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Abstract

One of the main issues in proof certification is that different theorem
provers, even when designed for the same logic, tend to use different
proof formalisms and to produce outputs in different formats. The project
ProofCert promotes the usage of a common specification language and of
a small and trusted kernel in order to check proofs coming from different
sources and for different logics. By relying on that idea and by using a
classical focused sequent calculus as a kernel, we propose here a general
framework for checking modal proofs. We present the implementation of
the framework in a prolog-like language and show how it is possible to
specialize it in a simple and modular way in order to cover different proof
formalisms, such as labeled systems, tableaux, sequent calculi and nested
sequent calculi. We illustrate the method for the logic K by providing
several examples and discuss how to further extend the approach.

1 Introduction

One of the main issues in proof checking and proof certification is that proof
evidences, even for a single, specific logic, are produced by using several different
proof formalisms and proof calculi. This is the case both for human-generated
proofs and for proofs provided by automated theorem provers, which moreover
tend to produce outputs in different formats. Facing such an issue is one of the
goals of the project ProofCert [Miller 2011]. By using well-established concepts
of proof theory, ProofCert proposes foundational proof certificates (FPC) as a
framework to specify proof evidence formats. Describing a format in terms of
an FPC allows software to check proofs in this format, much like a context-free
grammar allows a parser to check the syntactical correctness of a program. The
parser in this case would be a kernel: a small and trusted component that checks
a proof evidence with respect to an FPC specification.

Checkers [Chihani et al. 2015] is a generic proof certifier based on the ProofCert
ideas. It allows for the certification of arbitrary proof evidences using various
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trusted kernels, like the focused classical sequent calculus LKF [Liang and Miller 2009].
Such kernels are enriched with additional predicates, which allow for having
more control on the construction of a proof. Dedicated FPC specifications can
be defined, over these predicates, in order to interpret the information coming
from a specific proof evidence format, so that the kernel is forced to produce a
proof that mirrors, and thus certifies in case of success, the original one.

The problem of proliferation of proof formalisms and proof systems is espe-
cially apparent in the case of modal logics, whose proof theory is notoriously non-
trivial. In fact, in the last decades several proposals have been provided (a general
account is, e.g., in [Fitting 2007]). Such proposals range over a set of different
proof formalisms (e.g., sequent, nested sequent, labeled sequent, hypersequent
calculi, semantic tableaux), each of them presenting its own features and draw-
backs. Several results concerning correspondences and connections between the
different formalisms are also known [Fitting 2012, Goré and Ramanayake 2012,
Lellmann 2015].

In [Marin et al. 2016], a general framework for emulating and comparing
existing modal proof systems has been presented. Such a framework is based
on the setting of labeled deduction systems [Gabbay 1996], which consists in
enriching the syntax of modal logic with elements coming from the semantics,
i.e., with elements referring explicitly to the worlds of a Kripke structure and
to the accessibility relation between such worlds. In particular, the framework
is designed as a focused version of Negri’s system G3K [Negri 2005], further
enriched with a few parametric devices. Playing with such parameters produce
concrete instantiations of the framework, which, by exploiting the expressiveness
of the labeled approach and the control mechanisms of focusing, can be used to
emulate the behavior of a range of existing formalisms and proof systems for
modal logic with high precision.

In this paper, we rely on the close relationship between labeled sequent
systems and LKF [Miller and Volpe 2015] in order to propose an implementation
of such a framework that uses LKF as a kernel, and is developed as a module of
the more general Checkers implementation project. This work also capitalizes on
(and, in a sense, generalizes) the one in [Libal and Volpe 2016], which was limited
to the case of prefixed tableaux. The implementation is extremely modular and
based on the use of layers that mirror quite closely the instantiations of the
framework presented in [Marin et al. 2016]. Concretely, we are able to certify,
via this implementation, proofs given in the formalisms of labeled sequents,
prefixed tableaux, ordinary sequent systems and nested sequents. We cover for
the moment only the modal logic K, but the modularity of the approach should
allow for an easy extension to other modal logics, in particular those whose Kripke
frames are defined by geometric axioms, according to the treatment described
in [Marin et al. 2016]. Extension to other formalisms seems also possible; we
discuss this in more detail in the conclusion. To the best of our knowledge, this
project is the first attempt to independently certify the proofs generated by
propositional modal proof systems.

We proceed as follows. In Section 2, we present some background on
ProofCert, modal logic and proof systems for modal logic. In Section 3, we



recall the general framework of [Marin et al. 2016]. In Section 4, we describe its
implementation, by presenting the FPC specifications of the different layers and
by providing a few examples. In Section 5, we discuss a possible extension of
this work by using “virtual” kernels. In Section 6, we conclude and discuss some
other options for future work.

2 Background

2.1 A general proof checker

There is no consensus about what shape should a formal proof evidence take.
The notion of structural proofs, which is based on derivations in some calculus, is
of no help as long as the calculus is not fixed. One of the ideas of the ProofCert
project is to try to amend this problem by defining the notion of a foundational
proof certificate (FPC) as a pair of an arbitrary proof evidence and an executable
specification which denotes its semantics in terms of some well known target
calculus, such as the Sequent Calculus. These two elements of an FPC are then
given to a universal proof checker which, by the help of the FPC, is capable of
deriving a proof in the target calculus. Since the proof generated is over a well
known and low-level calculus which is easy to implement, one can obtain a high
degree of trust in its correctness.

The proof certifier Checkers is a λProlog [Miller 2012] implementation of this
idea. Its main components are the following:

• Kernel. The kernels are the implementations of several trusted proof
calculi. Currently, there are kernels over the classical and intuitionistic
focused sequent calculus. Section 2.2 is devoted to present LKF, i.e. the
classical focused sequent calculus that will be used in the paper.

• Proof evidence. The first component of an FPC, a proof evidence is a
λProlog description of a proof output of a theorem prover. Given the high-
level declarative form of λProlog, the structure and form of the evidence
are very similar to the original proof. We specify the form of the different
proof evidences we handle in Section 4.

• FPC specification. The basic idea of Checkers is to try and generate
a proof of the theorem of the evidence in the target kernel. In order to
achieve that, the different kernels have additional predicates which take
into account the information given in the evidence. Since the form of this
information is not known to the kernel, Checkers uses FPC specifications
in order to interpret it. These logical specifications are written in λProlog
and interface with the kernel in a sound way in order to certify proofs.
Writing these specifications is the main task for supporting the different
outputs of the modal theorem provers we consider in this paper and they
are, therefore, explained in detail in Section 4.



2.2 Classical Focused Sequent Calculus

Theorem provers usually employ efficient proof calculi with a lower degree of
trust. At the same time, traditional proof calculi like the sequent calculus enjoy
a high degree of trust but are very inefficient for proof search. In order to use
the sequent calculus as the basis of automated deduction, much more structure
within proofs needs to be established. Focused sequent calculi, first introduced
by Andreoli [Andreoli 1992] for linear logic, combine the higher degree of trust
of sequent calculi with a more efficient proof search. They take advantage of the
fact that some of the rules are “invertible”, i.e. can be applied without requiring
backtracking, and that some other rules can “focus” on the same formula for
a batch of deduction steps. In this paper, we will make use of the classical
focused sequent calculus (LKF) system defined in [Liang and Miller 2009]. Fig.
1 presents, in the black font, the rules of LKF.

Formulas in LKF can have either positive or negative polarity and are
constructed from atomic formulas, whose polarity has to be assigned, and from
logical connectives whose polarity is pre-assigned. The connectives ∧−,∨− and
∀ are of negative polarity, while ∧+,∨+ and ∃ are of positive polarity.

Deductions in LKF are done during invertible or focused phases. Invertible
phases correspond to the application of invertible rules to negative formulas
while a focused phase corresponds to the application of focused rules to a specific,
focused, positive formula. Phases can be changed by the application of structural
rules. A polarized formula A is a bipolar formula if A is a positive formula and
no positive sub-formula occurrence of A is in the scope of a negative connective
in A. A bipole is a pair of a negative phase below a positive phase within LKF:
thus, bipoles are macro inference rules in which the conclusion and the premises
are ⇑-sequents with no formulas to the right of the up-arrow.

It might be useful sometimes to delay the application of invertible rules
(focused rules) on some negative formulas (positive formulas) A. In order to
achieve that, we define the following delaying operators ∂+(A) = true∧+ A and
∂−(A) = false ∨− A. Clearly, A, ∂+(A) and ∂−(A) are all logically equivalent
but ∂+(A) is always considered as a positive formula and ∂−(A) as negative.

In order to integrate the use of FPC into the calculus, we enrich each rule of
LKF with proof evidences and additional predicates, given in blue font in Fig.
1. We call the resulted calculus LKF a. LKF a extends LKF in the following
way. Each sequent now contains additional information in the form of the proof
evidence Ξ. At the same time, each rule is associated with a predicate (for
example initiale(Ξ, l)) which, according to the proof evidence, might prevent
the rule from being called or guide it by supplying such information as the cut
formula to be used.

Note that adding the FPC definitions in Fig. 1 does not harm the soundness
of the system but only restricts the possible rules which can be applied at each
step. Therefore, a proof obtained using LKF a is also a proof in LKF. Since the
additional predicates do not compromise the soundness of LKF a, we allow their
definition to be external to the kernel and in fact these definitions, which are
supplied by the user, are what allow Checkers to check arbitrary proof formats.



Invertible Rules

Ξ′ ` Θ ⇑A,Γ Ξ′′ ` Θ ⇑B,Γ andNegc(Ξ,Ξ
′,Ξ′′)

Ξ ` Θ ⇑A ∧− B,Γ

Ξ′ ` Θ ⇑A,B,Γ orNegc(Ξ,Ξ
′)

Ξ ` Θ ⇑A ∨− B,Γ
(Ξ′y) ` Θ ⇑ [y/x]B,Γ allc(Ξ,Ξ

′)

Ξ ` Θ ⇑ ∀x.B,Γ †

Focused Rules

Ξ′ ` Θ ⇓B1 Ξ′′ ` Θ ⇓B2 andPose(Ξ,Ξ
′,Ξ′′)

Ξ ` Θ ⇓B1 ∧+ B2

Ξ′ ` Θ ⇓Bi orPose(Ξ,Ξ
′, i)

Ξ ` Θ ⇓B1 ∨+ B2

Ξ′ ` Θ ⇓ [t/x]B somee(Ξ, t,Ξ
′)

Ξ ` Θ ⇓ ∃x.B

Identity rules

Ξ′ ` Θ ⇑B Ξ′′ ` Θ ⇑ ¬B cute(Ξ,Ξ
′,Ξ′′, B)

Ξ ` Θ ⇑ · cut
〈l,¬Pa〉 ∈ Θ initiale(Ξ, l)

Ξ ` Θ ⇓ Pa
init

Structural rules

Ξ′ ` Θ ⇑N releasee(Ξ,Ξ
′)

Ξ ` Θ ⇓N release
Ξ′ ` Θ, 〈l,C〉 ⇑ Γ storec(Ξ, C, l,Ξ

′)

Ξ ` Θ ⇑ C,Γ store

Ξ′ ` Θ ⇓ P 〈l,P 〉 ∈ Θ decidee(Ξ, l,Ξ
′)

Ξ ` Θ ⇑ · decide

Figure 1: The augmented LKF proof system LKF a. The proviso † requires that
y is not free in Ξ,Θ,Γ, B. The symbol Pa denotes a positive atomic formula.

Section 4 is mainly devoted to the definitions of these programs for the different
proof formats of the modal theorem provers.

2.3 Proof systems for modal logic

In this section, we review several proof systems that are among the most popular
calculi for automated theorem proving in modal logic as well as for manual proof
generation. Before that, we recall a few key notions about modal logic and its
relation with first-order classical logic.

2.3.1 Modal logic

The language of (propositional) modal formulas consists of a functionally complete
set of classical propositional connectives, a modal operator � (here we will also
use explicitly its dual ♦) and a denumerable set P of propositional symbols.
Along this paper, we will work with formulas in negation normal form, i.e., such



that only atoms may possibly occur negated in them. Notice that this is not
a restriction, as it is always possible to convert a propositional modal formula
into an equivalent formula in negation normal form. The grammar is specified
as follows:

A ::= P | ¬P | A ∨A | A ∧A | �A | ♦A

where P ∈ P. We say that a formula is a �-formula (♦-formula) if its main
connective is � (♦). The semantics of the modal logic K is usually defined
by means of Kripke frames, i.e., pairs F = (W,R) where W is a non empty
set of worlds and R is a binary relation on W . A Kripke model is a triple
M = (W,R, V ) where (W,R) is a Kripke frame and V : W → 2P is a function
that assigns to each world in W a (possibly empty) set of propositional symbols.

In the basic modal logic K, we define the truth of a modal formula at a point
w in a Kripke structure M = (W,R, V ) as the smallest relation |= satisfying:

M, w |= P iff P ∈ V (w)

M, w |= ¬P iff P 6∈ V (w)

M, w |= A ∨B iff M, w |= A or M, w |= B

M, w |= A ∧B iff M, w |= A and M, w |= B

M, w |= �A iff M, w′ |= A for all w′ s.t. wRw′

M, w |= ♦A iff there exists w′ s.t. wRw′ and M, w′ |= A.

By extension, we write M |= A when M, w |= A for all w ∈ W and we write
|= A when M |= A for every Kripke structure M.

2.3.2 The standard translation from modal logic into classical logic

The following standard translation (see, e.g., [Blackburn and Van Benthem 2007])
provides a bridge between propositional (classical) modal logic and first-order
classical logic:

STx(P ) = P (x) STx(A ∧B) = STx(A) ∧ STx(B)

STx(¬P ) = ¬P (x) STx(�A) = ∀y(R(x, y) ⊃ STy(A))

STx(A ∨B) = STx(A) ∨ STx(B) STx(♦A) = ∃y(R(x, y) ∧ STy(A))

where x is a free variable denoting the world in which the formula is being evalu-
ated. The first-order language into which modal formulas are translated is usually
referred to as first-order correspondence language [Blackburn and Van Benthem 2007]
and consists of a binary predicate symbol R and a unary predicate symbol P
for each P ∈ P. When a modal operator is translated, a new fresh variable is
introduced. It is easy to show that for any modal formula A, any model M and
any world w, we have that M, w |= A if and only if M |= STx(A)[x← w].

2.3.3 Labeled sequent systems

Several different deductive formalisms have been used for modal proof theory
and theorem proving. One of the most interesting approaches has been presented



Classical rules

x : P,Γ ` ∆, x : P
init

x : A, x : B,Γ ` ∆

x : A ∧B,Γ ` ∆
L∧

Γ ` ∆, x : A Γ ` ∆, x : B

Γ ` ∆, x : A ∧B R∧

x : A,Γ ` ∆ x : B,Γ ` ∆

x : A ∨B,Γ ` ∆
L∨

Γ ` ∆, x : A, x : B

Γ ` ∆, x : A ∨B R∨

Modal rules

y : A, x : �A, xRy,Γ ` ∆

x : �A, xRy,Γ ` ∆
L�

xRy,Γ ` ∆, y : A

Γ ` ∆, x : �A
R�

xRy, y : A,Γ ` ∆

x : ♦A,Γ ` ∆
L♦

xRy,Γ ` ∆, x : ♦A, y : A

xRy,Γ ` ∆, x : ♦A
R♦

In R� and L♦, y does not occur in the conclusion.

Figure 2: LS: a labeled sequent system for the modal logic K

in [Gabbay 1996] with the name of labeled deduction. The basic idea behind
labeled proof systems for modal logic is to internalize elements of the corre-
sponding Kripke semantics (namely, the worlds of a Kripke structure and the
accessibility relation between such worlds) into the syntax. A concrete example
of such a system is the sequent calculus G3K presented in [Negri 2005] (we will
refer to it as LS in this paper). LS formulas are either labeled formulas of the
form x : A or relational atoms of the form xRy, where x, y range over a set of
variables and A is a modal formula. In the following, we will use ϕ,ψ to denote
LS formulas. LS sequents have the form Γ ` ∆, where Γ and ∆ are multisets
containing labeled formulas and relational atoms. In Fig. 2, we present the
rules of LS, which is proved to be sound and complete for the basic modal logic
K [Negri 2005].

2.3.4 Prefixed tableau systems

Prefixed tableaux (PT) can also be seen as a particular kind of labeled deductive
system. They were introduced in [Fitting 1972]. The formulation that we use
here is closer to the one in [Fitting 2007] and it is given in terms of unsigned
formulas. A prefix is a finite sequence of positive integers (written by using
dots as separators). Intuitively, prefixes denote possible worlds and they are
such that if σ is a prefix, then σ.1 and σ.2 denote two worlds accessible from
σ. A prefixed formula is σ : A, where σ is a prefix and A is a modal formula in
negation normal form. A prefixed tableau proof of A starts with a root node
containing 1 : A, informally asserting that A is false in the world named by the
prefix 1. It continues by using the branch extension rules given in Figure 3.
We say that a branch of a tableau is a closed branch if it contains σ : P and
σ : ¬P for some σ and some P . The goal is to produce a closed tableau, i.e., a
tableau such that all its branches are closed. Classical rules in Figure 3 are the
prefixed version of the standard ones. For what concerns the modal rules, the
♦ rule applied to a formula σ : A intuitively allows for generating a new world,



Classical rules

σ : A ∧B
σ : A, σ : B

∧F
σ : A ∨B

σ : A | σ : B
∨F

Modal rules
σ : �A
σ.n : A

�F
σ : ♦A
σ.n : A

♦F

In �F , σ.n is used. In ♦F , σ.n is new.

Figure 3: PT: a prefixed tableau system for the modal logic K

Classical rules

` Γ, P,¬P init
` Γ, A ` Γ, B

` Γ, A ∧B ∧
` Γ, A,B

` Γ, A ∨B ∨

Modal rules
` Γ, A

` ♦Γ,�A,∆
�K

Figure 4: OS: an ordinary sequent system for the modal logic K.

accessible from σ, where A holds, while the � rule applied to a formula � : A
allows for moving the formula A to an already existing world accessible from
σ. We say that a prefix is used on a branch if it already occurs in the tableau
branch and it is new otherwise.

2.3.5 Ordinary sequent systems

Several “ordinary” sequent systems have been proposed in the literature for differ-
ent modal logics (a general account is, e.g., in [Indrzejczak 2010, Poggiolesi 2011]).
In our treatment, we will use the formalization OS presented in Figure 4, which is
adapted mainly from the presentations in [Fitting 2007, Stewart and Stouppa 2004].
The base classical system (consisting of identity, structural and classical connec-
tive rules) is extended by a modal rule that works on one �-formula and several
♦-formulas.

2.3.6 Nested sequent systems

Nested sequents (first introduced by Kashima [Kashima 1994], and then indepen-
dently rediscovered by Poggiolesi [Poggiolesi 2011], as tree-hypersequents, and by
Brünnler [Brünnler 2009]) are an extension of ordinary sequents to a structure
of tree, where each [ ]-node represents the scope of a modal �. We write a
nested sequent as a multiset of formulas and boxed sequents, according to the
following grammar, where A can be any modal formula in negative normal form:
N ::= ∅ | A,N | [N ],N

In a nested sequent calculus, a rule can be applied at any depth in this tree
structure, that is, inside a certain nested sequent context. A context written



Classical rules

N{P,¬P} init
N{A} N{B}
N{A ∧B}

∧
N{A,B}
N{A ∨B}

∨

Modal rules
N{[A]}
N{�A} �

N{♦A, [A,M]}
N{♦A, [M]} ♦

Figure 5: NS: a nested sequent system for the modal logic K.

as N{ } · · · { } is a nested sequent with a number of holes occurring in place of
formulas (and never inside a formula). Given a context N{ } · · · { } with n holes,
and n nested sequents M1, . . . ,Mn, we write N{M1} · · · {Mn} to denote the
nested sequent where the i-th hole in the context has been replaced byMi, with
the understanding that ifMi = ∅ then the hole is simply removed. We are going
to consider the nested sequent system (on Figure 5) introduced by Brünnler
in [Brünnler 2009], that we call here NS.

3 A general focused framework for modal logic

3.1 A translation from the modal language into a first-
order polarized language

In [Miller and Volpe 2015], it has been shown how it is possible to translate a
modal formula A into a polarized first-order formula A′ in such a way that a
strict correspondence between rule applications in a LS proof of A and bipoles
in an LKF proof of A′ holds. Such a correspondence has been used in order to
prove some adequacy theorem and to define a focused version of LS. Here we will
further exploit it for checking labeled sequent and prefixed tableaux derivations
in the augmented variant LKF a.

The translation is obtained from the standard translation of Section 2.3.2
by adding some elements of polarization. First of all, when translating a modal
formula into a polarized one, we are often in a situation where we are interested
in putting a delay in front of the formula only in the case when it is negative and
not a literal. For that purpose, we define A∂+

, where A is a modal formula in
negation normal form, to be A if A is a literal or a positive formula and ∂+(A)
otherwise.

Given a world x, we define the translation [.]x from modal formulas in
negation normal form into polarized first-order formulas as:

[P ]x = P (x) [A ∧B]x = [A]x
∂+

∧− [B]x
∂+

[¬P ]x = ¬P (x) [A ∨B]x = [A]x
∂+

∨− [B]x
∂+

[�A]x = ∀y(¬R(x, y) ∨− [A]y
∂+

) [♦A]x = ∃y(R(x, y) ∧+ ∂−([A]y
∂+

))



In this translation, delays are used to ensure that only one connective is
processed along a given bipole, e.g., when we decide on (the translation of) a
♦-formula [♦A]x, the (translation of the) formula A is delayed in such a way
that it gets necessarily stored at the end of the bipole. Based on that, we define
the translation [.] from labeled formulas and relational atoms into polarized first-
order formulas as [x : A] = [A]x and [xRy] = R(x, y). We will sometimes use the
extension of this notion to multisets of labeled formulas, i.e., [Γ] = {[ϕ] | ϕ ∈ Γ}.
Note that predicates of the form P (x) and R(x, y) are considered as having
positive polarity. Finally, we define a translation from LS sequents into LKF
sequents:

[(ϕ1, . . . , ϕn ` ψ1, . . . , ψm)] =` [¬ϕ1]
∂+

, . . . , [¬ϕn]
∂+

, [ψ1]
∂+

, . . . , [ψm]
∂+

⇑ ·

where [¬ϕ] is [(¬A)]x if ϕ = x : A and is ¬R(x, y) if ϕ = xRy.
We recall here a result from [Miller and Volpe 2015], where a more formal

statement and a detailed proof can be found.

Theorem 1 Let Π be a LS derivation of a sequent S from the sequents S1, . . . , Sn.
Then there exists an LKF derivation Π′ of [S] from [S1], . . . , [Sn], such that each
rule application in Π corresponds to a bipole in Π′. The viceversa, for first-order
formulas that are translation of modal formulas, also holds.

3.2 A focused labeled framework

Theorem 1 ensures that we can easily check an LS proof by using a kernel based on
LKF and the translation of Section 3.1. Given the tight correspondence between
LS inference rules and LKF bipoles, the information concerning the original
proof that we need in order to reproduce it faithfully [Libal and Volpe 2016]
(typically going from the root to the leaves) in LKF is restricted to the following:

• at each step, the formula on which a rule is applied;

• when a ♦ rule is applied, which term is used as a witness;

• in the case of an initial rule, with respect to which pair of complementary
literals it is applied.

Theorem 1 also led, in [Miller and Volpe 2015], to the definition of a focused
labeled sequent system (LMF) for modal logic, which can be seen either as a
focused version of Negri’s system or as the restriction of LKF to the first-order
correspondence language (where modalities are seen as synthetic connectives).

In the context of modal logics, labeled proof systems have been shown to
be quite expressive and encodings of other approaches into this formalism have
also been presented in the literature [Fitting 2012, Goré and Ramanayake 2012,
Lellmann 2015]. It seems therefore quite natural to explore the possibility of
reproducing the behavior of modal proof systems based on different formalisms
inside LMF, by exploiting at the same time the expressivity of labeling and the
control mechanisms provided by focusing. Such an analysis has been carried



out in [Marin et al. 2016] and has shown that, by enriching LMF with a few
further technical devices, it is possible to get enough power to drive construction
of proofs so as to emulate the proof structure of a wide range of formalisms.

The general framework LMF∗ is presented in Figure 6. We refer the reader
to [Marin et al. 2016] for an intuitive explanation of the devices introduced
in the system. We just remark that the framework presented here is slightly
different from the one proposed there, since considering only the logic K allows
for a few simplifications.

In the rest of this paper, when talking of LMF∗ and its instantiations, a
labeled formula will have the form ϕ ≡ xσ : A, where σ is either empty or a
label y. We say that x is the present of ϕ and σ is the future of ϕ. An LMF∗
sequent has the form G `H Θ ⇑ Ω or G `H Θ ⇓ Ω, where the relational set (of
the sequent) G is a set of relational atoms, the present (of the sequent) H is a
non-empty multiset of labels, and Θ and Ω are multisets of labeled formulas.

3.3 Emulation of modal proof systems

In order to emulate proofs given in other proof calculi by means of the focused
framework LMF∗, we need to give a specialized version of the rule decideF .

In order to define a translation b·c from modal formulas in negation normal
form into polarized modal formulas, we refine the one given in Section 3.1, by
considering the fact that we have now modal operators in the target language
and do not need to translate explicitly modalities into quantifiers:

bP c = P bA ∧Bc = bAc∂
+

∧− bBc∂
+

b¬P c = ¬P bA ∨Bc = bAc∂
+

∨− bBc∂
+

b�Ac = �(bAc∂
+

) b♦Ac = ♦(∂−(bAc∂
+

))

For LS, we specialize the rule decideF as follows:

G `L Θ ⇓ xσ : A

G `L Θ ⇑ · decideLS

where:

• L denotes the set of all labels;

• if A is a ♦ formula, then σ is y for some xRy ∈ G; otherwise, σ is empty.

Given the similar nature of the approaches, in the case of the logic K, the same
rule can be used also for emulating the systems PT and NS (for convenience,
in the following we will use for the same rule also the names decidePT and
decideNS). Differences will emerge when considering logics beyond K as, e.g.,
the treatment of a rule for S4 in systems based on prefixed tableaux and nested
sequents tend to use a principle similar to that applied in OS and consisting in
moving a � from a world to another reachable one. We also remark that the
difference of approach between LS and PT is captured by a different translation
of the original formula to be proved (which needs to be negated in the case of
tableaux) rather than by differences in the decide rule.



Asynchronous introduction rules

G `H Θ ⇑ x : A,Ω G `H Θ ⇑ x : B,Ω

G `H Θ ⇑ x : A ∧− B,Ω
∧−F

G `H Θ ⇑ x : A, x : B,Ω

G `H Θ ⇑ x : A ∨− B,Ω
∨−F

G ∪ {xRy} `H Θ ⇑ y : B,Ω

G `H Θ ⇑ x : �B,Ω
�F

Synchronous introduction rules

G `H Θ ⇓ xσ : B1,Ω1 G `H Θ ⇓ xσ : B2,Ω2

G `H Θ ⇓ xσ : B1 ∧+ B2,Ω1,Ω2
∧+F

G `H Θ ⇓ xσ : Bi,Ω

G `H Θ ⇓ xσ : B1 ∨+B2,Ω
∨+F , i ∈ {1, 2}

G ∪ {xRy} `H Θ ⇓ y : B,Ω

G ∪ {xRy} `H Θ ⇓ xy : ♦B,Ω
♦F

Identity rules

G `H x : ¬B,Θ ⇓ x : B
initF

Structural rules

G `H Θ, x : B ⇑ Ω

G `H Θ ⇑ x : B,Ω
storeF

G `H Θ ⇑ Ω′

G `H Θ ⇓ Ω
releaseF

G `H′ Θ ⇓ Ω

G `H Θ ⇑ · decideF

In storeF , B is a positive formula or a negative literal.
In initF , B is a positive literal.
In �F , y is different from x and does not occur in G nor in Θ.
In decideF , if xy : A ∈ Ω then x : A ∈ Θ. Moreover, Ω contains only positive
formulas of the form: (i) xσ : A, where A is not a ♦-formula and x ∈ H; or (ii)
xy : A where A is a ♦-formula, xRy ∈ G, x ∈ H.
In releaseF , Ω contains no positive formulas and Ω′ = {x : A | xσ : A ∈ Ω}.

Figure 6: LMF∗: a focused labeled framework for the modal logic K.



For ordinary sequents, we specialize instead the rule decideF as follows:

G `{y} Θ ⇓ Ω

G `{x} Θ ⇑ · decideOS

where (in addition to the general conditions of Figure 6) we have that:

1. if x 6= y, then:

• xRy ∈ G; and

• Ω is a multiset of formulas of the form xy : ♦A;

2. if x = y, then Ω = {x : A} for some formula A that is not a ♦-formula.

Intuitively, the specialization with respect to the general framework consists
in: (i) restricting the use of multifocusing to ♦-formulas; (ii) forcing such
♦-formulas to be labeled with the same future.

Let X range over {LS, PT,OS,NS}. We call LMFX the system obtained
from LMF∗ by replacing the rule decideF with the rule decideX . The adequacy
of the implementation proposed in next section relies on the following result,
which is proved by associating to each rule in X a corresponding sequence of
bipoles in LMFX . We refer the reader to [Marin et al. 2016] for a more formal
statement of the theorem as well as for its complete proof.

Theorem 2 Let X range over {LS, PT,OS,NS}. There exists a proof Π of

A in the proof system X iff there exists a proof Π′ of ∅ `{x} x : (bAc)∂
+

⇑ ·, for
some x, in LMFX . Moreover, for each application of a rule r in Π there is a
sequence of bipoles in Π′ corresponding to r.

4 Certification of modal proofs

This section describes the implementation of a general framework for the certifica-
tion of modal proofs and shows how this framework can be used in order to certify
proofs from different proof systems. We will rely here on the theoretical results
of Section 3. We just notice that in practice we do not use the labeled modal
system LMF∗ as a kernel but rather implement it on top of LKF a. This allows
for keeping a simple and uniform kernel in the context of the Checkers project,
that also considers other logics and formalisms. However, given Theorem 1, the
adequacy result of Theorem 2 automatically transfers from LMFX to LKF.

4.1 A proof certification framework

Foundational proof certificates form a rich language for the certification of any
proof object. This richness has the downside that defining a new set of FPC
specifications is, in general, a complex task. This property is not unique to
ProofCert. There are but a few general proof certification tools and the effort to
enable the certification of a particular proof system is non-trivial.



Our aim in this paper is to enable both generalization and ease of use. This
is going to be attempted by the development of a layered framework, where each
layer is defined in terms of the previous one. This framework is an implementation
of the systems described in section 3.2, where each layer in our implementation
directly corresponds to one of the systems described there. Moreover, we take
the incremental build-up of systems in the paper one step further and implement
each framework in our system in terms of the previous one. Such a layered
framework will restrict the richness of the foundational proof certificates in a
way that will make it easier to develop FPC specifications which can be used
to efficiently certify various other systems. To preserve the generality of the
system for modal logic, the top layer will be capable of certifying arbitrary other
systems. The bottom level of this framework will be the LMF system, which
is similar to the one described in [Libal and Volpe 2016]. This system will be
extended to a simulation of multi-focusing and will result in the system LMFm.
The final system is LMF∗.

The definition of each layer is characterized by three elements:

1. A supported proof format

2. Its FPC specification

3. A monad-like state

In order to support our layered architecture, we had to use techniques such
as abstraction, encapsulation, polymorphism and modularity. Such techniques
are not native to logic programming languages and were simulated in our system
by the combination of a careful accumulation of files, using constants to move
between layers, a set of “conversion” function and λProlog types.

It should be noted that the state is not an integral part of the proof evidence.
The fact that we include it in the certificate is done only in order to simplify the
implementation. The state of each layer is being initialized by fixed constants
and can be, therefore, omitted from the evidence. We will describe the state
in some details when speaking about the frameworks but omit such discussion
when describing the supported proof evidence.

4.1.1 The LMF system layer

In [Libal and Volpe 2016] we have presented a system which is capable of certi-
fying several labeled sequent and prefixed tableau based proof systems.

We have shown, that given the correspondence between rule applications
in the original calculus and bipoles in LKF, we can state an easy and faithful
encoding of proofs, mainly based on specifying on which formulas we decide
every time we start a new bipole.

Our first layer is capable, therefore, of accepting proof evidence which contains
the following information:

1. at each step, on which formula we apply a rule;



2. in the case of a ♦-formula, with respect to which �-formula we apply the
rule;

3. in the case of an initial rule, with respect to which complementary literal
we apply it.

For this reason, we define the proof evidence of this layer to consist in a tree
describing the original proof. Each node is decorated by a pair containing: (i)
the formula on which a rule is applied, as explained in (1), together with (ii) a
(possibly null) further index carrying additional information, to be used in cases
(2) and (3) above. Formulas in the tree will drive the construction (bottom-up)
of the LKF derivation, in the sense that, by starting from the root, at each step,
the LKF kernel will decide on the given formula and proceed, constrained by
properly defined clerks and experts, along a positive and a negative phase. The
results in [Libal and Volpe 2016] guarantees that at the end of a bipole, we will
be in a situation which is equivalent to that of the corresponding step in the
original proof.

As described in item (2) above, if we are applying an ∃-rule in LKF, then we
need further information specifying with respect to which eigenvariable we apply
the rule. This is done by linking, using the state, the formula under consideration
to the corresponding new-world-generating �-formula. Similarly, in the case of
an initial (3), the additional information in the node will specify the index of
the complementary literal. This information will be captured in a state-monad
which will capture, in this layer and in the following ones, all information which
is independent of the evidence but is required for the correct execution of the
system.

In order to provide an FPC specification for a particular format, we need
to define the specific items that are used to augment LKF. In particular, the
constructors for proof certificate terms and for indices must be provided: this is
done in λ-Prolog by declaring constructors of the types cert and index.

The indexing mechanism is defined next.

% defined in lmf-singlefoc .sig
type root index.
type lind index -> index.
type rind index -> index.
type diaind index -> index -> index.
type none index.

The lind and rind indices are functions denoting the left and right sub-
formulas. The root index is a constant denoting the root formula. In order to
simulate the different labels associated with different applications of the same
♦-formula, we are using the diaind function which also refers to the associated
box. The none index just allows us to denote indices as optional data structures.

Figure 7 gives an example of the relationship between indices and sub-
formulas. As mentioned above, since the same ♦-formula can be associated with
different �-formulas, we use a specific index, the diaind for its sub-formula.

In order to be able to transform the same proof object between different
layers, we have defined a notion of abstract tree as follows:



root -> ((�p) ∧ (♦¬q)) ∨ (�(¬p ∨ q)) (lind root) -> (�p) ∧ (♦¬q)
(lind (lind root)) -> �p (rind (lind root)) -> ♦¬q
(diaind (rind (lind root)) (rind root)) -> ¬q

Figure 7: Possible indexing of sub-formulas of ((�p) ∧ (♦¬q)) ∨ (�(¬p ∨ q))

% defined in lmf-singlefoc .sig
kind lmf-node , lmf-tree type.
type lmf-tree lmf-node -> list lmf-tree -> lmf-tree.

This definition permits the usage of different types of nodes in the same tree,
which will allow us to smoothly move between the layers.

Using these definitions, we can now give the definition of the supported proof
format.

% defined in lmf-singlefoc .sig
kind lmf-singlefoc-state type.
type lmf-singlefoc-cert lmf-singlefoc-state -> lmf-tree -> cert.
type lmf-singlefoc-node index -> index -> lmf-node.

In Checkers, proof objects are elements of type cert. The different “state”
elements are used internally by the FPC specifications and are initialized to
default values.

The main component of the proof evidence are the nodes. For LMF, we
require information about two indices. The first is the index of the principal
formula in the inference and the second is an optional index. This index is
mandatory in the following two cases:

• If the principal formula is a ♦, then the second index must be the index of
the associated box formula.

• If the inference is an init rule, then the second index is the index of the
complementary literal.

In addition to the type declaration, the FPC definition must supply the logic
program defining the clerk predicates and the expert predicates. Writing no
specification for a given predicate defines that predicate to hold for no list of
arguments.

According to this specification, which can be found in [Libal and Volpe 2016],
each decide step is completely determined by the proof evidence.

4.1.2 The LMFm system layer

This layer allows us to simulate a multi-focusing step in the kernel and corre-
sponds to the multi-focused version of LMF defined in section 3.2. Our system
will simulate multi-focusing using a non multi-focusing kernel by relating each
inference with a number. This number will force all inferences labeled the same
to occur sequentially. This does not simulate multi-focusing in the general case,
since in our implementation processing one of the formulas does modify the



state in which a second formula is processed. However, the fact that we only
multifocus on ♦-formulas on a given label and the fact that we restrict to the
logic K ensure that the simple mechanism defined above is enough for encoding
multifocusing in our case.

In addition to the proof format from the previous layer, we require every
node to contain a multi-focus value.

% defined in lmf-multifoc .sig
type lmf-multifoc-node int -> lmf-node -> lmf-node.

4.1.3 The LMF∗ system layer

The most expressive layer is LMF∗ which directly corresponds to the LMF∗ sys-
tem defined in section 3.2. This layer extends the previous one with information
about worlds which are currently active (the present) and the possible futures.
The present is intuitively used in order to restrict the application of the decide
rule only to formulas labeled by nodes contained in the present. The future can
be used to restrict the application of the ♦ rule. Please refer to section 3.2 for
more information.

The supported proof format for this layer is denoted by the following types:

% defined in lmf-star.sig
kind lmf-star-state type.
type lmf-star-state list A -> A -> list (pair index A) -> lmf-star-state.
type lmf-star-node list A -> A -> lmf-node -> lmf-node.
type lmf-star-cert lmf-star-state -> cert -> cert.

The state is now extended to contain information about the current present
and future, as well as information about the actual label assigned to each index.
The nodes of a proof evidence, as defined in section 3.2, contain, in addition to
the information required in the previous layer, also information about the new
present and future.

In the structure of the evidence accepted in this layer, one can see the
abstraction and polymorphism mechanism applied in Checkers. An lmf-node is
an abstract type which corresponds to all concrete implementations of the nodes.
In order to fake polymorphism, we have implemented a set of transformations
between the different layers, as can be seen in figure 8.

Given a proof evidence in the format supported by one layer, the FPC
specification will recursively apply the specification defined for the lower layer,
using transformations similar to the ones in Figure 8. The expressiveness of the
upper layer will be used in order to prune nodes in the search space, as well as
for sometimes changing the information passed to the lower level.

Figure 9 gives the FPC specifications for the LMF∗ layer. The auxiliary
relations used are the following:

• obtaine_all_star_node_vals is used to extract the values in the state
and root node

• obtain_value_in_map returns the label associated to a given index

• member checks for list membership



% defined in lmf-star.sig
type lmf-star_to_lmf-multifoc cert -> lmf-star-state -> list A -> A -> cert -> o.
type lmf-multifoc_to_lmf-star cert -> lmf-star-state -> list A -> A -> cert -> o.

% defined in lmf-star.mod
lmf-star_to_lmf-multifoc

(lmf-star-cert S (lmf-multifoc-cert (lmf-singlefoc-cert S1
(lmf-tree (lmf-star-node H F N) C))))

S H F
(lmf-multifoc-cert (lmf-singlefoc-cert S1 (lmf-tree N C))).

lmf-star_to_lmf-multifoc
(lmf-star-cert S (lmf-multifoc-cert (lmf-singlefoc-cert S1 (lmf-tree N C))))
S H F
(lmf-multifoc-cert (lmf-singlefoc-cert S1 (lmf-tree N C))).

lmf-multifoc_to_lmf-star
(lmf-multifoc-cert (lmf-singlefoc-cert S1 (lmf-tree (lmf-multifoc-node M N) C)))
S H F
(lmf-star-cert S (lmf-multifoc-cert (lmf-singlefoc-cert S1

(lmf-tree (lmf-star-node H F (lmf-multifoc-node M N)) C)))).
lmf-multifoc_to_lmf-star

(lmf-multifoc-cert (lmf-singlefoc-cert S1 (lmf-tree N C)))
S _ _
(lmf-star-cert S (lmf-multifoc-cert (lmf-singlefoc-cert S1 (lmf-tree N C)))).

Figure 8: Proof evidence transformation between two layers

• change_state updates the state in a certificate

The FPC specifications in Figure 9 corresponds to the definition of LMF∗
in Section 3.2. For example, the decide_ke expert calls the lower layer only in
case the world associated with the root node is allowed by the present in the
inference rule.

4.2 Certification of different proof formats

Given the different layers in the proof system defined in the previous section, we
can easily write FPC specifications for different popular proof formats.

The process is always the same. The FPC specifications for the proof format
translates the root node of the proof evidence into the format of a node in one
of the layers of the framework and make a recursive call. In case the inference of
the input calculus corresponds to exactly one inference in the framework calculus,
the result of the recursive call is an inference tree whose new root node is again
a node in the input calculus. In other cases, the translations between the layers
will make sure to use the right type of nodes in order to imitate several steps
within the framework.

In the next sections we describe in more detail how the framework is used in
order to support specific proof formats.

4.2.1 Labeled sequents

The treatment of labeled systems [Negri 2005] was already implemented in the
previous version of Checkers, which is described in [Libal and Volpe 2016]. In
order to get emulation of LS, we require a very simple use of the framework



% defined in lmf-star.mod
decide_ke Cert L Cert ’ :-

obtain_all_star_node_vals Cert H F Map NH NF M I OI ,
obtain_value_in_map Map I V,
member V H,
lmf-star_to_lmf-multifoc Cert S NH NF Cert-s ,
decide_ke Cert-s L Cert-s ’,
lmf-multifoc_to_lmf-star Cert-s ’ (lmf-star-state NH NF Map) NH NF Cert ’.

store_kc Cert L B Cert ’ :-
lmf-star_to_lmf-multifoc Cert S H F Cert-s ,
store_kc Cert-s L B Cert-s ’,
lmf-multifoc_to_lmf-star Cert-s ’ S H F Cert ’.

release_ke Cert Cert.
initial_ke Cert O :-

lmf-star_to_lmf-multifoc Cert _ _ _ Cert-s ,
initial_ke Cert-s O.

orNeg_kc Cert Form Cert ’ :-
lmf-star_to_lmf-multifoc Cert S H F Cert-s ,
orNeg_kc Cert-s Form Cert-s ’,
lmf-multifoc_to_lmf-star Cert-s ’ S H F Cert ’,
obtain_all_star_node_vals Cert _ _ Map _ _ _ I _,
obtain_all_star_node_vals Cert ’ _ _ Map ’ _ _ _ I _,
obtain_value_in_map Map I V.

orNeg_kc Cert Form Cert-r :-
lmf-star_to_lmf-multifoc Cert S H F Cert-s ,
orNeg_kc Cert-s Form Cert-s ’,
lmf-multifoc_to_lmf-star Cert-s ’ S H F Cert ’,
obtain_all_star_node_vals Cert _ _ Map _ _ _ I _,
obtain_value_in_map Map I V,
add_value_to_map_in_state S V (lind I) S’,
add_value_to_map_in_state S’ V (rind I) S’’,
change_state Cert ’ S’’ Cert-r.

andNeg_kc Cert Form Cert1-r Cert2-r :-
lmf-star_to_lmf-multifoc Cert S H F Cert-s ,
andNeg_kc Cert-s Form Cert-s1 Cert-s2 ,
lmf-multifoc_to_lmf-star Cert-s1 S H F Cert1 ,
lmf-multifoc_to_lmf-star Cert-s2 S H F Cert2 ,
obtain_all_star_node_vals Cert H F Map NH NF M I OI ,
obtain_value_in_map Map I V,
add_value_to_map_in_state S1 V (lind I) S1b ,
add_value_to_map_in_state S2 V (rind I) S2b ,
change_state Cert1 S1b Cert1-r ,
change_state Cert2 S2b Cert2-r.

andPos_k Cert Form Str Cert1 Cert2 :-
lmf-star_to_lmf-multifoc Cert S H F Cert-s ,
andPos_k Cert-s Form Str Cert-s1 Cert-s2 ,
lmf-multifoc_to_lmf-star Cert-s1 S H F Cert1 ,
lmf-multifoc_to_lmf-star Cert-s2 S H F Cert2.

all_kc (lmf-star-cert State Cert) Cert ’ :-
lmf-star_to_lmf-multifoc (lmf-star-cert State Cert) S _ _ Cert-s ,
all_kc Cert-s Cert-s ’,
obtain_all_star_node_vals (lmf-star-cert State Cert) H F Map NH NF M I OI,
add_value_to_map_in_state S I I S’,
lmf-multifoc_to_lmf-star_all Cert-s ’ S’ Cert ’.

some_ke Cert X Cert ’-r :-
lmf-star_to_lmf-multifoc Cert S H F Cert-s ,
some_ke Cert-s X Cert-s ’,
lmf-multifoc_to_lmf-star Cert-s ’ S’ H F Cert ’,
obtain_all_star_node_vals Cert H F Map NH F M I OI ,
add_value_to_map_in_state S (OI) (diaind I OI) S1,
change_state Cert ’ S1 Cert ’-r.

Figure 9: FPC specifications for the LMF∗ layer



LMF∗, where at each node the present of a sequent corresponds to the set
of all the labels occurring in the proof, no use of multifocusing is required
and the future of a node is set, in the case of ♦-formulas, to the index of
the corresponding �-formula. For simplicity, since this is enough in the case
of K, in our implementation we rely on the lower layer LMF. Please refer
to [Libal and Volpe 2016].

4.2.2 Prefixed tableaux

The popular PT proof format [Fitting 1972], which is used by various automated
theorem provers, is, in the case of K, very close to that of LS (we can roughly
say that PT, being a refutation method, is the dual of LS). Therefore support
for it can be obtained in a very similar way. Its implementation, which has been
described in [Libal and Volpe 2016], also relies on LMF and mainly consists in
inverting, with respect to LS the role of boxes and diamonds in the FPC and in
letting tableau closure rules behave as sequent initial rules.

4.2.3 Ordinary Sequents

As described in Section 2.3.5, ordinary sequent systems differ in several ways
from the previous systems. First, they do not have labels and second, they treat
both � and ♦-formulas inside a single inference rule. For these reasons, the case
of ordinary sequents illustrates the use of the features of the framework LMF∗
in a more significant way already for the logic K.

In particular, the modal rule, which applies to all ♦-formulas at once, can be
emulated in our system by using multi-focusing. In addition, the relationship
between the modal operators can be used in order to restrict the futures allowed:
given a modal rule, all the ♦-formulas there occurring are assigned the same
future, which corresponds to the index of the only �-formula.

Next, we specify the expected format of ordinary sequent proof evidences.

% defined in ordinary-sequents .sig
type ordinary-sequent-node index -> list index -> lmf-node.
type ordinary-sequent-cert ordinary-sequent-state -> lmf-tree -> cert.

An ordinary sequent node contains its index as well as a list of indices. This
list is empty for all inference rules except for the modal rule, where it specifies
the indices of all the ♦-formulas that are affected, as well as for the initial rule,
in which case the list contains a single index denoting the complementary literal.

As discussed above, the state is not an integral part of the proof evidence
and is therefore omitted.

The FPC specification for ordinary sequents is easily implemented on top of
the LMF∗ layer. The only two non-trivial steps relate to the modal rule. On
reaching such an inference rule, we translate the evidence, in a similar way to
the one shown in Figure 8, to the LMF∗ layer. Before we make the recursive call,
we modify the tree in the evidence by adding a multifocusing node (emulated by
a sequence of nodes decorated by the same multifocusing value) that contains all
the ♦-formulas. Another non-trivial step occurs when we reach the last ♦-formula



in such a sequence. Since there is no inference rule for these formulas in the
ordinary sequent calculus, we need to translate back from LMF∗ to ordinary
sequent at the right point. This is taken care of by the decide expert. In other
words, we only return the control back to the ordinary sequent layer when all
the ♦-formulas have been processed.

The FPC specifications are given in Figure 10. The auxiliary relations used
are:

• ordinary-sequent-to-lmf-star, which translates between the general
framework and the ordinary sequent layer;

• generate_diamonds, which generates the inferences corresponding to the
♦-formulas, to be added to the tree.

4.2.4 Nested Sequents

A more challenging example of using our framework is supporting nested sequent
proof evidence. Here we will also demonstrate how simpler layers can be used in
order to support proof formats.

When considering the nested sequent proof system for K, we notice that
♦-formulas are associated to specific �-formulas. This property does not hold in
general.

This association is similar to the one in LMF and allows us to use this simpler
layer for the support of the proof evidence.

Our format for nested sequents is given in figure 11. Note that we now index
formulas using two separate indices: The first one is just the location of the
sub-formula while the second is the branch of the nested sequent.

The formal definition of indices of nested sequents is given next.

Definition 2.1 (Indexing Nested Sequents) Indices of nested sequents are
defined recursively by:

• zb is an index (of the top level nested sequent).

• if ind is an index of a nested sequent and we have in it a nested sequent
at the ith position, then (chld i ind) is an index denoting this nested
sequent.

Figure 12 gives an example of a nested sequent derivation and the indices of
sub-formulas.

In order to certify nested sequent proofs in our framework, we will use, as
mentioned above, the LMF layer. This layer requires a correspondence between
♦-formulas and �-formulas.

Since there is such a correspondence in NS, our implementation of the FPC
specifications for this system tries to exploit it. This will be done by mapping
the indices of one system to the indices of the other. The mapping of the indices
as well as some other similar data structures will be stored in the state.

Figure 17, given in the appendix, shows our implementation where the
auxiliary functions are:



% defined in ordinary-sequents .mod
decide_ke

(lmf-star-cert (lmf-star-state H F Map) (lmf-multifoc-cert (lmf-singlefoc-cert
(lmf-singlefoc-state IL Eig) (lmf-tree (ordinary-sequent-node I OI) C))))

L
Cert ’ :-
decide_ke

(ordinary-sequent-cert
(ordinary-sequent-state H F Map 0 IL Eig) (lmf-tree

(ordinary-sequent-node I OI) C))
L
Cert ’.

decide_ke Cert L Cert ’ :-
ordinary-sequent-to-lmf-star Cert IO Cert-s ,
decide_ke Cert-s L Cert-s ’,
lmf-star-to-ordinary-sequent Cert-s ’ IO Cert ’.

store_kc Cert L B Cert ’ :-
ordinary-sequent-to-lmf-star Cert OI Cert-s ,
store_kc Cert-s L B Cert-s ’,
lmf-star-to-ordinary-sequent Cert-s ’ OI Cert ’.
release_ke Cert Cert.
initial_ke Cert O :-

ordinary-sequent-to-lmf-star-with-op-index Cert Cert-s ,
initial_ke Cert-s O.

orNeg_kc Cert Form Cert-r :-
ordinary-sequent-to-lmf-star Cert IO Cert-s ,
orNeg_kc Cert-s Form Cert-s ’,
lmf-star-to-ordinary-sequent Cert-s ’ IO Cert-r.

andNeg_kc Cert Form Cert1 Cert2 :-
ordinary-sequent-to-lmf-star Cert IO Cert-s ,
andNeg_kc Cert-s Form Cert1 ’ Cert2 ’,
lmf-star-to-ordinary-sequent Cert1 ’ IO Cert1 ,
lmf-star-to-ordinary-sequent Cert2 ’ IO Cert2.

all_kc
ordinary-sequent-cert

(ordinary-sequent-state H F Map _ IL Eig)
(lmf-tree (ordinary-sequent-node I OI) C)

Cert-r :-
generate_diamonds I OI C T H F 0,
all_kc

(lmf-star-cert (lmf-star-state H F Map)
(lmf-multifoc-cert

(lmf-singlefoc-cert (lmf-singlefoc-state IL Eig)
(lmf-tree (lmf-star-node H F (lmf-multifoc-node 0

(lmf-singlefoc-node I none ))) T))))
Cert-r.

Figure 10: FPC specifications for ordinary sequents

% defined in nested-sequents .sig
type ns index -> index -> index.
type chld int -> index -> index.
type zb index.
type nested-sequent-node index -> index -> lmf-node.
type nested-sequent-cert nested-sequent-state -> lmf-tree -> cert.

Figure 11: Type definitions on nested sequents



(q)(ns (lind root) zb), ([p])(ns (rind root) (chld 1 zb))

(q)(ns (lind root) zb), (�p)(ns (rind root) zb)

(q ∨�p)(ns root zb)

Figure 12: An example of a nested sequent derivation and the corresponding
indices

• convert-index which converts indices from nested sequents to LKF using
a map.

• add_to_map adds new indices to the map.

• get_incremented_child increases the counter associated with a certain
index.

As can be seen, supporting nested sequent proof evidence for K is straight-
forward and does not require any knowledge of LKF. The only thing required is
to be able to translate between the indices.

One can also observe that we do have one non-trivial manipulation in
the implementation. The all_kc definition does not depend on the one in
lmf-singlefoc but instead re-implement it. The reason for that is the inability
of λProlog to unify objects of functional type. We hope to get around that in
future versions.

4.3 Examples

In this section, we apply the specifications from the previous section to several
examples. The examples consist of a hand-generated proof evidence in few
formats of the validity of the K axiom: ♦(P ∧ ¬Q) ∨ ♦¬P ∨�Q.

The examples in this section and others can be found in the testing section
of the Checkers proof certifier. Checkers can be obtained online 1 and can be
executed by running in a bash terminal: 2.

$ ./prover-teyjus.sh arg

where the argument is the name of the λProlog module denoting the proof
evidence one wishes to check.

In Figure 18 in the appendix, one can see the proof evidence corresponding
to the ordinary sequent proof of Figure 13.

Another example is given in figure 19 in the appendix. The proof which
generates this nested sequent example can be seen in figure 14.

1The exact version can be found on the “dalefest” branch in the git repository https:

//github.com/proofcert/checkers/tree/dalefest.
2Checkers depends on the λProlog interpreter Teyjus (http://teyjus.cs.umn.edu/)



` Q,¬Q ` P,¬P
` P ∧ ¬Q,¬P,Q

` ♦(P ∧ ¬Q),♦¬P,�Q
` ♦(P ∧ ¬Q) ∨ ♦¬P,�Q
` ♦(P ∧ ¬Q) ∨ ♦¬P ∨�Q

Figure 13: Ordinary sequent proof of axiom K

♦(P ∧ ¬Q),♦¬P, [¬Q,¬P,Q] ♦(P ∧ ¬Q),♦¬P, [P,¬P,Q]

♦(P ∧ ¬Q),♦¬P, [P ∧ ¬Q,¬P,Q]

♦(P ∧ ¬Q),♦¬P, [¬P,Q]

♦(P ∧ ¬Q),♦¬P, [Q]

♦(P ∧ ¬Q),♦¬P,�Q
♦(P ∧ ¬Q),♦¬P ∨�Q

♦(P ∧ ¬Q) ∨ (♦¬P ∨�Q)

Figure 14: Nested sequent proof of axiom K

Please refer to the src/test/modal folder for more examples. We are
currently also supporting the ELPI implementation of λProlog3. For running
examples using ELPI, please use:

$ ./prover-elpi.sh arg

Unfortunately, some bugs in the implementations means that we had to
associate different examples to specific implementations. The examples starting
with ex- can be executed with Teyjus while the rest are better executed with
ELPI.

5 Concrete vs. virtual kernels

The layered approach presented in this paper allowed us to design a modular
framework which can support many different proof formats. While layers provide
us with a high level of flexibility, they come at the price of an increasingly high
complexity, the farther we get from the kernel.

A different approach would consist in having a distinct kernel for each layer.
However this could compromise the trust one can place in such layers and would
go against the general principle of having kernels based on simple, well-known
and low-level calculi. In [Chihani et al. 2016], however, it has been shown how
it is possible to “host” LKFa on an intuitionistic focused kernel, by using a

3http://lpcic.gforge.inria.fr/system.html



translation between the two logics. Along the lines of what has been proposed
there, we are investigating the possibility of representing the different layers as
“virtual” kernels, built on top of a lower level kernel.

We illustrate the idea by showing how LMFa (a version of LMF augmented
with proper clerks and experts) can be “hosted” on LKFa. The calculus LMFa

is shown in Figure 15. The augmentation leading from LMF to LMFa is similar
in spirit to the one going from LKF to LKFa and is obtained by adding control
predicates to the base system. We remark that in the case of relational formulas,
we do not need to store them with a significant index as we will never focus on
them again. Now we can provide a definition of the clerks and experts of LKFa in
terms of those given for LMFa, as shown in Fig. 16. This definition goes together
with a simple translation from the polarized propositional modal language to
the polarized first-order language, which basically maps each classical connective
into the corresponding connective (by also preserving polarity) and translates �
and ♦ as in Section 3.1. We omit a full type declaration and just remark that in
in Figure 16, C, C’ and C’’ stand for LMF certificates, while mod and tns are
constructors that, applied to an LMF certificate, produce an LKF certificate.
Intuitively, we use them to distinguish between two phases along the construction
of a proof: a phase dealing with connectives introduced by the translation of �
or ♦ (denoted by tns) and a “normal” one that does not involve the translation
of modalities (denoted by mod). By using such an inter-definition, an external
user interested in certifying her proofs over LMF can assume that a kernel based
on LMFa indeed exists and only needs to define LMFa clerks and experts.

In the context of our framework, by relying on the same idea, we could base
each kernel on the immediately lower one. This solution would allow for keeping
only one trusted kernel - LKFa - but would, at the same time, provide virtual
kernels which can be used in order to write simpler FPC specifications for the
different proof formats.

6 Conclusion

We have presented here an implementation of a framework for certifying proofs
produced in several modal proof formalisms. The framework has been developed
by following the general principles of the project ProofCert and as a module
of the concrete implementation provided by Checkers. Such an implementation
uses an augmented version of the focused classical sequent system LKF as a
kernel. The augmentation is obtained by enriching the calculus with predicates
able to reconstruct an original proof by following the information given in the
evidence. In a sense, we can see our framework as a bridge between modal proof
systems and LKF. Such a bridge is obtained by restricting the power of these
further predicates to the minimal needed in the context of modal logics.

Besides a possible alternative implementation in terms of virtual kernels,
as described in Section 5, there are further ways in which this work can be
extended. The design of the parametric devices of the framework has been driven
by the ambition of being as comprehensive as possible in terms of formalisms



Asynchronous introduction rules

Ξ′ ` Θ ⇑ x : A,Γ Ξ′′ ` Θ ⇑ x : B,Γ andNegc(Ξ,Ξ′,Ξ′′)

Ξ ` Θ ⇑ x : A ∧− B,Γ

Ξ′ ` Θ ⇑ x : A, x : B,Γ orNegc(Ξ,Ξ′)

Ξ ` Θ ⇑ x : A ∨− B,Γ

(Ξ′y) ` Θ, 〈relind,¬R(x, y)〉 ⇑ y : B,Γ boxc(Ξ,Ξ′)

Ξ ` Θ ⇑ x : �B,Γ
†

Synchronous introduction rules

Ξ′ ` Θ ⇓ x : B1 Ξ′′ ` Θ ⇓ x : B2 andPose(Ξ,Ξ′,Ξ′′)

Ξ ` Θ ⇓ x : B1 ∧+ B2

Ξ′ ` Θ ⇓ x : Bi orPose(Ξ,Ξ′, i)

Ξ ` Θ ⇓ x : B1 ∨+ B2

Ξ′ ` Θ, 〈relind,¬R(x, y)〉 ⇓ y : B diae(Ξ, y,Ξ′)

Ξ ` Θ, 〈relind,¬R(x, y)〉 ⇓ x : ♦B

Identity rules
〈l,x : ¬Pa〉 ∈ Θ initiale(Ξ, l)

Ξ ` Θ ⇓ x : Pa
init

Structural rules

Ξ′ ` Θ ⇑ x : N releasee(Ξ,Ξ′)

Ξ ` Θ ⇓ x : N
release

Ξ′ ` Θ, 〈l,x : C〉 ⇑ Γ storec(Ξ, x : C, l,Ξ′)

Ξ ` Θ ⇑ x : C,Γ
store

Ξ′ ` Θ ⇓ x : P 〈l,x : P 〉 ∈ Θ decidee(Ξ, l,Ξ′)

Ξ ` Θ ⇑ · decide

Here, x : P is a positive formula; x : N a negative formula; x : Pa and xRy positive literals; x : C
a positive formula or negative literal; and ¬B is the negation normal form of the negation of B. In
�K , y is not free in Θ nor in Γ.

Figure 15: LMFa: a focused labeled proof system for the modal logic K

captured. The modularity and parameterizability of the whole approach should
make it possible, in fact, to consider other related approaches to modal proof
theory, like hypersequent calculi [Avron 1994], e.g., by using a present parameter
that is a multiset, representing external structural rules as operations on such a
present, and viewing modal communication rules as a combination of relational
and modal rules. The focused nature of the approach should also allow for
certifying proofs coming from focused proof systems for modal logics, like the
ones in [Lellmann and Pimentel 2015, Chaudhuri et al. 2016], possibly by using
a different polarization of formulas.

Orthogonally, we also aim at extending the approach to variants of the logic K.
This can be done, at least for the logics characterized by the so-called geometric
frames, according to the recipes provided in [Marin et al. 2016].

Finally, we remark that while this work was inspired by certification consisting
in a strict emulation of original proofs, it is sometimes the case that only
partial information about the proof to be checked is provided. We plan to
complement the current implementation with a “relaxed” version of the FPCs,
such that it can also deal with incomplete proof evidences, similarly to what
has been done in [Libal and Volpe 2016] in order to check, e.g., free-variable
tableau [Beckert and Goré 1997] proofs.



andNeg_LKFc (mod C) (mod C’) (mod C’’) :- andNeg_LMFc C C’ C’’.
orNeg_LKFc (tns C) (tns C).
orNeg_LKFc (mod C) (mod C’) :- orNeg_LMFc C C’.
all_LKFc (mod C) (X\ tns (C’ X)) :- box_LMFc C C’.

andPos_LKFe (tns C) (tns C) (mod C).
andPos_LKFe (mod C) (mod C’) (mod C’’) :- andPos_LMFe C C’ C’’.
orPos_LKFe (mod C) (mod C’) LeftRight :- orPos_LMFe C C’ LeftRight.
some_LKFe (mod C) Term (tns C’) :- dia_LMFe C Term C’.

initial_LKFe (mod C) Index :- initial_LMFe C Index.
initial_LKFe (tns C) relind.

release_LKFe (mod C) (mod C’) :- release_LMFe C C’.
store_LKFc (tns C) relind (mod C).
store_LKFc (mod C) Index (mod C’) :- store_LMFc C Index C’.
decide_LKFe (mod C) Index (mod C’) :- decide_LMFe C Index C’.

Figure 16: The definition of LKFa clerks and experts based on those given for
LMFa.
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A Code Snippets of the Implementation



% defined in nested-sequents .mod
decide_ke Cert I’ Cert ’ :-

Cert = (nested-sequent-cert (nested-sequent-state Counter Map V M)
(lmf-tree (nested-sequent-node I O) D)), convert-index Map I I-s ,

nested-sequent-to-lmf-singlefoc Cert I-s Cert-s ,
decide_ke Cert-s I’ Cert-s ’,
lmf-singlefoc-to-nested-sequent Cert-s ’ Counter Map I Cert ’.

store_kc Cert Form H Cert ’ :-
Cert = (nested-sequent-cert (nested-sequent-state Counter Map V M)

(lmf-tree (nested-sequent-node I O) D)), convert-index Map I I-s ,
nested-sequent-to-lmf-singlefoc Cert I-s Cert-s ,
store_kc Cert-s Form H Cert-s ’,
lmf-singlefoc-to-nested-sequent Cert-s ’ Counter Map I Cert ’.

release_ke C C.
initial_ke (nested-sequent-cert (nested-sequent-state Counter Map V M)

(lmf-tree (nested-sequent-node I O) D)) O’ :- convert-index Map O O’.
orNeg_kc Cert Val Cert ’ :-

Cert = (nested-sequent-cert (nested-sequent-state Counter Map V M)
(lmf-tree (nested-sequent-node I O) D)), convert-index Map I I-s , I = (ns Ind Ch),

nested-sequent-to-lmf-singlefoc Cert I-s Cert-s ,
orNeg_kc Cert-s Val Cert-s ’,
Cert-s ’ = (lmf-singlefoc-cert (lmf-singlefoc-state [I1,I2] _) _),
add_to_map Map (ns (lind Ind) Ch) I1 Map1 ,
add_to_map Map1 (ns (rind Ind) Ch) I2 Map2 ,
lmf-singlefoc-to-nested-sequent Cert-s ’ Counter Map2 _ Cert ’.

andNeg_kc Cert Cert1 Cert2 :-
Cert = (nested-sequent-cert (nested-sequent-state Counter Map V M)

(lmf-tree (nested-sequent-node I O) D)), convert-index Map I I-s , I = (ns Ind Ch),
nested-sequent-to-lmf-singlefoc Cert I-s Cert-s ,
andNeg_kc Cert-s _ Cert-s1 Cert-s2 ,
Cert-s1 = (lmf-singlefoc-cert (lmf-singlefoc-state [I1] _) _),
add_to_map Map (ns (lind Ind) Ch) I1 Map1 ,
lmf-singlefoc-to-nested-sequent Cert-s1 Counter Map1 _ Cert1 ,
Cert-s2 = (lmf-singlefoc-cert (lmf-singlefoc-state [I2] _) _),
add_to_map Map (ns (rind Ind) Ch) I2 Map2 ,
lmf-singlefoc-to-nested-sequent Cert-s2 Counter Map2 _ Cert2.

andPos_k Cert Stra Cert1 Cert2 :-
Cert = (nested-sequent-cert (nested-sequent-state Counter Map V M)

(lmf-tree (nested-sequent-node I O) D)), convert-index Map I I-s , I = (ns Ind Ch),
nested-sequent-to-lmf-singlefoc Cert I-s Cert-s ,
andPos_k Cert-s _ Stra Cert-s1 Cert-s2 ,
Cert-s1 = (lmf-singlefoc-cert (lmf-singlefoc-state [I1] _) _),
add_to_map Map (ns (lind Ind) Ch) I1 Map1 ,
lmf-singlefoc-to-nested-sequent Cert-s1 Counter Map1 _ Cert1 ,
Cert-s2 = (lmf-singlefoc-cert (lmf-singlefoc-state [I2] _) _),
add_to_map Map (ns (rind Ind) Ch) I2 Map2 ,
lmf-singlefoc-to-nested-sequent Cert-s2 Counter Map2 _ Cert2.

all_kc Cert
(Eigen\ nested-sequent-cert (nested-sequent-state NewCounter

Map ’ [lind I-s] [pr I-s Eigen|M]) D) :-
Cert = (nested-sequent-cert (nested-sequent-state Counter Map [] M)

(lmf-tree (nested-sequent-node I O) [D])), convert-index Map I I-s , I = (ns Ind Ch),
get_incremented_child Counter Ch NewCh NewCounter ,
nested-sequent-to-lmf-singlefoc Cert I-s Cert-s ,
add_to_map Map (ns I NewCh) (lind I-s) Map ’.

some_ke Cert X Cert ’ :-
Cert = (nested-sequent-cert (nested-sequent-state Counter Map V M)

(lmf-tree (nested-sequent-node I O) D)), convert-index Map I I-s ,
nested-sequent-to-lmf-singlefoc Cert I-s Cert-s , some_ke Cert-s X Cert-s ’,
Cert-s ’ = (lmf-singlefoc-cert (lmf-singlefoc-state [I’] _) _),
add_to_map Map (ns I O) I’ Map ’,
lmf-singlefoc-to-nested-sequent Cert-s ’ Counter Map ’ _ Cert ’.

Figure 17: FPC specifications for nested sequents



module ex-os1. % module declaration
accumulate ordinary-sequents. % fpc specification
accumulate lkf-kernel. % kernel in use
accumulate modal-encoding. % modal-translation
modalProblem "The K Axiom" % problem description
((( dia (-- p1)) !! (box (++ q1))) !! (dia ((++ p1) && (-- q1)))) % modal theorem
(ordinary-sequent-cert % proof evidence

(ordinary-sequent-state [root] none [pr root root] 0 [] [])
(lmf-tree (ordinary-sequent-node root [none]) [

lmf-tree (ordinary-sequent-node (rind root) [none]) [
lmf-tree (ordinary-sequent-node (rind (rind root)) [(lind (rind root)),

(lind root )]) [
lmf-tree (ordinary-sequent-node (diaind (lind root) (rind (rind root ))) [none]) [

lmf-tree (ordinary-sequent-node (diaind (lind (rind root)) (rind (rind root )))
[none]) [

lmf-tree (ordinary-sequent-node (lind (diaind (lind root) (rind (rind root ))))
[diaind (lind(rind root)) (rind (rind root ))]) []],

lmf-tree (ordinary-sequent-node (rind (diaind (lind root) (rind (rind root ))))
[none]) [

lmf-tree (ordinary-sequent-node (lind (rind (rind root ))) [(rind (diaind
(lind root) (rind(rind root ))))]) []]]]]])).

Figure 18: An example in the OS system (src/test/modal/ex-os1.mod)

module ex-nseq1.
accumulate nested-sequents.
accumulate lkf-kernel.
accumulate modal-encoding.
modalProblem "Problem: Axiom K for nested-sequents"
((dia ((++ p1) && (-- q1))) !! ((dia(-- p1)) !! (box (++ q1))))
(nested-sequent-cert
(nested-sequent-state [pr zb 0] [pr (ns root zb) root] [] [])
(lmf-tree (nested-sequent-node (ns root zb) none) [
(lmf-tree (nested-sequent-node (ns (rind root) zb) none) [
(lmf-tree (nested-sequent-node (ns (rind (rind root)) zb) none) [
(lmf-tree (nested-sequent-node (ns (lind (rind root)) zb) (chld 1 zb)) [
(lmf-tree (nested-sequent-node (ns (lind root) zb) (chld 1 zb)) [
(lmf-tree (nested-sequent-node (ns (lind root) (chld 1 zb)) none) [
(lmf-tree (nested-sequent-node (ns (rind (lind root)) (chld 1 zb)) none) [
(lmf-tree (nested-sequent-node (ns (rind (rind root)) (chld 1 zb))

(ns (rind (lind root)) (chld 1 zb))) [])]) ,
(lmf-tree (nested-sequent-node (ns (lind (rind root)) (chld 1 zb)) none ) [
(lmf-tree (nested-sequent-node (ns (lind (lind root)) (chld 1 zb))

(ns (lind (rind root)) (chld 1 zb))) [])])])])])])])])).

Figure 19: An example in the NS system (src/test/modal/ex1-nseq1.mod)


