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Abstract—In this letter we present a detailed investigation on 
how dynamic thermal phenomena take place in state-of-the-art 
SiGe HBTs when excited by a sinusoidal power dissipation. To give 
a better insight into the mechanisms leading to the thermal 
impedance (Zth) decay, we introduce the concept of thermal 
penetration depth; then, with the help of 3D thermal simulations, 
we illustrate its effect on the spatial distribution of the temperature 
variations within the transistor structure, according to the 
frequency of operation. In order to experimentally analyze the 
impact on a real device, dedicated HBT structures are designed; 
they consist of multi-finger SiGe HBTs realized in B55 technology 
from STMicroelectronics, for which modifications are made in the 
Back-End-Of-Line (BEOL) metallization or in the transistor 
layout, increasing its Deep Trench Isolation (DTI) enclosed area. 
For these transistors, Zth measurements are carried out in the 
frequency range 10kHz–1GHz; the results show that the metal 
connections configuration in the BEOL or layout modifications 
can considerably impact the Zth decay at low frequencies. An 
identical Zth trend is instead measured above 1-2 MHz, 
demonstrating that at higher frequencies just the region close to 
the heat source is concerned by dynamic thermal phenomena. 
 

Index Terms—SiGe HBT, thermal penetration depth, thermal 
impedance, BEOL metals thermal impact, thermal capacitance 

I. INTRODUCTION 

hermal effects are one of the key factors limiting the 
performance and reliability of devices and integrated 

circuits realized using SiGe HBT technologies, in which the 
continuous trend to shrink the device dimensions leads to 
critically high power densities [1], [2]; in addition,  the adoption 
of shallow and deep trench isolations, filled with low thermal 
conductivity materials, limits the lateral heat diffusion, and thus 
contributes to increase the devices Rth. Due to the strong 
relationship between electrical and temperature effects in these 
components [3], which is worsened by their positive feedback 
[4], a realistic and physics-based thermal compact modeling is 
mandatory; a reliable compact model must ensure accurate 
circuit simulations during the design phase [5], [6], which take 
into account the operating temperatures of the HBTs. In state-
of-the-art SiGe HBTs thermal phenomena arise when a static 
power dissipation (Pdiss) is applied, but also when the devices 

are operated in dynamic conditions, since their thermal 
bandwidth is within few hundreds of MHz [7], [8]. Many works 
can be found in literature about DC self-heating effects [4], [9]–
[11], but less attention is given to dynamic thermal modeling. It 
must be considered, though, that when the HBTs are driven by 
a signal having a bandwidth within their thermal constant, due 
to the intrinsic transistor nonlinearities, third-order 
intermodulation products (IMD3) arise and can trigger low 
frequency (LF) variations of the junction temperature, which 
can significantly affect the electrical behavior of the component 
[12], [13]. A deep understanding of the thermal mechanisms 
taking place in sinusoidal operation and a precise 
characterization of the Zth are therefore necessary to obtain a 
realistic thermal model, which can result very helpful in certain 
applications, like the design of pre-distortion linearizers for 
power amplifiers [14]–[16].  

In this letter we present a detailed investigation on how 
dynamic thermal phenomena take place in state-of-the-art SiGe 
HBTs, by introducing the concept of thermal penetration depth. 
3D thermal simulations are reported in section II, which gives 
an alternative insight into these physical mechanisms; in section 
III different sets of dedicated transistor structures are presented 
and their Zth(f) are compared; to our knowledge no previous 
study on the BEOL has been supported by Zth measurements. 

II. THERMAL PENETRATION DEPTH SIMULATIONS IN 3D TCAD 

To have an alternative insight into the dynamic spreading of 
the heat within the transistor structure, we can consider a very 
simplified case of study: let us assume a semi-infinite silicon 
block having an initial uniform temperature T0. When a 
uniformly distributed Pdiss is applied at one side, eventually the 
whole block of material will tend to reach a higher temperature 
T1. But before this happens, a thermal gradient can be observed 
within a certain distance from the heat source, while beyond this 
boundary the temperature of the block is still T0. The thermal 
penetration depth (δ) is defined as the distance that the heat 
diffuses  through the material (under a sinusoidal stimulus) 
during a time 1/f and is approximated with the expression [17]: 

 

fc

k


   (1) 

 

where f is the Pdiss frequency, whereas k c and ρ are, 
respectively, the thermal conductivity, specific heat and density 
of the material. Note that (1) is only valid in 1D heat transfer by 
conduction; moreover it must be considered that a state-of-the-
art SiGe HBT has a complex structure, made of multiple 
material layers, having very different thermal properties. 

Nevertheless, (1) indicates the general trend that should be 
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expected; in particular, since δ is inversely proportional to ��, 

the volume of the silicon that effectively contributes to Zth 
reduces if the frequency increases. To show this behavior and 
understand how the induced temperature variations will 
penetrate in the transistor, 3D thermal simulations using 
Sentaurus TCAD have been performed on the transistor 
structure in Fig. 1 representing an HBT from the Infineon 
B11HFC technology (AE=5x0.2µm²). In these simulations the 
thermal conductivity degradation due to high doping is taken 
into account, according to experimental data in [18] and [19]. A 
planar heat source (HS) is placed at the base-collector (BC) 
junction and isothermal conditions are applied at the back 
surface of the wafer and at the top, above a 15µm thin air layer 
acting as a laminar sub-layer, in which just conduction can be 
considered [20]; due to the very low k of air (0.024 W/mK) this 
boundary condition is very close to be adiabatic. Sinusoidal 
power stimuli are applied to the HS, at frequencies ranging from 
10kHz to 1GHz.  

In Fig.2 are plotted the normalized amplitude and the phase 
of the simulated temperature oscillations, for two different 
positions P1 and P2 (respectively 80nm and 6.38µm below HS). 
It can be observed that their amplitude will tend to reduce if the 
frequency is increased, due to the intrinsic thermal capacitance 
(Cth) of the structure. Moreover if the distance from the HS is 
higher, oscillations will tend to disappear; in fact in P1 
significant oscillations (20% of the temperature variations 
simulated at DC) are visible till a frequency of 100MHz, 
whereas the same relative amplitude is already reached at 
1MHz in point P2. The absolute value of the thermal oscillations 
is 20°C in P1 and 0.9°C in P2 at a frequency of 10kHz.  

It can be also noticed that the phase shift will increase if the 
frequency of the Pdiss increases; furthermore in P2 the phase shift 
becomes more evident, since the distance from the heat source 
is higher than in P1 and thus a longer time is needed for the 
thermal variations induced from the HS to travel through the 

HBT structure. If instead we fix a frequency and have a look at 
the distribution of the amplitude of the thermal oscillations 
within the transistor, we will have a direct image of the spatial 
distribution of δ. As reported in Fig. 1, at 100MHz the thermal 
variations are only visible in a small volume around the BC. 

III. THERMAL PENETRATION DEPTH EXPERIMENTAL STUDY  

To investigate how the thermal oscillations induced by a 
sinusoidal power dissipation affect the behavior of a real 
transistor and to estimate the penetration depth inside the 
component, dedicated test structures need to be designed. If a 
sinusoidal Pdiss is applied, as shown in the previous section, 
temperature oscillations are induced in the lower part of the 
HBT, but, of course, they are also present in the BEOL. It is 
therefore possible to study these thermal penetration 
phenomena by characterizing and comparing the thermal 
behavior of transistor structures in which the lower part of the 
device is kept unaltered, whereas modifications are made in the 
BEOL region (during the design there is in fact a certain degree 
of freedom on the geometry of the different metal layers).  

The HBTs under study in this work consist of five-fingers 
SiGe HBTs realized in STMicroelectronics B55 technology, of 
which a complete thermo-electrical characterization has been 
reported in [21]; in this section we will further extend our study, 
showing the thermal impedance extracted from LF  S-parameter 
measurements in the range 10kHz-1GHz. In particular, we will 
now focus on the set of test structures named VM, for which 
copper metal dummies, acting as heat spreaders, are present 
upon the emitter contacts till metal-3 (VM3), metal-6 (VM6) 
and metal-8 (VM8); in a reference transistor named VM1 the 
metallization on the emitter contacts stops instead at metal-1 
level (refer to Fig.3). It must be pointed out that the Rth value of 
these transistors is lowered as higher levels are reached for the 
metallization in the BEOL [22]–[24], since the heat flux can 
find an alternative path in the copper of the BEOL (the results 
for the Rth of these HBTs are detailed and reported in [21]). 

An accurate design of the metal connections can thus lead to 
improved SOA specifications [21] and better RF performances 
[22]. Moreover, as it is suggested by equation (1), δ is inversely 
proportional to the square root of the Pdiss frequency, which 
means that, at low frequencies, the thermal oscillations can 
significantly penetrate the structure, both downwards (towards 
the back of the wafer) and upwards, till eventually reaching the 
higher levels of the metal in the BEOL. In this scenario, the 
different Zth trend observed at LF among the HBTs under study 
(Fig. 4), is due to the fact that δ has reached a distance within 
the abscissas of the metal dummies, and so transistors having 
heat spreaders till higher levels of metal will exhibit a lower Zth. 
In the high frequency range, instead, all the VM transistors 
show an identical Zth decay, in fact the thermal oscillations will 
tend to be confined in close proximity to the heat source as the 
frequency increases; since within this region all the transistor 
structures are identical (Fig.3), their Zth will be the same.  

From a physical modelling point of view, at low frequencies, 
temperature oscillations will interest a considerable volume of 
silicon around the HS, so it can be considered that high valued 
Cth are thermally charged and discharged. It is in fact possible 

 

Fig. 1.  Simulated 3D structure of the B11HFC HBT (zoom on the transistor), 

showing the thermal penetration depth (δ) profile. A sinusoidal power having a 

frequency of 50kHz (a) and 100MHz (b) are applied at the BC junction.  

Fig. 2.  Normalized amplitude (a) and phase (b) of the temperature oscillations 

in P1 (red) and P2 (blue) versus Pdiss frequency (PDC=40mW, PAC=2mW). 
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to take into account the presence of the copper dummies in the 
VM transistors by adding big thermal capacitances in parallel 
to the thermal network of the lower part of the transistor [25]. 
These added Cth determine the thermal behavior at LF, but, as 
the frequency increases, the overall big volume of copper in the 
BEOL cannot participate to the temperature oscillations, due to 
its intrinsic thermal inertia; the AC dynamic phenomena can be 
rather approximated to happen in a small portion of silicon 
surrounding the BC junction. 

It is interesting to notice, observing Fig. 4, that going from 
the highest frequencies (where all the VM transistors exhibit an 
identical Zth trend) towards the lowest, we can identify a 
frequency f1 (around 2MHz) starting from which the Zth of VM1 
starts to deviate from the others. This means that, at f1 the 
thermal penetration depth has reached the abscissa 
corresponding to metal-1; the same assumption can be made as 
the frequency decreases, and it is also possible to identify f3 and 
f6, where δ reaches respectively the levels 3 and 6 of 
metallization. The set of test structures under study in [21] also 
allows an investigation of the penetration depth in the 
horizontal plane: the thermal diffusion phenomena under study 
have in fact an isotropic nature. Among the structures presented 
in [21], the transistor named HL1 contains metal connections 
reaching the same level as VM3, but has an increased Deep 
Trench Isolation (DTI) enclosed area. HL1 thus allows a wider 
angle for the lateral heat spreading, which in turn ensures a 
better evacuation of the heat generated from the HS towards the 
silicon substrate, yielding a lower Rth [21]. 

Comparing the Zth of the HL1 and VM3 transistors shown in 
Fig. 5, it is again noticed that increasing the DTI enclosed area 
yields a decrease in the Zth at low frequency. At higher 
frequencies, though, it is just the volume in close proximity of 
the HS that determines Zth, and it can be supposed that, in this 
situation, the thermal variations do not reach the DTI, which 

restricts the heat flux. The condition that thermally favors HL1 
does not hold any more, and the two structures tend to behave 
the same way for frequencies higher than around 1MHz (fDTI in 
Fig. 5), where we can assume that δ has reached, in the 
horizontal plane, the adiabatic wall represented by the DTI. 

IV. CONCLUSIONS 

In this letter we have shown, by means of thermal 3D 
simulations and reporting Zth measurements on specially 
designed transistor structures, how dynamic thermal 
mechanisms take place in SiGe HBTs from state-of-the-art 
technology nodes; in principle, though, similar thermal 
phenomena also take place in devices implemented in other 
technologies.  

We demonstrated how, at different operating frequencies, the 
thermal impedance influences the spatial distribution of the 
temperature fluctuations within the transistor structure: at high 
frequencies, sinusoidal temperature variations are still present, 
even if they tend to be confined in the region close to the HS.  

In the experimental part it has been shown how a specially 
conceived set of DUTs can allow to identify the frequencies at 
which the temperature oscillations imposed by a sinusoidal Pdiss 
reach a certain distance from the HS. This can be of interest in 
the development of physical thermal models for the Zth; the 
measured Zth(f) decays reported, in fact, clearly show a 
distributed nature. It is therefore strongly recommended to use 
at least a three poles network (instead of a single pole normally 
used in compact models) to accurately take into account 
dynamic thermal effects in the low frequency range. This is 
particularly important in circuit designs where IMD3 products 
arise within the thermal bandwidth of the HBTs. 

Besides it is experimentally demonstrated that the 
configuration of materials in the BEOL, although far from the 
HS, has a non-negligible thermal impact: in particular the 
presence of metal connections can considerably affect the Zth 
decay at LF. In the same way, if the transistor layout is altered, 
(e.g. enlarging the DTI enclosed area) Zth variations should be 
rather present in theLF range, but it must be pointed out that 
instead at frequencies starting from around 1-2 MHz the same 
Zth trend has to be expected, regardless of any modifications of 
the HBT structure in the vertical or horizontal plane. 
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Fig. 4. Extracted Zth versus frequency for the VM test structures. 
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Fig. 3. Representation of the VM6 (a ) and VM8 (b) transistors, showing the 

different levels of metal dummies and the δ at different frequencies 

Fig. 5. Extracted Zth versus frequency for the HL1 and VM3 transistors. 
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