
HAL Id: hal-01640510
https://hal.science/hal-01640510

Submitted on 20 Nov 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Lightweight IoT Security Protocol
Mohamed Tahar Hammi, Erwan Livolant, Patrick Bellot, Ahmed Serhrouchni,

Pascale Minet

To cite this version:
Mohamed Tahar Hammi, Erwan Livolant, Patrick Bellot, Ahmed Serhrouchni, Pascale Minet. A
Lightweight IoT Security Protocol. 1st Cyber Security in Networking Conference (CSNet2017), Oct
2017, Rio de Janeiro, Brazil. �hal-01640510�

https://hal.science/hal-01640510
https://hal.archives-ouvertes.fr

A Lightweight IoT Security Protocol
Mohamed Tahar Hammi∗, Erwan Livolant†, Patrick Bellot∗, Ahmed Serhrouchni∗, Pascale Minet‡

∗ LTCI, Télécom ParisTech, Université Paris-Saclay, 75013, Paris, France
∗{hammi,bellot,serhrouchni}@telecom-paristech.fr
†AFNeT, Boost-Conseil, 75008 Paris, France

†erwan.livolant@boost-conseil.com
‡Inria-Paris, EVA team, 2 rue Simone Iff, 75589 Paris Cedex 12, France

‡pascale.minet@inria.fr

Abstract—The IoT is a technology that enables the inter-
connection of smart physical and virtual objects and provides
advanced services. Objects or things are generally constrained
devices which are limited by their energy, computing and storage
capacity. A Wireless Sensor Networks (WSN) is a network com-
posed of devices managed by a CPAN (Personal Area Network
Coordinator). The network is used in order to gather and process
data of a given environment. It is characterized by their low bit
rate and low power consumption, and it uses small size packet
in their transmissions. In order to protect the WSN, a mutual
authentication between devices is required during the association
of a new device. The exchanged data should be authenticated
and encrypted. In this work we propose a robust, lightweight
and energy-efficient security protocol for the WSN systems. The
real tests we made and a performance evaluation of our security
protocol are provided.

Index Terms—Security, Authenticated encryption, Mutual
authentication, WSN, IoT, Industrial Environment, Scyther,
OCARI.

I. INTRODUCTION

With the IoT, today, virtual and smart physical things are
able to communicate with each other, without the human
intervention. This technology attracts different fields, because
of its economical and societal benefits. Industry is in the
top list. In fact, industrial wireless sensor networks represent
a sub-domain of the IoT which concerns limited capacity
devices used to gather data and manage various environments.
Due to the nature of these devices, security represents a big
issue for researchers and developers. In this paper, we present
a robust and a lightweight securing protocol that ensures
a mutual authentication and secures transmissions between
devices. This protocol has been implemented on the OCARI
platfrom which is a promising and energy efficient industrial
wireless sensor network.

In 2014, according to The New York Times, Russian hackers
got access to the state department’s unclassified system and
stole the archived e-mails including the president’s ones. Even
worst, a few years ago in Australia, a certain Vitek Boden, for
revenge reasons, attacked the SCADA (Supervisory Control
and Data Acquisition) system of the Maroochy Shire Council
which was in charge of the waste management. As a result,
millions of liters of raw sewage were redirected to a park
and an hotel located around the company. Thus, an ecosystem
was destroyed in short time [1]. In the UK, a provider of
telecommunications services, was the victim of an attack

in October 2015. Hackers managed to get many customers
records, that contain important informations like logins and
passwords, secret codes, confidential and personal data, etc.
Therefore the company has lost a lot of money and customers.

The unauthorized access, the identity usurpation, and the
steal and/or modification of stored and/or exchanged data
represent a serious danger for our information systems. Re-
searchers and developers try to find and create new solutions
to enhance the security and the robustness of such systems.
The issue is more complex if the system is an architecture
for the Internet of Things (IoT). The IoT is a technology
that enables the interconnection of smart physical and virtual
objects and provides advanced services. Objects or things
are generally constrained devices, which are limited by their
energy, computing and storage capacity.

The IoT covers a lot of areas such as Smart Cities,
M2M (Machine to Machine) systems, Body Area Net-
works (BAN), and Wireless Sensor Networks (WSN). The WSN
is a network composed of devices managed by a CPAN (Per-
sonal Area Network Coordinator). The network is used in
order to gather and process data of a given environment.
Usually, the devices (except the CPAN) are limited in terms
of computation and memory capacity. They are characterized
by their low bit rate and low power consumption, and they use
small size packet in their transmissions. The data produced by
each device is transmitted via multiple hops to the CPAN,
which can use them, or forward them to another network.
The most known WSN technologies are based on the IEEE
802.15.4 physical layer (PHY) [9]. It is resilient to radio
interferences and provides a good foundation for building ad-
hoc mesh networks.

In order to protect the WSN, a mutual authentication
between devices is required during the association of a new
device. The exchanged data should be authenticated and en-
crypted. In this work we propose a robust, lightweight and
energy-efficient security protocol for the WSN systems. This
paper is organized as follows. Section II presents different
researches realized for securing the IoT. Section III explains
our proposed approach and its implementation. The real tests
we made and a performance evaluation of our security protocol
are provided in section IV. Finally a conclusion and our future
works are given in section V.

II. RELATED WORK

In [7], we proposed an authentication protocol for securing
the IoT system OCARI, an industrial WSN for constrained en-
vironment. It was based on pre-shared keys. It provided a mu-
tual authentication and a good mechanism for the derived key
exchange during the association step. Although this solution
is lightweight robust and fast protocol, the confidentiality of
the transmitted data is missing. In addition using HMAC [11]
for signing packets can be expensive in terms of computing
and execution time.

Authors in [13] propose a security protocol called HIP (Host
Identity Protocol). Their study focuses mainly on the security
of the constrained devices over LoWPAN (Low power Wire-
less Personal Area Networks). HIP is based on the asymmetric
key cryptography. They propose to add a central authority for
managing and controlling each IoT domain. During a new as-
sociation, both devices and the central authority should be mu-
tually authenticated using the asymmetric cryptography. Once
the two communicating entities are authenticated, session
symmetric keys are shared and an encrypted communication
can start. For managing and updating keys, they use another
protocol called MIKEY (Multimedia Internet KEYing). Their
solution ensures a good authentication and data protection
mechanism. However generating and providing new keys for
each association step consumes a lot of time and energy. In
Section III, we will describe our system that does not require
a generation of new symmetric keys while keeping the system
safe against the cryptanalysis and replay attacks.

Researchers in [10] propose a secure architecture based on
the DTLS (Datagram Transport Layer Security) protocol for
IoT. It was designed to work over LoWPANs. It provides
a mutual authentication and symmetric key exchange for
creating a symmetric secure channel). It uses x509 certifi-
cates [8] and RSA (Rivest Shamir Adleman) algorithm [15].
The authentication requires a trustful third parties. Although
this solution is very robust and ensures a strong authentication
mechanism, it is not optimized. First, the use of RSA algorithm
and the exchange of a large number of messages (6 messages
are mandatory for the DTLS-Handshake) is resource-intensive
computing and consumes a lot of energy. Secondly, the size
of x509 certificates is not adapted to the constrained devices
that have a small capacity of memorization. And thirdly, this
solution is time consuming, as shown in [10], the execution
time with keys of 1024-bit of the DTLS-handshake takes
3783 ms for the single hop, and 4791 ms for the multi hop.
Using 2048-bit keys, it takes 4000 ms for the the single
hop and 6627 ms for the multi hop. This represents a large
execution time that could not be acceptable for applications
with strong latency constraints.

Another interesting work described in [16] proposes a
lightweight proposition designed for the WIFI based IoT. In
their architecture, all the communications should pass through
a gateway. This solution provides a mutual authentication
based on the public keys combined with the pre-shared keys.
It uses the Elliptic Curve Diffie-Hellman (ECDH) operation to

generate a shared key. It will be used to secure transmissions
during the data exchange using symmetric secure channel.
This solution requires the exchange of only 3 messages.
It is lightweight, energy-efficient, and needs a reasonable
computing capacity. The only weakness is in the first sent
message (A) in Figure 1.

Figure 1: Authentication Procedure for a Wi-Fi based IoT

XA, XB and xA, xB represent respectively the public and
the private keys. K is a pre-shared key between two en-
tities. H(u, v) is the hash of the message u, v. And fi-
nally SigA(u, v, w), SigB(u, v, w) is the signature of the
messageu, v, w of the entity with its own public key. The
messages labelled (B) and (C) are without any risk. However
the authentication with the pre-shared key K in message
labelled (A), without any random factor or counter, exposes
K to potential cryptanalysis attack.

In the next section, we will explain our proposed approach,
which aim is to solve the performance and security problems
seen above.

III. PROPOSED APPROACH

As explained above, the WSN architecture is made of con-
strained devices (sensors, or actuators) managed by a CPAN
which is an unconstrained device. When a new device wants
to join the WSN network, first a mutual authentication should
be ensured. Then, a symmetric secure channel should be
created between the communicating entities in order to protect
the exchanged data. The mutual authentication mechanism
was realized in the MAC sub-layer, and the authenticated
encryption of data is done in the application layer.

A. Chosen algorithms

For the authentication mechanism, we opted for the asyn-
chronous OTP (One Time Password) algorithm. It is adapted
to our needs [6]. The OTP is a password that can be used
only one time. It is based on pre-shared key and a random
challenge in the case of asynchronous OTP. The random
challenge protects the authentication against replay attacks
and cryptanalysis attacks. In order to ensure a robust and fast
authenticated encryption of data, we implemented the AES,
also called Rijndael, possibly using GCM (Galois Counter
Mode) or CCM (Counter with CBC-MAC). The mode to use is
selected in the configuration file. The authenticated encryption
ensures the confidentiality and the integrity of the transmitted
data in the same time.

We deployed our protocol in the OCARI network (Opti-
mization of Communication for Ad hoc Reliable Industrial
networks). OCARI is an energy efficient WSN technology. It

represents an application of the IoT in the industrial environ-
ment. OCARI is based on the IEEE 802.15.4 physical layer [9]
that allows reliable signal transmission and resistance against
the radio interferences in harsh environment (eg. power plants,
factories, etc). We previously designed and implemented a new
security mechanism for the authentication of the associated
devices and the integrity of their exchanged data [6]. However
the confidentiality service was still missing. Although this
solution is proposed and implemented for OCARI, it can also
be deployed for any other WSN.

B. Design of our protocol
For the key management, we created a method called the

“personalization”. The principle of this method is detailed
in Figure 2. For each OCARI network, the devices provider
generates a “kit” of secret keys that contains: an initial key
keyi and derived onces keyd(s). The kit will be installed, in
out of band mode, in the CPAN and the concerned devices.
The derived keys are computed from unique identifier (UI) of
each device and keyi using the “PersoFunc()” function (see
equation 1). It is an irreversible function that generates a strong
key and protects the keyi against deductive attacks.

persoFunc(keyi, UI) = HMAC(keyi, UI) (1)

Once the keyd is created and set into the device, the device
is able to be associated with the OCARI network.

Figure 2: The personalization of devices

The goal of this personalization is to ensure that the
communication between a device A and the CPAN cannot
be intercepted by a device B belonging to the same OCARI
network. In addition, the other advantage is that even if an
attacker could get a personalized key of one device, it will
not influence the security of the rest of devices belonging to
the same OCARI network.

Figure 3 on the following page depicts the association of a
device to a cluster. We can summarize this process:
• The device sends an association request to the CPAN. It

receives an authentication request that contains a chal-
lenge (random number). By means of the encryption
algorithm named HOTP [14]), it computes the OTP using
its keyd and the challenge. It sends the generated otp1 to
the CPAN as the authentication response.

• The CPAN checks if the joining device is blacklisted
or not. Then, it generates the keyd for this device,

computes otp′1, and compares the latter with otp1. If
the authentication failed and the same device has been
rejected consecutively max_assoc_req times, then it is
blacklisted. Otherwise the authentication is successful.
It generates a symmetric secret key called keyu. This
key will be used for the authenticated encryption of the
exchanged messages in the unicast mode. It computes
otp2 for the authentication of the CPAN, and hides the
keyb. The keyb is the authenticated encryption key in the
broadcast mode:

keyu = PRF (keyd, challenge)
signature = HMAC(keyu, otp1)
hiddenKeyBroadcast = signature⊕ keyb
otp2 = HOTP (keyu, hiddenKeyBroadcast)

where PRF is the Pseudo Random Function defined in [3],
used to create the keyu and securely share the keyb. If an
external attacker intercepts all the exchanged information,
challenge, otp1, hiddenKeyBroadcast, and otp2, it
cannot compute any secret information because it does
not have the couple (keyd, keyb) nor (keyu, keyb). For
an internal attacker which has the keyb in addition to
all the exchanged information, it cannot get the keys of
other devices. That is to say, when an internal attacker
attempts to get the keyu of another device, it computes
the xor between the keyb and the hiddenKeyBroadcast
in order to obtain the signature and because the latter
is generated by an irreversible function, even using otp1,
the attacker cannot get the keyu. otp2 is computed by
the CPAN for hitting two targets with one shot. Firstly to
ensure the integrity of the hiddenKeyBroadcast and,
secondly, to authenticate itself. To be generated, otp2
needs a secret key and a unique challenge. For this
reason the CPAN uses keyu as a secret and exploits
the hiddenKeyBroadcast as the challenge. The latter
is unique, because it is based on a unique signature,
that is based on unique OTP (otp1). Then otp2 is sent
accompanied by the hiddenKeyBroadcast through an
association response.

• Finally, when the device receives the message, it com-
putes also keyu and signature using the same inputs
as the CPAN. It retrieves the keyb by xoring signature
and hiddenKeyBroadcast. The device gets a keyb
which needs to be verified by checking for its integrity.
That is why it computes otp′2 based on the received
hiddenKeyBroadcast and keyu. Then the device com-
pares the two otps. If they match, this means that the
hiddenKeyBroadcast is correct, thus the keyb is correct
and the CPAN is authenticated. Otherwise if the retrieved
otp2 or the hiddenKeyBroadcast or both of them
are wrong. The may have been modified during their
transmission, then otp2 and otp′2 will not match. Hence
the keyb is not accepted, the CPAN is not authenticated,
and the association operation stops.

The secure channel created after the association step uses
AES with GCM or CCM modes of operation. In following,

Figure 3: OCARI secured association

we will consider only the AES-GCM, where GCM is a mode
of operation for block ciphers that uses universal hashing over
a binary Galois field [4].

1) Authenticated encryption: First, the entity that wants
to send data, should authenticate and encrypt its data using
the generated keyu in the unicast mode, and the keyb in the
broadcast mode. This operation requires a plaintext P1..Pn,
an additional authenticated data A (A can be any random
data, added for strengthen the encryption algorithm) and an
initialization vector IV as inputs. The generation of the IV is
based on the keyu and a counter value. The latter is used in
order to avoid the cryptanalysis attacks. And as a result, we
get the ciphertext C1..Cn and an authenticated tag T .

The authenticated encryption operation is defined by the
following equations (2):

H = E(K, 0128)
We use len(IV) of 96 bits

=> Y0 = IV ||0311
Yi = Yi−1 + 1, for i = 1..n
Ci = Pi ⊕ E(K,Yi), for i = 1, ..n
T = MSBt(GHASH(H,A,C, len(A), len(C))
⊕E(K,Y0))

(2)

where E is the encryption operation, K is the secret key (Ku

or Kb), 0128 is a block of 128 bits of 0, H is obtained by
encrypting a zero block using K, Y is a counter starting from
Y0 which is the concatenation (||) of IV with 31 zeros and
one (bits), MSBt is the most significant bit, and len(A) is
the length of A and GHASH() is the hash function of the
GCM mode of operation.

In the end of the authenticated encryption operation we
usually concatenate the ciphertext with the tag T. The latter
will be used for checking the integrity of the message once
the packet is received.

2) Authenticated decryption: We have four input parame-
ters for the authenticated decryption operation: the ciphertext
C, the received tag T , the IV and the authenticated additional
data A. And as output, we get the plaintext P and a Tag T ′

for checking the integrity of data. Compared to the encryption
operation, the order of the hash step and decrypt step are
reversed. The authenticated decryption operation is defined by
the following equations:



H = E(K, 0128)
We use len(IV) of 96 bits

=> Y0 = IV ||0311
T ′ = MSBt(GHASH(H,A,C, len(A),

len(C))⊕ E(K,Y0))
Yi = Yi−1 + 1, for i = 1..n
Pi = Ci ⊕ E(K,Yi), for i = 1, ..n

(3)

At the end of the authenticated decryption operation, we
compare the received T with T ′. If they match, the decryption
operation is successful. Otherwise the operation fails. For more
details about the GCM mode of operation see [5].

IV. TEST AND EVALUATION

A. Formal validation

In order to check the robustness and the safety of our
protocol, we realized a formal validation using Scyther [2].

Which is a tool for the automatic verification of security
protocols created by Cas Cremers at the university of Oxford.
In Scyther formal language, each protocol is defined by
“roles“. And each role should be played by an ”agent“, and
described by a sequence of events (send, receive,..etc). In the
following, we show the structure of our code:

the definition of new types
... etc

protocol OCARIAuthAndEncProtocol(D,C)
{
function OneTimePassword ;
function keyGeneration ;
macro otp1 = OneTimePassword

(k(D,C),challenge);
// k(D,C) is the personalized
// symmetric key between D and C
macro keyAuthAndEnc =

keyGeneration(k(D,C)
,challenge) ;

macro otp2 = OneTimePassword
(keyAuthAndEnc

,hiddenKeyBroadcast);
hashfunction signFunc ;
macro signature = signFunc

(keyAuthAndEnc,otp1);
function HiddeBroadCastKey ;
function RevealBroadCastKey ;
const deviceAuthError : String;
const cpanAuthError : String;
const securedPacket ;

role D {
the declaration of the local variables
... etc
recv_1(C,D,challenge) ;
send_2(D,C,otp1) ;
recv_3(C,D,(receivedOtp2

,hiddenKeyBroadcast));

match(receivedOtp2,otp2) ;
// Ok, CPAN auth successful
macro broadCastKey =

RevealBroadCastKey(signature
,hiddenKeyBroadcast);

send_4(D,C,
,{securedPacket}keyAuthAndEnc);

claim (D, SKR, keyAuthAndEnc) ;
claim (D, SKR, broadCastKey) ;
claim (D, Alive) ;
claim (D, Weakagree) ;
claim (D, Niagree) ;
claim (D, Secret, securedPacket) ;
}

role C {
the declaration of the local variables
... etc
send_1(C,D,challenge) ;
recv_2(D,C,receivedOtp1) ;

match (receivedOtp1,otp1) ;
// Ok, device auth successful
macro hiddenKeyBroadcast =
HiddeBroadCastKey(signature,

broadCastKey) ;
// to hide the broadcast
send_3(C,D,(otp2

,hiddenKeyBroadcast)) ;
recv_4(D,C
,{securedPacket}keyAuthAndEnc) ;

claim (C, SKR, keyAuthAndEnc) ;
claim (C, SKR, broadCastKey) ;
claim (C, Alive) ;
claim (C, Weakagree) ;
claim (C, Niagree) ;
claim (C, Secret, securedPacket) ;
}} ;

The protocol label is ”OCARIAuthAndEncProto-
col“,”function“ and ”macro“ are respectively used for
the function definition and the formulas abbreviation. We
have two roles played by the device (D) and the CPAN (C).
The different transmissions are defined by the two events
”send“ and ”receive“. The ”_id“ represents the event label,
which is the identifier that links a ”send“ event with the
appropriate ”receive“ event of the other role. The ”match“
event is used to model the equality tests.

The claim event types are the goals of the formal validation.
For the secrecy of transmissions we use the claim ”Secret”. In
order to be more precise, the secrecy of the transmission of
session keys is formalized by the SKR (Session Key Reveal)
claim. In addition, we used three authentication claim types,
which are “Alive”, “Weakagree”, and “Niagree”. [12] explains
the three authentication claims. We assume that A is the
initiator and B the responder.
• We consider that a protocol guarantees to A aliveness

of B if, whenever A completes a run of the protocol,
apparently with B, then the latter has previously been
running the protocol.

• We consider that a protocol guarantees to A weak agree-
ment with B if, whenever A completes a run of the
protocol, apparently with B, then the latter has previously
been running the protocol, apparently with A.

• And finally, we consider that a protocol guarantees to
A non-injective agreement with B on a set of data
items (variables) if, whenever A completes a run of the
protocol, apparently with B, then the latter has previously
been running the protocol, apparently with A, and B was
acting as responder in its run, and the two agents agreed

on the data values corresponding to all the data items.
Figure 4 shows the results of the execution of the previous

code. We used the maximum number of runs (100 runs).
In the result, the first, second, and third columns of the

screen-shot in Figure 4 represent respectively: the protocol
name, the concerned role (D and C), and a unique identifier
of the claim. The fourth column represents the claim type with
the parameters. The two last columns (status and comments)
show the result of the verification process (Fail or Ok), and
a short description. The “No attack within bounds“ should be
interpreted as: ”Scyther did not find any attacks by reaching
the bound” [2]. As we can see, the validation proves that our
protocol is safe and secure.

B. Real tests

Figure 5 shows the topology used, in order to test perfor-
mances of our security protocol. The implementation of our
code was realized on the real OCARI source code, written in
C language.

Figure 5: A real OCARI nodes topology

Each node represents a Dresden Elektronik deRFsam3
23M10-R3 device, having a 48 ko of RAM, 256 ko of ROM
and a Cortex M-3 Processor. Each node X , except F , contains
in prior a personalized keydX generated from the keyi set up
in the CPAN.

First, in order to know how much time our security mecha-
nism takes during the association step, we tested the OCARI
association time without security (we disable the security
option), then with security. Table I presents the results of (1)
a single-hop association, which means a direct association
between the device and the CPAN. And of a multi-hop
association, which means an association between a device and
the CPAN using intermediate devices, called relays.

For capturing the exchanged messages we used a Zolertia z1
sniffer (hardware) and Wireshark. The association time is equal
to timestamp of the authentication response minus (−)

Mode single-hop multi-hop
Without security (average) 0,5243 (ms) 34,5076 (ms)
With security (average) 37,504 (ms) 45 (ms)

Table I: The association time of OCARI with and without
security

Protocol processing time
Our security protocol (average) ∼ 3 (ms)
DTLS-Based protocol, 2048-bits
keys (average) [10]

859 (ms) (<computation = 35
(ms)> + <Encrypt = 39 (ms)>
+ <signature = 726 (ms)> +
<verification = 59 (ms)>)

Table II: Comparison between the security processing time of
our protocol and the DTLS-based protocol

timestamp of the association request. The association of
the device F is not accepted because F does not have the
keydF . One can note that the difference of the association time
between the secured mode and the non secured one is small,
and that the increase of the association time using security
becomes less significant in the case of a multi-hop association.
Thus, these results prove that our solution does not affect the
network performances.

Then, in Table II, we compared our results with the
DTLS-based protocol association time (described inII), real-
ized by [10], and uses devices with similar capacity (Atmel
SAM3U micro-controller and the Atmel AT97SC3203S TPM,
with 48 kB of RAM). We did not take into account the number
of the exchanged messages, that is equal to 4 messages in our
security protocol and 6 messages at least in the DTLS-based
protocol [10].

In order to compute the processing time of our solu-
tion (challenge, otps, and keyu generation + key exchange
mechanism), we computed the association time of a 2-hop
association without security which needs the exchange of 4
messages (association request × 2) + (association response
× 2). Then we took the association time of 1-hop in the
secured mode, that requires also the exchange of 4 messages
(association request + authentication request) + authentication
response + association response. By eliminating the time
consumed by the messages exchange, a subtraction between
the two association time represents the processing time of our
security protocol.

It is true that the DTLS-based is very robust, however
the difference between its processing time and our protocol
processing time is very big. In addition, the fact that the DTLS-
based protocol uses the asymmetric cryptography, consumes
a lot of energy and requires an important memorization and
processing capacity, which is not always adapted to limited
devices.

Finally, Table III summarizes the differences between our
solution (including the secure data exchange channel) and
those discussed in Section II. We propose a score from 1

Figure 4: Formal validation results

Options Rapidity Authentication PA1 Lightness Energy
efficiency

PA2 Confidentiality Integrity Final score

Our security
protocol
(using AES-
GCM/CCM)

4 4 2 5 4 5 5 4 33

Our old
solution [7]
(using HMAC)

3 4 2 4 3 2 0 4 22

DTLS-Based
protocol (2048-
bits keys) [10]

1 5 5 0 1 5 5 5 27

HIP protocol [13] 4 3 3 3 3 1 5 4 26
Wi-Fi based
IoT security
protocol [16]

5 4 0 5 5 0 4 5 28

Table III: Comparison between the different security protocols

to 5 for each feature. The sum of the scores represents
an evaluation score for the security approach. PA1: means
Protection from the Denial of service attack, and PA2: means
Protection from the cryptanalysis attack.

With these results, we can see that our security approach
is the most adapted to the security of the WSNs and the IoT
systems in general.

V. CONCLUSION AND FUTURE WORKS

In this work we designed a security protocol that enables to
secure most of the WSNs thanks to its lightness and energy
efficiency. It ensures a mutual authentication of the commu-
nicating entities and a protection of both the integrity and the
confidentiality of the exchanged data. The “personalization”
mechanism solves the problem of the internal identity usurpa-
tion. The proposed key management allows a safe and secure
keys exchange between the concerned entities. Furthermore,
this protocol provides a very fast establishment of a secure
channel based on a robust, fast, and lightweight symmetric
encryption algorithm (AES GCM/CCM). Finally, this solution
is resilient against the cryptanalysis and the replay attacks. In
our future works, we aim to create a secure communicating

system between different CPANs and to facilitate a secure
migration of devices from a network managed by a CPAN to
a network managed by another CPAN.

REFERENCES

[1] Marshall Abrams and Joe Weiss. Malicious control system cyber security
attack case study–Maroochy Water Services, Australia. McLean, VA:
The MITRE Corporation, 2008.

[2] Cas Cremers. Scyther. Draft, February 2014.
[3] Tim Dierks. The transport layer security (TLS) protocol version 1.2.

2008.
[4] Morris J Dworkin. SP 800-38C. Recommendation for block cipher

modes of operation: The CCM mode for authentication and confiden-
tiality. 2004.

[5] Morris J. Dworkin. SP 800-38D. Recommendation for Block Cipher
Modes of Operation: Galois/Counter Mode (GCM) and GMAC. Tech-
nical report, Gaithersburg, MD, United States, 2007.

[6] Mohamed T. Hammi, E. Livolant, P. Bellot, A. Serhrouchni, and
P. Minet. MAC sub-layer node authentication in OCARI. In 2016
International Conference on Performance Evaluation and Modeling in
Wired and Wireless Networks (PEMWN), pages 1–6, Nov 2016.

[7] Mohamed T. Hammi, E. Livolant, P. Bellot, A. Serhrouchni, and
P. Minet. A lightweight mutual authentication protocol for the IoT.
Technical report, 2017.

[8] Russell Housley, William Polk, Warwick Ford, and David Solo. Internet
X. 509 public key infrastructure certificate and certificate revocation list
(CRL) profile. Technical report, 2002.

[9] IEEE. IEEE Standard for Local and metropolitan area networks–Part
15.4: Low-Rate Wireless Personal Area Networks (LR-WPANs). IEEE
Std 802.15.4-2011 (Revision of IEEE Std 802.15.4-2006), September
2011.

[10] Thomas Kothmayr, Corinna Schmitt, Wen Hu, Michael Brünig, and
Georg Carle. {DTLS} based security and two-way authentication for
the Internet of Things. Ad Hoc Networks, 11(8):2710–2723, 2013.

[11] Hugo Krawczyk, Ran Canetti, and Mihir Bellare. HMAC: Keyed-
hashing for message authentication. 1997.

[12] Gavin Lowe. A hierarchy of authentication specifications. In Computer
security foundations workshop, 1997. Proceedings., 10th, pages 31–43.
IEEE, 1997.

[13] Francisco Vidal Meca, Jan Henrik Ziegeldorf, Pedro Moreno Sanchez,
Oscar Garcia Morchon, Sandeep S Kumar, and Sye Loong Keoh. HIP
security architecture for the IP-based internet of things. In Advanced
Information Networking and Applications Workshops (WAINA), 2013
27th International Conference on, pages 1331–1336. IEEE, 2013.

[14] D M’Raihi, M Bellare, F Hoornaert, D Naccache, and O Ranen. HOTP:
An HMAC-based one-time password algorithm. IETF, RFC 4226,
December 2005.

[15] R. L. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining
Digital Signatures and Public-key Cryptosystems. Commun. ACM,
21(2):120–126, February 1978.

[16] Freddy K Santoso and Nicholas CH Vun. Securing IoT for smart home
system. In Consumer Electronics (ISCE), 2015 IEEE International
Symposium on, pages 1–2. IEEE, 2015.

