

SGCS: Stereo Gaze Contingent Steering for Immersive Telepresence

Remi Cambuzat, Frédéric Elisei, Gérard Bailly

▶ To cite this version:

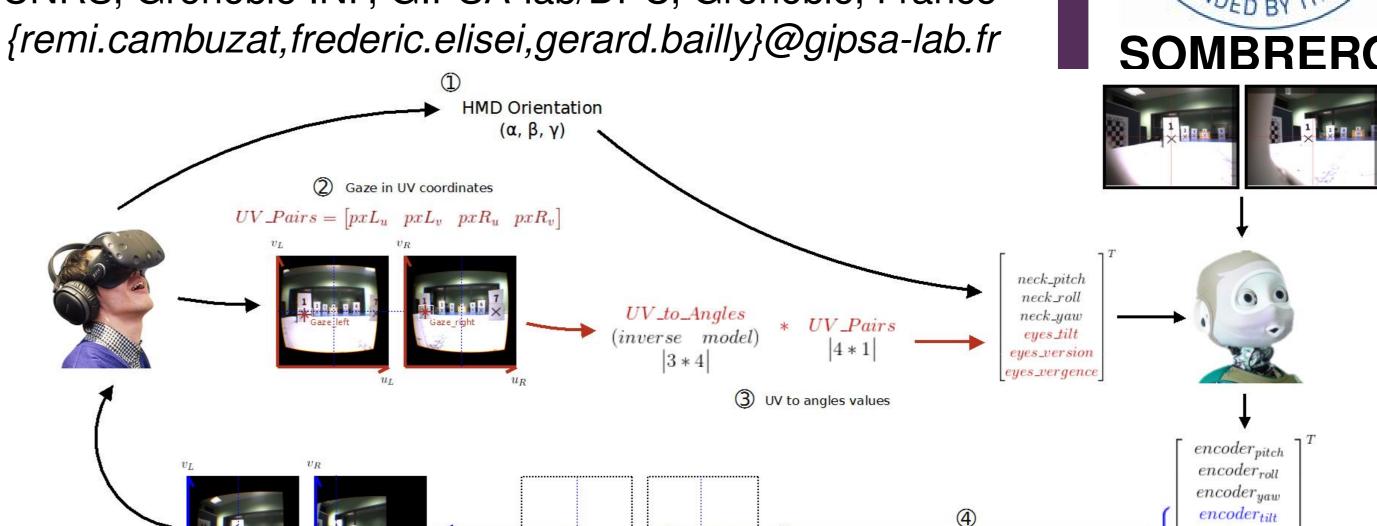
Remi Cambuzat, Frédéric Elisei, Gérard Bailly. SGCS: Stereo Gaze Contingent Steering for Immersive Telepresence. ECEM 2017 - 19th European Conference on Eye Movements, Aug 2017, Wuppertal, Germany., European Conference on Eye Movements (ECEM). hal-01638383

HAL Id: hal-01638383 https://hal.science/hal-01638383v1

Submitted on 21 Nov 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.


SGCS: Stereo Gaze Contingent Steering for Immersive Telepresence

 $encoder_{vergence}$

Univ. Grenoble Alpes, CNRS, Grenoble INP, GIPSA-lab/DPC, Grenoble, France

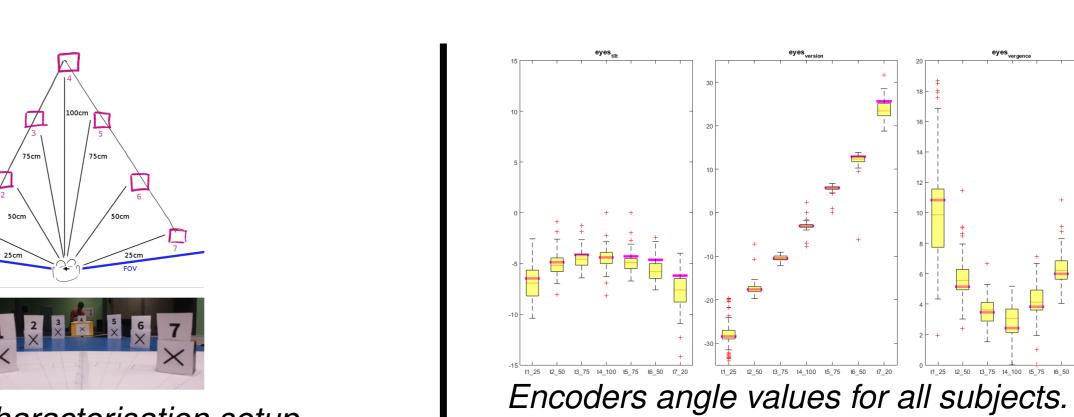
Overall controls methods

Recenter the video texture position

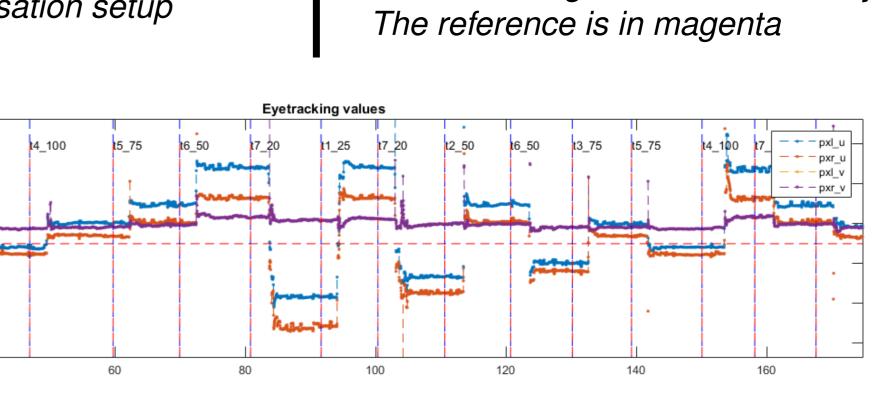
* encoders_angles

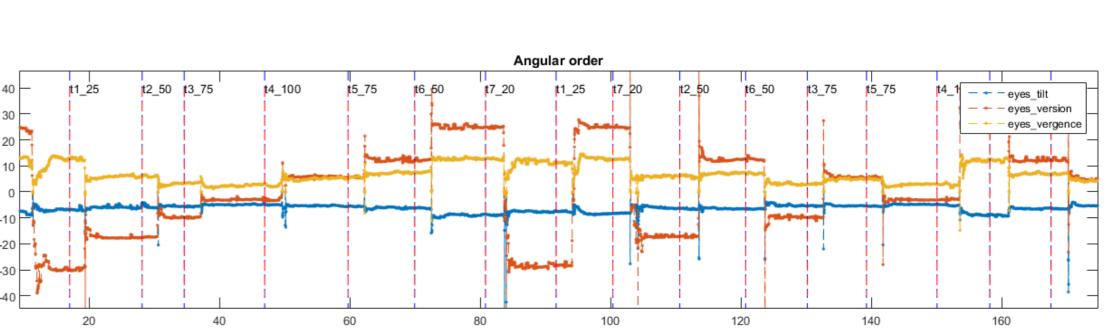
Angles_to_UV

4. Platform validation


4.1 Setup & protocol

Setup: 7 target at various distance (25 to 100cm)


Protocol: For the reference condition (Ideal target angles determined semi-automatically) and the pilot, every target has been seen 8 times. On 4 passes (left->right, front->back, right->left, back->front) repeated two times.


Subjects: 13 subjects (3 women, 13 men), aged between 22-56 yo. No prior experience of virtual reality before for most of them (13 unexperienced VR).

4.2 Results

SGCS characterisation setup

Temporal pilot values for one subject

5. Discussion & future works

Discussion: Our SGCS control method is able to move the robotic eye in coherence with the orientation of the human eye (the camera optical axis is aligned with the human gaze). The cameras are looking where the human is looking with respect of tilt, azimut, and vergence. Future works: * Hypothesis: Control of vergence improves perception and evaluation of depth in the near and medium field while maintaining oculomotor cues and reducing the accomodation-vergence conflict.

* Improve the reactivity of the control method: detection of fixation and saccade.

References

- [1] Robert S Allison and Barbara J Gillam. Binocular depth discrimination and estimation beyond interaction space. Journal of Vision, 91010(1110101), 2009. [10] Miquel Sauze and Gérard Bailly. Beaming the Gaze of a Humanoid Robot. 2015.
- [2] C Armbrüster, M Wolter, T Kuhlen, W Spijkers, and B Fimm. Depth perception in virtual reality: distance estimations in peri- and extrapersonal space. *Cyberpsychology* & behavior : the impact of the Internet, multimedia and virtual reality on behavior and society, 11(1):9-15, 2008.
- [3] Doraplatform. DORA Platform, 2016.

33(10):2166-2185, dec 2015.

- [4] Antonio Fernández-Caballero, Yudong Zhang, Nikolai Smolyanskiy, and Mar Gonzalez-Franco. stereoscopic First Person View system for Drone navigation. 4(11), 2017.
- [5] Kelly S. Hale and Kay M. Stanney. Effects of low stereo acuity on performance, presence and sickness within a virtual environment. Applied Ergonomics, 37(3):329-

[6] Sven Kratz and Fred Rabelo Ferriera. Immersed Remotely: Evaluating the Use of

- 339, may 2006.
- [7] Uriel Martinez-Hernandez, Michael Szollosy, Luke W Boorman, Hamideh Kerdegari, and Tony J Prescott. Towards a wearable interface for immersive telepresence in

Head Mounted Devices for Remote Collaboration in Robotic Telepresence.

[8] Henrique Martins, Ian Oakley, and Rodrigo Ventura. Design and evaluation of a head-mounted display for immersive 3D teleoperation of field robots. Robotica,

Bailly, and Giorgio Metta. An articulated talking face for the iCub. In IEEE-RAS

- [9] Alberto Parmiggiani, Marco Randazzo, Marco Maggiali, Frederic Elisei, Gerard
- Depth. Perception of Space and Motion, 22(5):69-117, 1995. [17] Dingyun Zhu, Tom Gedeon, and Ken Taylor. "Moving to the centre": A gaze-driven remote camera control for teleoperation. Interacting with Computers, 23(1):85-95,

The Integration, Relative Potency, and Contextual Use of Different Information about

International Conference on Humanoid Robots, volume 2015-Febru, pages 1-6,

[11] Erich Schneider, Thomas Villgrattner, Johannes Vockeroth, Klaus Bartl, Stefan

[12] Sophie Stellmach and Raimund Dachselt. Designing Gaze-based User Interfaces

[13] Josef Stoll, Stefan Kohlbecher, Svenja Marx, Eric Schneider, and Wolfgang Ein-

[14] James R Tresilian, Mark Mon-Williams, and Benjamin M Kelly. Increasing confi-

[15] Margarita Vinnikov and Robert S. Allison. Gaze-Contingent Depth of Field in Real-

[16] J.E. Cutting Vishton and P.M. chapter Perceiving Layout and Knowing Distances:

häuser. Mobile three dimensional gaze tracking (PDF Download Available).

sity of Magdeburg, Germany. pages 131-138, 2012.

dence in vergence as a cue to distance.

istic Scenes: The User Experience, 2014.

Kohlbecher, Stanislavs Bardins, Heinz Ulbrich, and Thomas Brandt. EyeSeeCam:

An Eye Movement-Driven Head Camera for the Examination of Natural Visual Exploration. Annals of the New York Academy of Sciences, 1164(1):461-467, may

for Steering in Virtual Environments fland Raimund Dachselt y Sophie Stellmach

User Interface & Software Engineering Group Faculty of Computer Science Univer-

1. Context

1.1 Research framework : Embodied Learning

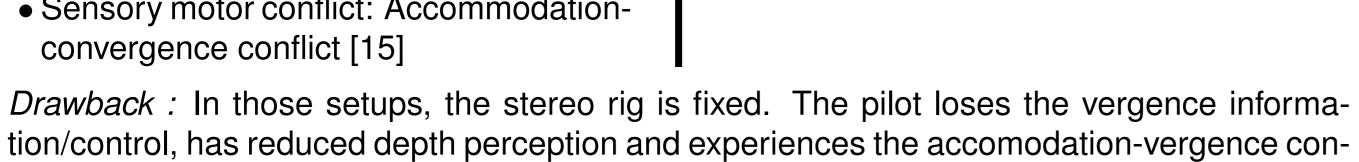
Our goal is to "teach" a robot to interact autonomously in a face-to-face task with a human. Due to the complexity of the task, standard learning approach like learning by observation and kinesthetic demonstration are not efficient enough notably for social signals (such as gaze or head movements). Our approach, based on the embodied learning paradigm, will teach the robot with his own moves by embodied him [10]. Like a puppeteer, a pilot controls the robot remotely using an immersive teleoperation platform. In order to record an interaction with minimal bias, the platform should become "transparent" and the remote world represented in a "natural" way. Our actual research aims at rendering a coherent representation of the remote space and depth perception.

1.2 State of the Art

What we know about humans:

- Depth perception is based on several factors: Binocular disparity (stereovision), occlusion, parallax, convergence, known semantics of the objects, ... [16, 5].
- Stereoscopic vision is useful before 15m (cannot differentiate from monovision after)[1]
- Vergence is useful in the peri-personal space (<2.0m) [14]

Current use of immersive teleoperation

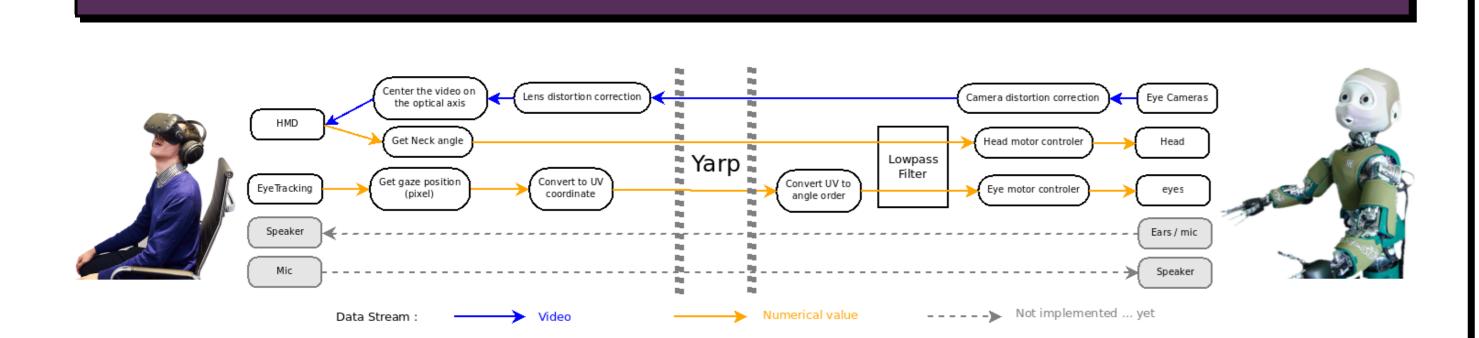

- Search and rescue robot [8]
- Drone navigation [4]
- Immersive telepresence [6, 7, 3]

Gaze controlled methods

- Virtual gaze joystick: "Moving to the center" [17] [12]
- EyeSeeCam [11, 13]

Limitations of current immersive teleoperation devices

- Underestimation of depth in peripersonal space (<2m), overestimation after 2m [2].
- Sensory motor conflict: Accommodation-


Our robotic platform "NINA" [9, 10]

1.3 SGCS: Stereo Gaze Contingent Steering

Proposed approach: Here we propose a new natural control method for a pair of stereoscopic robotic eyes with vergence abilities, called SGCS (Stereo Gaze Contingent Steering), running alongside the control of a robotic head. An evaluation of the control method has also been performed.

2. Technological platform

flict. For a human facing the robot, the robot gaze is less interpretable.

Platform process

We use the Mical platform NINA from the CRISSP team at Gipsa. Specification:

- * Icub 2.0 with enhanced face articulation [9].
- * Cluster of 4 PC (3 Linux + 1 windows) running a yarp (client-server robotic middleware).
- * HTC Vive + SMI integration for eye-tracking
- * IPD cameras equivalent to human IPD => reduced hyperstereopsis
- * Communication with UDP/TCP through the YARP middleware
- * The camera's feeds are synchronised and displayed in the HMD (Head Mounted display) as video texture.

3. Control methods

The control of the head and eye is done trough a angular command for the six head encoders: $|neck_{pitch}| neck_{roll}| neck_{yaw}| eyes_{tilt}| eyes_{version}| eyes_{vergence}|$

. Head control: The head angles are driven by the HMD orientation value (standard approach).

2. Eye control:

- (a) The gaze information returned (in pixel) is converted in UV coordinates, relative to the displayed video texture referential.
- (b) **StereoClick:** Using a transfer matrix UV_to_angle (inverse model), the module is able for a chosen target (defined by a UV pair) to return an absolute angular command value, to center the two stereo cameras images on it. This inverse linear model has (surprinzingly) a precision of 0.5 on the three angles.

3. Foveal display: Move the center of the video texture to a new UV coordinates pair, calculated by the *forward model* with the eyes encoders angular values. This moves the video texture in the virtual world to a coherent position for the robot and cues on the pilot side.

38400 Saint Martin d'Hères - FRANCE

