
HAL Id: hal-01640064
https://hal.science/hal-01640064v1

Submitted on 30 Nov 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On reducing the communication cost of the diffusion
LMS algorithm

Ibrahim El Khalil Harrane, Rémi Flamary, Cédric Richard

To cite this version:
Ibrahim El Khalil Harrane, Rémi Flamary, Cédric Richard. On reducing the communication cost of
the diffusion LMS algorithm. IEEE Transactions on Signal and Information Processing over Networks,
2019, 5 (1), pp.100-112. �10.1109/TSIPN.2018.2863218�. �hal-01640064�

https://hal.science/hal-01640064v1
https://hal.archives-ouvertes.fr

On reducing the communication cost
of the diffusion LMS algorithm

Ibrahim El Khalil Harrane, Rémi Flamary, Cédric Richard, Senior Member, IEEE
Université Côte d’Azur, OCA, CNRS, France

ibrahim.harrane@oca.eu, remi.flamary@unice.fr, cedric.richard@unice.fr

Abstract—The rise of digital and mobile communications
has recently made the world more connected and networked,
resulting in an unprecedented volume of data flowing between
sources, data centers, or processes. While these data may be
processed in a centralized manner, it is often more suitable
to consider distributed strategies such as diffusion as they are
scalable and can handle large amounts of data by distributing
tasks over networked agents. Although it is relatively simple to
implement diffusion strategies over a cluster, it appears to be
challenging to deploy them in an ad-hoc network with limited
energy budget for communication. In this paper, we introduce a
diffusion LMS strategy that significantly reduces communication
costs without compromising the performance. Then, we analyze
the proposed algorithm in the mean and mean-square sense. Next,
we conduct numerical experiments to confirm the theoretical
findings. Finally, we perform large scale simulations to test the
algorithm efficiency in a scenario where energy is limited.

I. INTRODUCTION

Adaptive networks are collections of interconnected agents
that continuously learn and adapt from streaming measure-
ments to perform a preassigned task such as parameter esti-
mation. The agents are able to share information besides their
own data, and collaborate in order to enhance the solution
accuracy. Adaptive networks have proven to be powerful tools
for modeling natural and social phenomena, ranging from
organized organisms to social networks [1]. They are mainly
used for data mining tasks over high dimensional data sets
locally collected by distributed agents, in a decentralized and
cooperative manner. In such scenarios, among other possible
strategies [11]–[13], diffusion strategies are a safer option than
centralized strategies due to their robustness and resilience to
agent and link failures. In particular, the diffusion LMS plays a
central role with its enhanced efficiency and low complexity. It
has been extensively studied in the literature in single task [1]–
[3] and multitask inference problems [6]–[10]. It has also
been considered in other contexts such as nonlinear system
identification [14] and dictionary learning [15].

The advent of the Internet of Things and sensor networks
has opened new horizons for diffusion strategies but brought
up new challenges as well. Indeed, as illustrated in Fig.1 (a),
diffusion strategies inherently require all nodes to exchange
information with their neighbors at each iteration. In the case
of diffusion LMS, as will be detailed in the next section, this
information can be either local estimates and gradients of local
cost functions, or local estimates only. Even in the latter case,
this requirement imposes a substantial burden on communica-
tion and energy resources. Reducing the communication cost

while maintaining the benefits of cooperation is therefore of
major importance for systems with limited energy budget such
as wireless sensor networks. In recent years, several strategies
were proposed to address this issue. There are mainly two
approaches which we illustrate in Fig. 1 (b) and (c). On the
one hand, some authors propose to restrict the number of active
links between neighboring nodes at each time instant [5]. On
the other hand, there are authors that recommend to reduce
the communication load by projecting parameter vectors onto
lower dimensional spaces before transmission [16], or trans-
mitting only partial parameter vectors [17]–[19]. The literature
has mainly focused on the case where only the local estimates
are shared at each time instant. However, to achieve faster
convergence, it is also of interest to consider the case where
both local estimates and gradients of local cost functions can
be shared.

In this paper we propose an algorithm where every trans-
mitted parameter vectors, either local estimates or gradients of
local cost functions, are partially shared. The network flow is
controlled by two parameters, the number of entries of each
one of these two types of parameter vectors. Then, we study
the stochastic behavior of the algorithm in the mean and mean-
square sense. Next, we perform numerical experiments to
confirm the theoretical findings. Furthermore, we characterize
the algorithm performance for high dimensional data in a large
network. We compare our algorithm with the diffusion LMS
in a sensor network scenario where energy resource is scarce.
Finally, we conclude this paper.

Notation: Boldface small letters denote vectors. All vectors
are column vectors. Boldface capital letters denote matrices.
The (k, `)-th entry of a matrix is denoted by (·)k`, and the
(k, `)-th block of a block matrix is denoted by [·]k`. Matrix
trace is denoted by trace{·}. The expectation operator is
denoted by E{·}. The identity matrix of size N is denoted
by IN , and the all-one vector of length N is denoted by 1N .
We denote by Nk the set of node indices in the neighborhood
of node k, including k itself, and |Nk| its cardinality. The
operator col{·} stacks its vector arguments on the top of each
other to generate a connected vector. The notation diag{a, b}
denotes a diagonal matrix with entries a and b. Likewise, the
notation diag{A,B} denotes a block diagonal matrix with
block entries A and B. The other symbols will be defined in
the context where they are used.

H
k,iw

k,i�
1H

k,
iw

k,
i�

1

H
k
,i
w

k
,i
�

1

k

ĝ
(̀w

k,
i�

1
)

ĝ
2 (w

k,i�
1)

ĝ
1
(w

k
,i
�

1
)

H
2,i w

2,i�
1H

`,
iw

`,
i�

1

H
1
,i
w

k
,i
�

1

kk

r̂w
J
(̀w

k,
i�

1
)

r̂
w
J

1
(w

k
,i
�

1
)

r̂
w J

2 (w
k,i�

1)w
k,

i�
1

w
k
,i
�

1

w
k,i�

1
w
2,i�

1

w
1
,i
�

1

w
`,
i�

1

k

h `
k,

i h
2k,i

h
1
k
,i

(a) Di↵usion LMS (c) Partial di↵usion LMS (d) Doubly compressed
di↵usion LMS

(b) Reduced-communication
di↵usion LMS

Fig. 1: Illustrative representation of transmitted data for the diffusion LMS and different approaches aiming at reducing the
communication load for a node k.

II. DIFFUSION LMS AND RESOURCE-SAVING VARIANTS

A. Diffusion LMS

Consider a connected network composed of N nodes. The
aim of each node is to estimate an L× 1 unknown parameter
vector wo from collected measurements. Node k has access
to local streaming measurements {dk(i),uk,i} where dk(i)
is a scalar zero-mean reference signal, and uk,i is an L × 1
zero-mean regression vector with a positive definite covariance
matrix Ruk

= E{uk,iu>k,i}. The data at agent k and time i
are assumed to be related via the linear regression model:

dk(i) = u
>
k,iw

o + vk(i) (1)

where wo is the unknown parameter vector to be estimated,
and vk(i) is a zero-mean i.i.d. noise with variance σ2

v,k.
The noise vk(i) is assumed to be independent of any other
signal. Let Jk(w) be a differentiable convex cost function at
agent k. In this paper, we shall consider the mean-square-error
criterion, namely,

Jk(w) = E{|dk(i)− u>k,iw|2} (2)

This criterion is strongly convex, second-order differentiable,
and minimized at wo.

Diffusion LMS strategies seek the minimizer of the aggre-
gate cost function:

Jglob(w) =

N∑
k=1

Jk(w) (3)

in a cooperative manner. Let wk,i denote the estimate of the
minimizer of (3) at node k and time instant i. Diffusion LMS
algorithm in its Adapt-then-Combine (ATC) form is given by:

ψk,i = wk,i−1 − µk
∑
`∈Nk

c`k∇̂wJ`(wk,i−1) (4)

wk,i =
∑
`∈Nk

a`kψ`,i (5)

with ∇̂wJ`(wk,i−1) = −u`,i[d`(i) − u>`,iwk,i−1] the instan-
taneous approximation of the gradient vector ∇wJ`(wk,i−1),
Nk the neighborhood of node k including k, and µk a positive
step-size. The nonnegative coefficients {a`k} and {c`k} are
the (`, k)-th entries of a left-stochastic matrix A and a right-
stochastic matrix C, respectively.

B. Reducing the communication load of diffusion LMS

We shall now describe the existing techniques for reducing
the communication load of the diffusion LMS. We start with
the reduced communication diffusion LMS (RCD) [5] where
each node k can only communicate with a subset of size mk

of its |Nk| neighbors. This subset is randomly selected at each
node and each iteration. Each agent in the neighborhood of k
can be selected with probability:

pk = mk

Nk
(6)

The algorithm can be formulated as:
ψk,i = wk,i−1 + µkuk,i

(
dk,i − u>k,iwk,i−1

)
wk,i = hkk,iψk,i +

∑
`∈Nk\{k}

h`k,ia`kψ`,i
(7)

with hkk,i = 1 −∑`∈Nk\{k} h`k,ia`k. Note that matrix C
in (4) has been set to the identity, and h`k,i with ` 6= k is a
binary entry depending on whether agent ` has been selected
or not by agent k.

Similarly to the RCD, in the distributed LMS with partial
diffusion [17]–[19], the matrix C is also set to the identity
and the combination step (5) is now defined as:

wk,i = akkψk,i+
∑

`∈Nk\{k}
a`k

(
H`,iψ`,i+[I−H`,i]ψk,i

)
(8)

where H`,i is a diagonal entry-selection matrix with M ones
and L−M zeros on its diagonal. This means that the nodes can
use the entries of their own intermediate estimates in lieu of
the ones from the neighbors that have not been communicated.

Matrix H`,i can be deterministic, or can randomly select M
entries from all entries.

Finally, the projection approach investigated in compressive
diffusion LMS [16] consists of sharing a projection of the
local estimates. It also introduces an adaptive correction step
to compensate the projection error. This leads to the following
formulation of the adaptation step (5):

wk,i = akkψk,i +
∑

`∈Nk\{k}
a`kγ`,i (9)

where γ`,i = γ`,i−1 + η`p`,iε`,i is the constructed estimate,
with η` a positive step-size, p`,i a projection vector and
ε`,i = p

>
`,i(ψ`,i − γ`,i) the reconstruction error. This approach

introduces an additional adaptive step which can increase the
algorithm complexity.

None of these methods investigates strategies for reducing
the communication load induced by the adaptation step (4)
and gradient vector ∇̂wJ`(·) sharing. The doubly compressed
diffusion LMS (DCD) devised in this paper addresses this
issue by considering both the adaptation step (4) and the
combination step (5).

III. DOUBLY-COMPRESSED DIFFUSION LMS

We shall now introduce our DCD method and analyze its
stochastic behavior.

The DCD algorithm run at each node k is shown in Alg. 1.
Matrices Hk,i and Qk,i are diagonal entry-selection matrices
with M and M∇ ones on their diagonal, respectively. The
other diagonal entries of these two matrices are set to zero.
First, we consider the adaptation step. The matrix Hk,i selects
M entries (over L) of wk,i−1 that are sent to node ` to approx-
imate ∇wJ`(wk,i−1) in (4). Node ` fills the missing entries
of Hk,iwk,i−1 by using its own entries (IL −Hk,i)w`,i−1,
and calculates the instantaneous approximation of the gradient
vector at this point. Then node ` selects M∇ entries (over L)
of this gradient vector using Qk,i and send them to node k.
Node k fills the missing entries by using its own local estimate.
Finally, we focus on the combination step. Node k considers
the partial parameter vectors H`,iw`,i−1 received from its
neighbors ` during the adaptation step, and fills the missing
entries by using its own local estimate ψk,i. Then it aggregate
them to obtain the local estimate wk,i.

We can formulate the algorithm in the following form:

ψk,i = wk,i−1 + µk
∑
`∈Nk

c`kg`,i (10)

wk,i = akkψk,i

+
∑

`∈Nk\{k}
a`k

[
H`,iw`,i−1 + (IL −H`,i)ψk,i

]
(11)

with

g`,i

= Q`,iu`,i
[
d`(i)− u>`,i(Hk,iwk,i−1 + (IL −Hk,i)w`,i−1)

]
+ (IL −Q`,i)uk,i

[
dk(i)− u>k,iwk,i−1)

]
(12)

Algorithm 1 Local updates at node k for DCD

1: loop
2: randomly generate Hk,i and Qk,i

3: for ` ∈ Nk \ {k} do
4: send Hk,iwk,i to node `
5: receive from node ` the partial gradient vector:

Q`,i∇̂wJ`(Hk,iwk,i−1 + (IL −Hk,i)w`,i−1)

6: complete the missing entries using those available
at node k, which results in g`,i defined in (12)

7: update the intermediate estimate:

ψk,i = wk,i−1 + µk
∑
`∈Nk

c`kg`,i

8: calculate the local estimate:

wk,i = akkψk,i

+
∑

`∈Nk\{k}
a`k

[
H`,iw`,i−1 + (IL −H`,i)ψk,i

]

whereH`,i = diag{h`,i} andQ`,i = diag{q`,i}. In this paper,
we shall assume that h`,i (resp., q`,i) is an L×1 binary vector,
generated by randomly setting M (resp., M∇) of its L entries
to 1, and the other L−M (resp., L−M∇) entries to 0. We
shall assume that all possible outcomes for h`,i (resp., q`,i)
are equally likely, and i.i.d. over time and space. Then,

E{H`,i} = M
L IL E{Q`,i} = M∇

L IL (13)

We shall now analyze the stochastic behavior of the DCD
algorithm. For the sake of simplicity, we shall consider that
matrix C is doubly stochastic. We shall also set matrix A to
the identity matrix. Focusing in this way on the adaptation
step and gradient vector sharing helps simplify the analysis.
Note that the distributed LMS with partial diffusion (8), which
exclusively addresses how reducing the communication load
induced by the combination step, was analyzed in [17]. Com-
bining both analyses into a single general one is challenging
and beyond of the scope of this paper. However, in the sequel,
we shall illustrate the efficiency of the DCD algorithm in both
cases A = IL and A 6= IL, and compare it with the existing
strategies.

Before proceeding with the algorithm analysis, let us in-
troduce the following assumptions on the regression data and
selection matrices.

Assumption 1 The regression vectors uk,i arise from
a zero-mean random process that is temporally white and
spatially independent. A direct consequence of this assumption
is that uk,i is independent of w`,j for all ` and j < i.

Assumption 2 The matrices Hi,k and Q`,i arise from a
random process that is temporally white, spatially independent,
and independent of each other as well as any other process.

We introduce the L× 1 error vectors:

w̃k,i = w
o −wk,i (14)

and we collect them from across all nodes into the vectors:

w̃i = col{w̃1,i, w̃2,i, . . . , w̃N,i} (15)

Let Ru`,i = u`,iu
>
`,i. We also introduce:

M = diag{µ1IL, µ2IL, . . . , µNIL} (16)

RQ,i = diag
{ ∑
`∈N1

c`1Q`,iRu`,i,
∑
`∈N2

c`2Q`,iRu`,i, . . . ,

∑
`∈NN

c`NQ`,iRu`,i

}
(17)

Hi = diag{H1,i,H2,i, . . . ,HN,i} (18)

Q′i = diag
{ ∑
`∈N1

c`1(IL −Q`,i),
∑
`∈N2

c`1(IL −Q`,i) . . . ,

∑
`∈NN

c`N (IL −Q`,i)

}
(19)

Ru,i = diag{Ru1,i,Ru2,i, . . . ,RuN ,i} (20)
Qi = diag{Q1,i,Q2,i, . . . ,QN,i} (21)

C = C ⊗ IL (22)

where ⊗ denotes the Kronecker product. Finally, we introduce
the N × N block matrix RQ(I−H),i with each block (k, `)
defined as:

[RQ(I−H),i]k` = c`kQ`,iRu`,i(IL −Hk,i) (23)

Combining recursion (11) and definition (14), and replacing
dk(i) by its definition (1), we find:

w̃k,i = w̃k,i−1

− µk
∑
`∈Nk

c`kQ`,iu`,i
[
u>`,iw

o + v`(i)

− u>`,i(Hk,iwk,i−1 + (IL −Hk,i)w`,i−1)
]

− µk
∑
`∈Nk

c`k(IL −Q`,i)uk,i
[
u>k,iw

o + vk(i)

− u>k,iwk,i−1
]

(24)

Note that wo =Hk,iw
o+(IL−Hk,i)w

o. Replacing wo by
this expression, and using definition (14), leads to:

w̃k,i = w̃k,i−1 − µk
∑
`∈Nk

c`kQ`,iu`,i
[
u>`,iHk,iw̃k,i−1

+ u>`,i(IL −Hk,i)w̃`,i−1 + v`(i)
]

− µk
∑
`∈Nk

c`k(IL −Q`,i)uk,i
[
u>k,iw̃k,i−1 + vk(i)

]
(25)

Rearranging the terms in (25), and using definitions (15)–(22),
leads to:

w̃i =
(
INL −MRQ,iHi −MQ′iRu,i

−MRQ(I−H),i

)
w̃i−1 −

(
MC>Qi +MQ′i

)
si (26)

where

si = col{u1,iv1(i),u2,iv2(i), . . . ,uN,ivN (i)} (27)

A. Mean weight behavior analysis

We shall now examine the convergence in the mean for the
DCD algorithm and derive a necessary convergence condition.
We start by rewriting the weight-error vector recursion (26) as:

w̃i = Biw̃i−1 − Gisi (28)

where the coefficient matrices Bi and Gi are defined as:

Bi = INL
−MRQ,iHi −MQ′iRu,i −MRQ(I−H),i (29)

Gi = MC>Qi +MQ′i (30)

Taking expectations of both sides of (28), using Assumptions 1
and 2, and E{si} = 0, we find:

E{w̃i} = BE{w̃i−1}

where

B = INL − MM∇
L2 MR−

(
1− M∇

L

)
MRu (31)

− M∇
L

(
1− M

L

)
MC>Ru

Ru = E{Ru,i} = diag{Ru1
,Ru2

, . . . ,RuN
} (32)

R = diag{R1, . . . ,RN} (33)

with

Rk =
∑
`∈Nk

c`,kRu`
(34)

From (31), we observe that the algorithm (11) asymptoti-
cally converges in the mean toward wo if, and only if,

ρ(B) < 1 (35)

where ρ(·) denotes the spectral radius of its matrix argument.
We know that ρ(X) ≤ ‖X‖ for any induced norm. Then:

ρ(B) ≤‖B‖b,∞
≤max

k,`
‖[B]k`‖ (36)

where ‖·‖b,∞ denotes the block maximum norm. From (36)
and by Weyl’s theorem we have:

µk <
2

λmax,k
(37)

where

λmax,k = MM∇
L2 λmax(Rk) +

M
L

(
1− M∇

L

)
λmax(Ruk

)

+ M∇
L

(
1− M

L

)
max
`∈Nk

c`k λmax(Ru`
)

(38)

and λmax(·) stands for the maximum eigenvalue of its matrix
argument.

Note that when M =M∇ = L, we recover the matrices Bi
and G of the diffusion LMS in [1, (262)–(263)].

B. Mean-square error behavior analysis

We are now interested in providing a global solution for
studying the mean square error. With this aim, we consider
the weighted square measure E{‖w̃i‖2Σ} where Σ denotes a
N × N block diagonal weighting matrix. By setting Σ to
different values, we can extract various types of information
about the nodes and the network such as the network mean
square deviation MSD, or the excess mean square error EMSE.

We start by using the independence Assumption 1 and (28)
to write

E‖w̃i‖2Σ = E{w̃>i−1B>i ΣBiw̃i−1}+E{s>i G>i ΣGisi} (39)

On the one hand, the second term on the RHS of (39) can be
written as:

E{s>i G>i ΣGisi} = trace
(
E{s>i G>i ΣGisi}

)
= trace

(
E{G>i ΣGi}E{sis>i }

)
= trace

(
E{G>i ΣGi}S

)
(40)

where

S = E{sis>i } = diag(σ2
v,1Ru,1, . . . , σ

2
v,NRu,N) (41)

and

E{G>i ΣGi}
=
(
MC>Qi +MQ′i

)>
Σ
(
MC>Qi +MQ′i

)
= Θ1 + Θ2 + Θ>2 + Θ3 (42)

with

Θ1 = E{QiCMΣMC>Qi} (43)
Θ2 = E{QiCMΣMQ′i} (44)
Θ3 = E{Q′iMΣMQ′i} (45)

Before proceeding with the calculation of (43)–(45), we
introduce some preliminary results.

Given any L× L matrix Σ, it can be shown:

E{Q`,iΣQk,i} = (46)
M∇
L

((
1− M∇−1

L−1

)
IL �Σ + M∇−1

L−1 Σ
)

if ` = k(
M∇
L

)2
Σ otherwise

where � is the Hadamard entry-wise product.
Consider the block diagonal matrix Qi and any NL×NL

matrix Π. By using (46) for each block E{[QiΠQi]k`}, it
follows that:

E{QiΠQi}
= α1 (IN ⊗ 1LL)�Π + α2 INL �Π + α3 Π

(47)

where 1LL denotes the all-one L× L matrix, and:

α1 = M∇
L

(
M∇−1
L−1 − M∇

L

)
(48)

α2 = M∇
L

(
1− M∇−1

L−1

)
(49)

α3 =
(
M∇
L

)2
(50)

Finally we consider the NL × NL matrix, say ϕQ(Π),
defined by its L× L blocks:

[ϕQ(Π)]k` = E{Qk,i[Π]k`Qk,i} (51)

By using (46) for each block, it can be shown that ϕQ(Π)
can be expressed as follows:

ϕQ(Π) = α2 (1NN ⊗ IL)�Π + (α1 + α3)Π (52)

Note that ϕQ(Π) = E{QiΠQi} if Π is block diagonal.
We can now proceed with the evaluation of (43)–(45).

Matrix Θ1 calculation follows by setting Π = CMΣMC>
in (52). Consider now Θ2 in (42). We have:

[Θ2]k` =
M∇
L [CMΣM]k` − c2k` E{Qk,i[MΣM]``Qk,i}

−
(
M∇
L

)2 (
[CMΣM]k` − c2k` [MΣM]``

)
(53)

We can use (51) to calculate the second term in the RHS of the
above equation since MΣM is block diagonal. This yields:

Θ2 = M∇
L CMΣM− C2ϕQ(MΣM)

−
(
M∇
L

)2
(CMΣM− C2MΣM)

(54)

where C2 = C � C.
Finally, we calculate the last term Θ3 in the RHS of (42).

Matrix Θ3 is block diagonal, with each diagonal block defined
as follows:

[Θ3]kk

= E{[Q′i]kk[MΣM]kk[Q′i]kk}

=

N∑
m,n=1

cmkcnk E{
(
IL −Qm,i

)
[MΣM]kk

(
IL −Qn,i

)
}

Using (13), we get:

[Θ3]kk =
(
1− 2M∇

L

)
[MΣM]kk

N∑
m,n=1

cmkcnk

+

N∑
m,n=1

cmkcnkE{Qm,i[MΣM]kkQn,i}

Applying (46) leads to:

[Θ3]kk =
(
1− 2M∇

L

)
[MΣM]kk

+

N∑
m

c2mkE{Qm,i[MΣM]kkQm,i}

+
(
M∇
L

)2(N∑
m,n=1

cmkcnk[MΣM]kk

−
N∑
m=1

c2mk[MΣM]kk

)
(55)

Finally, using (52), we can write (55) in a compact form:

Θ3 =
(
1− 2M∇

L

)
MΣM+ (INL � C C>)ϕQ(MΣM)

+
(
M∇
L

)2 (MΣM− (INL � C C>)MΣM
)

(56)

It is interesting to notice that the second term in the RHS
of (39) does not depend on M . Moreover, setting M∇ = L
results in canceling Θ2 and Θ3 since Q′i = 0.

On the other hand, the first term on the RHS of (39) depends
on both parameters M and M∇ and can be expressed as:

E{w̃>i−1B>i ΣBiw̃i−1} = E‖w̃i−1‖2Σ′ (57)

where the weighting matrix Σ′ is defined as:

Σ′ = E{B>i ΣBi} (58)

Replacing Bi by its definition (29) leads to:

Σ′ = Σ− MM∇
L2 ΣMR−

(
1− M∇

L

)
ΣMRu

− M∇
L

(
1− M

L

)
ΣMC>Ru

− MM∇
L2 RMΣ−

(
1− M∇

L

)
RuMΣ

− M∇
L

(
1− M

L

)
RuC>MΣ

+

6∑
j=1

P j + P
>
2 + P>3 + P>5

where

P 1 = E{HiR>Q,iMΣMRQ,iHi} (59)

P 2 = E{HiR>Q,iMΣMQ′iRu,i} (60)

P 3 = E{HiR>Q,iMΣMRQ(I−H),i} (61)

P 4 = E{R>u,iQ′iMΣMQ′iRu,i} (62)

P 5 = E{R>u,iQ′iMΣMRQ(I−H),i} (63)

P 6 = E{R>Q(I−H),iMΣMRQ(I−H),i} (64)

Due to the complexity for calculating the terms P j and the
outcomes, we shall not report them in this section. Instead, we
provide all the necessary steps and results in the Appendix.

Following the same reasoning as in [1], we express Σ′ in
a vector form as:

σ′ = Fσ (65)

where

σ = vec(Σ) σ′ = vec(Σ′)

and the coefficient matrix F of size (MN)2 × (MN)2 is
defined as:

F = I(NM)2 − MM∇
L2 RM⊗ ILN

−
(
1− M∇

L

)
RuM⊗ ILN

− M∇
L

(
1− M

L

)
RuCM⊗ ILN − MM∇

L2 ILN ⊗RM
−
(
1− M∇

L

)
ILN ⊗RuM

− M∇
L

(
1− M

L

)
ILN ⊗RuC>M

+

6∑
j=1

Zj +Z2> +Z3> +Z5> (66)

where the matrices Zj and Zj> are obtained when applying
the vec(·) operator to P j and P>j , respectively, as it is shown
in the Appendix.

1 2 3 4 5 6 7 8 9 10

node k

1.2

1.4

1.6

1.8

2

σ
2 u
k

Agents input variances

0 5 10 15 20 25 30 35 40 45 50

node k

1

1.2

1.4

1.6

1.8

2

σ
2 u
k

Fig. 2: (left) Network topology. (right) Variance σ2
uk

of regres-
sors in Experiment 1 (top) and Experiment 2 (Bottom).

Substituting (40) and (57) into (39), and applying the vec(·)
operator to both sides, we get:

E‖w̃i‖2σ = E‖w̃i−1‖2Fσ + trace
(
E{G>ΣG}S

)
(67)

Using (67), it is possible to extract useful information about
the network or a specific node. For instance, we calculate the
network mean square deviation or excess mean square error
by setting Σ = ILN and Σ = Ru, respectively. The DCD
can be seen as an extension of the diffusion LMS in the case
where the weighting matrix A is the identity matrix. Indeed,
it is possible to recover the diffusion LMS, and derive other
variants such as the compressed diffusion LMS, by properly
setting matrices {Hk,i,Qk,i} and parameters {M,M∇}.

IV. SIMULATION RESULTS

In this section, we shall first evaluate the accuracy of the
mean-square error behavior model. Then, we shall perform
two experiments to characterize the performance of the DCD
algorithm compared to the diffusion LMS algorithm, the
reduced-communication diffusion LMS [5], and the partial
diffusion LMS [18]. We shall also consider the so-called
compressed diffusion LMS (CD) obtained by setting A = IL
and Q`,i = IL in (10)–(11), which means that M∇ = L in
this case. Before proceeding, note that the compression ratios
of the CD and DCD algorithms are equal to 2L

M+L and 2L
M+M∇

.
First we considered a small network to validate the the-

oretical model. Then, we used a larger network and high
dimensional measurements with the aim of testing the al-
gorithm in a larger scale setting. Finally, we considered an
energy dependent network where the agents alternate between
active and inactive states depending on the available energy.
For the three experiments, the parameter vectors wo were
generated from a zero-mean Gaussian distribution. The input
data uk,i were drawn from zero-mean Gaussian distributions,
with covariance Ru,k = σ2

u,kIL reported in Fig. 2 (right). The
weighting matrices C were generated using the Metropolis
rule [1]. Noises vk(i) were zero-mean, i.i.d. and Gaussian
distributed with variance σ2

v,k = 10−3. Simulation results were
averaged over 100 Monte-Carlo runs.

1) Experiment 1: We considered the network with N = 10
nodes depicted in Fig. 2 (left). We set the parameters as
follows: µk = 10−3, L = 5, M = 3, M∇ = 1. This resulted
in compression ratio of 10

8 and 10
4 for compressed diffusion

and doubly compressed diffusion LMS, respectively. It can be

observed in Fig. 3 (left) that the theoretical model accurately
fits the simulated results. Unsurprisingly, the diffusion LMS
algorithm outperformed its compressed counterparts at the
expense of a higher communication load.

2) Experiment 2: Since compression is particularly relevant
for relatively large data flows, then we considered a network
with N = 50 agents. We set the algorithm parameters as
follows: µk = 3 · 10−2, L = 50, M = 5. Due to the
high dimensionality of the matrix F (25002 × 25002), we
only performed Monte-Carlo simulations using C language
scripts. Figure 3 depicts the performance of the algorithms for
different compression ratios. The largest compression ratio that
can be reached by the CD algorithm equals 100

55 as it transmits
the whole gradient vectors (Q`,i = IL). On the other hand,
the CDC diffusion LMS offers more flexibility and can adapt
to the network communication load by adjusting M and M∇.

3) Experiment 3: In a realistic wireless sensor network
(WSN) implementation, nodes have limited energy reserves
and cannot be active all the time. One of the most promising
solution for this issue is to adopt an ENO strategy, where
ENO stands for Energy Neutral Operation. In other words, the
agents consume at most the amount of energy they harvest,
hence achieving the neutral energy condition. Theoretically,
neutral energy condition guarantees an infinite sensor lifetime.
In order to implement an ENO strategy, nodes must be en-
dowed with energy harvesting and storage capabilities. Agents
alternate between two phases: a brief active phase and a sleep-
ing phase. During the active phase, each agent k performs its
assigned tasks and calculates the duration Tsk,i of the sleeping
phase based on the available energy, the consumed energy and
an estimate of the energy that will be harvested [21]. For the
sake of limiting energy consumption, the agents then switch
to sleep mode for a duration of Tsk,i. The corresponding DCD
based algorithm is presented in Alg. 2.

We considered a solar energy based WSN with Bluetooth
capabilities. To calculate Tsk,i, we used [21]:

Tsk,i =
eck,i−η esk,i

η (Pharv,k,i−Pleak)−Psleep
(68)

where eck,i and esk,i denote the consumed energy and the
stored energy, respectively, η is the power manager efficiency,
Pharv,k,i is the harvested power, Pleak is the capacitor leakage
power, and Psleep is the power consumed during sleep phase.
These parameters and other parameters used for the experi-
ment are defined in Table I.

Following [21], we estimated eck,i as follows:

eck,i = ea + PsleepTsk,i−1 (69)

where ea denotes the consumed energy during the active
phase, assumed to be constant and known, and PsleepTsk,i−1
is a prediction of the consumed energy during the sleep
phase i based on the duration of the sleep phase i − 1.
Quantity ea depends on the algorithm. It is essentially dictated
by the volume of transfered data because of the excessive
energy consumption of the Bluetooth module. As Psleep, it was
determined based on our own measurements and an estimation
of the number of frames sent by each algorithm. See Table I.

Algorithm 2 Local updates at node k for the modified DCD

1: loop
2: randomly generate Hk,i and Qk,i

3: for ` ∈ Nk \ {k} do
4: send Hk,iwk,i to node `
5: receive from node ` the partial gradient vector:

Q`,i∇̂wJ`(Hk,iwk,i−1 + (IL −Hk,i)w`,i−1)

6: complete the missing entries using those available
at node k, which results in g`,i defined in (12)

7: update the intermediate estimate:

ψk,i = wk,i−1 + µk
∑
`∈Nk

c`kg`,i

8: calculate the local estimate:

wk,i = akkψk,i

+
∑

`∈Nk\{k}
a`k

[
H`,iw`,i−1 + (IL −H`,i)ψk,i

]
9: switch and stay in sleep mode for Tsk,i seconds

TABLE I: Summary of the parameters used to determine the
duration of sleeping phase Ts

parameter description value
Cs super capacitor capacity 0.09 F
Pleak super capacitor leakage power 3.3 · 10−6 W
Psleep consumed power for sleep mode 3.01 · 10−5 W
Tsmin minimal sleep time duration 1 s
Tsmax maximal sleep time duration 300 s
Vref minimal required voltage 3.5 V
ea,diff consumed energy for diffusion LMS 8.58 · 10−2 J
ea,RCD consumed energy for red. comm. LMS 1.61 · 10−2 J
ea,PM consumed energy for part. dif. LMS 5.4 · 10−3 J
ea,cmp consumed energy for CD LMS 7.51 · 10−2 J
ea,dcmp consumed energy for DCD LMS 5.4 · 10−3 J

Finally, we considered the following law to simulate the
amount of harvested energy:

Eharv,k,i = max(0, E0 sin(2πfi) + n(i)) (70)

with E0 = 0.67J , Eharv,k,i the harvested energy at node k and
time i, f = 10−5 a frequency, and nk(i) a zero-mean Gaussian
noise with variance σ2

n = 10−6. Note that the additive noise
was used to diversify the amount of harvested energy during
the Monte-Carlo runs. While it would have been possible
to use a constant value over time for the harvested energy,
we induced periodicity through the sin(·) function to roughly
model solar energy. We considered the network in Fig. 4 (left).
It consists of N = 80 agents scattered over a hill with different
lighting levels. We set L to 40. To compare the algorithms,
we set their compression ratio to r = 20. One exception was
made for the CD algorithm. As parameter r cannot reach such
a large value, it was set to r = 80

65 . Next the step size of each
algorithm was set according to Table II in order to reach the
same steady-state MSD. When A 6= IL, matrix A was set
using the Metropolis rule [1].

0 0.5 1 1.5 2 2.5 3 3.5 4

iteration i
×10

4

-70

-60

-50

-40

-30

-20

-10

0

M
S
D

(d
B
)

Method comparison

DCD LMS

CD LMS

diffusion LMS

Theoretical MSD
Simulated MSD
Steady-state MSD

0 1 2 3 4 5 6

iteration i
×10

4

-60

-50

-40

-30

-20

-10

0

M
S
D

(d
B
)

Compressed diffusion LMS

Diffusion LMS
r = 1.81
r = 1.66
r = 1.43
r = 1.25

0 1 2 3 4 5 6

iteration i
×10

4

-60

-50

-40

-30

-20

-10

0

M
S
D

(d
B
)

Doubly-compressed diffusion LMS

Diffusion LMS
r = 10
r = 5
r = 3
r = 1.5

Fig. 3: (left) Theoretical and simulated MSD curves for diffusion LMS and its compressed versions. Evolution of the MSD as
a function of the compression ratio for compressed diffusion LMS (center), and doubly-compressed diffusion LMS (right).

0 0.5 1 1.5 2

time (s) ×10
5

0

2

4

6

8

H
a
rv
es
te
d
en

er
g
y
(J

)
×10

-3

0 0.5 1 1.5 2

time (s) ×10
5

0

100

200

300

400

T
s

Diffusion LMS
Reduced communication Diffusion
CD LMS Qℓ,i = IL A = IN
DCD LMS A 6= IN and A = IN/ Partial Diffusion LMS

Fig. 4: (left) Network topology for WSN experiment. (center) Harvested energy and sleep periods during the experimentations.
(right) Simulated MSD curves.

TABLE II: Step-size and compression settings for the different
tested algorithms.

Algorithm Step-size µk Comp. ratio
Diffusion LMS 5.4 10−3 /

Reduced communication diffusion [5] 1.14 · 10−2 20

Partial diffusion LMS [18] 4.4 · 10−3 20

Compressed diffusion LMS 4.8 · 10−2 80
65

Doubly-compressed diffusion LMS 6 · 10−3 20

We shall now discuss the results in Fig. 4. Figure 4 (center)
shows that the sleep phase duration decreases as the amount of
harvested energy increases, and conversely. Also note that, for
all the algorithms, the sleep phase is longer at the beginning
as a consequence of the limited amount of stored energy
that is available. Next, the sleep phase duration drops down
until it reaches the minimal sleep duration Tsmin

if possible.
The less energy an algorithm consumes, the faster the super
capacitors charge, and the faster the sleep phase duration of the
agents drop down. As a consequence, nodes can process larger
amounts of data, which makes the convergence of the algo-
rithm faster as confirmed in Fig. 4 (right). This can be observed
with the diffusion LMS and the DC algorithm, which are
outperformed by the other algorithms. Let us now focus on the
partial diffusion LMS and the DCD algorithm (A 6= IL). As

their compression ratio r was set to same value for comparison
purposes, and their consumed energy during the active phase
is almost the same, their sleep phases in Fig. 4 (center) are
superimposed. The DCD algorithm however outperformed the
partial diffusion LMS, in particular because it is endowed with
a gradient sharing mechanism. Both algorithms outperformed
the reduced-communication diffusion LMS.

V. CONCLUSION

Among the challenges brought up by the advent of the
Internet of Things and WSN, energy efficiency is a critical
one. To address this challenge, we investigated a technique for
diffusion LMS that consists of sharing partial data. We carried
out an analysis of the stochastic behavior of the proposed
algorithm in the mean and mean-square sense. Furthermore,
we provided simulation results to illustrate the accuracy of
the theoretical models. Finally, we considered a realistic
simulation where sensor nodes alternate between active and
inactive phases. This experiment confirmed the efficiency of
the proposed strategy.

VI. APPENDIX

Before proceeding with the calculation of the terms P j , we
introduce some preliminary results.

Given any L× L matrix Σ, it can be shown:

E{H`,iΣHk,i} = (71)
M
L

((
1− M−1

L−1

)
IL �Σ + M−1

L−1 Σ
)

if ` = k(
M
L

)2
Σ otherwise

where � is the Hadamard entry-wise product.
Consider the block diagonal matrix Hi and any NL×NL

matrix Π. By using (71) for each block E{[HiΠHi]k`}, it
follows that:

E{HiΠHi}
= β1 (IN ⊗ 1LL)�Π + β2 INL �Π + β3 Π

(72)

where 1LL denotes the all-one L× L matrix, and:

β1 = M
L

(
M−1
L−1 − M

L

)
(73)

β2 = M
L

(
1− M−1

L−1

)
(74)

β3 =
(
M
L

)2
(75)

Finally we consider the NL × NL matrix, say ϕH(Π),
defined by its L× L blocks:

[ϕH(Π)]k` = E{Hk,i[Π]k`Hk,i} (76)

By using (71) for each block, it can be shown that:

ϕH(Π) = β2 (1NN ⊗ IL)�Π + (β1 + β3)Π (77)

Note that ϕH(Π) = E{HiΠHi} if Π is block diagonal.

A. Terms P j calculation

1) Term P 1 calculation: Matrix P 1 is a block diagonal
matrix. Its k-th diagonal block is given by:

[P 1]kk = E{Hk,i[RQ,i]
>
kk[MΣM]kk[RQ,i]kkHk,i} (78)

Substituting RQ,i by its expression (17) leads to:

[P 1]kk =

N∑
m,n=1

cmkcnk (79)

E{Hk,iRum,iQm,i[MΣM]kkQn,iRun,iHk,i}

We rewrite [P 1]kk as a sum of two terms, one for m = n and
one for m 6= n. Using (13), we get:

[P 1]kk =
N∑
m=1

c2mkE{Hk,iRum,iQm,i[MΣM]kkQm,iRum,iHk,i}

+
(
M∇
L

)2(
N∑

m,n=1

cmkcnkE{Hk,iRum,i[MΣM]kkRun,iHk,i}−

N∑
m=1

c2mkE{Hk,iRum,i[MΣM]kkRum,iHk,i}
)

(80)

The terms in (80) depends of higher-order moments of the
regression data. While we can continue the analysis by calcu-
lating these terms, it is sufficient for the exposition to focus
on the case of sufficiently small step-sizes where a reasonable
approximation is [1]:

E{Rum,i[MΣM]kkRum,i} = Rum [MΣM]kkRum (81)

Note that this approximation will also be used in the sequel.
Finally, using Assumption 2, we can reformulate P 1 as:

P 1 =

N∑
m=1

E{HiRcmϕQ(MΣM)RcmHi} (82)

+
(
M∇
L

)2(
E{HiRMΣMRHi} −

N∑
m=1

E{HiRcmMΣMRcm}Hi

)
where the matrices Rck are defined as:

Rck = diag{ck1Ruk
, . . . , ckNRuk

} (83)

2) Term P 2 calculation : Using the same steps as above,
we have:

[P 2]kk = E{Hk,i[RQ,i]
>
kk[MΣM]kk[Q′i]kkRuk,i}

We substitute [RQ,i]kk and [Q′i]kk by their respective defini-
tions (17) and (19):

[P 2]kk =

N∑
m,n=1

cmkcnkE{Hk,iRum,iQm,i[MΣM]kk(
IL −Qn,i

)
Ruk,i}

Using (13) we find that:

[P 2]kk = MM∇
L2

∑N
m=1 c

2
mkE{Rum,i[MΣM]kkRuk,i}

− M
L

∑N
m=1 c

2
mkE{Rum,iQm,i[MΣM]kkQm,iRuk,i}

+ MM∇
L2

(
1− M∇

L

)
(N∑
m,n=1

cmkcnkE{Rum,i[MΣM]kkRuk,i}

−
N∑
m=1

c2mkE{Rum,i[MΣM]kkRuk,i}
)

(84)

Finally, we write:

P 2 (85)

= M∇M
L2 R2MΣMRu − M

L R2ϕQ(MΣM)Ru

+ MM∇
L2

(
1− M∇

L

)
(RMΣMRu −R2MΣMRu)

where

R2 =

{
N∑
m=1

c2m1Rum , . . . ,

N∑
m=1

c2mNRum

}
(86)

3) Term P 3 calculation: Term P 3 can be expressed as

[P 3]k` = E{Hk,i[RQ,i]
>
kk[MΣM]kk[RQ(I−H),i]k`} (87)

Replacing [RQ,i]kk and [RQ(I−H),i] by their definitions (17)
and (23), respectively, we get:

[P 3]k` = (88)
N∑
m=1

cmkc`kE{Hk,iRum,iQm,i[MΣM]kk

Q`,iRu`,i (IL −Hk,i)}
Applying (13) and (46) leads to:

[P 3]k` =
M
L c2`k E{Ru`

Q`,i[MΣM]kkQ`,iRu`
}

− c2`k E{Hk,iRu`
Q`,i[MΣM]kkQ`,iRu`

Hk,i}
+
(
M∇
L

)2 (M
L

∑N
m=1 cmkc`kRum [MΣM]kkRu`

−
N∑
m=1

cmkc`kE{Hk,iRum [MΣM]kkRu`
Hk,i}

− M
L c2`kRu`

[MΣM]kkRu`

+ c2`k E{Hk,iRu`
[MΣM]kkRu`

Hk,i}
)

(89)

We have:

c2`kRu`
[MΣM]kkRu`

=

N∑
m=1

[R′um
MΣMC>2 ImRu]k`

(90)
where

R′um
= IL ⊗Rum

(91)
Im = diag{0, 0, . . . , IL, 0, . . . , 0} (92)

All the entries of the matrix Im are equal to zero except
the (m,m)-th block which is equal to IL.

Using (90), we find that:

P 3 = M
L

∑N
m=1 R′um

ϕQ(MΣM)C>2 ImRu

−
N∑
m=1

ϕH(R′um
ϕQ(MΣM)C>2 ImRu)

+
(
M∇
L

)2(M
L RMΣMC>Ru −ϕH(RMΣMC>Ru)

− M
L

∑N
m=1 R′um

MΣMC>2 ImRu

+

N∑
m=1

ϕH(R′um
MΣMC>2 ImRu)

)
(93)

4) Term P 4 calculation : We express P 4 as follows:

[P 4]kk = E{Ruk,i[Q
′
i]kk[MΣM]kk[Q′i]kkRuk,i}

Substituting [Q′i]kk by its definition (19) we get:

[P 4]kk =

N∑
m,n=1

cmkcnkE{Ruk,i

(
IL −Qm,i

)
[MΣM]kk(

IL −Qn,i

)
Ruk,i}

Using (13) leads to

[P 4]kk =
(
1− 2M∇

L

) N∑
m,n=1

cmkcnkE{Ruk,i[MΣM]kkRuk,i}

+

N∑
m,n=1

cmkcnkE{Ruk,iQm,i[MΣM]kkQn,iRuk,i}

We rearrange the sum as follows:

[P 4]kk =
(
1− 2M∇

L

) N∑
m,n=1

cmkcnkE{Ruk,i[MΣM]kkRuk,i}

+

N∑
m=1

c2mkE{Ruk,iQm,i[MΣM]kkQm,iRuk,i}

+
(
M∇
L

)2(N∑
m,n=1

cmkcnkE{Ruk,i[MΣM]kkRuk,i}

−
N∑
m=1

c2mkE{Ruk,i[MΣM]kkRuk,i}
)

Finally, we can write P 4 in a compact form:

P 4 =
(
1− 2M∇

L

)
RuMΣMRu

+Ru(INM � C C>)ϕQ(MΣM)Ru

+
(
M∇
L

)2
(RuMΣMRu

−Ru(INM � C C>)MΣMRu

)
(94)

5) Term P 5 calculation: Expanding P 5 leads to:

P 5 = P 5,1 − P 5,2 − P 5,3 + P 5,4 (95)

where:

P 5,1 =

N∑
m=1

cmkc`kE{Ruk,i[MΣM]kkQ`,iRu`,i} (96)

P 5,2 =

N∑
m=1

cmkc`kE{Ruk,iQm,i[MΣM]kk

Q`,iRu`,i} (97)

P 5,3 =

N∑
m=1

cmkc`kE{Ruk,i[MΣM]kk

Q`,iRu`,iHk,i} (98)

P 5,4 =

N∑
m=1

cmkc`kE{Ruk,iQm,i[MΣM]kk

Q`,iRu`,iHk,i} (99)

Following the same steps as earlier, and using the results (13)
and (46), leads to:

P 5,1 = M∇
L RuMΣMC>Ru (100)

P 5,2 = M
L

[
RuϕQ(MΣM)C>2 Ru (101)

+
(
M∇
L

)2 (RuMΣMC>Ru −RuMΣMC>2 Ru

)]
P 5,3 = M

L RuMΣMC>Ru (102)

P 5,4 = M
L ϕQ(MΣM)C>2 Ru (103)

+ M
L

(
M∇
L

)2 (RuMΣMC>Ru −RuMΣMC>2 Ru

)
6) Term P 6 calculation: Proceeding as previously we find:

P 6 =
(
1− 2M

L

)
RuE{QiCMΣMC>Qi}Ru

+ϕH(RuE{QiCMΣMC>Qi}Ru) (104)

B. Terms P j vectorization

In order to apply the vec(·) operator to the terms P j , we
use the following transformations:

(IN ⊗ 1LL)�Π =

N∑
n=1

T nΠT n (105)

INL �Π =

NL∑
n=1

DnΠDn (106)

(1NN ⊗ IL)�Π =

NL∑
m=1

⌊
NL−M

L

⌋∑
k=1

(DmΠDm+kL +Dm+kLΠDm)

−
N∑
m=1

DmΠDm (107)

where Π, T n and Dn, are (NL×NL) matrices and

[T n]k` = δ(k, `)δ(k, n)IL (108)
(Dn)k` = δ(k, `)δ(k, n) (109)

where δ(k, `) = 1 if k = `, and 0 otherwise. Using (72), we
find:

vec(RuE{QiCMΣMC>Qi}Ru) =

α1 vec(Ru[(IN ⊗ 1LL)� (CMΣMC>)]Ru)

+ α2 vec(Ru[IN � (CMΣMC>)]Ru)

+ α3 vec(RuCMΣMC>Ru) (110)

Using (105) and (106) we have:

vec(RuE{QiCMΣMC>Qi}Ru) =

α1

N∑
n=1

vec(RuT nCMΣMC>T nRu)

+ α2

NL∑
m=1

vec(RuDmCMΣMC>DmRu)

+ α3 vec(RuCMΣMC>Ru) (111)

Furthermore, we have:

vec(AΣB) = (B>⊗A)vec(Σ) (112)

Applying (112) leads to:

vec(RuE{QiCMΣMC>Qi}Ru) =

α1

N∑
n=1

vec(RuT nCM⊗RuT nCM)σ

+ α2

NL∑
m=1

vec(RuDmCM⊗RuDmCM)σ

+ α3 vec(RuCM⊗RuCM)σ (113)

REFERENCES

[1] A. H. Sayed, “Diffusion adaptation over networks,” in Academic Press
Libraray in Signal Processing, R. Chellapa and S. Theodoridis, Eds.
Elsevier, 2014. Also available as arXiv:1205.4220 [cs.MA], May 2012.,
pp. 322–454.

[2] A. H. Sayed, S.-Y. Tu, J. Chen, X. Zhao, and Z. J. Towfic, “Diffusion
strategies for adaptation and learning over networks: an examination of
distributed strategies and network behavior,” IEEE Signal Processing
Magazine, vol. 30, no. 3, pp. 155–171, 2013.

[3] A. H. Sayed, “Adaptive networks,” Proceedings of the IEEE, vol. 102,
no. 4, pp. 460–497, 2014.

[4] X. Zhao, S.-Y. Tu, and A. H. Sayed, “Diffusion adaptation over networks
under imperfect information exchange and non-stationary data,” IEEE
Transactions on Signal Processing, vol. 60, no. 7, pp. 3460–3475, 2012.

[5] R. Arablouei, S. Werner, K. Doğançay, and Y.-F. Huang, “Analysis of a
reduced-communication diffusion LMS algorithm,” Signal Processing,
vol. 117, pp. 355–361, 2015.

[6] J. Chen, C. Richard, A. O. Hero, and A. H. Sayed, “Diffusion lms for
multitask problems with overlapping hypothesis subspaces,” in Proc.
IEEE MLSP’14, Reims, France, 2014, pp. 1–6.

[7] J. Chen, C. Richard, and A. H. Sayed, “Multitask diffusion adaptation
over networks,” IEEE Transactions on Signal Processing, vol. 62, no. 16,
pp. 4129–4144, 2014.

[8] ——, “Diffusion LMS over multitask networks,” IEEE Transactions on
Signal Processing, vol. 63, no. 11, pp. 2733–2748, 2015.

[9] R. Nassif, C. Richard, A. Ferrari, and A. H. Sayed, “Multitask diffusion
adaptation over asynchronous networks,” IEEE Transactions on Signal
Processing, vol. 64, no. 11, pp. 2835–2850, 2016.

[10] ——, “Proximal multitask learning over networks with sparsity-inducing
coregularization,” IEEE Transactions on Signal Processing, vol. 64,
no. 23, pp. 6329–6344, 2016.

[11] A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multi-
agent optimization,” IEEE Transactions on Automatic Control, vol. 54,
no. 1, pp. 48–61, 2009.

[12] M. G. Rabbat and R. D. Nowak, “Quantized incremental algorithms for
distributed optimization,” IEEE J. Sel. Areas Commun., vol. 23, no. 4,
pp. 798–808, Apr. 2005.

[13] C. G. Lopes and A. H. Sayed, “Incremental adaptive strategies over
distributed networks,” IEEE Transactions on Signal Processing, vol. 55,
no. 8, pp. 4064–4077, 2007.

[14] W. Gao, J. Chen, C. Richard, and J. Huang, “Diffusion adaptation over
networks with kernel least-mean-square,” in Proc. IEEE CAMSAP’15,
Cancún, Mexico, 2015.

[15] P. Chainais and C. Richard, “Learning a common dictionary over a
sensor network,” in Proc. IEEE CAMSAP’13, Saint Martin, French West
Indies, 2013.

[16] M. O. Sayin and S. S. Kozat, “Compressive diffusion strategies over dis-
tributed networks for reduced communication load,” IEEE Transactions
on Signal Processing, vol. 62, no. 20, pp. 5308–5323, 2014.

[17] R. Arablouei, S. Werner, Y.-F. Huang, and K. Dogancay, “Distributed
least mean-square estimation with partial diffusion,” IEEE Transactions
on Signal Processing, vol. 62, no. 2, pp. 472–484, 2014.

[18] R. Arablouei, K. Dogancay, S. Werner, and Y.-F. Huang, “Adaptive
distributed estimation based on recursive least-squares and partial dif-
fusion,” IEEE Transactions on Signal Processing, vol. 62, no. 14, pp.
3510–3522, 2014.

[19] V. Vadidpour, A. Rastegarnia, A. Khalili, and S. Sanei, “Partial-diffusion
least mean-square estimation over networks under noisy information
exchange,” arXiv preprint arXiv:1511.09044, 2015.

[20] I. E. K. Harrane, R. Flamary, and C. Richard, “Doubly compressed
diffusion lms over adaptive networks.”

[21] T. N. Le, A. Pegatoquet, O. Berder, and O. Sentieys, “Multi-source
power manager for super-capacitor based energy harvesting wsn,” in
Proceedings of the 1st International Workshop on Energy Neutral
Sensing Systems. ACM, 2013, p. 19.

