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Abstract. The Internet of Things enables the interconnection of smart
physical and virtual objects, managed by highly developed technologies.
WSN, is an essential part of this paradigm. The WSN uses smart, au-
tonomous and usually limited capacity devices in order to sense and
monitor industrial environments. However, if no authentication mecha-
nism is deployed, this system can be accessible, used and controlled by
non-authorized users. In this paper, we propose a robust WSN mutual
authentication protocol. A real implementation of the protocol was re-
alized on OCARI, one of the most interesting Wireless Sensor Network
technologies. All nodes wanting to access the network should be authen-
ticated at the MAC sub-layer of OCARI. This protocol is especially
designed to be implemented on devices with low storage and computing
capacities.

Keywords: Security, Mutual authentication, WSN, IoT, OCARI, MAC
Sub-layer, OTP, Industrial Environment.

1 Introduction

According to [11], more than 50 billions of devices will be connected in 2020. This
huge infrastructure of devices, which is managed by highly developed technolo-
gies, is called Internet of Things (IoT). The latter provides advanced services,
and brings economical and societal benefits. This is the reason why thousands of
workers and researchers of both industry and scientific community are interested
in this area.

Wireless Sensor Network (WSN), is a part of the IoT domain. A WSN is
a network composed of clusters of devices that are equipped with (1) sensors
to gather data about the environmental conditions, and/or (2) actuators to in-
teract with the real world. Each cluster is managed by a specific device called
Personal Area Network Coordinator (CPAN). Devices are generally character-
ized by the use of a small computation and memory capacity, low bit rate, low
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power consumption, and small packet size. The data produced by each device
is transmitted via multiple hops to the CPAN, which can use them, or forward
them to another network. Usually WSN technologies are based on IEEE 802.15.4
physical layer (PHY ) [9] that provides a good foundation for building ad-hoc
mesh networks.

Optimization of Communication for Ad hoc Reliable Industrial networks
(OCARI) [5] is a promising WSN. It is characterized by its optimized energy
consumption, its time-constrained communication at the MAC sub-layer, and
its support of pedestrian mobility [1]. However, it needs to be secured against
the different threats, especially those that concern confidentiality, data integrity,
and entities authentication.

In order to secure OCARI specification, our work aims to create a robust
security protocol, which ensures a mutual authentication between the device and
the CPAN at the MAC sub-layer, to protect the system against malicious intrud-
ers. The proposed protocol also provides a secure algorithm for the exchange of
symmetric keys (used to ensure the data integrity). A real implementation with
C language, deployed on the OCARI platform, were realized in this work. In this
paper, the authentication and data integrity services are our primary concern.
We do not consider the confidentiality service.

The rest of this paper is organized as follows. Section 2 presents the related
WSN and IoT technologies and their authentication mechanisms. Section 3 de-
scribes our proposed approach and its implementation. Section 4 details a real
tests that we have made. Then we provide an evaluation of our authentication
protocol. Finally, our conclusions and future work are drawn in section 5.

2 Related work

IoT and networks in general, represent the working environment of hackers.
Everyday, companies and individuals are victims of different kinds of attacks:
Denial/Distributed Denial of Service (Dos/DDos) attacks, usurpation of identity,
intrusions, data theft, etc. In return, several researches have been realized in
order to secure and protect the Information Technology (IT) systems.

In [8], we proposed an authentication protocol based on pre-shared keys. It
provides only the authentication of a device during its association to a cluster.
Although this solution is lightweight and fast, the authentication of the CPAN
is missing in this work. In addition it does not use a good mechanism for the
generated keys exchange (this keys are required for the data authentication once
the association is realized).

An interesting work described in [3] intends to secure the IoT devices. They
propose an authentication mechanism based on shared key between constrained
(Cd) and unconstrained (Ud) devices. Both sides use the same security policy,
and no gateway is required. For an easier understanding, authors give an exam-
ple using an IPsec-based security association (see Fig 1). First, the concerned
entities agree on the security policy. Then, exchange the keying material. After,
authenticate each other. And finally, create a secure channel. This mechanism is
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Fig. 1. Association and secure channel
establishment solution

Fig. 2. An asynchronous authentication
operation

based on IPsec, which is known by its robustness. However, it has some weak-
nesses: (1) In C (Fig 1), the GW, receives the Ud’s keying material, and without
authenticating Ud, generates and sends a master key to the constrained device.
In this case if Ud is malicious, it can send a big number of C messages to the
gateway, which, therefore, sends master keys to the constrained device. Know-
ing that the reception of messages consumes a lot of energy, as a result, this
increases the energy consumption of the constrained device. (2) In D, without
authenticating the gateway, Ud generates it’s own master key. Thus, if a ma-
licious GW generates a Dos/DDos attack (by sending a lot of data about the
keying material, or a lot of D messages), this can stop the operation of Ud.

Authors in [4], propose an authentication mechanism for the IEEE 802.1x
technologies, based on Extensible Authentication Protocol (EAP). In order to
ensure a secure communication between two entities, first, they exchange their
identities (without any proof). Then, an authentication server (Remote Authen-
tication Dial-In User Service server) is involved to check the authenticity of the
entities, using algorithms and mechanisms as MD5 or TLS protocol. This so-
lution is flexible, based on standardized algorithms, and can be deployed on
different systems. However it can not be deployed without a trusted third party
(authentication server). Furthermore, it requires the exchange of a very big num-
ber of messages (10 messages). Thus, the execution time and the energy con-
sumption of this approach is very high.

One can note that works seen above does not sufficiently address the problem
of the energy and time constraints, and can have some weaknesses. In this paper,
we propose an approach that provides an energy efficient and optimal mutual
authentication method, as well as a key exchange algorithm, designed for WSN
systems.
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3 Proposed approach

We implemented our authentication mechanism in the MAC sub-layer, in order
to provide more transparency and interoperability in the highest layers (network
and application).

3.1 Algorithms

To ensure a mutual authentication in the MAC sub-layer association step, we
designed a method based on an asynchronous One Time Password (OTP) using
a Challenge/Response mechanism. We opted for the asynchronous mode, because
generally WSNs does not support an absolute time of sufficient precision, which
can be exploited in the synchronous mode. In addition, this mode compared to
the synchronous one (see RFC4226 [10]), does not require any prior approval
between the communicating entities, which represents a great advantage, and
this allows more flexibility for the system. The OTP by definition is a password,
valid for only one transaction, used for proving the identity of an entity. In other
words, even if it is transmitted without any encryption, a malicious user cannot
exploit it to authenticate itself. Fig 2 shows a possible architecture using an
asynchronous authentication operation in the association step.

All the devices of the same cluster have the same secret pre-shared key psk.
If a device x wants to join the cluster, it computes an OTP using a received
random number (challenge) and the psk), then sends it to the CPAN. However,
any device y which can catch the transmitted challenge can generate the OTP
(because it has the same psk), and use it to authenticate itself on behalf of
device x. In other words, y steals the identity of x and gets all the authentica-
tion/encryption keys, that normally should be secret and shared only between
x and the CPAN. Therefore, the data integrity and confidentiality are no longer
ensured.

3.2 Preparation of nodes

Our protocol allows a mutual strong authentication, and solves the problem of
the internal identity usurpation due to the “personalization” of the keys. This
operation is described in the Fig 3. The trusted authority, which is generally
the provider, should setup in out-of-band channel, what we call “keymother” into
the CPAN, and derives from it a personalized “keydaughter“ attributed to each
legitimate device belonging to the same cluster. The derivation of this keys is
based on the function f(keymother, UI), where UI (Unique Identifier) is the 8
bytes device’s IEEE address. This function is defined as below:{

keydaughter = f(keymother, UI)
f(keymother, UI) = hash func(keymother, UI)

(1)

Where: hash func is an irreversible function that generates a strong key, and
which protects the keymother against deductive attacks. Once the keydaughter is
created and set into the device, the latter becomes able to be associated to the
cluster.



V

Fig. 3. The personalization of keys

3.3 Association step

Fig 4 illustrates our mutual authentication protocol in the MAC sub-layer as-
sociation process. During the association step, the personalized keydaughter of a
device D can be generated only by the CPAN that has the appropriate keymother.
Thus this keydaughter is known only by D and by the CPAN, which ensures the
protection of the keydaughter. To start the association operation, the device sends
an “association request” message to the CPAN, if needed the request passes
through one or several device(s), called relay(s), to reach the intended destina-
tion. Receiving the request, the CPAN checks if the UI of the device is blacklisted
or not. (1) If it is the case, the association request is directly rejected and no
processing is done. This method prevents the system from reserving uselessly
the memory and doing additional processing, thus this protects the CPAN from
some kind of DoS attacks. (2) Otherwise, it answers by an “authentication re-
quest“ containing a challenge. With the received challenge, its own keydaughter
and using an encryption algorithm, the device computes ”otp1“ and sends it
through an ”authentication response“ message. For the encryption algorithm
we opted for the HMAC-Based One-Time Password Algorithm described in the
RFC4226 [10] which is proposed for the synchronous OTP mode, and which
basically uses an increasing counter value. After modifications, we compute otp1
using the function below (function 2):{

HOTP (key, challenge) =
Truncate(HMAC − SHA256(key, challenge))

(2)

Receiving the device’s response, the CPAN generates the appropriate keydaughter
using the same personalization function (described above in (subsection 1), and
computes ”otp1′“. Then compares the two otps, if they match then the device
is authenticated, otherwise the association operation fails. If the same device
is rejected consecutively MAX ASSOC REQ times, then it is blacklisted. The
fact that there is only the legitimate device that can have the keydaughter which
is used to compute otp1, represents a proof of for its identity. Once the latter
is authenticated, the CPAN generates an authentication key called ”keyauth“
using the standard Pseudo Random Function (PRF) defined in the SSL/TLS
specification [6]. This key will be used to securely exchange the broadcast key
”keybroadcast“, and then to authenticate the exchanged data after the association
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Fig. 4. Our proposed mutual authentication protocol

step in the unicast mode. The keybroadcast is used to ensure the integrity of the
broadcasted messages (after the association step). To share this key with the
authenticated device, the CPAN should hide it into a ”hiddenKeyBroadcast“
value using the function below (function 3):{

hiddenKeyBroadcast = signature⊕ keybroadcast
where : signature = HMAC − SHA256(keyauth, otp1)

(3)
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We created this function in order to securely share the keybroadcast (Fig 5 shows
the visble information for the different kind of users). (1) If an external attacker
intercepts all the exchanged information (challenge, otp1, hiddenKeyBroadcast,
and otp2 (explained below)), it can not get any secret information (keys), because
it does not have the couple (keydaughter, keybroadcast) nor (keyauth, keybroadcast).
(2) For an internal attacker which has the keybroadcast in addition to all the ex-
changed information, it cannot also get the keys of other devices. That is to
say, when an internal attacker attempts to get the keyauth of another device, it
computes the xor (⊕) between the keybroadcast and the hiddenKeyBroadcast in
order to obtain the signature, and because the latter is generated by an irre-
versible function (HMAC), even using otp1, the attacker cannot get the keyauth.
otp2 is computed by the CPAN for hitting two targets with one shot. Firstly
to ensure the integrity of the hiddenKeyBroadcast, and secondly to authen-
ticate itself. To be generated, otp2 needs a secret (key), and a unique chal-
lenge. For this reason the CPAN uses keyauth as a secret, and exploits the
hiddenKeyBroadcast as challenge. The latter is unique, because it is based
on a unique signature, that is based on unique otp (otp1). Then otp2 is sent
accompanied by the hiddenKeyBroadcast through an ”association response“
message. Finally, when the device receives the message, it computes also keyauth
and signature using the same inputs applied by the CPAN. Then to retrieve the
keybroadcast it computes the xor between signature and hiddenKeyBroadcast
(see following function 4):

Fig. 5. HiddenBroadCastKey mechanism

keybroadcast = signature⊕ hiddenKeyBroadcast (4)

The device gets a keybroadcast which needs to be verified (check for its integrity).
That is why it computes otp2′ based on the received hiddenKeyBroadcast
and keyauth, then the device compares the two otps, if they match, then this
means that the hiddenKeyBroadcast is correct, thus the keybroadcast is cor-
rect and the CPAN is authenticated. Otherwise if the retrieved otp2 or the
hiddenKeyBroadcast, or both of them are wrong or modified during their trans-
mission, then otp2 and otp2′ will not match, hence the keybroadcast is not ac-
cepted, the CPAN is not be authenticated, and the association operation stops.
The fact that the device receives from the CPAN a correct otp2, validates the
identity of the CPAN. Because otp2 is computed by keyauth which is derived from
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keydaughter. Accordingly, the protocol ensures a mutual authentication and a se-
cure exchange of keys. Once the DEVICE is associated to the network, it will
use the obtained keys (keyauth and keybroadcast) for the authentication of the
exchanged messages under an authenticated channel. In fact, exchanged packets
in the authenticated channel should be signed. Which means that each packet,
which is made of a header and a body, should add a signature in order to en-
sure its integrity. The signature is an HMAC of 16 bytes of the header and the
body computed using the keyauth (unicast mode) or the keybroadcast (broadcast
mode).

4 Test and evaluation

For testing our authentication mechanism, we implemented our protocol in the
OCARI stack software [1]. OCARI technology is based on the IEEE 802.15.4
physical layer, which is adapted to harsh environment such as power plants and
factories. This layer ensures a good signal transmission, that is resilient to radio
interferences. Unlike the IEEE 802.15.4 physical layer, the IEEE.802.15.4 MAC
layer was replaced by “MaCARI”, that is designed taking into consideration two
different factors that are “determinism” and “energy optimization”. As explained
in [1], a deterministic MAC layer should guarantee an access to the medium for
each node, every certain period of time. While an energy-efficient MAC layer has
to make all the nodes sleep as much as possible. MaCARI uses different access
methods to the medium. It uses CSMA/CA for control messages, combined with
TDMA for data messages.

Our code is developed with C language and the hardware used is Dresden
Elektronik deRFsam3 23M10-R3. It has 48 kb of RAM, 256 kb of ROM and
a Cortex M-3 Processor. There is no specific hardware for the authentication
mechanism. For our experiment, we created an architecture composed of 2 de-
vices and one CPAN. First, we personalized the devices by flashing into them
their associated keys (keydaughter) as explained in Section 3.2. Using a Zolertia
z1 sniffer (hardware) and Wireshark [7], we can follow the association and the au-
thenticated channel establishment operations. Fig 6 shows the exchanged frames
during the association step. The two ”Unknown Command“ represents respec-
tively: the ”Authentication request message“ and the “Authentication response
message”. For OCARI, at the beginning, devices at 1 hop from the CPAN sends
directly an association request to it. Then device at 2 hops sends a request to the
CPAN by means of the authenticated ones, that play the role of router. Then we
measured the delays of the association operation with (auth) and without (none)
the authentication procedure, and compared this results with studies and eval-
uations of a 1 hop device analyze, realized on an implementation of the Zigbee
protocol (WSN technology) [2], using a similar hardware equipment. As shown
in Fig 7, the average delay of the association operation is increased from 0,5243
ms without authentication to 34,45 ms with authentication for the DEVICE
at 1 hop from the CPAN. The association time needed by the DEVICE at 2
hops from the CPAN is also increased from 34,5076 ms without authentication
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Fig. 6. A Wireshark capture of (A) OCARI and (B) Zigbee frames during a node
association step

Fig. 7. Association delays comparison with and without authentication

to 45,876ms with authentication. This increase is mainly due to the exchange of
additional messages of the authentication protocol. Indeed, the number of mes-
sages needed by the 2 hop DEVICE for its association without authentication is
4 which is the same as the number of messages for the 1 hop DEVICE associa-
tion with authentication. The difference between both is only 0,0576ms (34,5076
34,45). Hence, the increase in time caused by the authentication is due to these
additional messages and in a very lesser extent to an increase in processing time.

In a similar way as in OCARI, the execution time of the secured Zigbee
association can be computed by the subtraction between the Association re-
sponse message and the Association resquest message timestamps. The delay
of 1 hop with authentication association is equal to 500 ms (11h:23m:43.623s -
11h:23m:43.123s). It is true that this big difference between association delays
of OCARI and Zigbee is due also to the nature of the two technologies, but still,
the used security protocol plays a main role.

With the real implementation, we proved that our solution is robust, ensures
a good mutual authentication and a secure key exchange mechanism.
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5 Conclusion and future work

Our approach is based on a lightweight, robust, and energy efficient mechanism
that allows to solve the problem of the WSN mutual authentication at the MAC
sub-layer. This solution provides a protection against “replay attacks”, because
the exchanged OTPs are based on random numbers, therefore, they are valid
only for one transaction. Using the blacklisting mechanism we can secure our
systems against “some DoS” attacks. Finally it is flexible and does not decrease
the scalability of the system, and can be deployed in different WSNs technologies,
while keeping the same level of robustness.

In our future work we aim to ensure the confidentiality of the transmitted
messages exchanged after the MAC sub-layer association and authentication
procedure. And thus we will have a secure system which ensures the “Confiden-
tiality”, “Integrity, and “Authentication” services.

References

1. Agha, K.A., Bertin, M.H., Dang, T., Guitton, A., Minet, P., Val, T., Viollet, J.B.:
Which Wireless Technology for Industrial Wireless Sensor Networks? The Devel-
opment of OCARI Technology. vol. 56, pp. 4266–4278 (Oct 2009)

2. Atmel: Zigbee pro pack and analysis with sniffer. In: Application note (sep 2013)
3. Bonetto, R., Bui, N., Lakkundi, V., Olivereau, A., Serbanati, A., Rossi, M.: Se-

cure communication for smart iot objects: Protocol stacks, use cases and practical
examples. In: World of Wireless, Mobile and Multimedia Networks (WoWMoM).
pp. 1–7 (June 2012)

4. Chen, J.C., Wang, Y.P.: Extensible authentication protocol (eap) and ieee 802.1x:
tutorial and empirical experience. vol. 43, pp. supl–26–supl–32 (Dec 2005)

5. Dang, T., Devic, C.: OCARI: Optimization of communication for Ad hoc reli-
able industrial networks. In: Industrial Informatics, 2008. INDIN 2008. 6th IEEE
International Conference on. pp. 688–693. IEEE (2008)

6. Dierks, T.: The transport layer security (TLS) protocol version 1.2 (2008)
7. Foundation, T.W.: Wireshark 2.0.3 and 1.12.11 Released

(April 22, 2016), https://www.wireshark.org/news/20160422.html,
https://www.wireshark.org/news/20160422.html accessed online on 2016-06-
28

8. Hammi, M.T., Livolant, E., Bellot, P., Serhrouchni, A., Minet, P.: Mac sub-layer
node authentication in ocari. In: 2016 International Conference on Performance
Evaluation and Modeling in Wired and Wireless Networks (PEMWN). pp. 1–6
(Nov 2016)

9. IEEE: IEEE Standard for Local and metropolitan area networks–Part 15.4: Low-
Rate Wireless Personal Area Networks (LR-WPANs). IEEE (September 2011)

10. M’Raihi, D., Bellare, M., Hoornaert, F., Naccache, D., Ranen, O.: HOTP: An
HMAC-based one-time password algorithm. IETF (December 2005)

11. statista.com: online statistics portal, and one of the world’s most successful statis-
tics databases (2016)


