

UMR 8586

9th INTERNATIONAL CONFERENCE ON GEOMORPHOLOGY (9th ICG)

6th - 11th NOVEMBER 2017 - VIGYAN BHAWAN. NEW DELHI

Hydromorphological Monitoring of a **Sediment Replenishment Operation:** The Case of the Saint-Sauveur dam in the Buëch **River (Southern Alps. France)**

Server Providence

Guillaume Brousse ; Gilles Arnaud-Fassetta ; Frédéric Liébault

- **1 Research context**
- 2 Why restore the Buëch River How to restore ?
- **3 Monitoring of the restoration operation**
- 4 Preliminary results after a Q₁₀ flood
- **5 Feedback and prospects**

Location

- French Alps
- Rhône catchment
- Right bank tributary of the Durance River

1 - Research context

Geology dominated by sedimentary rocks with black marls

A hot spot of the alpine biodiversity→ Mosaic of ecological habitats

Multiple economic uses (irrigation, hydro-electricity, hunting, fishing, tourism ...)

1 - Research context

Drainage area (km²)	836	
Length of the study reach (km)	2.2	
Active channel width (m)	180	
Channel slope (m/m)	0.009	
Planform morphology	Braided/wandering patterns	

Human alterations of the physical fluvial corridor :

- Gravel mining
- > 3 million m³ in the upper catchment
- > 6 million m³ in the lower catchment

Dam was built between 1991 and 1992 => dredging of 600,000 m³ of sediment Sedimentary transport continuity has been strongly impacted

Rapid channel responses :

- Alluvial fan is aggrading upstream the reservoir
- Contraction and degradation of the active channel with downstream propagation
 - Marly bedrock outcrops are observed along the degraded reach
 - A shift from a braided to a wandering pattern

2 - Why restore the Buëch River - How to restore ?

Replenishment operation

September 2016 : 1 million euros

- Dredging the alluvial fan of the Saint Sauveur reservoir (50,000 m³)
- Sediment replenishment downstream of the dam (44,000 m³)

Schematic cross section of the replenishment operation

EDF	Right bank	Left bank
Volume (m ³)	12,256	31,189
Total (m ³)	43,445	

Objective

Capture the geomorphological and biological responses of the degraded reach to the artificial gravel recharge

Field data:

- Granulometry
- Marl outcrops
- Flood marks
- Time lapse photo

- Topographic survey:
- Sequential LiDAR
- Drone survey
- Terrestrial and classical topography

3

Hydrological survey:

- Floodgates hydrology
- Overflow wear hydrology

4- Preliminary results after a Q₁₀ flood

Morphological change

4- Preliminary results after a Q₁₀ flood

Morphological change

4- Preliminary results after a Q₁₀ flood

Morphological change

Vers une agence francaise pour la Biodiversité

4- Preliminary results after a Q_{10} flood

Volumetric change

Longitudinal evolutions

The main channel

Cross section spacing = 25 m Difference between the min

Vertical adjustments

value of each cross section		
	Δz (m)	
Min	-0.20	
Max	0.81	
Average	0.30	
SD	0.22	

An important aggradation of the main channel

4- Preliminary results after a Q_{10} flood

Longitudinal evolutions

The secondary channel

Sedimentary budget

- Wolman granulometry after flood
- 1 cross section
- 1 longitudinal profile
- Flood marks
- Bedload formula integration in the hydrogram

Parameter: Q _{max}		
d	1.23	m
S	0.00319	m/m
W	70.00	m
R	1.19	m
U	2.19	m/s
τ	37.15	N/m²
$ au^*$	0.055	d84
$ au_c^*$	0.023	d84
$ au^*$ / $ au^*_c$	2.43	d84

Vers une agence francaise pour la Biodiversité

 $D_{50} = 20.8 \text{ mm}$

 $D_{84} = 40.9 \, mm$

4- Preliminary results after a Q_{10} flood

O (bedload) = 12,000 m³

90% of the mean annual sediment supply upstream the dam

190% of the mean annual bedload downstream the dam

What is the accuracy of this sedimentary budget ?

The replenishment operation is successfull in a particular hydrological context

- Global bed aggradation
- Bed scour limitation \rightarrow ok

What about braided pattern ?

- No braided channel formed in the replenishment site
- But bed aggradation will increase active channel submersion frequency
- We can hope for a positive feedback loop

LiDAR data will complete the monitoring in no flood context

The contibution of the secondary channel is a little disappointing

- Now it is perched by the main channel
- No development of aquatic habitat
- The decrease in energy due to this channel has probably limited the erosion
- Especially for the left bar

Next step is to quantify bed level evolution in low flow without hydraulic transpaency

15/15

Time lapse photo will be used to quantify spatial adjustments

Thank you for your attention

UFR GEOGRAPHIE HISTOIRE ECONOMIE ET SOCIETES (GHES)

EROT DID PARIS 7 1

U^SPC

Université Sorbonne Paris Cité

PRODI

UMR 8586 PRODIG

Guillaume Brousse Doctorant en Géographie

Bâtiment Olympe de Gouges – Case courrier 7001 5 rue Thomas Mann – F – 75205 Paris Cedex 13 +33 (0)6 77 18 97 98

www.univ-paris-diderot.fr | www.prodig.cnrs.fr guillaume.brouse@univ-paris-diderot.fr guillaume.brousse@gmail.com

1- Research context

Team project

Funding

Phd student