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Introduction 

Abstract: In our effort towards measuring the parity violation 

energy difference between two enantiomers, a simple chiral 

oxorhenium complex 5 bearing enantiopure 2-

mercaptocyclohexan-1-ol has been prepared as a potential 

candidate species. Vibrational circular dichroism revealed a 

chiral environment surrounding the rhenium atom, even 

though the rhenium is not a stereogenic centre itself, and 

enabled to assign the (1S,2S)-(-) and (1R,2R)-(+) absolute 

configuration for 5. For both compound 5 and complex 4, 

previously studied by us and bearing a propane-2-olato-3-

thiolato ligand, relativistic calculations predict parity violating 

vibrational frequency differences of a few hundreds of 

millihertz, above the expected sensitivity attainable by a 

molecular beam Ramsey interferometer that we are 

constructing. 
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Chiral transition metal complexes have been a subject of interest in many fields such as asymmetric catalysis or molecular 
materials science.

1-4
 They are currently considered as promising candidate molecules for the observation of parity violation (PV) 

effects.
5,6

 Parity violating electroweak interactions break the mirror symmetry (under which all particle positions are reflected about a 
plane). This has a remarkable implication for molecular systems, as it should lead to a tiny energy difference between enantiomers of 
chiral molecules, which cease to be exact mirror images of each other and become diastereoisomers.

7-9
 To date, no experiment has 

reached the energy resolution needed to observe the parity violation energy difference (PVED) between right- and left-handed isomers. 
Compared to the typical chiral prototype molecule CHFClBr (1, Figure 1), for which the equilibrium structure PVED is predicted to be 
around 30 mHz,

10,11 
chiral heavy metal complexes are expected to show notably higher PVEDs of up to 500 Hz.

12-14
 In this context, 

chiral oxorhenium complexes have attracted particular attention in the last decade. Several types of chiral oxorhenium(V) complexes 
have been prepared in enantiopure forms, such as complexes 2 and 3 (Figure 1) bearing respectively a chiral propane-2,3-diolato

15
 and 

a dissymmetric sulfurated
16,17

 ligand,
 
both ligands inducing chirality at the rhenium centre. The stereochemistry of those complexes, 

revealed by vibrational circular dichroism (VCD), has been investigated in detail.
15-17

 
Methyltrioxorhenium (MTO) derivatives substituted with a chiral ligand offer another appealing route to find candidate species for 

observing PV. One such complex bearing an enantiopure propane-2-olato-3-thiolato ligand
18

 (complex 4 in Figure 1) has already been 
studied by us. In this paper, we report the successful preparation of a new enantiopure stable complex 5 (see Figure 1) bearing a 

cyclohexane-1-olato-2-thiolato ligand. We compare experimental and simulated VCD spectra, which we use for stereochemical 
characterization and for the determination of the absolute configuration. We furthermore carry out relativistic quantum chemical 
calculations of the PVED and the resulting vibrational frequency shift of the antisymmetric and symmetric Re=O stretching modes for 
both complexes 4 and 5. Finally, we give a brief review of our progress towards measuring PV effects in heavy-metal chiral complexes 

using precise ro-vibrational spectroscopy. 
 

 

FIGURE 1 Chemical structures of chiral molecules synthesized for measuring parity violation effects. 

Materials and Methods 

Most experiments were performed using standard Schlenk techniques. Solvents were freshly distilled under argon from 
sodium/benzophenone (THF) or from phosphorus pentoxide (CH2Cl2). Starting materials were purchased from ACBR (MTO) or from 
Sigma Aldrich. Column chromatography purifications were performed in air over silica gel (Merck Geduran 60, 0.063–0.200 mm). 

1
H 

and 
13

C nuclear magnetic resonance (NMR) spectra were recorded on a Bruker AM 300 and 400. Chemical shifts were reported in 
parts per million (ppm) relative to Si(CH3)4 as external standard and compared to the literature. Infrared (IR) and VCD spectra were 
recorded on a Jasco FSV-6000 spectrometer. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were 
carried out in flowing dry nitrogen, using a TGA/DSC 1 STARe System (METTLER TOLEDO) instrument. Specific rotations (in deg cm

2
 

g
-1

) were measured in a 10 cm thermostated quartz cell on a Jasco P1010 polarimeter. Elemental analyses were performed by the 
CRMPO (Centre régional de mesures physiques de l'Ouest), University of Rennes 1. 

2-(Tritylthio)cyclohexanol 7 

 
n-BuLi (10.5 mmol, 2.5 M, 4.2 mL) was added dropwise to a triphenylmethanethiol solution (9.9 mmol; 2.73 g) in distilled THF (20 mL) 
cooled to 0°C. Then cyclohexene oxide 6 (9.9 mmol, 1 mL) was added dropwise at 0°C with a color change from red to pale yellow. The 

reaction mixture was stirred for 24 hrs, then quenched with 20% AcOH in methanol, diluted with water, and then extracted with ethyl 
acetate. Purification over silica gel column chromatography (pentane/ethyl acetate; 9:1) provided the product 7 as a white precipitate 

(3.337 g, 90%). 
1
H NMR (400 MHz, CDCl3, δ) 7.48 - 7.68 (6H, m, Har), 7.11 - 7.39 (9H, m, Har), 3.29 (1H, td, J = 9.1, 3.9 Hz, H

a
), 2.07 - 

2.21 (1H, m, H
b
), 1.94 - 2.07 (1H, m, H

c
), 1.58 (1 H, dd, J = 9.2, 3.64 Hz, H

c
), 1.40 - 1.52 (2H, m, H

d
), 0.83 - 1.36 (4H, m, H

e,f
). Anal. 

calcd. for C25H26OS: C 80.17, H 7.00; found: C 80.15, H 7.09. 

 
2,2'-Disulfanediyldicyclohexanol 8 
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To a solution of 2-(tritylthio)cyclohexanol 7 (1 g, 2.67 mmol) in CH2Cl2/MeOH (9:1,  100 mL) was added in portions (over 30 min) an 
iodine solution (1.7 g  in 150 mL  of CH2Cl2/MeOH (9:1)). The reaction mixture was stirred at room temperature for 1 hr, then quenched 
with 10% aqueous sodium thiosulfate and washed with brine. The organic layer was separated and the aqueous layer was extracted 
with ethyl acetate, dried over MgSO4, and concentrated under vacuum to provide a dark brown precipitate which was purified by silica 
gel chromatography (ethanol 5%/chloroform) to provide 8 as yellow-brown oil (350 mg, 90%). High-performance liquid chromatography 
(HPLC) resolution over chiral stationary phase enabled the separation of the two enantiomers (1R,1'R,2R,2'R)-(-)-8 and 
(1S,1'S,2S,2'S)-(+)-8.

1
H NMR (400 MHz, CDCl3, δ) 3.53 (1H, td, J = 9.6, 4.6 Hz, H

a
), 2.86 (1H, bs, OH), 2.52 - 2.67 (1H, m, H

b
), 2.03 - 

2.21 (2H, m, H
c
), 1.71 - 1.86 (2 H, m, H

d
), 1.21 - 1.60 (4 H, m, H

e,f
). 

13
C NMR (101 MHz, CDCl3, δ) 72.8 (CH

a
), 58.5 (CH

b
), 34.2 (CH2

c
), 

31.6 (CH2
d
), 26.1 (CH2

e
), 24.3 (CH2

f
). Anal. calcd. for C12H22O2S2: C 54.92, H 8.45; found: C 55.02, H 8.46.  

 

The enantiomers showed mirror-image specific rotations     
   = -335/+333 (C = 3.8 x 10

-3
 M, CH2Cl2). 

 
 
2-Mercaptocyclohexanol (1S,2S)-(+)-9 and (1R,2R)-(-)-9

19 

 
A solution of compound (1S,1'S,2S,2'S)-(+)-8 (340 mg, 1.29 mmol) in THF (15 mL) was added dropwise to a stirring solution of LiAlH4 
(1.5 M, 3 eq.) in THF at 0°C. After stirring for 24 hrs at 50°C under argon, the reaction mixture was quenched with diluted HCl and then 
extracted with diethylether, dried over MgSO4, and concentrated under vacuum to obtain (1S,2S)-(+)-9 (280 mg, 86%) as a white solid. 

    
   = + 102 (C = 3.8 x 10

-3
 M, CH2Cl2). 

1
H NMR (400 MHz, CDCl3, δ) ppm 3.13 (1H, td, J = 9.85, 4.14 Hz, H

a
), 2.63 (1H, bs, OH), 2.37 

- 2.52 (1H, m, H
b
), 1.95 - 2.15 (2H, m, H

c
), 1.72 (1H, dd, J = 9.3, 2.8 Hz, H

d
), 1.59 - 1.68 (1 H, m, H

d
), 1.15 - 1.39 (5H, m, SH, H

e,f
). 

13
C 

NMR (101 MHz, CDCl3, δ) 76.65 (CH
a
), 47.68 (CH

b
), 36.50 (CH2

c
), 34.03 (CH2

d
), 26.54 (CH2

e
), 24.72 (CH2

f
). Anal. calcd. for C6H12OS: 

C 54.50, H 9.15; found: C 54.42, H 9.29.  

(1R,2R)-(-)-9 was prepared using the same procedure but starting with (1R,1'R,2R,2'R)-(-)-8:     
   = - 98 ( C = 3.8 x 10

-3
 M, CH2Cl2). 

 
 Oxorhenium complex (1S,2S)-(-)-5 and (1R,2R)-(+)-5 

 
To a solution of MTO (94 mg, 0.37 mmol) in CH2Cl2 (7 mL), was added a solution of (1S,2S)-(+)-2-mercaptocyclohexanol 9 (50 mg, 

0.37 mmol) in CH2Cl2 (3 mL). After stirring for 3 hrs under argon at room temperature, the solvent was stripped off, yielding 

quantitatively (1S,2S)-(-)-5 (134 mg) as an orange-red precipitate.     
   = -86 (C = 2.75 x 10

-3
 M, CH2Cl2). 

1
H NMR (400 MHz, CDCl3, δ) 

3.90 (1H, td, J = 10.7, 3.9 Hz, H
a
), 3.19 - 3.32 (1H, m, H

b
), 2.40 (3H, s, H

g
), 2.05 - 2.19 (2H, m, H

c
), 1.65 - 1.78 (2H, m, H

d
), 1.31 - 1.50 

(2H, m, H
e
), 1.08 - 1.26 (2H, m, H

f
). 

13
C NMR (101 MHz, CDCl3, δ) 90.46 (CH

a
), 57.75 (CH

b
), 33.67 (CH2

c
), 32.62 (CH2

d
), 30.16 (CH3

g
), 

24.54 (CH2
e
), 22.69 (CH2

f
). Anal. calcd. for C7H13O3ReS: C 23.13, H 3.61; found: C 22.02, H 3.70.  

The same procedure was used for the preparation of the other enantiomer (1R,2R)-(+)-5:     
   = +84 (C = 2.75 x 10

-3
 M, CH2Cl2). 

 
 
Chiral HPLC separation of compound 8 

The sample is dissolved in ethanol, injected on the chiral columns, and detected with an UV detector at 254 nm and a polarimeter. 
The flow-rate is 1 mL/min. Major products are meso-8, (-)-8 and (+)-8, sign given by the on-line polarimeter in the mobile phase used. 

See SI for more details.          
 

Computational details 

The equilibrium molecular structures and the harmonic force fields were solved with the Gaussian 09 package
20

 using Kohn-Sham 
density functional theory with the B3LYP functional

21,22
 and Ahlrichs' def2-TZVPP basis sets.

23,24 
The PV vibrational frequency shifts 

were obtained by computing PV expectation values using single-point calculations along the normal mode coordinate displacement 
vectors (single-point structures are listed in the SI). The single-point 4-component relativistic calculations using the Dirac/Coulomb 
Hamiltonian were performed with the DIRAC program

25
 using the HF method, as well as the functionals B3LYP and PBE

26
. These 

provided the anharmonic potential for the numerical solution of the vibrational wave functions by the Numerov-Cooley algorithm. The 
Numerov-Cooley solutions and integrations were performed using a Python script that we have written for this project.

27
                             

Results and Discussion 

Synthesis of enantiopure 2-mercaptocyclohexan-1-ol 

 
Racemic 2-mercaptocyclohexan-1-ol (±)-9 can be readily prepared from cyclohexene epoxide 6 in three steps reactions as 

summarized in Scheme 1. This synthetic strategy is inspired by the literature and by our previous work regarding the preparation of 
enantiopure 2-methyl-thioethanol from propylene oxide enantiomers.

18
 First, the opening of commercially available achiral cyclohexene 



 

 4 

epoxide 6 with trityl thiol in the presence of n-BuLi gave the alcohol 7 with 90% yield. This step introduces the two asymmetric carbons. 
Then the deprotection followed by the in situ oxidation with iodine yielded the disulfure compound 8 as a statistical mixture of racemic 
and meso compounds with 90% yield. This mixture was finally reduced by LiAlH4 to give 2-mercaptocyclohexan-1-ol 9 with 86% yield.

19
  

Chiral HPLC over a chiral stationary phase was used to separate the disulfide intermediate 8 and enabled to isolate the two 
enantiomers (1S,1'S,2S,2'S)-(+)-8 and (1R,1'R,2R,2'R)-(-)-8 from the meso-8 compound (See SI). Then, the reduction of enantiopure 

disulfide 8 by LiAlH4 yielded (1S,2S)-(+)-9 and (1R,2R)-(-)-9  enantiomers. The specific rotation values  23

D  (Table 1) support the 

mirror-image relationship within the experimental errors (±2%). 

 

  
SCHEME 1 Synthetic pathway of racemic 2-mercaptocyclohexan-1-ol (±)-9. i) n-BuLi, Ph3CSH, THF, 0 ºC, 24 hrs, 90%; ii) I2, CH2Cl2, MeOH, 30 

min, 90%; iii) LiAlH4, THF, 50°C, Ar, 24 hrs, 86%. 
 
 
 
Synthesis of enantiopure oxorhenium complexes 
 

Finally, enantiopure oxorhenium complexes (+) and (-)-5 were prepared by simply mixing MTO and enantiopure (-)- and (+)-2-
mercaptocyclohexanol 9, respectively, in anhydrous CH2Cl2 at room temperature for 3 hours (Scheme 2). After vacuum removal of 
CH2Cl2, an easily handled red powder was observed corresponding to 5, as verified by 

1
H NMR that showed deshielding effect of the 

proton resonances of 9 after complexation. Moreover, the complexes show a good stability in the solid state and in solution and 

possess the ability to sublime at 40-60 ºC under reduced pressure (~10
-2

 Pa). 
Importantly, the presence of enantiopure ligand provides a chiral environment around the rhenium atom, although the rhenium is not 

a stereogenic center in itself. This chiral environment is confirmed by measuring the specific rotation values  23

D for (1R,2R)-(+)-5 and 

(1S,2S)-(-)-5 (+84 and -86, respectively; C = 2.75 x 10
-3

 M in CH2Cl2) and also by VCD spectroscopy data (vide infra). 

 

 

SCHEME 2. Synthesis of the enantiopure oxorhenium complexes (1S,2S)-(-)-5 and (1R,2R)-(+)-5 from MTO and enantiopure9. i) CH2Cl2, rt, 3 

hrs, quant. 

 

TABLE 1 Experimental specific rotations values (C = 3.5-4 x 10
-3 

M in CH2Cl2) 

 (1S,1'S,2S,2'S)-

(+)-8 

(1R,1'R,2R,2'R)-

(-)-8 

1S,2S-

(+)-9 

1R,2R-

(-)-9 
 

 23

D

 

 
+333 

 
-335 

 
+102 

 
-98 

 

 
VCD spectroscopy 
 

Vibrational circular dichroism is a chiroptical technique enabling to determine the absolute configuration, through comparison 
between experimental measurements and theoretical calculations.

28-30
 In addition, VCD can be a very powerful tool to study the 

dissymmetric environment around the chiral metal center.
31-33

 As seen in Figure 2, a) and b), IR spectra of the two enantiomers 
measured in CD2Cl2 coincide properly and display several bands, such as the characteristic Re=O stretching band at ~1030 cm

-1
. The 



 

 5 

experimental VCD spectra of (+)- and (-)-5 in CD2Cl2 show an overall mirror-image relationship (Figure 2, c) and d)), with, for (1R,2R)-
(+)-5 in red, strong and consecutive positive-negative VCD bands at 1344-1312 cm

-1
 respectively, and negative-positive VCD bands at 

1026-1021 cm
-1

, respectively. The band at 1026 cm
-1

 may be tentatively assigned to the Re=O stretching band and displays a 

dissymmetry factor ∆/ = 1.1x10
-4

.  Interestingly, the presence of such a VCD active band indicates a chiral environment around the 
rhenium atom, although the Re in itself is not a stereogenic element. 

The IR and VCD spectra of complex 5 were calculated and compared to the experimental data (see VCD spectra comparison in 

Figure 3). First, the structure having the (1R,2R) stereochemistry was optimized at the B3LYP / def2-TZVPP
23,24

 level of theory. Only 
one stable conformer, displayed in Figure 3 and above Table 2, was obtained, which corresponds to the cyclohexane ring adopting a 
chair conformation, with the S and O3 atoms placed in the equatorial positions. Moreover, the rhenium center is pentacoordinated, the 
C1 atom is trans to the O3 oxygen, and the Re, O3, S, C1 lie in the same plane, while the two oxo groups are symmetrically placed on 
each side of this plane. Consequently, the oxygen atoms O1 and O2 only differ in their chemical environment due to the proximity of the 
two asymmetric carbons. This structure is similar to the chiral oxorhenium complex 4 previously described by us.

18
 The VCD spectrum 

of (1R,2R)-5 was then calculated by DFT at the same B3LYP / def2-TZVPP
23,24

  level of theory and appeared to agree very well with 
the experimental one (see Figure 3), thus enabling to determine the absolute configurations (1S,2S)-(-) and (1R,2R)-(+) of the 
oxorhenium complex 5,  and to deduce the (1S,2S)-(+) and (1R,2R)-(-) absolute configurations for free ligand 9, and (1S,1'S,2S,2'S)-
(+)-8 and (1R,1'R,2R,2'R)-(-)-8 for the corresponding disulfide. 
 
 
 

 
 

FIGURE 2. Experimental a, b) IR and c, d) VCD spectra of (+)-5 (red curves) and (-)-5 (blue curves) (C = 0.055 and 0.011 M in CD2Cl2, 500 μm 

path length cells with BaF2 windows).  
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FIGURE 3. Overlay of the simulated VCD spectrum for complex (R,R)-5 (black solid line, B3LYP, scaled), and the experimental spectra (red 

and blue)  dashed lines corresponding respectively to (+)-5 and (-)-5). The B3LYP (def2-TZVPP basis) equilibrium structure of the theoretically 

studied stable conformer is also displayed. 

 

 

 
TGA/DSC Analysis 
 
 To evaluate the thermal stability of complex 5, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were 
carried out on a ~6 mg sample, at a heating rate of 5˚C/min. The thermogram shown in Figure 4 indicates that complex 5 is thermally 

stable up to nearly 136 °C. The DSC curve shows an endothermic peak at 44 °C without mass loss in the TGA curve, most probably 
corresponding to its melting point at atmospheric pressure and confirms that complex 5 may be suitable for future PV measurements 
based on molecular beam spectroscopy experiments. At 136°C, an endothermic peak is observed in the DSC curve, associated to a 

smooth mass loss in the TGA curve. This is the signature of thermal decomposition with the formation of volatile products. 
 

 

FIGURE 4. TGA (blue curve, left axis) – DSC (orange curve, right axis) of oxorhenium complex 5. Carried out in flowing dry nitrogen, ~6 mg 
sample, 5°C/min heating rate. 

PV calculations 

Relativistic calculations of PV vibrational frequency shifts of the symmetric and antisymmetric Re=O stretching modes were performed 
for both the new complex 5 and complex 4 previously studied by us

18
. Those are summarized in Table 2. Compound 4 has two 

conformations 4-c1 and 4-c2, the calculated equilibrium structures of which are displayed above Table 2. For the two conformers of 4 

the results obtained in our earlier work
18

 are reported together with new investigations. In our previous study we used the same method 
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to obtain the harmonic force field (marked as hFF in Table 2), the anharmonic contributions along the normal mode displacement 
(marked as aFF), as well as to compute the energy and the PVED along a selected normal mode coordinate. In this work we have 
varied methods/functionals to obtain 1) the normal mode coordinate displacements, 2) to compute the energy, and 3) the PVED along 
the normal mode coordinate displacements in order to assess the sensitivity of these contributions. We report values on the order of 
0.1-0.2 Hz for complex 5 and up to 0.8 Hz for complex 4, confirming earlier studies on such compounds. We observe that the computed 

PV vibrational frequency shifts vary significantly with the employed method, even changing the sign, with the HF results being generally 

larger in magnitude compared to B3LYP and PBE. The change is less pronounced when varying the method for computing the 
anharmonic contributions to the potential while keeping the harmonic force field method fixed. Changing the aFF method has a smaller 
effect for the antisymmetric stretch compared to the symmetric Re=O stretching mode.  This can be rationalized by comparing the 
harmonic frequencies with the fundamental transition frequencies obtained by the Numerov-Cooley method: the antisymmetric stretch 
seems to be less anharmonic than the symmetric stretch. In the latter case the harmonic frequency is a poorer approximation and at the 
same time the values vary more when modifying the aFF method.  We conclude this discussion by reiterating that the effect seems to 
be extremely sensitive to an accurate description of the density around the heavy center and the variation of the density with respect to 
nuclear displacements. 
 

TABLE 2. Computed harmonic and fundamental vibrational transition frequencies (in cm
-1

) of the antisymmetric and symmetric Re=O stretching 
modes for the molecules/conformers 4-c1, 4-c2, (see reference 18 for details) and 5, with corresponding 4-component DC Hamiltonian PV 

fundamental transition frequency differences. We distinguish between methods that yielded the harmonic force field (hFF), anharmonic force 
field (aFF) and methods used to compute expectation values along the normal mode coordinate displacements (PV). The B3LYP (def2-TZVPP 
basis) equilibrium structures of the species studied are also displayed. 

 

4-c1   4-c2    5 

Mole-
cule   

Vib. 
mode      

Freq. (cm
-1

)     
   

Method       
 

PV 
shift 
(Hz)   harm.    fund.       hFF     aFF     PV 

4-c1 asym      986
a
      982

a
         B3LYP   B3LYP   B3LYP    0.078

a
 

  986      982         B3LYP   B3LYP   PBE      0.166 

  986      980         B3LYP   PBE     PBE      0.163 

  951
a
    944

a
      PBE     PBE     PBE      0.195

a
 

  986      982         B3LYP   B3LYP   HF      -0.828 

  986      966         B3LYP   HF      HF      -0.833 

  1106
a
                    1102

a
      HF      HF      HF      -0.211

a
 

 sym      1022
a
     1010

a
         B3LYP   B3LYP   B3LYP    0.150

a
 

  1022     1010         B3LYP   B3LYP   PBE     0.019 

  1022     969         B3LYP   PBE     PBE     0.055 

  980
a
   968

a
       PBE     PBE     PBE     0.036

a
 

  1022     1010        B3LYP   B3LYP   HF      0.478 

  1022     1160         B3LYP   HF      HF      0.052 

  1174
a
 1165

a
 HF      HF      HF      0.344

a
 

4-c2 asym      985
a
      981

a
            B3LYP   B3LYP   B3LYP   -0.119

a
 

  985      981            B3LYP   B3LYP   PBE   -0.237 

  985                   979    B3LYP   PBE     PBE      -0.234 

  950
a
 944

a
         PBE     PBE     PBE     -0.271

a
 

  985      981         B3LYP   B3LYP   HF      0.836 

  985                     966              B3LYP   HF      HF      0.839 

  1106
a
 1102

a
      HF HF      HF      0.219

a
 

 sym      1021
a
     1010

a
         B3LYP   B3LYP   B3LYP    -0.170

a
 

  1021     1010         B3LYP   B3LYP   PBE     -0.049 

  1021     974         B3LYP   PBE     PBE     -0.086 

  979
a
   966

a
       PBE     PBE     PBE     -0.084

a
 

  1021     1010        B3LYP   B3LYP   HF      -0.708 

  1021     1138        B3LYP   HF      HF      -0.182 

  1175
a
 1165

a
 HF      HF      HF      -0.056

a
 

5 asym
b
 985      981            B3LYP   B3LYP   B3LYP   0.035 

 sym 1022     1010           B3LYP   B3LYP   B3LYP   0.125 

 

 a
 See ref. 18. 

b
 Note that this band cannot be observed in the experimental IR and VCD spectra due to strong absorption of the solvent (CD2Cl2) in this region. 

 

Toward measuring parity violation vibrational frequency differences between enantiomers of complex 5 

 We briefly summarize here the main results that have been obtained by our consortium toward measuring PV effects in chiral 

molecules by ultra-high resolution spectroscopy. Our approach is based on the 1975 suggestion by Letokhov to search for a shift DnPV = 

nL – nR in the frequencies nL and nR of the same rovibrational transition of left and right enantiomers,
34

 associated with the PVED. 
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Around 2000, the Laboratoire de Physique des Lasers, carried out such high-resolution experiments by probing a hyperfine component 

of CHFClBr 1 molecule’s C-F stretch (see Figure 1) of frequency n~30 THz (~10 μm), using saturated absorption laser 

spectroscopy.
35,36 

A world-record experimental sensitivity of 2×10
-13

, corresponding to DnPV < 8 Hz was demonstrated, limited by 

residual differential pressure shifts induced by impurities in the samples. This work then triggered theoretical studies which concluded 

that the PV shift on vibrational transitions of CHFClBr are in fact very small (~2 mHz
10,11

), but that chiral complexes of heavy metals 

studied by Schwerdtfeger, Bast and coworkers, have predicted PV shifts as large as 1 Hz.
12,13,37 

To be able to measure DnPV, we must 

thus i) improve the sensitivity of the measurement by at least an order of magnitude and ii) work with heavy-metal containing species. 
 

For the former, the proposed improvement is to perform 2-photon Ramsey interferometry on a molecular beam using ultra-stable 

lasers. This is expected to allow PV shifts to be evaluated to below 1 part in 10
15

 (a few tens of millihertz for transitions at ~30 

THz).
6,38,39

 For the production of better molecular samples, our consortium has focused on chiral rhenium complexes. This led to the 

successful production of several classes of oxorhenium compounds in enantiopure form such as complexes 2, 3, 4 and 5. Our 

calculations (references 17,18 and this work) indicate that PV shifts in species such as 3, 4 and 5 can reach several hundreds of 

millihertz, which is above the expected sensitivity attainable by Ramsey interferometry on a molecular beam.
6,38,39 

Compared to 3 and 4, 

species 5 shows an improved thermal stability and is as such particularly promising.  

To gain insight in the apparatus and know-how required for performing precise spectroscopic measurements on such complex 

species, we have conducted high resolution mid-infrared spectroscopy of the achiral precursor MTO 1, a model achiral complex that 

can be very easy sublimed, in both room temperature cells and cold supersonic beams using frequency stabilised CO2 lasers or 

quantum cascade lasers
39-42

. We have also demonstrated buffer-gas-cooling of laser-ablated gas phase MTO
42,43

 and precise 

spectroscopy in a 6 K helium buffer gas cell. This shows that organo-metallic species of interest for a PV measurement survive laser 

ablation and are thus well-suited to the generation of buffer-gas molecular beams, which, compared to their supersonic counterpart, 

generally exhibit higher fluxes and lower translational velocities, thus leading to improved resolutions. Those measurements have now 

to be repeated on chiral candidates and in particular on complex 5. On the laser side, we have recently demonstrated record frequency 

stabilities and accuracies necessary for performing Ramsey interferometry with both CO2 lasers (typically used in this region for precise 

spectroscopy) and quantum cascade lasers.
41,44,45

 Quantum cascade lasers cover the entire mid-infrared and are far more tuneable 

than CO2 lasers, and will thus allow in the near future many more candidate chiral species to be studied. 

Note that we have recently found a uranium compound (NUHFI) with a record ~20 Hz predicted PV frequency shift.
46

 Although 

synthesizing and isolating such compounds has not been demonstrated so far, this could be possible in the future.  

Conclusion 

We have prepared a new chiral oxorhenium complex, (1S,2S)-(-) and (1R,2R)-(+)-5, which may be considered as a new candidate 
species for a parity violation measurement. Although the rhenium center is not chiral, its chiral environment has been characterized by 
VCD spectroscopy. For the last five years, we have carried out ultra-high resolution vibrational spectroscopy of rhenium complexes and 
believe that it may be used for PV measurements. Relativistic quantum chemical calculations predict PV vibrational frequency shifts of 
a few hundreds of millihertz for complexes such as 5, above the sensitivity attainable via precise spectroscopic measurements.  
Progresses on both spectroscopic measurements and the synthesis of new chiral transition metal complexes are ongoing. 
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