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Abstract

Background: Benign tumors of the skull base are a challenge when delivering radiotherapy. An appropriate choice
of radiation technique may significantly improve the patient’s outcomes. Our study aimed to compare the
dosimetric results of fractionated stereotactic radiotherapy between non-coplanar dynamic arcs and coplanar
volumetric modulated arctherapy (Rapidarc®).

Methods: Thirteen patients treated with Novalis TX® were analysed: six vestibular schwannomas, four pituitary
adenomas and three meningioma. Two treatment plans were created for each case: dynamic arcs (4–5 non
coplanar arcs) and Rapidarc® (2 coplanar arcs). All tumors were >3 cm and accessible to both techniques. Patients
had a stereotactic facemask (Brainlab) and were daily repositioned by Exactrac®. GTV and CTV were contoured
according to tumor type. A 1-mm margin was added to the CTV to obtain PTV. Radiation doses were 52.2–54 Gy,
using 1.8 Gy per fraction. Treatment time was faster with Rapidarc®.

Results: The mean PTV V95 % was 98.8 for Rapidarc® and 95.9 % for DA (p = 0.09). Homogeneity index was better
with Rapidarc®: 0.06 vs. 0.09 (p = 0.01). Higher conformity index values were obtained with Rapidarc®: 75.2 vs. 67.9 %
(p = 0.04). The volume of healthy brain that received a high dose (V90 %) was 0.7 % using Rapidarc® vs. 1.4 % with
dynamic arcs (p = 0.05). Rapidarc® and dynamic arcs gave, respectively, a mean D40 % of 10.5 vs. 18.1 Gy (p = 0.005)
for the hippocampus and a Dmean of 25.4 vs. 35.3 Gy (p = 0.008) for the ipsilateral cochlea. Low-dose delivery with
Rapidarc® and dynamic arcs were, respectively, 184 vs. 166 cm3 for V20 Gy (p = 0.14) and 1265 vs. 1056 cm3 for V5
Gy (p = 0.67).

Conclusions: Fractionated stereotactic radiotherapy using Rapidarc® for large benign tumors of the skull base
provided target volume coverage that was at least equal to that of dynamics arcs, with better conformity and
homogeneity and faster treatment time. Rapidarc® also offered better sparing of the ipsilateral cochlea and
hippocampus. Low-dose delivery were similar between both techniques.

Keywords: Benign skull base tumors, Fractionated stereotactic radiotherapy, Novalis, Volumetric modulated arc
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Background
Tumors of the skull base, such as meningioma, pitu-
itary adenoma, and acoustic neuroma, are a chal-
lenge when delivering radiotherapy because of their
close proximity to organs at risk (OARs) [1–3]. A
sufficient dose has to be delivered to the target vol-
ume while also sparing the numerous OARs, such as
the brainstem, chiasm, optic nerves, cochleas, hippo-
campus, and healthy brain.
Benign tumors grow without invading the sur-

rounding structures and have a low tendency to
undergo metastasis, thus leading to a long life
expectancy [1, 4–8]. Generally no prophylactic ir-
radiation of larger regional volumes is needed for
these tumors due to their minimal invasiveness.
Thus, highly sophisticated techniques are needed to
avoid damage and to achieve objectives. Indeed,
fractionated stereotactic radiotherapy (FSRT) can be
of interest to treat this kind of tumors [9–12]. An
appropriate choice of radiation technique may
significantly improve the patient’s quality of life after
treatment. Non-coplanar multiple dynamic arcs have
been often used to achieve high conformity while
sparing OARs [2, 13–17]. More recently, volumetric
modulated arc therapy (VMAT) has been widely
developed. VMAT aims to achieve several objectives
at once: (i) to improve sparing of OARs and healthy
tissue; (ii) to maintain or improve the same degree
of target coverage; and (iii) to reduce treatment
time.
The purpose of our study was to compare the

dosimetric impact between non-coplanar dynamic
arcs (DA) and VMAT using Rapidarc® (RA; Varian
Medical Systems, Palo Alto, CA, USA) in terms of
sparing of OARs, target coverage, and low-dose
delivery to treat benign skull-based tumors using
FSRT.

Methods
Patients
Thirteen consecutive patients treated in our institution
with FSRT during the year 2013 for benign skull-base
tumors, sized >3 cm in diameter, were included in this
study. There were three meningiomas, four pituitary
adenomas, and six acoustic neuromas. Eight patients
had undergone previous surgery and were being irradi-
ated for recurrence. All patients were treated with
Novalis TX® (Varian Medical Systems, Palo Alto, CA,
USA and Brainlab, Feldkirchen, Germany) using a non-
invasive thermoplastic mask plus a localizer box
(Brainlab, Feldkirchen, Germany). Positioning of the
patients was performed using a ExacTrac® stereoscopic
X-ray system (Brainlab, Feldkirchen, Germany) and a
robotic couch with 6° of freedom. Treatments were

permitted when the setup error was <0.7 mm transla-
tion and 0.7° of rotation [10–12, 18].
A planning CT was acquired of 1.25-mm thickness

and was matched with the dosimetric MRI sequences
of interest using Iplan® TPS, version 4.1 (Brainlab,
Feldkirchen, Germany). The gross tumor volume
(GTV) was defined using contrast-enhanced MRI
and/or other sequences of interest. For non-operated
patients, the clinical target volume (CTV) corre-
sponded to the GTV. For operated patients, the
CTV corresponded to the GTV +/− the tumor bed.
The CTV was then expanded symmetrically by
1 mm in all dimensions to create the planning target
volume (PTV). This margin was determined to
account for setup errors of the patient, motion
within the thermoplastic frameless mask, plus reposi-
tioning system Exactrac® [10–12, 18].
A conventional prescription was given: i.e., 52.2 Gy

to 11 patients and 54 Gy to 2 patients (1.8 Gy/fra
ction). The following OARs were contoured: lenses,
eyeballs, optic nerves, chiasm, pituitary gland, brain-
stem, spinal cord, cerebellum, cochlea, hippocampus
and healthy brain (which corresponded to the brain
minus PTV). The bilateral hippocampus were con-
sidered as a single organ and contoured on a T1-
weighted MRI axial sequence using the RTOG 0933
hippocampal atlas [19]. Following Gondi et al., a
hippocampal avoidance region was generated by
expanding the hippocampal contour by 5-mm volu-
metrically margin [19, 20].
Considering that the geometric uncertainty in the

radiotherapy process was <1 mm, according to our
defined stereotactic conditions, we did not draw
margins around the OARs when to produce planning
OAR volumes (PRVs) [21].

Treatment plans
Two treatments plans were created for each case:
DA and RA. Experienced physicists independently
created each plan. Plans were optimized using High
Definition MLC 120 (HD MLC). This had a spatial
resolution of 2.5 mm at the isocenter for the central
8 cm and of 5 mm in the outer 2 × 7 cm region.
The planning process consisted of two steps. The

first step was to obtain that at least 95 % of the
PTV received 95 % of the prescribed dose. The
second step was to optimize the OARs sparing
without compromising PTV coverage. For the OARs,
the following dose constraints were used: for chiasm,
optic nerves and brainstem, maximum doses (D2%)
<54 Gy; for spinal cord, D2% <45 Gy; for cochleas, a
mean dose (Dmean) <30 Gy and a D2% <40 Gy
(when feasible) and for lenses, a D2% <2 Gy [19, 20,
22, 23].
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Non-coplanar dynamic arcs (DA)
All DA plans were created with arcs of 6-MV
photons. Five non-coplanar arcs were used for twelve
patients and four for one patient. The final calcula-
tions were performed using Iplan® TPS, version 4.1,
using a pencil-beam algorithm with a spatial reso-
lution of 2.5 mm. This formed a conformal treat-
ment where the leaf positions were adjusted every
10° using Beam Eye View. The collimator was set at
zero for all plans.

Coplanar VMAT Rapidarc® (RA)
All the RA plans were created with two full coplanar
arcs for 6-MV photons. The first arc was planned in a
clockwise direction and the second in a counter clock-
wise direction. For all the plans, the collimator was ro-
tated at 30° for the first arc and at 330° for the second
arc to reduce the tongue-and-groove effect. The max-
imum dose rate was set at 600 MU/min. Couch parame-
ters were also added to the plan to account for
attenuation of the mega-voltage beams. Final calcula-
tions were performed using AAA algorithm on Eclipse®
version 10 (Varian Medical Systems, Palo Alto, CA,
USA) [24]. The arc optimization algorithm, Progressive
Resolution Optimizer used in Rapidarc®, optimized leaf
position, dose rate, and gantry speed. Arc amplitudes
were contained between 60 and 120°. RA plans followed
the International Commission on Radiation Units and
Measurements Report 83 recommendations [25].

Quality control
After approval from the radiotherapist and physicist, quality
controls were done to compare the calculated and mea-
sured radiation doses. For RA, we used a 3D comparison
with a Delta 4 PT® system (ScandiDos, Uppsala, Sweden).
Plans were accepted when >95 % of the local gamma index
values were above the criterion of 3 % and 3 mm [26]. For
DA, the plans were verified using a punctual ionization
chamber measurement (PinPoint® ionization chamber,
PTW, Freiburg, Germany) positioned in a Lucy® 3D QA
Phantom (Standard Imaging, Middleton, USA) and were
accepted when the gap between the calculated and mea-
sured radiation dose was <2 %.

Analyses
The plans analyses were based on dose–volume
histogram (DVH) data. For OARs D2% and Dmean
were noted according to OAR type. For the
hippocampus, we added D40% [19, 20, 27]. For PTV,
the parameters of V90%, V95%, and V107% were also
picked up as well as D50%, D95%, D2%, D98% and
Dmean. Vx% is the volume of the structure receiving
a dose ≥ x%. Dx% is the minimum dose that receive
x% of the structure volume.

We also calculated two indexes for the PTV: a
conformity index (CI) and a homogeneity index (HI).
The CI was defined as follows:
CI = (V95 % ∩VPTV)2/(V95 * VPTV) [25, 28]
Where V95 % was a volume within the 95 % isodose

and VPTV was the volume of the PTV. The higher
values of CI indicated better PTV conformity.
HI was defined as follows:

HI ¼ D2%−D98%½ �=Dmean

where D2 % was the dose delivered to 2 % of the PTV
volume, D98 % was the dose delivered to 98 % of the
PTV volume, and Dmean was the mean dose to the
PTV. Small values of HI indicated more homogeneous
irradiation of the PTV.
Statistical analysis was performed using R v2.15.1

(http://www.cran.r-project.org). To compare the doses
for the different modalities, non-parametric Wilcoxon
tests for paired samples were used. If the associated p-
value was less than the significance level (α = 0.05), it
was assumed that there was a statistically significant dif-
ference between the compared data sets.

Results
Target coverage (Fig. 1a)
The mean volume of CTV was 23.0 cm3 (range: 3.1–

69.5). The mean volume of a PTV was 29.7 cm3 (range:
4.7–135.5). Table 1 summarizes the results of DVH
analyses for target coverage. All DA and RA plans
achieved 95 % isodose coverage for at least 95 % of the
PTV. The mean V95% of the PTV was 98.8 % for RA
and 95.9 % for DA (p = 0.09). V107 % was 0.15 % for DA
vs. 0.01 % for RA; p = 0.36. D95 % was superior with RA:
51.3 Gy (97.7 %) vs. 50.0 Gy (95.2 %); p = 0.006. Higher
conformity index values were obtained with RA: 75.2 vs.
67.9 % (p = 0.04). RA led to better homogeneity com-
pared to DA: HI of 0.06 vs. 0.09; p = 0.01.

Organs at risk (Fig. 1b and c)
Table 2 summarizes the results of DVH analyses for
OARs. For the ipsilateral cochlea, RA yield the lowest
mean dose (Dmean of 25.4 vs. 35.3 Gy, p = 0.008).
For the hippocampus Dmean and D40% were lower
with RA (Dmean of 11.4 vs. 17.5 Gy, p = 0.006; D40%
of 10.5 vs. 18.1, p = 0.005). Also, the mean volume of
healthy brain that received a high dose (V90%) was
0.7 % using RA vs. 1.4 % with DA (p = 0.05). In-
versely, for eyeballs, lenses, pituitary gland (pituitary
adenoma excluded) and chiasm, DA was significantly
less irradiative compared to RA; both techniques were
below the dose constraints.
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Low-dose irradiation (Fig. 1d)
Table 3 summarizes the results of DVH analyses for
low-dose irradiation inside the outer contour. There
were no significant differences between mean low-dose
volumes of RA and DA: respectively, 184 vs. 166 cm3

for V20 Gy (p = 0.14) and 1265 vs. 1056 cm3 for V5 Gy
(p = 0.17).

Discussion
VMAT using RA and non-coplanar DA in FSRT for
benign skull-base tumors both provided acceptable

dosimetric results. However, RA was more conformal
and homogeneous and offered better sparing of
OARs. RA also had a faster treatment time.
Target-volume coverage was acceptable for both

techniques, with the 95 % isodose covering a higher
volume for RA (98.8 vs. 95.9 %; p = 0.09). However,
this difference was not significant, probably due to
the small number of patients in our study. One limit
of this comparison is that (especially for DA, which
is a forwardly planned technique), the experience of
the planner to some extent determines the quality of

Fig. 1 Example of the dose distribution of a patient with a large skull base tumor with non-coplanar dynamic arcs (left) and VMAT (RapidArc®)
(right). a) Comparison for target coverage. b) Comparison for sparing ipsilateral cochlea. c) Comparison for sparing hippocampus. d) Comparison
for low-dose irradiation
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the plan and thus influences the results of this com-
parative study.
Few published studies have compared DA and

intensity-modulated radiotherapy (IMRT) for intra-
cranial tumors; most have used step-and-shoot IMRT
and not VMAT [29–31]. Ding et al. [29] performed
a planning study in 15 patients and compared 3D
conformal radiotherapy, DA, and step-and-shoot
IMRT for FSRT to treat brain tumors. They con-
cluded that both DA and IMRT were suitable in
most cases, but that IMRT was best for larger tu-
mors (PTV > 100 cm3). Wiggenraad et al. [31] com-
pared step-and-shoot IMRT and DA to treat
intracranial tumors at various sites, and of different
sizes and shapes, including mostly gliomas and men-
ingioma. They found that both DA and IMRT were
acceptable in most cases. However, they found that
IMRT offered a statistically better mean CI in con-
cave intracranial tumors. CI quantifies the best adap-
tation to shape the 95 % isodose envelope to the
exact shape of the PTV [28]. We found that RA pro-
vided the best target volume conformity (CI of 75.2
vs. 67.9; p = 0.04). Similar results have been found
when comparing VMAT to DA for different localiza-
tions, such as lung and prostate cancers [32–35]. As
a result of this better conformity, we found that
healthy brain received significantly less high radi-
ation doses with RA (V90% of 0.7 % using RA vs.
1.4 % with DA; p = 0.05). This is consistent with the
study by Anand et al. [30] who compared RA and

DA for recurrent high-grade gliomas that were reir-
radiated with FSRT. They found a significantly better
CI with RA and that RA delivered a significantly
lesser dose to previously irradiated high-dose brain
volumes, possibly minimizing the risk of
radionecrosis.
In our opinion, dose homogeneity is an important as-

pect of the quality of planning, especially for skull-base
tumors where OARs are often located partially inside
the PTV. It is important to maintain very good dose
homogeneity because intra- and inter-fraction uncertain-
ties may cause serious adverse effects when hotspots
occur near these OARs. In our study, the RA plans gave
the best homogeneity (HI of 0.06 with RA vs. 0.09 with
DA; p = 0.01). This result is consistent with most studies
that have compared VMAT with DA [32–35].
Another important aspect for FSRT for benign

skull-base tumors is to spare critical OARs [36]. We
found dosimetric constraints were respected for all
OARs using both techniques. However, we found
significant dosimetric benefits using RA for the
ipsilateral cochlea and the hippocampus. This may
be explained by optimization: constraints to these
OARs were included in the dose calculation and the
inverse planification for RA. In our study, Dmean to
the ipsilateral cochlea was significantly lower with
RA. Dmean was lower of 10 Gy in average, which
can be particularly beneficial in some cases.
Several studies have attempted to relate mean

cochlear dose to hearing loss and have reported a
significant increase in hearing loss when dose re-
ceived by the cochlea was >45–50 Gy [36–38]. Spar-
ing of normal tissue is also very crucial for the
hippocampus because these benign tumors are asso-
ciated with a long life expectancy. The association
between hippocampal dose and long-term neurocog-
nitive function impairment for benign or low-grade
adult brain tumors treated with FSRT has been
evaluate by Gondi et al. [20]. In their study, bio-
logically equivalent doses, in 2-Gy fractions (assum-
ing an α/β ratio of 2 Gy) that were >7.3 Gy to 40 %
of the bilateral hippocampus, was significantly asso-
ciated with long-term memory impairment. A phase-
II study (RTOG 0933) has confirmed these results in
patients treated for brain metastasis [23]. Hippocam-
pal avoidance, defined here as D100 % <9 Gy and
Dmax <16 Gy during whole-brain radiotherapy
(30 Gy in 10 fractions), was associated with signifi-
cant memory preservation at 4 months compared to
a historical control cohort. Even if dose constraints
to the hippocampus are not totally well established,
in our study we found that Dmean and D40 % were
significantly lower with RA (Dmean of 11.4 vs.
17.5 Gy, p = 0.006; D40 % of 10.5 vs. 18.1, p = 0.005).

Table 1 Summary of dosimetric results for planning target
volumes (PTV) on the cohort of 13 patients

Indices Dynamic arc (DA) Rapidarc (RA) p-value

D50 % (Gy) (%) 52.5 ± 1.2 52.6 ± 0.7 DA vs RA p = 0.54

100.0 ± 1.7 100.2 ± 0.2

D95 % (Gy) (%) 50.0 ± 1.2 51.3 ± 0.8 DA vs RA p = 0.006

95.2 ± 1.6 97.7 ± 0.9

D2 % (Gy) (%) 54.3 ± 1.0 53.6 ± 0.8 DA vs RA p = 0.01

103.5 ± 1.5 102.1 ± 0.6

D mean (Gy) (%) 52.2 ± 0.9 52.3 ± 0.7 DA vs RA p = 0.17

99.4 ± 1.2 99.5 ± 1.1

D98 % (Gy) (%) 49.8 ± 1.9 50.5 ± 0.8 DA vs RA p = 0.25

94.9 ± 2.9 96.2 ± 1.6

V95 % (%) 95.9 ± 5.5 98.8 ± 1.0 DA vs RA p = 0.09

V107 % (%) 0.15 ± 0.5 0.01 ± 0 DA vs RA p = 0.36

CI (%) 67.9 ± 8.3 75.2 ± 10.4 DA vs RA p = 0.04

HI 0.09 ± 0 0.06 ± 0 DA vs RA p = 0.01

Data presented the mean doses of all patients ± standard deviation. Bold
techniques means that this technique is superior for this organ in particular.
Nb Vx% =minimum x% of prescribed dose received by the volume and Dx%
is the minimum dose received by x% of the structure volume, CI Conformity
Index, HI Homogeneity Index
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In this study, we did not use hard constraints to the
hippocampus for inverse planning with RA. It may
be possible to lower these doses further with RA
using inverse planning and without compromising
PTV coverage too much.
Another important issue is comparing the low-dose

deliveries of these two techniques. Indeed, some au-
thors support that increasing normal tissue irradiation
to low doses might increase the incidence of solid
cancers in long-term survivors [39]. In our study, we
did not find any significant difference in terms of
low-dose volumes between RA and DA. Wiggenraad
et al. [31] found similar results; however, they noted
that more monitor units were needed with IMRT,
even though they did not find a statistically signifi-
cant difference between IMRT and DA with respect
to the volume of irradiated brain tissue.

Conclusions
FSRT, using coplanar VMAT with Rapidarc®, allowed
target-volume coverage that was at least equal to
that of non-coplanar multiple dynamic arcs while

Table 2 Summary of dosimetric results for organs at risk (OAR) on the cohort of 13 patients

Organs Dynamic arc (DA) Rapidarc (RA) p-value

Brainstem D2 % (Gy) 47.4 ± 13.6 47.1 ± 12.0 DA vs RA p = 0.81

Spinal cord D2 % (Gy) 8.9 ± 5.2 1.8 ± 1.9 DA vs RA p = 10–4

Pituitary glanda D2 % (Gy) 23.7 ± 19 28.6 ± 16.5 DA vs RA p = 0.01

D mean (Gy) 17.3 ± 16 22.2 ± 15.4 DA vs RA p = 0.02

Chiasm D2 % (Gy) 32.7 ± 22.5 29.3 ± 23.4 DA vs RA p = 0.01

Hippocampus D mean (Gy) 16.7 ± 9.2 11.9 ± 5.5 DA vs RA p = 0.006

D40 % (Gy) 16.2 ± 10.5 9.9 ± 5.7 DA vs RA p = 0.005

Ipsilateral cochlea D2 % (Gy) 39.4 ± 18.0 33.8 ± 13.8 DA vs RA p = 0.008

D mean (Gy) 35.3 ± 18.0 25.4 ± 9.7 DA vs RA p = 0.008

Controlateral cochlea D2 % (Gy) 12.5 ± 12.3 17.9 ± 8.4 DA vs RA p = 0.05

D mean (Gy) 10.8 ± 11.1 15.8 ± 7.9 DA vs RA p = 0.04

Cerebellum D mean (Gy) 8.7 ± 7.0 10.7 ± 5.6 DA vs RA p = 0.11

Ipsilateral lens D2 % (Gy) 1.1 ± 1.5 3.1 ± 2.2 DA vs RA p = 0.01

D mean (Gy) 0.9 ± 1.3 2.4 ± 1.9 DA vs RA p = 0.01

Controlateral lens D2 % (Gy) 1.4 ± 1.9 3.2 ± 2.1 DA vs RA p = 0.01

D mean (Gy) 1.1 ± 1.5 2.5 ± 1.9 DA vs RA p = 0.01

Ipsilateral optic nerve D2 % (Gy) 26.8 ± 23.1 26.3 ± 22.5 DA vs RA p = 0.83

Controlateral optic nerve D2 % (Gy) 21.7 ± 19.9 24.0 ± 20.6 DA vs RA p = 0.62

Ipsilateral eyeball D2 % (Gy) 4.1 ± 2.9 9.2 ± 4.5 DA vs RA p = 10–4

D mean (Gy) 0.6 ± 0.9 1.4 ± 1.3 DA vs RA p = 0.09

Controlateral eyeball D2 % (Gy) 3.3 ± 3 10.2 ± 4.9 DA vs RA p = 10–4

D mean (Gy) 0.2 ± 0.3 1.5 ± 1.4 DA vs RA p = 0.002

Healthy brain (i-e brain-PTV) D mean (Gy) 6.7 ± 2.7 5.1 ± 1.8 DA vs RA p = 0.002

V100 % (%) 0.4 ± 0.8 0.02 ± 0 DA vs RA p = 0.02

V95 % (%) 0.9 ± 1.2 0.3 ± 0.2 DA vs RA p = 0.03

V90 % (%) 1.4 ± 1.4 0.7 ± 0.4 DA vs RA p =0.05

V80 % (%) 2.2 ± 2.1 1.3 ± 0.7 DA vs RA p =0.06

Data presented the mean doses of all patients ± standard deviation. Bold techniques means that this technique is superior for this organ in particular.
Nb Vx% =minimum x% of prescribed dose received by the volume and Dx% is the minimum dose received by x% of the structure volume. aPituitary
adenomas treatments excluded

Table 3 Summary of dosimetric results for low-dose delivery
inside the outer contour on the cohort of 13 patients

Indices Dynamic arc (DA) Rapidarc (RA) p-value

Dmean (Gy) 3.9 ± 1.9 3.7 ± 1.7 DA vs RA p = 0.41

V30 Gy (cm3) 100.5 ± 99.7 92.6 ± 72.9 DA vs RA p = 0.49

V20 Gy (cm3) 166.1 ± 158.8 184.4 ± 127.0 DA vs RA p = 0.14

V10 Gy (cm3) 425.1 ± 328.8 476.4 ± 226.4 DA vs RA p = 0.09

V5 Gy (cm3) 1056.0 ± 569.7 1264.9 ± 1551.6 DA vs RA p = 0.17

Data presented the mean doses of all patients ± standard deviation. Nb Vx% =
minimum x% of prescribed dose received by the volume and Dx% is the
minimum dose received by x% of the structure volume
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also offering better sparing of the ipsilateral cochlea
and hippocampus. Rapidarc® was also more con-
formal and homogeneous. Low-dose volumes were
similar between both techniques. Treatment time
was also reduced with Rapidarc®. In our institution,
we now preferentially treat large benign tumors
(>3 cm) of the skull base using Rapidarc®.
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