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In this article we contrast the use of the s-expression with the BDD (Binary Decision Diagram) as a data structure for programmatically manipulating Common Lisp type specifiers. The s-expression is the de facto standard surface syntax and also programmatic representation of the type specifier, but the BDD data structure offers advantages: most notably, type equivalence checks using s-expressions can be computationally intensive, whereas the type equivalence check using BDDs is a check for object identity. As an implementation and performance experiment, we define the notion of maximal disjoint type decomposition, and discuss implementations of algorithms to compute it: a brute force iteration, and as a tree reduction. The experimental implementations represent type specifiers by both aforementioned data structures, and we compare the performance observed in each approach.

INTRODUCTION

In this article we contrast two data structures used for programmatically manipulating Common Lisp type specifiers: the s-expression as described in the Common Lisp specification [4, Section 4.2.3], and the Binary Decision Diagram (BDD) [START_REF] Bryant | Graph-based algorithms for boolean function manipulation[END_REF][START_REF] Akers | Binary decision diagrams[END_REF]. The homoiconic s-expression provides ease of manipulation, and in simple cases, a high degree of human readability. On the other hand BDDs offer interesting performance characteristics. BDDs are heavily used in electronic circuit generation, verification, model checking, and type system models such as in XDuce [START_REF] Hosoya | Regular expression types for XML[END_REF].

As an exposition implementation and performance exper-ELS '10 April 3-4, 2016, Brussels, Belgium Although MDTD is interesting in its own right, we do not attempt, in this paper, to motivate in detail the applications or implications of the problem. We consider such development and motivation a matter of future research. We present two approaches to compute the MDTD and separately implement the algorithms with both data structures, s-expressions and BDDs (4 implementations). Finally, we report performance characteristics of the four algorithms implemented in Common Lisp.

The remainder of this article proceeds as follows: Section 2 introduces the MDTD problem; Section 2.1 and Section 2.2 abstractly summarize two algorithms for solving the MDTD problem; Section 3 summarizes programmatic manipulation of Common Lisp type specifiers; Section 4 summarizes BDDs, implementation and optimization to work with the Common Lisp type system; Section 5 summarizes the s-expression and BDD approaches to the same problem; and Section 6 discusses the performance of the five algorithms. There is also a brief Section 7 of Conclusion and Future work.

DISJOINT TYPE DECOMPOSITION

We begin the discussion by presenting the problem of decomposing a set of overlapping types into non-overlapping subtypes. We first define precisely what we mean to calculate. Then in sections 2.1 and 2.2 we present two different algorithms for performing the calculation. Notation 1. We use the symbol, K, to indicate the disjoint relation between sets. I.e., we take A K B to mean A X B " H. We also say A M B to mean A X B ‰ H. Notation 2. We use the notation, A Ă B, (A Ą B) to indicate that A is either a strict subset (superset) of B or is equal to B. Definition 1. A disjoined set is a set of mutually disjoint subsets of a given U . Definition 2. Let U be a set and V be a set of subsets of U . The Boolean closure of V , denoted p V , is the (smallest) super-set of V such that α, β P p V ùñ tα X β, α X βu Ă p V .

We claim here without proof that there exists a unique Boolean closure of a given set of sets. A more complete discussion and formal proof are available [START_REF] Newton | Analysis of algorithms calculating the maximal disjoint decomposition of a set[END_REF].

Definition 3. Let U be a set and V be a finite set of non-empty subsets of U , V " tA1, A2, ..., AM u. The set D is said to be a disjoint decomposition of V , if D is disjoined, D Ă p V , and YD " YV .

Definition 4. If D is a disjoint decomposition of V which has more elements than any other disjoint decompositions of V , then D is said to be the maximal disjoint decomposition of V .

Again, we claim without proof that there exists a unique maximal disjoint decomposition of a given V . The problem statement: Given V " tA1, A2, ..., AM u, suppose that for each pair pAi, Ajq, we know which of the relations hold: Ai Ă Aj, Ai Ą Aj, Ai K Aj. We would like to compute the maximal disjoint decomposition of V . The Venn diagram in Figure 1 is an example for V " tA1, A2, ..., A8u. The maximal disjoint decomposition D " tX1, X2, ..., X13u of V is shown in Figure 2.

Disjoint Set Derived Expression

X1 A1 X A2 X A3 X A4 X A6 X A8 X2 A2 X A3 X A4 X3 A2 X A3 X A4 X4 A3 X A2 X A4 X5 A2 X A3 X A4 X6 A2 X A4 X A3 X7 A3 X A4 X A2 X8 A4 X A2 X A3 X A8 X9 A5 X10 A6 X11 A7 X12 A8 X A4 X13 A4 X A8 X A5
In Common Lisp, a type is a set of (potential) values [4, Section Type], so it makes sense to consider the maximal disjoint decomposition of a set of types.

Computing a disjoint decomposition when we are permitted to look into the sets has been referred to as union find [START_REF] Patwary | Experiments on union-find algorithms for the disjoint-set data structure[END_REF][START_REF] Galler | An improved equivalence algorithm[END_REF]. However, we wish to solve the problem without knowledge of the specific elements; i.e. we are not permitted to iterate over or visit the individual elements. The correspondence of types to sets and subtypes to subsets thereof is also treated extensively in the theory of semantic subtyping [START_REF] Castagna | A gentle introduction to semantic subtyping[END_REF].

The RTE Algorithm

The algorithm for calculating the maximal disjoint decomposition used in the Common Lisp package regular-typeexpressions 1 [14] is shown below. This algorithm is straightforward and brute force. A notable feature of this algorithm is that it easily fits in 40 lines of Common Lisp code, so it is easy to implement and easy to understand, albeit not the most efficient possible in terms of run-time performance.

1. Let U be the set of sets. Let V denote the set of disjoint sets, initially D " H.

2. Identify all the sets which are disjoint from each other and from all the other sets. (Opn 2 q search) Remove these sets from U and collect them in D.

3.

If there are no sets remaining in U , we are finished. D is the set of disjoint sets.

4.

Otherwise, find one pair of sets, X P U and Y P U , for which X X Y ‰ H.

5.

From X and Y derive at most three new sets X X Y , XzY , and Y zX, preforming logic reductions as necessary. There are three cases to consider: 

(a) If X Ă Y , then X X Y " X

The graph based algorithm

One of the sources of inefficiency of the algorithm explained in Section 2.1 is at each iteration of the loop, an Opn 2 q search is made to find sets which are disjoint from all remaining sets. This search can be partially obviated if we employ a little extra book-keeping. The fact to realize is that if X K A and X K B, then we know a priori that X K A X B, X K AzB, X K BzA. This knowledge eliminates some of useless operations.

This algorithm is semantically very similar to the algorithm shown in Section 2.1, but rather than relying on Common Lisp primitives to make decisions about connectivity of types, it initializes a graph representing the initial relationships, and thereafter manipulates the graph maintaining connectivity information. This algorithm is more complicated in terms of lines of code, 250 lines of Common Lisp code as opposed to 40 lines for the algorithm in Section 2.1.

Figure 3 shows a graph representing the topology (connectedness) of the diagram shown in Figure 1. Nodes1 , 2 , ... 8 in Figure 3 correspond respective to A1, A2, ... A8 in Figure 1. Blue arrows correspond to subset relations, pointing from subset to superset, and green lines correspond to other non-disjoint relations.

To construct this graph first eliminate duplicate sets. I.e., if X Ă Y and X Ą Y , then discard either X or Y . It is necessary to consider each pair pX, Y q of sets, Opn 2 q loop.

' If X Ă Y , draw a blue arrow X Ñ Y ' Else if X Ą Y , draw a blue arrow X Ð Y ' Else if X M Y , draw green line between X and Y .
' If it cannot be determined whether X Ă Y , assume the worst case, that they are non-disjoint, and draw green line between X and Y .

This construction assures that no two nodes have both a green line and also a blue arrow between them.

The algorithm proceeds by breaking the green and blue connections, in explicit ways until all the nodes become isolated. There are two cases to consider. Repeat alternatively applying both tests until all the nodes become isolated.

Subset relation

A blue arrow from X to Y may be eliminated if X has no blue arrow pointing to it, in which case Y must be relabeled as Y X X as indicated in Figure 4.

Figure 4 illustrates this mutation. Node Y may have other connections, including blue arrows pointing to it or from it, and green lines connected to it. However node X has no blue arrows pointing to it; although it may have other blue arrows pointing away from it.

If X touches (via a green line) any sibling nodes, i.e. any other node that shares Y as super-class, then the blue arrow is converted to a green line. In the before image of Figure 4 there is a blue arrow from 3 to Y and in the after image this arrow has been converted to a green line.

Touching connections

A green line connecting X and Y may be eliminated if neither X nor Y has a blue arrow pointing to it. Consequently, X and Y must be relabeled and a new node must be added to the graph as indicated in Figure 5. The figure illustrates the step of breaking such a connection between nodes X and Y by introducing the node Z .

Construct blue arrows from this node, Z, to all the nodes which either X or Y points to (union). Construct green Before

5 0 Y 1 2 4 X 3
After lines from Z to all nodes which both X and Y connect to (intersection). If this process results in two nodes connected both by green and blue, omit the green line.

5 0 Y 1 2 4 X 3 Node Re-labeled Boolean expression X X Y Y X X

TYPE SPECIFIER MANIPULATION

To correctly implement the MDTD by either strategy described above, we need operators to test for type-equality, type disjoint-ness, subtype-ness, and type-emptiness. Given a subtype predicate, the other predicates can be constructed. The emptiness check:

A " H ðñ A Ă H. The dis- joint check: A K B ðñ A X B Ă H. Type equivalence A " B ðñ A Ă B and B Ă A.
Common Lisp has a flexible type calculus making type specifiers human readable and also related computation possible. Even with certain limitations, s-expressions are an intuitive data structure for programmatic manipulation of type specifiers in analyzing and reasoning about types.

If T1 and T2 are Common Lisp type specifiers, the type specifier (and T1 T2) designates the intersection of the types. Likewise (and T1 (not T2)) is the type difference. The empty type and the universal type are designated by nil and t respectively. The subtypep function serves as the subtype predicate. Consequently (subtypep '(and T1 T2) nil) computes whether T1 and T2 are disjoint.

There is an important caveat however. The subtypep function is not always able to determine whether the named types have a subtype relationship [START_REF] Baker | A decision procedure for Common Lisp's SUBTYPEP predicate[END_REF][START_REF] Newton | Report: Efficient dynamic type checking of heterogeneous sequences[END_REF]. In such a case, subtypep returns nil as its second value. This situation occurs most notably in the cases involving the satisfies type specifier. For example, to determine whether the (satisfies F) type is empty, it would be necessary to solve the halting problem, finding values for which the function F returns true.

As a simple example of how the Common Lisp programmer might manipulate s-expression based type specifiers, consider the following problem. In SBCL 1.3.0, the expres-Before As mentioned above, programs manipulating s-expression based type specifiers can easily compose type intersections, unions, and relative complements as part of reasoning algorithms. Consequently, the resulting programmatically computed type specifiers may become deeply nested, resulting in type specifiers which may be confusing in terms of human readability and debuggability. Consider the following programmatically generated type specifier.

0 X Y 3 1 2 4 After 0 X 3 Y 1 2 Z 4 Node Re-labeled Boolean expression X X X Y Y X X Y Z X X Y
( or ( or ( and ( and number ( not bignum ))

( not ( or fixnum ( or bit ( eql -1))))) ( and ( and ( and number ( not bignum ))

( not ( or fixnum ( or bit ( eql -1))))) ( not ( or fixnum ( or bit ( eql -1)))))) ( and ( and ( and number ( not bignum ))

( not ( or fixnum ( or bit ( eql -1))))) ( not ( or fixnum ( or bit ( eql -1))))))

This type specifier is perfectly reasonable for programmatic use, but confusing if it appears in an error message, or if the developer encounters it while debugging. This somewhat obfuscated type specifier is semantically equivalent to the more humanly readable form (and number (not bignum) (not fixnum)). Moreover, it is possible to write a Common Lisp function to simplify many complex type specifiers to simpler form.

There is a second reason apart from human readability which motivates reduction of type specifiers to canonical form. The problem arises when we wish to programmatically determine whether two s-expressions specify the same type, or in particular when a given type specifier specifies the nil type. Sometimes this question can be answered by calls to subtypep as in (and (subtypep T1 T2) (subtypep T2 T1)). However, as mentioned earlier, subtypep is allowed to return nil,nil in some situations, rendering this approach futile in many cases. If, on the other hand, two type specifiers can be reduced to the same canonical form, we can conclude that the specified types are equal.

We have implemented such a function, reduce-lisp-type. It does a good job of reducing the given type specifier toward a canonical form, by repeatedly recursively descending the expression, re-writing sub-expressions, incrementally moving the expression toward a fixed point. We choose to convert the expression to a disjunctive normal form, e.g., 

BINARY DECISION DIAGRAMS

A challenge using s-expressions for programmatic representation of type specifiers is the need to after-the-fact reduce complex type specifiers to a canonical form. This reduction can be computationally intense, and difficult to implement correctly. We present here a data structure called the Binary Decision Diagram (BDD) [START_REF] Bryant | Graph-based algorithms for boolean function manipulation[END_REF][START_REF] Akers | Binary decision diagrams[END_REF], which obviates much of the need to reduce to canonical form because it maintains a canonical form by design. Before looking at how the BDD can be used to represent Common Lisp type specifiers, we first look at how BDDs are used traditionally to represent Boolean equations. Thereafter, we explain how this traditional treatment can be enhanced to represent Common Lisp types.

Representing Boolean expressions

Andersen [START_REF] Andersen | An introduction to binary decision diagrams[END_REF] summarized many of the algorithms for efficiently manipulating BDD. Not least important in Andersen's discussion is how to use a hash table and dedicated constructor function to eliminate redundancy within a single BDD and within an interrelated set of BDDs. The result of Andersen's approach is that if you attempt to construct two BDDs to represent two semantically equivalent but syntactically different Boolean expressions, then the two resulting BDDs are pointers to the same object. Figure 6 shows an example BDD illustrating a function of three Boolean variables: A1, A2, and A3. To reconstruct the

A1 A2 1 A3 1 0 A3 0 1 Figure 6: BDD for pA 1 ^A2 q_pA 1 ^ A 2 ^A3 q_p A 1 ^ A 3 q
DNF (disjunctive normal form), collect the paths from the root node, A1, to a leaf node of 1, ignoring paths terminated by 0. When the right child is traversed, the Boolean complement ( ) of the label on the node is collected (e.g. A3), and when the left child is traversed the non-inverted parent is collected. Interpret each path as a conjunctive clause, and form a disjunction of the conjunctive clauses. In the figure the three paths from A1 to 1 identify the three conjunctive clauses pA1 ^A2q, pA1 ^ A2 ^A3q, and p A1 ^ A3q.

Representing types

Castagna [START_REF] Castagna | Covariance and contravariance: a fresh look at an old issue[END_REF] explains the connection of BDDs to type theoretical calculations, and provides straightforward algorithms for implementing set operations (intersection, union, relative complement) of types using BDDs. The general recursive algorithms for computing the BDDs which represent the common Boolean algebra operators are straightforward.

Let B, B1, and B2 denote BDDs, B1 " pif a1 C1 D1q and B2 " pif a2 C2 D2q.

C1, C2, D1, and D2 represent BDDs. The a1 and a2 are intended to represent type names, but for the definition to work it is only necessary that they represent labels which are order-able. We would eventually like the labels to accommodate Common Lisp type type names, but this is not immediately possible.

The formulas for pB1 _ B2q, pB1 ^B2q, and pB1 z B2q are similar to each other. If ˝P t_, ^, zu, then

B 1 ˝B2 " $ ' & ' %
pif a 1 pC 1 ˝C2 q pD 1 ˝D2 qq for a 1 " a 2 pif a 1 pC 1 ˝B2 q pD 1 ˝B2 qq for a 1 ă a 2 pif a 2 pB 1 ˝C2 q pB 1 ˝D2 qq for a 1 ą a 2 There are several special cases, the first three of which serve as termination conditions for the recursive algorithms.

' pt _ Bq and pB _ tq reduce to t. ' pnil ^Bq, pB ^nilq, and pBztq reduce to nil. ' pt ^Bq, pB ^tq, pnil _ Bq, and pB _ nilq reduce to B.

' pt z pif a B1 B2qq reduces to pif a ptzB1q ptzB2qq.

Representing Common Lisp types

We have implemented the BDD data structure as a set of Clos classes. In particular, there is one leaf-level Clos class for an internal tree node, and one singleton class/instance for each of the two possible leaf nodes, true and false.

The label of the BDD contains a Common Lisp type name, and the logical combinators (and, or, and not) are represented implicitly in the structure of the BDD.

A disadvantage BDDs present when compared to s-expressions as presented in Section 3 is the loss of homoiconicity. Whereas, s-expression based type-specifiers may appear in-line in the Common Lisp code, BDDs may not.

A remarkable fact about this representation is that any two equivalent Boolean expressions have exactly the same BDD structural representation, provided the node labels are consistently totally ordered. For example the expression from Figure 6, pA1 ^A2q _ pA1 ^ A2 ^A3q _ p A1 ^ A3q is equivalent to pp A1 _ A2q^p A1 _A2 _ A3q ^pA1 _ A3qq. So they both have the same shape as shown in the Figure 6. However, if we naïvely substitute Common Lisp type names for Boolean variables in the BDD representation as suggested by Castagna, we find that this equivalence relation does not hold in many cases related to subtype relations in the Common Lisp type system.

An example is that the Common Lisp two types (and (not arithmetic-error) array (not base-string)) vs. (and array (not base-string)) are equivalent, but the naïvely constructed BDDs are different: In order to assure the minimum number of BDD allocations possible, and thus ensure that BDDs which represent equivalent types are actually represented by the same BDD, the suggestion by Andersen [START_REF] Andersen | An introduction to binary decision diagrams[END_REF] is to intercept the BDD constructor function. This constructor should assure that it never returns two BDD which are equal but not eq.

Canonicalization

Several checks are in place to reduce the total number of BDDs allocated, and to help assure that two equivalent Common Lisp types result in the same BDD. The following sections, 4.4.1 through 4.4.5 detail the operations which we found necessary to handle in the BDD construction function in order to assure that equivalent Common Lisp type specifiers result in identical BDDs. The first two come directly from Andersen's work. The remaining are our contribution, and are the cases we found necessary to implement in order to enhance BDDs to be compatible with the Common Lisp type system.

We have not yet formally proven that this list of enhancements is complete. There very well may be other exotic cases we have not covered, and we consider that opportunity for future work.

Equal right and left children

An optimization noted by Andersen is that if the left and right children are identical then simply return one of them, without allocating a new BDD [START_REF] Andersen | An introduction to binary decision diagrams[END_REF].

Caching BDDs

Another optimization noted by Andersen is that whenever a new BDD is allocated, an entry is made into a hash table so that the next time a request is made with the exactly same label, left child, and right child, the already allocated BDD is returned. We associate each new BDD with a unique integer, and create a hash key which is a list (a triple) of the type specifier (the label) followed by two integers corresponding to the left and right children. We use a Common Lisp equal hash table for this storage, although we'd like to investigate whether creating a more specific hash function specific to our key might be more efficient.

Reduction in the presence of subtypes

Since the nodes of the BDD represent Common Lisp types, other specific optimizations are made. The cases include situations where types are related to each other in certain ways: subtype, supertype, and disjoint types. In particular there are 12 optimization cases, detailed in Table 1. Each of these optimizations follows a similar pattern: when constructing a BDD with label X, search in either the left or right child to find a BDD, Case Child to search Relation Reduction 

1 X.lef t X K Y Y Ñ Y.right 2 X.lef t X K Y Y Ñ Y.lef t 3 X.right X K Y Y Ñ Y.right 4 X.right X K Y Y Ñ Y.lef t 5 X.right X Ą Y Y Ñ Y.right 6 X.right X Ą Y Y Ñ Y.lef t 7 X.lef t X Ą Y Y Ñ Y.right 8 X.lef t X Ą Y Y Ñ Y.lef t 9 X.lef t X Ă Y Y Ñ Y.lef t 10 X.lef t X Ă Y Y Ñ Y.right 11 X.right X Ă Y Y Ñ Y.lef t 12 X.right X Ă Y Y Ñ Y.right

Reduction to child

The list of reductions described in Section 4.4.3 fails to apply in cases where the root node itself needs to be eliminated. For example, since vector Ă array we would like the following reductions: .

The solution which we have implemented is that before constructing a new BDD, we first ask whether the resulting BDD is type-equivalent to either the left or right children using the subtypep function. If so, we simply return the appropriate child without allocating the parent BDD. The expensive of this type-equivalence is mitigated by the memoization. Thereafter, the result is in the hash table, and it will be discovered as discussed in Section 4.4.2.

More complex type relations

There are a few more cases which are not covered by the above optimizations. Consider the following BDD: This represents the type (and (not integer) (not ratio) rational), but in Common Lisp rational is identical to (or integer ratio), which means (and (not integer) (not ratio) rational) is the empty type. For this reason, as a last resort before allocating a new BDD, we check, using the Common Lisp function subtypep, whether the type specifier specifies the nil or t type. Again this check is expensive, but the expense is mitigated in that the result is cached.

MDTD IN COMMON LISP

When attempting to implement the algorithms discussed in Sections 2.1 and 2.2 the developer finds it necessary to choose a data structure to represent type specifiers. Which ever data structure is chosen, the program must calculate type intersections, unions, and relative complements and type equivalence checks and checks for the empty type. As discussed in Section 3, s-expressions (i.e. lists and symbols) is a valid choice of data structure and the aforementioned operations may be implemented as list constructions and calls to the subtypep predicate. As introduced in Section 4, another choice of data structure is the BDD. Using the BDD data structure along with the algorithms described in Section 4 we can efficiently represent and manipulate Common Lisp type specifiers. We may programmatically represent Common Lisp types largely independent of the actual type specifier representation. For example the following two type specifiers denote the same set of values: (or number (and array (not vector))) and (not (and (not number) (or (not array) vector))), and are both represented by the BDD shown in Figure 5. Moreover, unions, intersections, and relative complements of Common Lisp type specifiers can be calculated using the reduction BDD manipulation rules also explained in Section 4.

We have made comparisons of the two algorithms described in Sections 2.1, 2.2. One implementation of each uses s-expressions, one implementation of each uses BDDs. Some results of the analysis can be seen in Section 6.

Using BDDs in these algorithm allows certain checks to be made more easily than with the s-expression approach. For example, two types are equal if they are the same object (pointer comparison, eq). A type is empty if it is identically the empty type (pointer comparison). Finally, given two types (represented by BDDs), the subtype check can be made using the following function:

( defun bdd-subtypep ( bdd-sub bdd-super ) ( eq * bdd-false * ( bdd-and-not bdd-sub bdd-super )))

This implementation of bdd-subtype should not be interpreted to mean that we have obviated the need for the Common Lisp subtypep function. In fact, subtypep, is still useful in constructing the BDD itself. However, once the BDDs have been constructed, and cached, subtype checks may at that point avoid calls to subtypep, which in some cases might otherwise be more compute intensive.

PERFORMANCE OF MDTD

Sections 2.1 and 2.2 explained two different algorithms for calculating type decomposition. We look here at some performance characteristics of the two algorithms. The algorithms from Section 2.1 and Section 2.2 were tested using both the Common Lisp type specifier s-expression as data structure and also using the BDD data structure as described in Section 5. Figures 9 and8 contrast the four effective algorithms in terms of execution time vs sample size.

We attempted to plot the results many different ways: time as a function of input size, number of disjoint sets in the input, number of new types generated in the output. Some of these plots are available in the technical report [START_REF] Newton | Analysis of algorithms calculating the maximal disjoint decomposition of a set[END_REF]. The plot which we found heuristically to show the strongest visual correlation was calculation time vs the integer product of the number of given input types multiplied by the number of calculated output types. E.g., if the algorithm takes a list of 5 type specifiers and computes 3 disjoint types in 0.1 seconds, the graph contains a point at (15,0.1). Although we don't claim to completely understand why this particular plotting strategy shows better correlation than the others we tried, it does seem that all the algorithms begin a Opn 2 q loop by iterating over the given set of which is incrementally converted to the output types, so the algorithms in some sense finish by iterating over the output types. More research is needed to better understand the correlation.

Performance Test Setup

The type specifiers used in Figure 9 are those designating all the subtypes of number. The type specifiers used in Figure 8 are those designating a randomly selected set of types specified in Figure 4-2 The performance tests including starting with a list of randomly selected type specifiers from a pool, calling each of the four functions to calculate the disjoint decomposition, and recording the time of that calculation. We have plotted in Figures 8 and9 the results of the runs which took less than 30 seconds to complete. This omission does not in any way effect the presentation of which algorithms were the fastest on each test. The tests were performed on a MacBook 2 GHz Intel Core i7 processor with 16GB 1600 MHz DDR3 memory, and using SBCL 1.3.0 ANSI Common Lisp.

Analysis of Performance Tests

There is no clear winner. Some of the algorithms do better in some tests and worse in other tests. It seems the tree based algorithms do very well. Often the better of these two algorithms is the BDD based one as shown in Figure 8. However there is a notable exception shown in Figures 9 where graph algorithm using s-expressions performs best.

CONCLUSION AND FUTURE WORK

We believe our contribution in this paper includes, introducing the BDD as an alternative to the s-expression in programmatic manipulation of Common Lisp type specifiers, extending the BDD definition to accomodate a type system which regards subtypes as subsets. Our contribution also includes an efficient graph based algorithm for calculating the maximal disjoint type decomposition.

The MDTD problem is potentially interesting in its own right. Although, we do not attempt, in this paper, to motivate in detail the applications or implications of the problem, we suspect there may be a connection between the problem, and efficient compilation of type-case and its use in improving pattern matching capabilities of Common Lisp. We consider such development and motivation a matter of future research.

An immediate priority in our research is to formally prove the correctness of our algorithms, most notably the graph decomposition algorithm from Section 2.2. Experimentation leads us to believe that the graph algorithm always terminates with the correct answer, nevertheless we admit there may be exotic cases which cause deadlock or other errors.

As far as the performance analysis is concerned, it is not yet understood why we see drastically different performance It is known that algorithms using BDD data structure tend to trade space for speed. Castagna [START_REF] Castagna | Covariance and contravariance: a fresh look at an old issue[END_REF] suggests a lazy version of the BDD data structure which may reduce the memory footprint, which would have a positive effect on the BDD based algorithms.

We have spent only a few weeks optimizing our BDD implementation based on the Andersen's description [START_REF] Andersen | An introduction to binary decision diagrams[END_REF], whereas the CUDD [START_REF] Somenzi | CUDD: BDD package[END_REF] developers have spent many years of research optimizing their algorithms. Certainly our BDD algorithm can be made more efficient using techniques of CUDD or others. It has also been observed that in the algorithm explained in section 2.2 that the convergence rate varies substantially depending on the order the reduction operations are performed. We do not yet have enough data to characterize this dependence. Furthermore, the order to break connections in the algorithm in Section 2.2. It is clear that many different strategies are possible, (1) break busiest connections first, (2) break connections with the fewest dependencies, (3) random order, (4) closest to top of tree, etc. These are all areas of ongoing research.

We plan to investigate whether there are other applications MDTD outside the Common Lisp type system. We hope the user of Castagna's techniques [START_REF] Castagna | Covariance and contravariance: a fresh look at an old issue[END_REF] on type systems with semantic subtyping may benefit from the optimizations we have discussed.

A potential application with Common Lisp is improving the subtypep implementation itself, which is known to be slow in some cases. Section 5 gave a BDD specific implementation of bdd-subtypep. We intend to investigate whether existing Common Lisp implementations could use out technique to represent type specifiers in their inferencing engines, and thereby make some subtype checks more efficient.
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 7 If X Ą Y and Y L R appears in X.lef t, then Y L R reduces to R. E.g., integer Ă string; if X " string and Y " integer; thus

Figure 7 :

 7 Figure 7: BDD representing (or number (and array (not vector))

(

  arithmetic-err o r function ( and arithmet i c -e r r o r function ) ( or arithmeti c -e r r or function ) array ( or function array ) sequence ( or function sequence )) ...)

Figure 8 :

 8 Figure 8: Combinational CL types

Figure 9 :

 9 Figure 9: Subtypes of number

  and XzY " H. Thus update U by removing Y , and adding Y zX.

	(b) If Y Ă X, then X X Y " Y and Y zX " H. Thus
	update U by removing X, and adding XzY .
	(c) Otherwise, update U by removing X and Y , and
	adding X X Y , XzY , and Y zX.
	6. Repeat steps 2 through 5 until U " H, at which point
	we have collected all the disjoint sets in D.

Table 1 : BDD optimizations Case

 1 

5: If X Ą Y and Y L R appears in X.right, then Y L R reduces to R. E.g., integer Ă number; if X " number and Y " integer; thus

. Standardized Atomic Type Specifiers from

  the Common Lisp specification [4, Section 4.2.3 Type Specifiers] lists the names of 97 types which every compliant Common Lisp implementation must support. Starting from this list, we randomly generated type specifiers using and and or combinations of names from this list such as the following:

https://gitlab.lrde.epita.fr/jnewton/regular-typeexpression, The Common Lisp package source code is available from the EPITA/LRDE website.