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ABSTRACT
In this article we contrast the use of the s-expression with the
BDD (Binary Decision Diagram) as a data structure for pro-
grammatically manipulating Common Lisp type specifiers.
The s-expression is the de facto standard surface syntax and
also programmatic representation of the type specifier, but
the BDD data structure offers advantages: most notably,
type equivalence checks using s-expressions can be computa-
tionally intensive, whereas the type equivalence check using
BDDs is a check for object identity. As an implementation
and performance experiment, we define the notion of max-
imal disjoint type decomposition, and discuss implementa-
tions of algorithms to compute it: a brute force iteration,
and as a tree reduction. The experimental implementations
represent type specifiers by both aforementioned data struc-
tures, and we compare the performance observed in each
approach.

CCS Concepts
•Theory of computation Ñ Data structures design
and analysis; Type theory; •Computing methodologies
ÑRepresentation of Boolean functions; •Mathematics
of computing Ñ Graph algorithms;

1. INTRODUCTION
In this article we contrast two data structures used for pro-

grammatically manipulating Common Lisp type specifiers:
the s-expression as described in the Common Lisp specifi-
cation [4, Section 4.2.3], and the Binary Decision Diagram
(BDD) [6, 2]. The homoiconic s-expression provides ease
of manipulation, and in simple cases, a high degree of hu-
man readability. On the other hand BDDs offer interesting
performance characteristics. BDDs are heavily used in elec-
tronic circuit generation, verification, model checking, and
type system models such as in XDuce [10].
As an exposition implementation and performance exper-
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iment we present the problem called Maximal Disjoint Type
Decomposition (MDTD) which is decomposing a given set
of potentially overlapping types into a set disjoint types.
Although MDTD is interesting in its own right, we do not
attempt, in this paper, to motivate in detail the applications
or implications of the problem. We consider such develop-
ment and motivation a matter of future research.
We present two approaches to compute the MDTD and

separately implement the algorithms with both data struc-
tures, s-expressions and BDDs (4 implementations). Finally,
we report performance characteristics of the four algorithms
implemented in Common Lisp.
The remainder of this article proceeds as follows: Sec-

tion 2 introduces the MDTD problem; Section 2.1 and Sec-
tion 2.2 abstractly summarize two algorithms for solving the
MDTD problem; Section 3 summarizes programmatic ma-
nipulation of Common Lisp type specifiers; Section 4 sum-
marizes BDDs, implementation and optimization to work
with the Common Lisp type system; Section 5 summarizes
the s-expression and BDD approaches to the same problem;
and Section 6 discusses the performance of the five algo-
rithms. There is also a brief Section 7 of Conclusion and
Future work.

2. DISJOINT TYPE DECOMPOSITION
We begin the discussion by presenting the problem of de-

composing a set of overlapping types into non-overlapping
subtypes. We first define precisely what we mean to calcu-
late. Then in sections 2.1 and 2.2 we present two different
algorithms for performing the calculation.

Notation 1. We use the symbol, K, to indicate the dis-
joint relation between sets. I.e., we take A K B to mean
AXB “ H. We also say A M B to mean AXB ‰ H.

Notation 2. We use the notation, A Ă B, (A Ą B) to
indicate that A is either a strict subset (superset) of B or is
equal to B.

Definition 1. A disjoined set is a set of mutually dis-
joint subsets of a given U .

Definition 2. Let U be a set and V be a set of subsets of
U . The Boolean closure of V , denoted pV , is the (smallest)
super-set of V such that α, β P pV ùñ tαX β, αX βu Ă pV .

We claim here without proof that there exists a unique
Boolean closure of a given set of sets. A more complete
discussion and formal proof are available [13].
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Definition 3. Let U be a set and V be a finite set of
non-empty subsets of U , V “ tA1, A2, ..., AMu. The set D
is said to be a disjoint decomposition of V , if D is disjoined,
D Ă pV , and YD “ YV .

Definition 4. If D is a disjoint decomposition of V which
has more elements than any other disjoint decompositions of
V , then D is said to be the maximal disjoint decomposition
of V .

Again, we claim without proof that there exists a unique
maximal disjoint decomposition of a given V .

A1

1

A2
2

A33
4

5
6 7

A4

8 A5

9

A6

10
A7

11
A8

12

13

Figure 1: Example Venn Diagram

The problem statement: Given V “ tA1, A2, ..., AMu,
suppose that for each pair pAi, Ajq, we know which of the
relations hold: Ai Ă Aj , Ai Ą Aj , Ai K Aj . We would like
to compute the maximal disjoint decomposition of V .

Disjoint Set Derived Expression
X1 A1 XA2 XA3 XA4 XA6 XA8
X2 A2 XA3 XA4
X3 A2 XA3 XA4
X4 A3 XA2 XA4
X5 A2 XA3 XA4
X6 A2 XA4 XA3
X7 A3 XA4 XA2
X8 A4 XA2 XA3 XA8
X9 A5
X10 A6
X11 A7
X12 A8 XA4
X13 A4 XA8 XA5

Figure 2: Disjoint Decomposition of Sets from Fig-
ure 1

The Venn diagram in Figure 1 is an example for V “

tA1, A2, ..., A8u. The maximal disjoint decomposition D “

tX1, X2, ..., X13u of V is shown in Figure 2.
In Common Lisp, a type is a set of (potential) values [4,

Section Type], so it makes sense to consider the maximal
disjoint decomposition of a set of types.
Computing a disjoint decomposition when we are per-

mitted to look into the sets has been referred to as union

find [16, 9]. However, we wish to solve the problem without
knowledge of the specific elements; i.e. we are not permitted
to iterate over or visit the individual elements. The corre-
spondence of types to sets and subtypes to subsets thereof
is also treated extensively in the theory of semantic subtyp-
ing [8].

2.1 The RTE Algorithm
The algorithm for calculating the maximal disjoint de-

composition used in the Common Lisp package regular-type-
expressions1 [14] is shown below. This algorithm is straight-
forward and brute force. A notable feature of this algorithm
is that it easily fits in 40 lines of Common Lisp code, so it
is easy to implement and easy to understand, albeit not the
most efficient possible in terms of run-time performance.

1. Let U be the set of sets. Let V denote the set of
disjoint sets, initially D “ H.

2. Identify all the sets which are disjoint from each other
and from all the other sets. (Opn2

q search) Remove
these sets from U and collect them in D.

3. If there are no sets remaining in U , we are finished. D
is the set of disjoint sets.

4. Otherwise, find one pair of sets, X P U and Y P U , for
which X X Y ‰ H.

5. From X and Y derive at most three new sets X X Y ,
XzY , and Y zX, preforming logic reductions as neces-
sary. There are three cases to consider:

(a) If X Ă Y , then XXY “ X and XzY “ H. Thus
update U by removing Y , and adding Y zX.

(b) If Y Ă X, then X XY “ Y and Y zX “ H. Thus
update U by removing X, and adding XzY .

(c) Otherwise, update U by removing X and Y , and
adding X X Y , XzY , and Y zX.

6. Repeat steps 2 through 5 until U “ H, at which point
we have collected all the disjoint sets in D.

2.2 The graph based algorithm
One of the sources of inefficiency of the algorithm ex-

plained in Section 2.1 is at each iteration of the loop, an
Opn2

q search is made to find sets which are disjoint from
all remaining sets. This search can be partially obviated
if we employ a little extra book-keeping. The fact to real-
ize is that if X K A and X K B, then we know a priori
that X K A X B, X K AzB, X K BzA. This knowledge
eliminates some of useless operations.
This algorithm is semantically very similar to the algo-

rithm shown in Section 2.1, but rather than relying on Com-
mon Lisp primitives to make decisions about connectivity
of types, it initializes a graph representing the initial rela-
tionships, and thereafter manipulates the graph maintaining
connectivity information. This algorithm is more compli-
cated in terms of lines of code, 250 lines of Common Lisp
code as opposed to 40 lines for the algorithm in Section 2.1.
Figure 3 shows a graph representing the topology (con-

nectedness) of the diagram shown in Figure 1. Nodes 1 , 2 ,
1https://gitlab.lrde.epita.fr/jnewton/regular-type-
expression, The Common Lisp package source code is
available from the EPITA/LRDE website.
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Figure 3: Topology graph

... 8 in Figure 3 correspond respective to A1, A2, ... A8 in
Figure 1. Blue arrows correspond to subset relations, point-
ing from subset to superset, and green lines correspond to
other non-disjoint relations.
To construct this graph first eliminate duplicate sets. I.e.,

if X Ă Y and X Ą Y , then discard either X or Y . It is
necessary to consider each pair pX,Y q of sets, Opn2

q loop.

‚ If X Ă Y , draw a blue arrow X Ñ Y

‚ Else if X Ą Y , draw a blue arrow X Ð Y

‚ Else if X M Y , draw green line between X and Y .

‚ If it cannot be determined whether X Ă Y , assume
the worst case, that they are non-disjoint, and draw
green line between X and Y .

This construction assures that no two nodes have both a
green line and also a blue arrow between them.
The algorithm proceeds by breaking the green and blue

connections, in explicit ways until all the nodes become iso-
lated. There are two cases to consider. Repeat alternatively
applying both tests until all the nodes become isolated.

2.2.1 Subset relation
A blue arrow from X to Y may be eliminated if X has no

blue arrow pointing to it, in which case Y must be relabeled
as Y XX as indicated in Figure 4.
Figure 4 illustrates this mutation. Node Y may have

other connections, including blue arrows pointing to it or
from it, and green lines connected to it. However node X

has no blue arrows pointing to it; although it may have other
blue arrows pointing away from it.
If X touches (via a green line) any sibling nodes, i.e. any

other node that shares Y as super-class, then the blue arrow
is converted to a green line. In the before image of Figure 4
there is a blue arrow from 3 to Y and in the after image
this arrow has been converted to a green line.

2.2.2 Touching connections
A green line connecting X and Y may be eliminated if

neither X nor Y has a blue arrow pointing to it. Conse-
quently, X and Y must be relabeled and a new node must
be added to the graph as indicated in Figure 5. The figure
illustrates the step of breaking such a connection between
nodes X and Y by introducing the node Z .
Construct blue arrows from this node, Z, to all the nodes

which either X or Y points to (union). Construct green

Before

5 0 Y 1

2

4 X 3

After

5 0 Y 1

2

4 X 3

Node Re-labeled Boolean expression
X X

Y Y XX

Figure 4: Subset before and after mutation

lines from Z to all nodes which both X and Y connect to
(intersection). If this process results in two nodes connected
both by green and blue, omit the green line.

3. TYPE SPECIFIER MANIPULATION
To correctly implement the MDTD by either strategy de-

scribed above, we need operators to test for type-equality,
type disjoint-ness, subtype-ness, and type-emptiness. Given
a subtype predicate, the other predicates can be constructed.
The emptiness check: A “ H ðñ A Ă H. The dis-
joint check: A K B ðñ A X B Ă H. Type equivalence
A “ B ðñ A Ă B and B Ă A.
Common Lisp has a flexible type calculus making type

specifiers human readable and also related computation pos-
sible. Even with certain limitations, s-expressions are an
intuitive data structure for programmatic manipulation of
type specifiers in analyzing and reasoning about types.
If T1 and T2 are Common Lisp type specifiers, the type

specifier (and T1 T2) designates the intersection of the types.
Likewise (and T1 (not T2)) is the type difference. The empty
type and the universal type are designated by nil and t re-
spectively. The subtypep function serves as the subtype
predicate. Consequently (subtypep ’(and T1 T2) nil) com-
putes whether T1 and T2 are disjoint.
There is an important caveat however. The subtypep

function is not always able to determine whether the named
types have a subtype relationship [5, 12]. In such a case,
subtypep returns nil as its second value. This situation oc-
curs most notably in the cases involving the satisfies type
specifier. For example, to determine whether the (satisfies
F) type is empty, it would be necessary to solve the halting
problem, finding values for which the function F returns true.
As a simple example of how the Common Lisp program-

mer might manipulate s-expression based type specifiers,
consider the following problem. In SBCL 1.3.0, the expres-
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Figure 5: Touching connections before and after mu-
tation

sion (subtypep ’(member :x :y) ’keyword) returns nil,nil,
rather than t,t. Although this is compliant behavior, the
result is unsatisfying, because clearly both :x and :y are
elements of the keyword type. By manipulating the type
specifier s-expressions, the user can implement a smarter
version of subtypep to better handle this particular case.
Regrettably, the user cannot force the system to use this
smarter version internally.
( defun smarter-subtypep (t1 t2)

( multiple-value-bind (T1 <= T2 OK) ( subtypep t1 t2)
(cond

(OK
( values T1 <= T2 t))

;; (eql obj) or ( member obj1 ...)
(( typep t1 ’(cons ( member eql member )))

( values ( every #’( lambda (obj)
( typep obj t2 ))

(cdr t1 ))
t))

(t
( values nil nil )))))

As mentioned above, programs manipulating s-expression
based type specifiers can easily compose type intersections,
unions, and relative complements as part of reasoning algo-
rithms. Consequently, the resulting programmatically com-
puted type specifiers may become deeply nested, resulting
in type specifiers which may be confusing in terms of hu-
man readability and debuggability. Consider the following
programmatically generated type specifier.
(or

(or (and (and number (not bignum ))

(not (or fixnum (or bit (eql -1)))))
(and (and (and number (not bignum ))

(not (or fixnum (or bit (eql -1)))))
(not (or fixnum (or bit (eql -1))))))

(and (and (and number (not bignum ))
(not (or fixnum (or bit (eql -1)))))

(not (or fixnum (or bit (eql -1))))))

This type specifier is perfectly reasonable for program-
matic use, but confusing if it appears in an error message, or
if the developer encounters it while debugging. This some-
what obfuscated type specifier is semantically equivalent to
the more humanly readable form (and number (not bignum)
(not fixnum)). Moreover, it is possible to write a Common
Lisp function to simplify many complex type specifiers to
simpler form.
There is a second reason apart from human readability

which motivates reduction of type specifiers to canonical
form. The problem arises when we wish to programmati-
cally determine whether two s-expressions specify the same
type, or in particular when a given type specifier specifies
the nil type. Sometimes this question can be answered by
calls to subtypep as in (and (subtypep T1 T2) (subtypep
T2 T1)). However, as mentioned earlier, subtypep is al-
lowed to return nil,nil in some situations, rendering this
approach futile in many cases. If, on the other hand, two
type specifiers can be reduced to the same canonical form,
we can conclude that the specified types are equal.
We have implemented such a function, reduce-lisp-type.

It does a good job of reducing the given type specifier toward
a canonical form, by repeatedly recursively descending the
expression, re-writing sub-expressions, incrementally mov-
ing the expression toward a fixed point. We choose to con-
vert the expression to a disjunctive normal form, e.g., (or
(and (not a) b) (and a b (not c))). The reduction proce-
dure follows the models presented by Sussman and Abel-
son [1, p. 108] and Norvig [15, ch. 8].

4. BINARY DECISION DIAGRAMS
A challenge using s-expressions for programmatic repre-

sentation of type specifiers is the need to after-the-fact re-
duce complex type specifiers to a canonical form. This re-
duction can be computationally intense, and difficult to im-
plement correctly. We present here a data structure called
the Binary Decision Diagram (BDD) [6, 2], which obviates
much of the need to reduce to canonical form because it
maintains a canonical form by design. Before looking at
how the BDD can be used to represent Common Lisp type
specifiers, we first look at how BDDs are used tradition-
ally to represent Boolean equations. Thereafter, we explain
how this traditional treatment can be enhanced to represent
Common Lisp types.

4.1 Representing Boolean expressions
Andersen [3] summarized many of the algorithms for ef-

ficiently manipulating BDD. Not least important in Ander-
sen’s discussion is how to use a hash table and dedicated
constructor function to eliminate redundancy within a single
BDD and within an interrelated set of BDDs. The result of
Andersen’s approach is that if you attempt to construct two
BDDs to represent two semantically equivalent but syntac-
tically different Boolean expressions, then the two resulting
BDDs are pointers to the same object.
Figure 6 shows an example BDD illustrating a function of

three Boolean variables: A1, A2, and A3. To reconstruct the
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Figure 6: BDD for pA1^A2q_pA1^ A2^A3q_p A1^ A3q

DNF (disjunctive normal form), collect the paths from the
root node, A1, to a leaf node of 1, ignoring paths terminated
by 0. When the right child is traversed, the Boolean com-
plement ( ) of the label on the node is collected (e.g.  A3),
and when the left child is traversed the non-inverted parent
is collected. Interpret each path as a conjunctive clause, and
form a disjunction of the conjunctive clauses. In the figure
the three paths from A1 to 1 identify the three conjunctive
clauses pA1 ^A2q, pA1 ^ A2 ^A3q, and p A1 ^ A3q.

4.2 Representing types
Castagna [7] explains the connection of BDDs to type

theoretical calculations, and provides straightforward algo-
rithms for implementing set operations (intersection, union,
relative complement) of types using BDDs. The general re-
cursive algorithms for computing the BDDs which represent
the common Boolean algebra operators are straightforward.
Let B, B1, and B2 denote BDDs, B1 “ pif a1 C1 D1q and

B2 “ pif a2 C2 D2q.
C1, C2, D1, and D2 represent BDDs. The a1 and a2 are

intended to represent type names, but for the definition to
work it is only necessary that they represent labels which
are order-able. We would eventually like the labels to ac-
commodate Common Lisp type type names, but this is not
immediately possible.
The formulas for pB1_B2q, pB1^B2q, and pB1 z B2q are

similar to each other. If ˝ P t_,^, zu, then

B1 ˝ B2 “

$

’

&

’

%

pif a1 pC1 ˝ C2q pD1 ˝ D2qq for a1 “ a2
pif a1 pC1 ˝ B2q pD1 ˝ B2qq for a1 ă a2
pif a2 pB1 ˝ C2q pB1 ˝ D2qq for a1 ą a2

There are several special cases, the first three of which
serve as termination conditions for the recursive algorithms.

‚ pt_Bq and pB _ tq reduce to t.

‚ pnil ^Bq, pB ^ nilq, and pBztq reduce to nil.

‚ pt^Bq, pB^ tq, pnil_Bq, and pB_nilq reduce to B.

‚ pt z pif a B1 B2qq reduces to pif a ptzB1q ptzB2qq.

4.3 Representing Common Lisp types
We have implemented the BDD data structure as a set of

Clos classes. In particular, there is one leaf-level Clos class
for an internal tree node, and one singleton class/instance
for each of the two possible leaf nodes, true and false.
The label of the BDD contains a Common Lisp type name,

and the logical combinators (and, or, and not) are repre-
sented implicitly in the structure of the BDD.
A disadvantage BDDs present when compared to s-expressions

as presented in Section 3 is the loss of homoiconicity. Whereas,
s-expression based type-specifiers may appear in-line in the
Common Lisp code, BDDs may not.
A remarkable fact about this representation is that any

two equivalent Boolean expressions have exactly the same
BDD structural representation, provided the node labels

are consistently totally ordered. For example the expression
from Figure 6, pA1^A2q_pA1^ A2^A3q_p A1^ A3q

is equivalent to  pp A1_ A2q^p A1_A2_ A3q^pA1_

A3qq. So they both have the same shape as shown in the
Figure 6. However, if we naïvely substitute Common Lisp
type names for Boolean variables in the BDD representation
as suggested by Castagna, we find that this equivalence rela-
tion does not hold in many cases related to subtype relations
in the Common Lisp type system.
An example is that the Common Lisp two types (and

(not arithmetic-error) array (not base-string)) vs. (and
array (not base-string)) are equivalent, but the naïvely

constructed BDDs are different:

arithmetic-error

nil array

base-string

nil t

nil

vs.
array

base-string

nil t

nil.

In order to assure the minimum number of BDD alloca-
tions possible, and thus ensure that BDDs which represent
equivalent types are actually represented by the same BDD,
the suggestion by Andersen [3] is to intercept the BDD con-
structor function. This constructor should assure that it
never returns two BDD which are equal but not eq.

4.4 Canonicalization
Several checks are in place to reduce the total number

of BDDs allocated, and to help assure that two equivalent
Common Lisp types result in the same BDD. The following
sections, 4.4.1 through 4.4.5 detail the operations which we
found necessary to handle in the BDD construction function
in order to assure that equivalent Common Lisp type spec-
ifiers result in identical BDDs. The first two come directly
from Andersen’s work. The remaining are our contribution,
and are the cases we found necessary to implement in order
to enhance BDDs to be compatible with the Common Lisp
type system.
We have not yet formally proven that this list of enhance-

ments is complete. There very well may be other exotic cases
we have not covered, and we consider that opportunity for
future work.

4.4.1 Equal right and left children
An optimization noted by Andersen is that if the left and

right children are identical then simply return one of them,
without allocating a new BDD [3].

4.4.2 Caching BDDs
Another optimization noted by Andersen is that whenever

a new BDD is allocated, an entry is made into a hash table so
that the next time a request is made with the exactly same
label, left child, and right child, the already allocated BDD is
returned. We associate each new BDD with a unique integer,
and create a hash key which is a list (a triple) of the type
specifier (the label) followed by two integers corresponding
to the left and right children. We use a Common Lisp equal
hash table for this storage, although we’d like to investigate
whether creating a more specific hash function specific to
our key might be more efficient.

4.4.3 Reduction in the presence of subtypes



Since the nodes of the BDD represent Common Lisp types,
other specific optimizations are made. The cases include sit-
uations where types are related to each other in certain ways:
subtype, supertype, and disjoint types. In particular there
are 12 optimization cases, detailed in Table 1. Each of these
optimizations follows a similar pattern: when constructing
a BDD with label X, search in either the left or right child
to find a BDD, Y

L R
. If X and Y have a particular rela-

tion, different for each of the 12 cases, then the Y

L R
BDD

reduces either to L or R. Two cases, 5 and 7, are further
illustrated below.

Case Child to search Relation Reduction

1 X.left X K Y Y Ñ Y.right

2 X.left X K Y Y Ñ Y.left

3 X.right X K Y Y Ñ Y.right

4 X.right X K Y Y Ñ Y.left

5 X.right X Ą Y Y Ñ Y.right

6 X.right X Ą Y Y Ñ Y.left

7 X.left X Ą Y Y Ñ Y.right

8 X.left X Ą Y Y Ñ Y.left

9 X.left X Ă Y Y Ñ Y.left

10 X.left X Ă Y Y Ñ Y.right

11 X.right X Ă Y Y Ñ Y.left

12 X.right X Ă Y Y Ñ Y.right

Table 1: BDD optimizations

Case 5: If X Ą Y and Y

L R
appears in X.right, then

Y

L R
reduces to R. E.g., integer Ă number; if X “ number

and Y “ integer; thus

number

A B

integer

L R

C
Ñ

number

A B

R C

.

Case 7: If X Ą Y and Y

L R
appears in X.left, then

Y

L R
reduces to R. E.g., integer Ă string; if X “ string

and Y “ integer; thus

string

A

C integer

L R

B
Ñ

string

A

C R

B.

4.4.4 Reduction to child
The list of reductions described in Section 4.4.3 fails to

apply in cases where the root node itself needs to be elimi-
nated. For example, since vector Ă array we would like the

following reductions:
array

vector

t nil

nil Ñ
vector

t nil
.

The solution which we have implemented is that before
constructing a new BDD, we first ask whether the resulting
BDD is type-equivalent to either the left or right children
using the subtypep function. If so, we simply return the
appropriate child without allocating the parent BDD. The
expensive of this type-equivalence is mitigated by the mem-
oization. Thereafter, the result is in the hash table, and it

will be discovered as discussed in Section 4.4.2.

4.4.5 More complex type relations
There are a few more cases which are not covered by the

above optimizations. Consider the following BDD:
integer

nil ratio

nil rational

t nil

This represents the type (and (not integer) (not ratio)
rational), but in Common Lisp rational is identical to
(or integer ratio), which means (and (not integer) (not
ratio) rational) is the empty type. For this reason, as a
last resort before allocating a new BDD, we check, using the
Common Lisp function subtypep, whether the type specifier
specifies the nil or t type. Again this check is expensive,
but the expense is mitigated in that the result is cached.

5. MDTD IN COMMON LISP
When attempting to implement the algorithms discussed

in Sections 2.1 and 2.2 the developer finds it necessary to
choose a data structure to represent type specifiers. Which
ever data structure is chosen, the program must calculate
type intersections, unions, and relative complements and
type equivalence checks and checks for the empty type. As
discussed in Section 3, s-expressions (i.e. lists and symbols)
is a valid choice of data structure and the aforementioned
operations may be implemented as list constructions and
calls to the subtypep predicate.

array

vector

nil t

number

t nil

Figure 7: BDD representing (or number (and array
(not vector))

As introduced in Section 4, another choice of data struc-
ture is the BDD. Using the BDD data structure along with
the algorithms described in Section 4 we can efficiently rep-
resent and manipulate Common Lisp type specifiers. We
may programmatically represent Common Lisp types largely
independent of the actual type specifier representation. For
example the following two type specifiers denote the same set
of values: (or number (and array (not vector))) and (not
(and (not number) (or (not array) vector))), and are both
represented by the BDD shown in Figure 5. Moreover,
unions, intersections, and relative complements of Common
Lisp type specifiers can be calculated using the reduction
BDD manipulation rules also explained in Section 4.
We have made comparisons of the two algorithms de-

scribed in Sections 2.1, 2.2. One implementation of each
uses s-expressions, one implementation of each uses BDDs.
Some results of the analysis can be seen in Section 6.
Using BDDs in these algorithm allows certain checks to be

made more easily than with the s-expression approach. For
example, two types are equal if they are the same object
(pointer comparison, eq). A type is empty if it is identi-
cally the empty type (pointer comparison). Finally, given
two types (represented by BDDs), the subtype check can be
made using the following function:
( defun bdd-subtypep ( bdd-sub bdd-super )

(eq * bdd-false *



( bdd-and-not bdd-sub bdd-super )))

This implementation of bdd-subtype should not be in-
terpreted to mean that we have obviated the need for the
Common Lisp subtypep function. In fact, subtypep, is still
useful in constructing the BDD itself. However, once the
BDDs have been constructed, and cached, subtype checks
may at that point avoid calls to subtypep, which in some
cases might otherwise be more compute intensive.

6. PERFORMANCE OF MDTD
Sections 2.1 and 2.2 explained two different algorithms

for calculating type decomposition. We look here at some
performance characteristics of the two algorithms. The al-
gorithms from Section 2.1 and Section 2.2 were tested us-
ing both the Common Lisp type specifier s-expression as
data structure and also using the BDD data structure as
described in Section 5. Figures 9 and 8 contrast the four
effective algorithms in terms of execution time vs sample
size.
We attempted to plot the results many different ways:

time as a function of input size, number of disjoint sets in the
input, number of new types generated in the output. Some
of these plots are available in the technical report [13]. The
plot which we found heuristically to show the strongest vi-
sual correlation was calculation time vs the integer product
of the number of given input types multiplied by the num-
ber of calculated output types. E.g., if the algorithm takes a
list of 5 type specifiers and computes 3 disjoint types in 0.1
seconds, the graph contains a point at (15,0.1). Although
we don’t claim to completely understand why this particular
plotting strategy shows better correlation than the others we
tried, it does seem that all the algorithms begin aOpn2

q loop
by iterating over the given set of types which is incremen-
tally converted to the output types, so the algorithms in
some sense finish by iterating over the output types. More
research is needed to better understand the correlation.

6.1 Performance Test Setup
The type specifiers used in Figure 9 are those designat-

ing all the subtypes of number. The type specifiers used
in Figure 8 are those designating a randomly selected set
of types specified in Figure 4-2. Standardized Atomic
Type Specifiers from the Common Lisp specification [4,
Section 4.2.3 Type Specifiers] lists the names of 97 types
which every compliant Common Lisp implementation must
support. Starting from this list, we randomly generated type
specifiers using and and or combinations of names from this
list such as the following:

( arithmetic-error function
(and arithmetic-error function )
(or arithmetic-error function )
array
(or function array )
sequence
(or function sequence ))
...)

The performance tests including starting with a list of
randomly selected type specifiers from a pool, calling each
of the four functions to calculate the disjoint decomposition,
and recording the time of that calculation. We have plotted
in Figures 8 and 9 the results of the runs which took less
than 30 seconds to complete. This omission does not in any
way effect the presentation of which algorithms were the
fastest on each test.
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Figure 8: Combinational CL types

The tests were performed on a MacBook 2 GHz Intel Core
i7 processor with 16GB 1600 MHz DDR3 memory, and using
SBCL 1.3.0 ANSI Common Lisp.

6.2 Analysis of Performance Tests
There is no clear winner. Some of the algorithms do better

in some tests and worse in other tests. It seems the tree
based algorithms do very well. Often the better of these
two algorithms is the BDD based one as shown in Figure 8.
However there is a notable exception shown in Figures 9
where graph algorithm using s-expressions performs best.

7. CONCLUSION AND FUTURE WORK
We believe our contribution in this paper includes, intro-

ducing the BDD as an alternative to the s-expression in pro-
grammatic manipulation of Common Lisp type specifiers,
extending the BDD definition to accomodate a type system
which regards subtypes as subsets. Our contribution also
includes an efficient graph based algorithm for calculating
the maximal disjoint type decomposition.
The MDTD problem is potentially interesting in its own

right. Although, we do not attempt, in this paper, to moti-
vate in detail the applications or implications of the problem,
we suspect there may be a connection between the problem,
and efficient compilation of type-case and its use in im-
proving pattern matching capabilities of Common Lisp. We
consider such development and motivation a matter of fu-
ture research.
An immediate priority in our research is to formally prove

the correctness of our algorithms, most notably the graph
decomposition algorithm from Section 2.2. Experimentation
leads us to believe that the graph algorithm always termi-
nates with the correct answer, nevertheless we admit there
may be exotic cases which cause deadlock or other errors.
As far as the performance analysis is concerned, it is not

yet understood why we see drastically different performance
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characteristics in different situations. It is known that al-
gorithms using BDD data structure tend to trade space for
speed. Castagna [7] suggests a lazy version of the BDD data
structure which may reduce the memory footprint, which
would have a positive effect on the BDD based algorithms.
We have spent only a few weeks optimizing our BDD imple-
mentation based on the Andersen’s description [3], whereas
the CUDD [17] developers have spent many years of research
optimizing their algorithms. Certainly our BDD algorithm
can be made more efficient using techniques of CUDD or
others.
It has also been observed that in the algorithm explained

in section 2.2 that the convergence rate varies substantially
depending on the order the reduction operations are per-
formed. We do not yet have enough data to characterize
this dependence. Furthermore, the order to break connec-
tions in the algorithm in Section 2.2. It is clear that many
different strategies are possible, (1) break busiest connec-
tions first, (2) break connections with the fewest dependen-
cies, (3) random order, (4) closest to top of tree, etc. These
are all areas of ongoing research.
We plan to investigate whether there are other applica-

tions MDTD outside the Common Lisp type system. We
hope the user of Castagna’s techniques [7] on type systems
with semantic subtyping may benefit from the optimizations
we have discussed.
A potential application with Common Lisp is improving

the subtypep implementation itself, which is known to be
slow in some cases. Section 5 gave a BDD specific implemen-
tation of bdd-subtypep. We intend to investigate whether
existing Common Lisp implementations could use out tech-
nique to represent type specifiers in their inferencing en-
gines, and thereby make some subtype checks more efficient.
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