In the meantime, reads are checked
to have enough positions (i.e., more than a given
threshold which can be parameterized) for which an
indexed k-mer starts over their length. This enables
to add stringency to the query: a read that shares
only a few k-mers with the index is considered not
enough similar to the index. Finally, each read from Q
(the holobiont) which was found similar to T (the host or
the symbionts) during the query are returned in a binary
vector and can be extracted to a FASTA format.

Parameters choice
Parameters from SRC_c were carefully chosen. First,
the solidity k-mer solidity threshold was adapted ac-
cording to the nature of the sequences in the bank
data set. For libraries for which sequences were
shorter than 300 bp with a relatively high coverage
(e.g., M1 symbiont library involved only reads), the
default value was kept (solidity threshold = 2). For
longer sequences (e.g., M1 host library was composed
of ESTs and M2 symbiont library was composed of
de novo assembled genes), the threshold was adapted
and set to 1. Due to the presence of small reads
(50 bp) in our holobiont datasets, we also modified
the default k-mer size value of 31 to a value of 25, so
that any read contains at least a few k-mers. Usually,
the k-mer size is higher [49]; however, 25 base pairs
correspond to a decent value to ensure the unique-
ness of the read [61]. During the query phase of
SRC_c, a query sequence (from a dataset Q) must
contain at least s% positions covered by at least one
indexed k-mers (from a dataset B), to be considered
similar to data from the set B [23]. As the s default
value is set to 50%, it means that a read of size l
should have at least l × s positions covered by (over-
lapping or non-overlapping) indexed k-mers. Conse-
quently, when a large majority of the reads could not
be assigned, our strategy was to decrease the s par-
ameter from 50 to 40 in order to increase the quan-
tity of recalled reads. We set the similarity value s to
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50% for M1 and M3 and decreased it to 40% for M2.
Both query and indexation phases are parallelized in
SRC_c. For this study, analyses were performed on a
Linux system with 40 cores, with the option -t 0
(maximal number of available threads is used), and
250 GB of memory.

Read filtering, de novo assembly, and downstream analysis
For M1, M2, and M3 datasets, SortMeRNA [62] has been
used with default parameters with the Silva 104 SSU and
LSU nr reference databases, in order to estimate the pro-
portion of reads corresponding to rRNA sequences. For
M2, in comparison to the original publication in which
the CLC workbench has been used and 41% of rRNA
reads has been detected [29], we finally chose to consider
the total read set (i.e., 16,818,599 more reads than [29]) in
the assembly step as the rRNA detection with Sort-
MeRNA detected only 8% or rRNA reads.
All read subsets resulting from the SRC_c step were

first filtered (sequences trimming and cleaning) with the
Trimmomatic program [63] (v0.36) and custom param-
eter SLIDINGWINDOW:10:20. Filtered reads were as-
sembled using the de novo transcriptome assembly
program Trinity [37] (v2.4.0) with default parameters.
The newly assembled contigs metrics were calculated
with the Transrate program [64] (v1.0.3). Additional
downstream analyses include protein coding domain
prediction using Transdecoder [65] (v3.0.1) and func-
tional annotation with InterProScan 5 [66] (v5.24-63),
both with default parameters. The pipeline used for the
steps described above is publicly available on a GitHub
repository https://github.com/arnaudmeng/dntap [46].

Taxonomic assignment with MEGAN6
The contigs sequences were compared to the nr data-
base (August 2017 version) with the DIAMOND soft-
ware [67] (v0.28.22.84) using default parameters for
BLASTx comparison and a e-value of 1e-3. The resulting
alignments were processed with the daa2rma tool script
provided with MEGAN6, and GeneInfo Identifier (GI)
was mapped to alignments using the gi_taxid.bin file
(version of May 2017). Finally, taxonomic assignment
has been calculated with default parameters using the
MEGAN LCA (Last Common Ancestor) algorithm and
was visualized through the MEGAN6 software.

Chimera identification
We followed the protocol described in [68]. Fifty thousand
randomly sampled de novo assembled contigs for the M3
(with the SRC strategy and without SRC strategy) were
compared to the 7215 Rhizaria presumed contigs from [15]
and 3,494,295 coding domains from de novo assembled
contigs of 54 dinoflagellates transcriptomes [46]. The com-
parison was made using the BLASTx program [69] (e-value

1e-3). The tools scripts detect_chimera_from_blastx.py from
[68] was applied to resulting alignments to detect potential
chimeras.
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Additional file 1: Detailed overview of the analysis strategy for M1a, M2,
and M3. (PDF 45 kb)

Additional file 2: Taxonomic assignment of SRC assembled contigs
with MEGAN6 for the holobiont models M1 and M2. (XLSX 23 kb)

Additional file 3: Details of common GO annotations M1 and M2 our
contigs versus previous studies. (XLSX 38 kb)

Additional file 4: Comparison of functional annotations between SRC
assembled transcriptomes and a de novo assembled transcriptome
without the use of SRC_c in the case of holobiont model M3. Details of
the functional annotations results for the SRC strategy applied to M3, the
tables displayed correspond to the top 15 GO annotations found in host,
symbiont, shared, and unassigned transcriptomes for the three levels of
annotations (MF: Molecular Functions, BP: Biological Process and CC:
Cellular Component). (XLSX 21 kb)

Additional file 5: Radiolaria-Dinophyta meta-transcriptome taxonomic
assignment with MEGAN6. Table of taxonomic assignation of the 167,023
de novo assembled contigs from the assembly without SRC_c reads
sorting of the holobiont model M3. (XLSX 9 kb)

Additional file 6: Details on the results and performances of SRC_c.
(DOCX 15 kb)

Additional file 7: SRC_c library content information and data sources.
Table with detailed information of SRC_c libraries contents. The type of data
and the total library sizes are displayed. It includes taxonomic contents and
links to data repositories for holobiont models M1, M2, and M3 and data
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