
HAL Id: hal-01639681
https://hal.science/hal-01639681

Submitted on 20 Nov 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Numerical scheme for a stratigraphic model with erosion
constraint and nonlinear gravity flux

Clément Cancès, Didier Granjeon, Nicolas Peton, Quang Huy Tran, Sylvie
Wolf

To cite this version:
Clément Cancès, Didier Granjeon, Nicolas Peton, Quang Huy Tran, Sylvie Wolf. Numerical scheme for
a stratigraphic model with erosion constraint and nonlinear gravity flux. FVCA 8 - 2017 - International
Conference on Finite Volumes for Complex Applications VIII, Jun 2017, Lille, France. pp.327-335,
�10.1007/978-3-319-57394-6_35�. �hal-01639681�

https://hal.science/hal-01639681
https://hal.archives-ouvertes.fr


Numerical scheme for a stratigraphic model with
erosion constraint and nonlinear gravity flux

Clément Cancès, Didier Granjeon, Nicolas Peton, Quang Huy Tran,
and Sylvie Wolf

Abstract In this work, we study an extension of the model introduced by Eymard
et al. [Int. J. Numer. Methods Engrg. 60, 527–248 (2004)] for the simulation of large
scale transport processes of sediments, subject to an erosion constraint. The novelty
we consider lies in the diffusion law relating the flux of sediments and the slope of
the topography, that now involves a p-Laplacian with p > 2 in order to get more
realistic landscape evolutions. This physical sophistication entails the construction
of an entirely new numerical scheme, the details of which shall be supplied.
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1 A constrained model arising in stratigraphic modeling

We are interested in the evolution of the sediment height h : Ω ×R+ where Ω =
(0,Lx)× (0,Ly) ⊂ R2 is a rectangular computational domain, the sea level being
fixed to h = 0. The sediments are transported from the top to the bottom, due to
gravity. The “natural” sediment flux F : Ω × (0,T )→ R2 is given by

F =−K(h)|∇h|p−2
∇h =−|∇h|p−2

∇ψ(h), (1)
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where the diffusion coefficient takes the form K(h) = Kc if h≥ 0 and K(h) = Km if
h ≤ 0 (c stands for continental and m for maritime), and where ψ(h) =

∫ h
0 K(a)da.

It is known by geomorphologists that sedimentation (∂th≥ 0) and erosion (∂th < 0)
processes are non-symmetric: soil material must first be produced in situ by weath-
ering processes prior to being transported by diffusion. As a consequence, it is pos-
tulated that the erosion is limited from below by −E, where the quantity E > 0
corresponds to a known maximal production rate of sediments, i.e.,

∂th+E ≥ 0 in Ω ×R+. (2)

In order to incorporate this constraint in the problem, we follow the approach of [3]
that consists in introducing a multiplier λ : Ω ×R+→ [0,1] to reduce the flux in a
conservative way. More precisely, we impose that

∂th+∇ · (λF) = 0 in Ω ×R+, (3a)
(1−λ )(∂th+E) = 0 in Ω ×R+, (3b)

where (3b) expresses that locally either the erosion constraint is saturated (∂th =
−E) or the flux is unlimited (λ = 1). Combining the inequality (2), the reduction
assumption λ ≤ 1 with (3), we end up with the synthetic system

∂th+∇ · (λF) = 0, in Ω ×R+, (4a)
min{1−λ , γ[E−∇ · (λF)]}= 0 in Ω ×R+, (4b)

in which F is given by (1) and in which the complementarity equation (4b) involves
a scaling parameter γ > 0 whose role is to make the two arguments of the min
function homogeneous. We impose the inflow of sediment across the boundary, i.e.,

F ·n = φ ≤ 0 on ∂Ω ×R+ (5)

where n is the outward normal to ∂Ω . Finally, we prescribe the initial condition

h|t=0 = h0 in Ω , with h? ≤ h0 ≤ h? (6)

for some h?,h? ∈ R. The goal of this contribution is to propose a numerical scheme
to approximate the solutions (h,λ ) of (1), (4)–(6).

In comparison with the previous contributions [3–5], here our attention is re-
stricted to the case of a single lithology but we lay emphasis on the nonlinearity
p > 2 in the definition (1) of the flux F. The reason why such a nonlinearity should
be incorporated into the model comes from the experimental observation the “lin-
ear” diffusion law F =−∇ψ(h) do not hold for most sedimentary systems of inter-
est. In particular, the linear (p = 2) gravity flux implies that sediment propagation
occurs at infinite speed. Thus, one of the motivation for considering p > 2 is to re-
cover propagation at finite speeds, which in turn enable geologists to track down
knickpoints.
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Fig. 1: The original Cartesian grid (red dots at center) is
surrounded by ghost cells (dashed blue) to be used to im-
pose the boundary conditions. We distinguish lateral ghost
cells (green dots at center) and corner ghost cells (blue dots
at center). The dual cells (shaded yellow) admit the pri-
mal cell centers as vertices. Concerning the edges, the inner
edges Eint (solid black) and the boundary edges Eext (solid
green) are treated in a different way.
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2 A cell-centered discretization on Cartesian grids

Roughly speaking, the problem to be solved numerically consists of a constrained
evolutionary p-Laplacian, complemented with Neumann boundary conditions. In
order to discretize the natural fluxes (1), we use a semi-explicit Finite Volume
scheme inspired from [1].

Let Nx,Ny be two positive integers, then Ω = (0,Lx)× (0,Ly) is discretized into
inner cells Ci, j = ((i−1)∆x, i∆x)× (( j−1)∆y, j∆y) where ∆x = Lx/Nx and ∆y =
Ly/Ny. The center of Ci, j is denoted by xi, j = ((i− 1/2)∆x,( j− 1/2)∆y). In order
to impose the boundary condition (5), we extend the grid with ghost cells. Let

L = {1, . . . ,Nx}×{0,Ny +1}∪{0,Nx +1}×{1, . . . ,Ny} (7a)
I = {1, . . . ,Nx}×{1, . . . ,Ny} (7b)

be respectively the set of ghost cells (green dots in Fig. 1) and that of inner primal
cells. The set of the edges between the primal cells is denoted by E . Two particular
subsets of E will be used in the sequel: the subset Eint of the inner edges (between
two inner cells) and the subset Eext of the boundary edges (between an inner cell and
a ghost cell), as depicted in Fig. 1. Time is discretized by 0 = t0 < t1 < .. . < tn < .. .,
in which the time-step is denoted by ∆ tn = tn+1− tn.

The primal unknowns (hn
i, j,λ

n
i, j), for (i, j) ∈ I and n ≥ 1, are located at the

centers of the inner cells and of the lateral ghost cells (cf. Fig. 1). The initial data h0

is discretized into a piecewise-constant function. For (i, j) ∈I , we set

h0
i, j =

1
∆x∆y

∫
Ci, j

h0(x)dx, (8)

while for (i, j) ∈L , a simple extrapolation is used to obtain h0
i, j. To approximate

the unconstrained flux F ·n, we first approximate |∇h|p−2 on the dual cells by

Bn
i+1/2, j+1/2 =

{
1
2

(hn
i+1, j−hn

i, j

∆x

)2

+
1
2

(hn
i+1, j+1−hn

i, j+1

∆x

)2

+
1
2

(hn
i, j+1−hn

i, j

∆y

)2

+
1
2

(hn
i+1, j+1−hn

i+1, j

∆y

)2}p/2−1

, (9)
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which can be seen as an approximation of |∇h|2 raised to the power p/2− 1. It is
worth noting that this approximation for |∇h|2 is coercive: it cannot vanish unless
the four values on the dual cell are identical. The unconstrained flux F · n across
the inner edges of Eint at time tn+1 is then computed thanks to the semi-implicit
formulae

Fn+1
i+1/2, j =

Bn
i+1/2, j−1/2 +Bn

i+1/2, j+1/2

2
·

ψ(hn+1
i, j )−ψ(hn+1

i+1, j)

∆x
, (10a)

Fn+1
i, j+1/2 =

Bn
i−1/2, j+1/2 +Bn

i+1/2, j+1/2

2
·

ψ(hn+1
i, j )−ψ(hn+1

i, j+1)

∆y
, (10b)

whereas the boundary fluxes are prescribed by (5), that is,

Fn+1
1/2, j =−

1
∆ tn∆y

∫ tn+1

tn

∫ j∆y

( j−1)∆y
φ(x = 0,y)dydt (11)

and similar relations for Fn+1
Nx+1/2, j, Fn+1

i,1/2 and Fn+1
i,Ny+1/2. For (i, j) ∈I and n≥ 0, the

first equation of (4) is discretized into

hn+1
i, j −hn

i, j

∆ tn
+Dn+1

i, j = 0, (12)

where the discrete divergence

Dn+1
i, j =

(λF)n+1
i+1/2, j− (λF)n+1

i−1/2, j

∆x
+

(λF)n+1
i, j+1/2− (λF)n+1

i, j−1/2

∆y
(13)

involves the upwinded flux

(λF)n+1
i+1/2, j = λ

n+1
i, j (Fn+1

i+1/2, j)
+−λ

n+1
i+1, j(F

n+1
i+1/2, j)

−, (14a)

(λF)n+1
i, j+1/2 = λ

n+1
i, j (Fn+1

i, j+1/2)
+−λ

n+1
i, j+1(F

n+1
i, j+1/2)

−, (14b)

in which a+=max{a,0} and a−=−min{a,0} are the positive and negative parts of
the real number a. The boundary fluxes are not limited, so we impose that λ

n+1
i, j = 1

for (i, j) ∈L . As for the complementarity equation (4b), it is discretized by

min
{

1−λ
n+1
i, j ,

∆x∆y
〈F〉n+1

i, j
[E−Dn+1

i, j ]

}
= 0, (15)

where 〈F〉n+1
i, j = ∆y[(Fn+1

i+1/2, j)
++(Fn+1

i−1/2, j)
−]+∆x[(Fn+1

i, j+1/2)
++(Fn+1

i, j−1/2)
−] repre-

sents the total unlimited outgoing flux from cell (i, j). The choice of the local weight
γ

n+1
i, j = ∆x∆y/〈F〉n+1

i, j is justified by the following property.

Lemma 1. Equation (15) is equivalent to



Numerical scheme for a stratigraphic model 5

λ
n+1
i, j = min

{
1,

∆x∆yE+〉λF〈n+1
i, j

〈F〉n+1
i, j

}
(16)

where 〉λF〈n+1
i, j = ∆y[λ n+1

i−1, j(F
n+1
i−1/2, j)

++λ
n+1
i+1, j(F

n+1
i+1/2, j)

−]+∆x[λ n+1
i, j−1(F

n+1
i, j−1/2)

++

λ
n+1
i, j+1(F

n+1
i, j+1/2)

−] is the total limited incoming flux into cell (i, j). This implies, in
particular, that

0 < λ
n+1
i, j ≤ 1. (17)

Proof. The discrete divergence (13)–(14) can be easily transformed into

Dn+1
i, j =

〈F〉n+1
i, j

∆x∆y
λ

n+1
i, j −

〉λF〈n+1
i, j

∆x∆y
. (18)

Multiplication by −γ
n+1
i, j makes −λ

n+1
i, j appear alone in the second argument of the

min in (15). As a result, we can extract −λ
n+1
i, j out of the min to obtain (16). We

infer from (16) that λ
n+1
i, j ≤ 1, and from (15) that Dn+1

i, j ≤ E. It follows from (18)
that E∆x∆y+〉λF〈n+1

i, j ≥ 〈F〉
n+1
i, j ∆x∆y≥ 0. From (16), we infer that λ

n+1
i, j > 0. ut

Contrary to [3–5], we advocate mounting the whole system (12)–(14), (16) in
the unknowns (hn+1

i, j ,λ n+1
i, j ). This avoids the task of switching variables according to

whether or not the constraint is saturated.

Lemma 2. For all n≥ 0, one has

min
(i, j)∈I

hn
i, j ≥ h?, (19a)

∑
(i, j)∈I

hn
i, j ∆x∆y =

∫
Ω

h0 dx−
∫ tn

0

∫
∂Ω

φ dγ dt. (19b)

Proof. The above estimates rely on induction. The mass balance (19b) is obtained
by summing (12) over (i, j) ∈I . To derive (19a), let (i?, j?) ∈I such that hn+1

i?, j? =

min(i, j)∈I hn+1
i, j . Then, Dn+1

i?, j? ≤ 0, hence hn+1
i?, j? ≥ hn

i?, j? ≥ h?. ut

As a consequence of Lemma 2, one gets a L∞
loc(R+;L1(Ω)) estimate on the discrete

sediment height, namely,

∑
i

∑
j

∣∣hn
i, j
∣∣∆x∆y≤ 2h−? |Ω |+

∫
Ω

h0 dx−
∫ tn

0

∫
∂Ω

φ dγ dt. (20)

From this and thanks to a topological degree argument [2], we can prove that the
scheme admits at least one solution, as claimed in the following Proposition.

Proposition 1. Let hn
i, j, (i, j) ∈ I , be such that (19) hold. Then, for all ∆ tn > 0,

there exists at least one solution (hn+1
i, j ,λ n+1

i, j ) to the nonlinear system (12)–(15)
satisfying (17)–(19).
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3 Numerical results

In order to illustrate the capabilities of the model and the numerical scheme, we
show two test cases. We consider a basin of size 180 km× 180 km where the to-
pography represents a continental domain made of mountains (Kc = 500 km2/My)
and a marine domain (Km = 10 km2/My). The sea level is h = 0 km. Two incoming
fluxes constant in time are prescribed on the left and right borders as

−
∫ T

0

∫ Ly

0
φ(0,y, t)dydt = 24.0T km2, −

∫ T

0

∫ Ly

0
φ(Lx,y, t)dydt = 26.6T km2.

To see the influence of the constraint upon the erosion rate, we consider no flux
limitation in the first case (Fig. 2). To this end, we take E � 1 km/My, such that
λ keeps the constant value 1 in the domain. In the second test case (Figs.3–4), we
activate the constraint by taking E = 0.04 km/My.

Numerically, the domain is made up of 361× 361 cells. The exponent for the
p-Laplacian in (1) is set at p = 2.5. Simulations are run until T = 1 My. At each
time step, the nonlinear system is solved within a threshold of 10−5 km by New-
ton’s method. The linear system arising at each Newton iteration is solved by means
of PETSc routines and using the BiCGSTAB method with the ILU(0) preconditon-
ner. The time steps vary dynamically as follows. We start with ∆ t0 = 10−4 My.
If the time iteration is accepted, we set ∆ tn+1 = 1.1∆ tn subject to the (commonly
accepted) maximum value ∆ tn+1 ≤ 10−3 My. If Newton’s method fails after 10
iterations, the time step is rejected and we restart the iteration with ∆ tn := 0.5∆ tn.

Fig. 2: Case without constraint: initial state (left) and final state (right) of h (km).

In the test case with no erosion constraint (Fig. 2), we observe that after 1 My the
diffusion has notably smoothed the global structure of the mountains, especially in
steep areas. We can also distinguish the shoreline between the continental and the
marine domains. This is due to the contrast between the diffusion coefficients Kc
and Km. In Table 1, we summarize some numerical data associated with the simula-
tion. We can see that this test case is an “easy” one as no time steps were refused.
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Accepted time steps 1016
Refused time steps 0

Mean Newton iterations per accepted time step 1.98
Mean solver iterations per Newton iteration 1.99

Computing time (s) 783

Table 1: Numerical data for the case without constraint.

The mean number of required Newton iterations is rather low, as well as the mean
number of solver iterations. However, larger values of the diffusion coefficients may
cause more severe difficulties, implying much smaller time steps.

Fig. 3: Case with constraint: initial state (left) and final state (right) of h (km).

Fig. 4: Case with constraint: initial state (left) and final state (right) of λ .

In the second test case (Fig. 3) where the erosion constraint enters into play, we
observe a different behavior. After 1 My, the mountains underwent less erosion and
their structure is still recognizable. We can visualize the areas where the constraint is
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Accepted time steps 1235
Refused time steps 95

Mean Newton iterations per accepted time step 2.29
Mean solver iterations per Newton iteration 12.14

Computing time (s) 1809

Table 2: Numerical results for the case with constraint.

effective by looking at the values of the flux limiter λ in Fig. 4. We can notice that λ

takes values close to zero in the areas corresponding to the mountain’s flanks, where
the diffusion is the most important. The shoreline between the continental and ma-
rine domains is still present, for the same reason as before. By looking at Table 2 we
also notice some differences. With the same management of the time steps as in the
previous case, Newton’s method sometimes fails to converge and some time steps
are rejected. The model is more difficult to solve numerically: the mean number of
Newton iterations and mean number of solver iterations are higher than in the case
without constraint. This accounts for the rise in the computing time between the two
simulations. Furthermore, it has been observed that the cases without constraint and
with a very strong constraint were relatively easy to compute. The difficulties are
most serious for “intermediate” values of the maximum erosion rate E.

4 Conclusion

This extension of the model [3] to a p-Laplacian diffusion law is the first step of a
broader program whose objective is to enrich the physics of the industrial simula-
tor Dionisos FlowTM, developed by IFP Energies nouvelles. The next steps include
usual features such as multi-lithology and variable bathymetry, but also a coupling
of the sediment flow with water effects such as rains and rivers.
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