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Abstract. In the retail context, there is an increasing need for under-
standing individual customer behavior in order to personalize market-
ing actions. We propose the novel concept of customer signature, that
identifies a set of important products that the customer refills regularly.
Both the set of products and the refilling time periods give new insights
on the customer behavior. Our approach is inspired by methods from
the domain of sequence segmentation, thus benefiting from efficient ex-
act and approximate algorithms. Experiments on a real massive retail
dataset show the interest of the signatures for understanding individual
customers.

1 Introduction

Retail, and more specifically understanding the behavior of supermarket cus-
tomers, has been a strong motivation for data mining researchers since the early
1990s. Several methods have been developed in this field, such as mining fre-
quent itemset [1], frequent sequential patterns [2] or more recently high utility
itemsets [3]. These methods discover sets of products that are bought together
in a large enough number of tickets, possibly with some extra information (e.g.
sequencing, utility). They can be exploited to understand (large) groups of cus-
tomers. However, with the success of loyalty programs and the increasing number
of customers shopping at online grocery pick-up, a promising trend is “person-
alized marketing”. This requires a fine grained understanding of the purchasing
behavior of individual customers, in order to make relevant personalized sugges-
tions.

In this context of personalized marketing, an important information is the
“rhythm” of the individual customer. The main idea is to identify the set of
products that the customer always wants to have stocked at home, and that she
will thus buy on a more or less regular basis. The rhythm corresponds to the
”refilling period”. Extracting such information may help analysts to get insights
about their customers in order to design personalized marketing campaigns. In
practice, the problem is to discover from the set of the customer receipts, a set of
products that are regularly purchased. A difficulty is that all the products that
the customer wants to have in stock are not likely to be bought at the same time:
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depending on depletion rates, renewing all such products will be distributed over
several receipts.

Recently, Customer Relationship Management (CRM) has manifested inter-
est in data mining [4], but with a focus on clustering techniques, for example to
characterize segment profiles [5]. However, clustering cannot uncover the flexi-
ble time regularity of customers’ purchases since time periods have to be fixed
in advance. Most existing itemset mining algorithms [1, 6] consider only sets of
products that are bought on a single receipt, and cannot be used for this problem.
Periodic patterns [7] can find regularities through a sequence of receipts how-
ever they extract patterns with strict temporal period. Mannila et al. [8] have
proposed parallel episodes to extract temporal regularities but the approach re-
quires fixed predefined equal size windows over the sequence of events, which
lacks flexibility for the problem at hand. In [9], Casas-Garriga defined a method
that also adapts the window size to the data, however it still requires a maximal
time interval between two events.

In this paper, we define the problem of extracting customer signature through
a sequence of receipts. A customer signature represents a maximal set of prod-
ucts that are bought regularly, possibly in several receipts and such that the
regularity is not strict. We show that this problem can be formalized as a se-
quence segmentation problem. There is an important literature about sequence
segmentation. We have adapted the formal setting provided in Bingham’s survey
[10]. The most significant adaptation lies in the notion of segment representa-
tives that represent occurrences of a common set of products and on the distance
from sequence elements to their related representatives. Roughly, we shift from
a local error view to a global one (see Section 2 for more details).

The contributions of this paper are threefold. First, the signature mining
problem is defined as a segmentation problem allowing to take advantage of
the many algorithms that have been proposed in the sequence segmentation
field (Section 3.1). Second, we have adapted and evaluated an algorithm based
on dynamic programming for sequence segmentation [11] which gives an exact
solution (Section 3.2). Third, a thorough experimental study on real massive
supermarket data shows the interest of our approach (Section 4).

2 Background

This section provides the data mining vocabulary used in the sequel, and presents
briefly the well-studied sequence segmentation problem.

In pattern mining, an itemset T is a set of literals called items. Let I be
the set of all items. A sequence α is an ordered list of itemsets, denoted by
α = 〈T1, . . . , Tm〉. In the retail context, a receipt is an itemset (a set of purchased
products) and a customer purchase sequence is a sequence of receipts identifying
the products bought by a customer at each of her visits to a supermarket during
the analysis period. For instance, 〈(p1, p2) (p3) (p1) (p4, p2, p3) (p1)〉 is a
sequence of five receipts where four different products are bought one or several
times. A receipt may have an associated timestamp which indicates the purchase
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date. We assume that the timestamp of Tk is implicitly the index of Tk, i.e. k.
By extension, the timestamp of any product of a receipt Tk is the timestamp
associated with this receipt Tk. A customer sequence database SDB is a set of
tuples (Cid, α) where Cid is a customer identifier and α is the sequence of her
receipts.

Our proposal is grounded on sequence or time series segmentation which has
received much attention in the literature. In [10], the segmentation problem is
formulated as follows. Let α = 〈T1, T2, ..., Tn〉 be a d-dimensional sequence where
Ti ∈ Rd. A k-segmentation S of α is a partition of α into k non-overlapping
contiguous subsequences called segments, i.e. S = 〈S1, S2, ..., Sk〉 and ∀i ∈
1 . . . k, Si = 〈Tb(i), . . . , Tb(i+1)−1〉, where b(i) is the index of the first element
of the i-th segment. A segmentation associates a representative, µ(Si), with
each segment by aggregating the values of the segment. Generally µ(Si) is a
single value such as mean or median, or a pair of values such as (min, max) or
(mean, slope). This reduction results in a loss of information in the sequence
representation which can be measured by the reconstruction error defined as:

Ep(α, S) =
∑
Si∈S

∑
T∈α

dist(T, µ(Si))
p

where dist(T, µ(s)) represents the distance between the d-dimensional point T
and the representative of the segment it belongs to. The p parameter refers to
the Lp norm. In practice, the median (p = 1) or the mean (p = 2) usually serves
as segment representatives. The segmentation problem consists in finding the
segmentation that minimizes the reconstruction error:

Sopt(α, k) = arg min
S∈Sn,k

Ep(α, S)

where Sn,k represents the set of all k-segmentations of sequences of length n.

3 Mining Signatures

In this section, we present the signature mining problem in the sequence segmen-
tation framework. Indeed, mining a signature from a customer purchase sequence
α can be seen as segmenting α into k non-overlapping and non-empty segments
that cover all receipts from α and such that every segment contains a common
maximal subset of products, called the customer signature. The signature mining
problem can thus be fitted to the segmentation problem providing the opportu-
nity to use the many exact or approximate algorithms that have been proposed
in the sequence segmentation field.

3.1 Mining Signatures with Sequence Segmentation

Section 2 introduced the problem of segmenting a sequence α = 〈T1, T2, ..., Tn〉
into k segments. Let Sn,k denote the set of all k-segmentations of a sequence
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α of length n and S = 〈S1, S2, ..., Sk〉 be an element of Sn,k. Following the
representation proposed in SPAM [12], a receipt can be represented by a bitmap5

of dimension d such that if item ij belongs to the receipt then the j-th bit of
the bitmap is set to 1, otherwise the j-th bit is set to 0. The representative ri
of a segment is then defined as the set of items that belongs to at least one
receipt in the segment, i.e. the union of the segment receipts. This union can be
computed by a boolean disjunction on bitmaps: ri =

∨
t∈Si

t. The k-signature
of a purchase sequence is the set of items that are common to every segments
from a segmentation of size k, so it corresponds to the intersection of the k
segment representatives. It can be computed by a boolean intersection of the
related bitmaps: Sigk(α, S) =

∧k
j=1 rj . As we intend to represent a customer

purchase sequence by its signature, the reconstruction error is related to the loss
of information in the signature. A simple way to estimate the error is to count
the items that are not present in the signature, i.e. the number of bits equal to
0 in the bitmap:

Ek(α, S) = |I| − ‖Sigk(α, S)‖ = ‖Sigk(α, S)‖

where ‖X‖ represents the number of bits equal to 1 in bitmap X and X repre-
sents the complement of X. The signature of a customer’s purchase sequence T
is the maximal signature for a segmentation of size k:

Sigk(α) = Sigk(α, Sopt(α, k)), where Sopt(α, k) = arg max
S∈Sn,k

‖Sigk(α, S)‖

The segmentation size k is given a priori, either as an integer or as a percent-
age of n, the size of the input sequence (similar to support count and support [1]).
The latter is called the relative number of blocks denoted by RNB.

3.2 Dynamic Programming for Signature Mining by Segmentation

Now, we present an algorithm for computing signatures by sequence segmenta-
tion based on Dynamic Programming (DP). This algorithm returns an optimal
solution, i.e. a maximal signature.

Bingham [10] presents a formulation of DP for sequence segmentation. It is
based on a table A of size k × n where k is the size of the segmentation and
n is the number of itemsets (receipts) in the input sequence α. So, rows of A
represent segments and columns represent itemsets of the input sequence. Let
α[j, i] denote the subsequence of α starting at index j and ending at index i. A
cell A[s, i] of table A denotes the error of segmenting the sequence α[1, i] using
s segments, formally defined by:

A[s, i] = min
2≤j≤i

(A[s− 1, j − 1] + E(Sopt(α[j, i], 1))) (1)

5 For the sake of simplicity, we focus here on a bitmap representation. To cope with
memory consumption, a more efficient representation method, such as the dynamic
bit vector (DBV) architecture, could be used [13].
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where E(Sopt(α[j, i], 1)) is the minimum error that can be obtained for the sub-
sequence α[j, i] when representing it as one segment. In our case, it is simply
the number of items that are present in the segment receipts. In the signature
mining problem, as presented in Section 3.1, the representative of a segment is
not a numeric value but a set of items. In order to compute the reconstruction
error, an A cell stores the bitmaps of the best signatures obtained so far. Since
several signatures may exhibit the same reconstruction error value, an A cell
contains a set of bitmaps. Intuitively, A[s, i] is computed by considering, for all
j ∈ [s, i], the composition of a signature obtained for an (s− 1)-segmentation of
a subsequence α[1, j − 1], stored in A[s− 1, j − 1], and the signature of the new
segment Sig1(α[j, i]).

Formally, it is defined by:

A[s, i] = amaxN
s≤j≤i

( amaxN
Sigs−1∈A[s−1,j−1]

(Sigs−1 ∧ Sig1(α[j, i]))) (2)

where
amaxN

i
P (i) ≡ arg max

P (i)

|P (i)|

(amaxN returns the maximal elements of a set with respect to norm |.|). The
representation error associated with cell A[s, i] is simply E(P ), which is identical
for every bitmap P ∈ A[s, i]. Thus, all such signatures having a maximal size
are stored in A[s, i].

Table 1 displays the progressive segmentation by Dynamic Programming of
sequence α = 〈(ab)(abc)(acd)(abd)〉. The leftmost column gives the indices of
segments. The bottom row gives the indices over sequence α as well as their
associated itemset and bitmap. Other cells of Table 1 details the results of oper-
ations performed by DP formalized by equations (1) and (2). m represents the
error minimization operation of segmentation. Note, that in the signature min-
ing we are looking for maximal signatures w.r.t. the number of items and thus,
m is a max operator on signatures. For example, cell [2, 3] computes the best
signature obtained by segmenting sub-sequence α[1, 3] into 2 segments. There
are 2 ways to segment α[1, 3]: α[1, 2] − α[3, 3] and α[1, 1] − α[2, 3]. In the first
case, the representative of α[3, 3] (i.e. its associated bitmap) is composed with
the best signature obtained for sub-sequence α[1, 2] given by A[1, 2]. Actually,
the composition operation (denoted by ◦ in the table), is simply a logical AND
on bitmaps. In the second case, the representative of α[2, 3] is composed with
the best signature for sub-sequence α[1, 1] given by A[1, 1]. The representative
of several sequence elements is simply a logical OR on their associated bitmaps.
The best signature for the whole sequence α and a 3-segmentation is given by
A[3, 4].

Algorithm 1 presents a DP algorithm for sequence segmentation and signa-
ture extraction. The first row of the DP table is initialized in lines 4-6. Then
rows are added iteratively until reaching the min seg threshold. To build Ak,
for k ∈ [2,min seg[, we just have to add the row k to Ak−1 (lines 9-13). Finally,
A[n,min seg] provides the best signatures and related min seg-segmentations
(line 16).
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Table 1. DP segmentation table for sequence α = 〈(ab)(abc)(acd)(abd)〉. To be read
from bottom-left to top-right.

3 m(α[3,3]◦A[2,2])
=m(1011∧1100)
={1000}

m(α[4,4]◦A[2,3],α[3,4]◦A[2,2])
=m(1001∧1010, 1001∧1100, 1011∧1100}
={1000}

2 m(α[2,2]◦A[1,1])
=m(1110∧1100)
={1100}

m(α[3,3]◦A[1,2],α[2,3]◦A[1,1])
=m(1011∧1110, 1111∧1100)
={1010, 1100}

m(α[4,4]◦A[1,3],α[3,4]◦A[1,2],α[2,4]◦A[1,1])
=m(1001∧1111, 1011∧1110, 1001∧1111)
={1001, 1010, 1001}

1 m(α[1,1])
={1100}

m(α[1,2])
={1110}

m(α[1,3])={1111} m(α[1,4])={1111}

1: (ab)
1100

2: (abc)
1110

3: (acd)
1011

4: (ad)
1001

The dynamic programming algorithm has a complexity in O(n2k) and com-
putes the optimal solution, here the maximal signature and related segmentation.

4 Experiments

In this section, we compare signatures with some other data representation mod-
els for analyzing customer purchase regularity. We demonstrate that we are able
to find new regularities, that can be used to answer practical questions, such as
targeted marketing.

The experiments were performed on anonymized basket data provided by a
major French retailer. They were collected from may 2012 to august 2014 (27
months) from customers owning a loyalty card. To remove occasional customers,
whose data do not make sense for our experiments, only customers having more
than 20 baskets during the period were kept. 149 942 distinct customers, worth
16.6 GB of data, remained. The resulting database contains 3,887,979 distinct
items. The retailer also provided a taxonomy that relates items to subcategories
(item class). We ended up with a total of 3388 item categories. Such categories
are used to get rid of minor items differences (e.g. packaging or brand).

4.1 Capturing purchase regularity

Mining methods that extract patterns while giving some insight of regularity,
go from top-k item mining [14] to periodic pattern mining. Top-k items are the
k most frequently bought items within all customer’s baskets. However, top-
k items do not provide an explicit information about purchase regularity. Yet,
item frequency can be considered as a rough mean regularity. Periodic patterns
[15] represent items that are purchased at a strict periodicity. However, some
purchase delay could break the periodicity and prevent a pattern to be periodic.
Signatures stand in the middle: they represent sets of items that are bought
within a limited period of time and such items are bought together several times
but under a non strict periodicity.

In the sequel, we compare signatures with top-k items and periodic patterns
to exhibit some common and distinctive features.
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Algorithm 1: Dynamic Programming for segmentation-based signature
extraction
Input: α = 〈T1, . . . , Tn〉: receipt sequence of length n, min seg: the minimal

segmentation size
Result: Sig: signatures

1 A[1, 1] = T1;
2 /*Initialization of the first row of A*/
3 for i = 2, n do
4 A[1, i] = Ti ∨A[1, i− 1];
5 end
6 for s = 2,min seg do
7 for i = s, n do
8 Sig = ∅;
9 for j = s, i do

10 Sig = Sig ∪ {A[s− 1, j − 1] ∧ (
∨
T∈α[j,i] T )};

11 end
12 A[s, i] = arg maxp∈Sig |p|;
13 end

14 end
15 Sig = A[min seg, n];
16 return Sig

Signatures vs top-k items In this experiment, we compare the signature
content with the top-k items for each customer. We compute signatures with a
relative number of blocks of 0.15 (see Section 3.1). We try different values of k
for the top-k items method, and compare all of them with the signature content
in Figure 1, on the left. Setting the value of k to the signature length for each
customer is not possible in practive, as we do not know the signature length
before hand. We therefore do not show experiments with this particualr value of
k. More elaborate methods to adapt the k value to each customer, such as elbow
methods [16], did not bring better results than the ones presented in Figure 1-
left. The Jaccard similarity between the signature and the top-k items of most
customers is between 0.5 and 0.3. This means that top-k items and signature
products overlap partially. When the k value is low, the number of top-k items is
significantly lower than the number of items in the signature. This leads to a low
Jaccard value, even though most of the top-k items are included the signature.
A similar behavior is observed for large values of k, where the top-k contains
more items than the signature, leading to a low Jaccard value. For values of k
close to the mean signature length: between 5 and 10 items, the Jaccard goes
higher, as both sets have a similar size. Overall, the signature overlaps partially
with the top-k items, and the main source of difference comes from the fact that
the number of items in the signature changes for each customer, whereas it is
constant for all customers in the top-k computation. The number of items in
the signature could therefore be seen as a way to estimate a relevant value of
k for the top-k items of a given customer. Another source of difference between
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Fig. 1. On the left: Jaccard similarity between the signature and the top-k items,
for different k values. This has been computed on 149 942 customers. On the right:
Jaccard similarity between the signature and the longest periodic pattern, for different
time scales. This was computed on 20 000 customers.

signatures and top-k items is the fact that items that are very frequently bought
during a short period of time do not appear in the signature, while they are
more likely to appear in the top-k items.

Periodic patterns comparison In this experiment, we compare the signa-
ture content with the periodic patterns for each customer.We used an algorithm
that allows gaps between consecutive occurrences of periodic patterns [7]. As
periodic patterns can only be found in a single time scale, a preprocessing step
that aggregates the receipts on a given time scale (e.g., merge all receipts at the
given granularity) is required. As we do not know in advance what is the relevant
time scale for each customer, we are using 4 time scales to compute the periodic
patterns: daily, weekly, bi-weekly and monthly purchases. For each time scale,
we computed the Jaccard similarity between the longest periodic pattern and
the signature. We chose the longest periodic pattern as the signature finds the
longest regular pattern. If several longest periodic patterns are found, we take
the one that has the largest Jaccard similarity with the signature. The results
are presented in Figure 1, on the right. In this figure, we can see that the Jaccard
similarity between the signature and the longest periodic pattern is mostly be-
tween 0.3 and 0.45. This means that these two sets have common elements, but
still differ. Further analysis showed that the longest periodic pattern is almost
totally contained in the signature. This means that the signature is composed of
most items from the longest periodic pattern. This periodic part of the signature
represents between one third and one half of the total signature. The remaining
part of the signature contains items that are not periodic but that are regularly
bought. This highlights the flexibility of the signature, as it manages to capture
periodic products, while also capturing non periodic regular purchases.

Signatures capture non periodic regularities because their segments can be of
arbitrary length. More specifically, each customer signature segment can contain
multiple baskets, and can therefore span on different time scales. On the other



Purchase Signatures of Retail Customers 9

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
Coefficient of variation

0

5000

10000

15000

20000

25000
C

us
to

m
er

 c
ou

nt

80 60 40 20 0 20 40 60 80
Period difference (in days)

Fig. 2. On the left: Distribution of the segment length coefficient of variation of 149
942 customers. On the right: difference between the signature period and the most
similar periodic pattern period.

hand, periodic patterns have a fixed segment length and cannot span on different
time scales. To illustrate this difference, we plot the coefficient of variation of the
segment size for each customer in Figure 2, on the left. Most customers have a
coefficient of variation greater than 0.4, which means that most customers have
variations in their purchase rhythms. Almost no customers have a coefficient of
variation equal to zero, whereas all customers have a coefficient of variation of
0 for periodic patterns by definition. Nevertheless, the coefficient of variation
remains mostly below 1, which means that customers show a regular purchase
behavior. Therefore, the signature segment still captures a regular behavior of
the customer. This shows that introducing flexibility in the period allows us to
capture more regular products than existing methods (see Figure 1-right), while
capturing a regular behavior (see Figure 2-left).

Because signatures are more flexible, their detected temporal regularity can
be different than the one found by periodic patterns. To compare the period
found by both methods, we compared the difference between the mean segment
size of the signature, with the largest period of the periodic pattern that is the
most similar with the signature (according to the Jaccard similarity). We choose
the largest period of the periodic pattern, because signatures segments are as
large as possible. This effect is due to the fact that segments have to cover the
whole sequence. The results are presented in Figure 2, on the right. We can see
that most periods found by the signature are close to the period found by the
most similar periodic pattern. While there can be some differences between both
periods, these differences are usually contained within a reasonable time span.

To summarize, signatures are able to find regularly purchased products,
whether they are periodically bought are not. The flexibility of the regularity
definition of the signatures allows us to find these products without any pre-
processing step. Moreover, signatures are able to find the underlying period of
customers, that is consistent with the one found by periodic patterns. Signatures
therefore find the time regularity of a customer, along with the regular products.
This regularity cannot be totally captured by existing methods.
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4.2 Insights from Signatures

As shown in the previous section, signatures group transactions into segments to
find a set of regular products, that can not be totally found by existing methods.
More specifically, let us consider the case of a real customer (named A). The store
visits of customer A are represented in Figure 3, on the top. For comparison,
we also consider customer B whose store visits have a signature identical to her
largest periodic pattern (shown in Figure 3 on the bottom). The comparison of
both Figures clearly shows that the customer A has no clear buying pattern,
while the customer B has a clear buying pattern: she buys her groceries almost
every Saturday. Nevertheless, by computing the signature on the customer A,
we are able to detect her underlying period. Indeed, her signature contains 9
products: Biscuits, Hazelnut spread, cheese, frozen meat, pasta, cream, butter,
ham and chocolate powder. Only some of them are bought during the same store
visit, and these purchases usually spread over 4 transactions, for a segment length
of 2 weeks on average. Among these products, some of them have a periodic
buying pattern (pasta, ham and hazelnut spread), while the others are bought
more sporadically. Nevertheless, this whole set of products has consistency and
is related to meal and break food for children. The signature was therefore able
to identify the purchase rhythm (both period and products) of a customer who
had no clear buying pattern when using existing methods.

Signatures can also help marketers to answer the problem of finding the
most appropriate time and products to give a coupon on, for a given customer.
To achieve this targeted coupon policy, it would be interesting to be able to
know what kind of products this customer is likely to buy in the next visits,
to be able to give this customer targeted coupons. Thanks to the signature, we
can provide the marketer with information about the time and content of next
purchases. Indeed, if this customer has purchased Biscuits, cheese, frozen meat,
cream and butter over 2 transactions in a week, we know from the signature that
this customer is likely to be buying Hazelnut spread, pasta, ham and chocolate
powder in the next 2 transactions over the next week. This because we know
from the signature that this customer has the habit of buying Biscuits, Hazelnut
spread, cheese, frozen meat, pasta, cream, butter, ham and chocolate powder in 4
transactions over 2 weeks. As we are observing a portion of a signature segment,
we can guess the products that are likely to be bought in the next week. This
information is of prime interest for retailers, as they could then target their
ads on the right products for each customer. It should be noted that periodic
patterns would have missed the part related to break food for children, as only
pasta, ham and hazelnut spread were considered periodic.

5 Conclusion

Getting a better understanding of individual customers is becoming a differen-
tiating factor in a data-driven retail context. We have presented a novel notion
of customer signature, that gives for each customer a good understanding of the
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Fig. 3. Receipts of a non periodic customer (A), on the top, and periodic customer
(B), on the bottom. Each green rectangle represents a visit to the store. The darker
the green, the more products were bought during that visit.

products most regularly bought, as well as of the household rhythm. Our experi-
ments have shown that this approach, thanks to its flexibility, allows to get deep
insights on purchasing rhythms that are not provided by existing algorithms.
The approach itself builds up on a large body of work on sequence segmenta-
tion, taking advantage of years of research on efficient exact algorithms.

This work opens new perspectives. A first one is to take product categories
into account, allowing to find new types of regularities over product categories
or brands. From an application point of view, with our retail partner we are
investigating the use of signatures for preventive actions against churn. Another
exciting perspective is to test the use of signatures on other domains than re-
tail. Thanks to the generality of the definitions, it can be easily applied on any
sequence of itemsets where a segmentation is relevant. We performed prelimi-
nary experiments on datasets of labeled TV programs, with promising results:
while signatures with a high number of blocks detect regular daily programs,
signatures with fewer segments but many items can detect relatively short span
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events (such as Roland-Garros tennis contest) for which TV channels devote
many special programs, that are picked up by the signature.
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