François Cuvelier 
email: cuvelier@math.univ-paris13.fr
  
Gilles 
  
Gilles Scarella 
email: gilles.scarella@unice.fr.
  
Vectorized algorithms for regular tessellations of d-orthotopes and their faces

Keywords: d-simplices, 3, 5 m-faces tessellations of a d-orthotope with d-simplices

published or not. The documents may come    

Vectorized algorithms for regular tessellations of d-orthotopes and their faces

There are many tools for generating conformal meshes in 2 or 3 dimension such as GMSH , Open CASCADE, ... They can be used, for example, to solve boundary value problems in 2D or 3D by nite element methods. In [START_REF] Cuvelier | An ecient way to assemble nite element matrices in vector languages[END_REF], vectorized algorithms are proposed to calculate some assembly matrices obtained by the P 1 -Lagrange nite element method. These algorithms are written in any dimension and they have been implemented in Matlab/Octave, Python, C++, CUDA. Subsequently, complete codes were written to solve boundary value problems (B.V.P.) in any space dimension ( [6] for Matlab, [START_REF] Cuvelier | fc_vfemP 1 : a object-oriented Octave package to solve scalar and vector boundary[END_REF] for Octave and [START_REF] Cuvelier | fc_vfemP 1 : a object-oriented Python package to solve scalar and vector boundary[END_REF] for python). To test these codes for dimensions greater than 3 we need simplicial meshes in dimension 4, 5, ... To our knowledge, mesh generation tools in dimensions greater than 3 are not available so we decided to write one for the simplest geometry: an d-orthotope (also called hyperrectangle or a box).

The objective of this paper is therefore to propose vectorized algorithms to build regular tessellations of a d-orthotope made up by orthotopes in section 2 and by simplicials in section 3 To solve BVP we also need to know precisely all the meshes of the faces that are part of the d-orthotope. That is why we will develop, in each section, techniques to recover all the meshes associated to the m-faces of the d-orthotope, 0 ď m ď d. In section 4, the performances of these vectorized algorithms are measured with Matlab 2017a, Octave 4.2.1 and Python 3.6.3 to validate their eciency. But rst of all, we recall some usual notations and denitions. [START_REF] Bey | Simplicial grid renement: on freudenthal's algorithm and the optimal number of congruence classes[END_REF] 

Denitions and notations

In this part, we characterize the basic geometric elements that will be used later on. Some of their properties are recalled. But before we specify notations commonly used in this paper to dene set of integers: vi, jw def " ti, ¨¨¨, ju, vi, jv def " ti, ¨¨¨, j ´1u, wi, jw def " ti `1, ¨¨¨, ju, wi, jv def " ti `1, ¨¨¨, j ´1u.

1.1

d-orthotope and d-hypercube

We rst recall the denitions of a d-orthotope and a d-hypercube given in [START_REF] Coxeter | Regular Polytopes. Dover books on advanced mathematics[END_REF]. Denition 1 In geometry, a d-orthotope (also called a hyperrectangle or a box) is the generalization of a rectangle for higher dimensions, formally dened as the Cartesian product of intervals.

Denition 2 A d-orthotope with all edges of the same length is a d-hypercube.

A d-orthotope with all edges of length one is a unit d-hypercube.

The hypercube r0, 1s d is called the unit reference d-hypercube.

The m-orthotopes on the boundary of a d-orthotope, 0 ď m ď d, are called the m-faces of the d-orthotope.

The number of m-faces of a d-orthotope is

E m,d " 2 d´m ˆd m ˙where ˆd m ˙" d! m!pd ´mq! (1) 
t0u ˆt0u ˆt0u, t1u ˆt0u ˆt0u, t0u ˆt1u ˆt0u, t0u ˆt0u ˆt1u, t1u ˆt1u ˆt0u, t1u ˆt0u ˆt1u, t0u ˆt1u ˆt1u, t1u ˆt1u ˆt1u.

We represent in Figure 1 all the m-faces of a 3D hypercube. In Table 1 is given the number of m-faces for m P v0, dw and d P v0, 6w. The identication/numbering of the m-faces is given in section2.3.

@ 2 ! 1 @ 2 ! 2 @ 2 ! 3 @ 2 ! 4 @ 2 ! 5 @ 2 ! 6 @ 2 ! 7 @ 2 ! 8 @! @! @! @! @! @! @! @! @! @! 10 @! 11 @! 12 ! 1 ! 2 ! 3 ! 4 ! 5 ! 6
1.2 d-simplex Denition 3 In geometry, a simplex (plural: simplexes or simplices) is a generalization of the notion of a triangle or tetrahedron to arbitrary dimensions. Specically, a d-simplex is a d-dimensional polytope which is the convex hull of its d `1 vertices. More formally, suppose the d `1 points q q q 0 , . . . , q q q d P R d are anely independent, which means q q q 1 ´q q q 0 , . . . , q q q d ´q q q 0 are linearly independent.

Then, the simplex determined by them is the set of points C " tθ 0 q q q 0 `¨¨¨`θ d q q q d |θ i ě 0, 0 ď i ď d,

d ÿ i"0 θ i " 1u.
For example, a 2-simplex is a triangle, a 3-simplex is a tetrahedron, and a 4simplex is a 5-cell. A single point may be considered as a 0-simplex and a line segment may be considered as a 1-simplex. A simplex may be dened as the smallest convex set which contain the given vertices.

Denition 4 Let q q q 0 , . . . , q q q d P R d be the d `1 vertices of a d-simplex K and D K be the pd `1q-by-pd `1q matrix dened by D K " ¨q q q 0 . . . q q q d 1 . . . 1 

‹ ‹ ' The d-simplex K is ' degenerated if det D K " 0, ' positive oriented if det D K ą 0, ' negative oriented if det D K ă 0.
S m,d " ˆd `1 m `1˙( 2)
We give in The unit d-dimensional hypercube p H " r0, 1s d has n " 2 d vertices. Each vertex can be identied by a d-tuple ı ı ı " pı ı ı 1 , ı ı ı 2 , ¨¨¨, ı ı ı d q P v0, 1w d and we denote by x x x ı ı ı " px x x ı ı ı 1 , . . . , x x x ı ı ı d q t P R d the vertex dened by

x x x ı ı ı l " ı ı ı l , @l P v1, dw.

Let L be the function that mapping all the d-tuples ı ı ı P v0, 1w d into v1, 2 d w dened by

Lpı ı ıq " 1 `d ÿ l"1 2 l´1 ı ı ı l . (3) 
We can note that Lpı ı ıq ´1 has for binary representation pı ı ı d ı ı ı d´1 ¨¨¨ı ı ı 1 q 2 . Let p q q q be the d-by-2 d array containing all the vertices of p H and dened by p q q qp:, jq def " x x x L -1 pjq , @j P v1, 2 d w.

where p q q qp:, jq denotes the j-th column of the array p q q q. For example, with d " 3, the array p q q q is given by

p q q q def " » - 0 1 0 1 0 1 0 1 0 0 1 1 0 0 1 1 0 0 0 0 1 1 1 1 fi fl
This array can be obtained from the more general function CartesianGrid-Points , introduced in section 2.2.1 and described in Appendix B, by using p q q q Ð CartesianGridPointspOnesp1, dqq

In Figure 2, the numbering of the vertices is represented in 2 and 3 dimensions. Let N N N " pN 1 , . . . , N d q P pN ˚qd . We denote by Q N N N the cartesian grid of v0, N 1 w v0, N d w. The cartesian grid Q N N N is composed of n q grid points and n me unit d-hypercubes where

n q " d ź l"1 pN l `1q and n me " d ź l"1 N l . (4) 
The objective of this section is to describe the construction of the vertices (or points) array q q q (section 2.2.1) and the connectivity array me me me associated with this cartesian grid (section 2.2.2). More precisely,

• q q qpν, jq is the ν-th coordinate of the j-th vertex, ν P t1, . . . , du, j P t1, . . . , n q u. The j-th vertex will be also denoted by q q q j " q q qp:, jq.

• me me mepβ, kq is the storage index of the β-th vertex of the k-th element (unit hypercube), in the array q, for β P t1, ..., 2 d u and k P t1, . . . , n me u. So q q qp:, me me mepβ, kqq represents the coordinates of the β-th vertex in the k-th cartesian grid element.

We represent in Figure 3 two cartesian grids with the numbering of the n me unit d-hypercubes. For example, on the left gure (d " 2), the 5-th unit hypercube is given by the vertices of numbers 6, 7, 10, 11 and so me me mep:, 5q " p6, 7, 10, 11q. On the right gure (d " 3), for the 9-th hypercube, we have me me mep: , 9q " p16, 17, 19, 20, 28, 29, 31, 32q. Figure 3: In blue, vertices of cartesian Grid in R d with their indices in q q q array, d " 2 and N 1 " 3, N 2 " 4 (left), d " 3 and pN 1 , N 2 , N 3 q " p2, 3, 3q (right). The red numbers are the indices of unit hypercubes in the array me me me.

Points of the cartesian grid

The grid points may be identied by a d-tuple ı ı ı " pi 1 , i 2 , ¨¨¨, i d q P v0, N 1 wˆ¨¨¨v 0, N d w and the corresponding grid point denoted by x x x ı ı ı with integer coordinates is given by

x x x ı ı ı " d ÿ l"1
i l e e e rls " pi 1 , i 2 , ¨¨¨, i d q t " ı ı ı

where e e e r1s , . . . , e e e rds ( denotes the standard basis of R d . We want to store all the grid points in a 2D-array q q q of size d-by-n q . To dene an order of storage in the array q q q, we will use the mapping function

G Gpı ı ıq " 1 `d ÿ l"1 i l β l " 1 `xı ı ı, β β βy , @ı ı ı P v0, N 1 w ˆ¨¨¨ˆv0, N d w (6) 
where β β β " pβ 1 , . . . , β d q P N d and

β l " l´1 ź j"1
pN j `1q, @l P v1, dw.

The G function maps the tuple points set v0, N 1 w ˆ¨¨¨ˆv0, N d w to the global points index set v1, n q w. From this function, we dene the vertex array q q q as q q qp:, Gpı ı ıqq " x x x ı ı ı " ı ı ı, @ı ı ı P v0, N 1 w ˆ¨¨¨ˆv0, N d w

According to the numbering choice G, we give in Algorithm 1 the vectorized function CartesianGridPoints which returns the array q q q. In Appendix B, we explain how this function was written Algorithm 1 Function CartesianGridPoints : computes the d-by-n q array q q q which contains all the points of the cartesian grid Q N N N (vectorized version)

Input :

N N N : array of d integers, N N N piq " N i .

Output : q q q : array of d-by-n q integers. Function q q q Ð CartesianGridPoints (N N N )

β β β Ð CGbetapN N N q for r Ð 1 to d do A A A Ð ReshapepRepTilepr0 : N N N prqs, β β βprq, 1q, 1, pN N N prq `1qβ β βprqq q q qpr, :q Ð RepTilepA A A, 1, ProdpN N N pr `1 : dq `1qq
end for end Function

The function CGbeta used in previous algorithm computes the β l , @l P v1, dw, by using [START_REF] Cuvelier | fc_vfemP 1 : a object-oriented Octave package to solve scalar and vector boundary[END_REF]. This function is given in Algorithm 2.

Algorithm 2 Function CGbeta : Computes β l , @l P v1, dw, dened in [START_REF] Cuvelier | fc_vfemP 1 : a object-oriented Octave package to solve scalar and vector boundary[END_REF] Input :

N N N : array of d integers, N N N piq " N i .

Output :

β β β : array of d integers such that β β βplq " β l dened in [START_REF] Cuvelier | fc_vfemP 1 : a object-oriented Octave package to solve scalar and vector boundary[END_REF] Function

β β β Ð CGbeta (N N N ) β β βp1q Ð 1 for l Ð 2 to d do β β βplq Ð β β βpl ´1q ˆpN N N pl ´1q `1q
end for end Function

From the array q q q dened in (8), we can now construct the tessellation of the cartesian grid Q N N N with unit d-hypercubes.

Connectivity array of a cartesian grid

The d-dimensional cartesian grid Q N N N can be partitioned in n me unit d-hypercubes which have as vertices the cartesian grid points. All these unit hypercubes can be uniquely identied by their vertex of minimal coordinates.

Let ı ı ı P v0, N 1 vˆ¨¨¨ˆv0, N d v. We denote by H ı ı ı the unit hypercube dened by its 2 d vertices x x x ı ı ı`p p p , @p p p P v0, 1w d .

We want to build the connectivity array me me me of dimensions 2 d -by-n me such that me me mepl, kq is the index in array q q q of the l-th vertex of the k-th hypercube : this vertex is q q qp:, me me mepl, kqq. To dene an order of storage of the hypercubes in the array me me me, we will use the function H dened by

Hpı ı ıq " 1 `d ÿ l"1 i l l´1 ź j"1 N j , ı ı ı P v0, N 1 vˆ¨¨¨ˆv0, N d v (9) 
This bijective function maps the tuple points set v0, N 1 vˆ¨¨¨ˆv0, N d v to the global points index set v1, n me w such that k " Hpı ı ıq.

The inverse function H -1 can easily be built. Indeed, if we dene the d-byn me array Hinv Hinv Hinv by Hinv Hinv Hinv Ð CartesianGridPointspN N N ´1q.

then by construction we have H -1 pkq " Hinv Hinv Hinvp:, kq, @k P v1, n me w Let k P v1, n me w and ı ı ı " H -1 pkq. The k-th hypercube is H ı ı ı and x x x ı ı ı is its vertex of minimal coordinates. By construction of array q q q we have x x x ı ı ı " q q qp:, Gpı ı ıqq From vector β β β dened in [START_REF] Cuvelier | fc_vfemP 1 : a object-oriented Octave package to solve scalar and vector boundary[END_REF], we have Gpı ı ıq " 1 `xı ı ı, β β βy . Using matricial operations we can dene the 1-by-n me array iBase iBase iBase by iBase iBase iBase Ð β β β t ˚Hinv Hinv Hinv `1 such that Gpı ı ıq " G ˝H-1 pkq " iBase iBase iBasepkq.

Let ı ı ı P v0, N 1 vˆ¨¨¨ˆv0, N d v and k " Hpı ı ıq. We choose vertices local numbering in the k-th hypercube to be identical with that described ine section 2.1. That is why we take q q qp:, me me mepl, kqq " x x x ı ı ı `p q q qp:, lq " x x x ı ı ı`p q q qp:,lq where p q q q is dened in section 2.1. So we obtain me me mepl, kq " Gpı ı ı `p q q qp:, lqq

Lemma 6 Let ı ı ı P Q N N N and p p p P Z d , such that ı ı ı `p p p P Q N N N . We have Gpı ı ı `p p pq " Gpı ı ıq `xp p p, β β βy [START_REF] Weiss | Diamond-Based Models for Scientic Visualization[END_REF] where β β β is dened in [START_REF] Cuvelier | fc_vfemP 1 : a object-oriented Octave package to solve scalar and vector boundary[END_REF].

Proof: We have

Gpı ı ı `p p pq def " 1 `d ÿ s"1 pi s `pl q s´1 ź j"1 pN j `1q " 1 `d ÿ s"1 i s s´1 ź j"1 pN j `1q `d ÿ s"1 p s s´1 ź j"1 pN j `1q " Gpı ı ıq `d ÿ s"1 p s β s .
˝From Lemma 6 and denition of β β β in [START_REF] Cuvelier | fc_vfemP 1 : a object-oriented Octave package to solve scalar and vector boundary[END_REF], we obtain Gpı ı ı `p q q qp:, lqq " Gpı ı ıq `d ÿ s"1 p q q qps, lqβ s " Gpı ı ıq `xp q q qp:, lq, β β βy From (11), we have me me mepl, kq Ð iBase iBase iBasepkq `xp q q qp:, lq, β β βy , @l P v1, dw or in a vectorized form me me mepl, :q Ð iBase iBase iBase `xp q q qp:, lq, β β βy So we can easily write the function CGTessHyp in Algorithm 3 which computes the q q q and me me me arrays.

Algorithm 3 Function CGTessHyp : computes the vertices array q q q and the connectivity array me me me obtained from a tesselation of the cartesian grid Q N N N with unit hypercube.

Input :

N N N : array of d integers, N N N piq " N i .

Output : q q q : vertices array of d-by-n q integers. me me me : connectivity array of 2 d -by-N h integers. me me mepl, kq is the index in array q q q of the l-th vertex of the k-th hypercube : this vertex is q q qp:, me me mepl, kqq.

Function rq q q, me me mes Ð CGTessHyp (N N N )

q q q Ð CartesianGridPointspN N N q Hinv Hinv Hinv Ð CartesianGridPointspN N N ´1q p q q q Ð CartesianGridPointspOnesp1, dqq β β β Ð CGbetapN N N q iBase iBase iBase Ð β β β t ˚Hinv Hinv Hinv `1
for l Ð 1 to 2 d do me me mepl, :q Ð iBase iBase iBase `xβ β β, p q q qp:, lqy end for end Function So if l P v1, dw is the index of a reduced dimension then vertices x x x ı ı ı p" ı ı ı " pi 1 , . . . , i d qq is such that i l " 0 (minimum value) or i l " 1 (maximum value).

Let L rd,ms be the n c -by-pd ´mq array given by L rd,ms Ð Combspv1, dw, d ´mq.

Then each row of L rd,ms contains the index of the d ´m reduced dimensions of an m-face sorted by lexicographical order (see Combs function description in Appendix A) Let S rd´ms be the pd ´mq-by-2 d´m array given by

S rd´ms Ð CartesianGridPointspOnesp1, d ´mqq.
This array contains all the possible choices of the constants for the d´m reduced dimensions (2 choices per dimension) : values are 0 for constant minimal value or 1 for maximal value.

Denition 7 Let l P v1, n c w, r P v1, 2 d´m w and k " 2 d´m pl ´1q `r. The k-th m-faces of the unit reference d-hypercube is dened by ! x x x P r0, 1s d such that x x xpL rd,ms pl, sqq " S rd´ms ps, rq, @s P v1, d ´mw

)
or in a vectorized form ! x x x P r0, 1s d such that x x xpL rd,ms pl, :qq " S rd´ms p:, rq

) (13)
For example, to obtain the ordered 2-faces of the unit 3-hypercube we compute

L r3,2s " ¨1 2 3
' and S r1s " `0 1 ȃnd then we have 2-face number Set

1 x x x P r0, 1s 3 such that x 1 " 0 ( 2 x x x P r0, 1s 3 such that x 1 " 1 ( 3 x x x P r0, 1s 3 such that x 2 " 0 ( 4
x x x P r0, 1s 3 such that x 2 " 1 ( 5

x x x P r0, 1s 3 such that x 3 " 0 ( 6

x x x P r0, 1s 3 such that x 3 " 1 (

To obtain the ordered 1-faces of the unit 3-hypercube we compute

L r3,1s " ¨1 2 1 3 2 3
' and S r2s " ˆ0 1 0 1 0 0 1 1 and then we have 1-face number Set

1 x x x P r0, 1s 3 such that x 1 " 0, x " 0 ( 2 x x x P r0, 1s 3 such that x 1 " 1, x " 0 ( 3 x x x P r0, 1s 3 such that x 1 " 0, x " 1 ( 4
x x x P r0, 1s 3 such that x 1 " 1, x " 1 ( 5

x x x P r0, 1s 3 such that x 1 " 0, x " 0 ( 6

x x x P r0, 1s 3 such that x 1 " 1, x " 0 ( 7

x x x P r0, 1s 3 such that x 1 " 0, x " 1 ( 8

x x x P r0, 1s 3 such that x 1 " 1, x " 1 ( 9

x x x P r0, 1s 3 such that x 2 " 0, x " 0 ( 10 x x x P r0, 1s 3 such that x 2 " 1, x " 0 ( 11 x x x P r0, 1s 3 such that x 2 " 0, x " 1 ( 12

x x x P r0, 1s 3 such that x 2 " 1, x " 1 (

To obtain the ordered 0-faces of the unit 3-hypercube we compute

L r3,0s " `1 2 3 ˘and S r3s " ¨0 1 0 1 0 1 0 1 0 0 1 1 0 0 1 1 0 0 0 0 1 1 1 1
' and then we have

1-face number Set 1 x x x P r0, 1s 3 such that x 1 " 0, x 2 " 0, x 3 " 0 ( 2
x x x P r0, 1s 3 such that x 1 " 1, x 2 " 0, x 3 " 0 ( 3 x x x P r0, 1s 3 such that x 1 " 0, x 2 " 1, x 3 " 0 ( 4

x x x P r0, 1s 3 such that x 1 " 1, x 2 " 1, x 3 " 0 ( 5

x x x P r0, 1s 3 such that x 1 " 0, x 2 " 0, x 3 " 1 ( 6

x x x P r0, 1s 3 such that x 1 " 1, x 2 " 0, x 3 " 1 ( 7

x x x P r0, 1s 3 such that x 1 " 0, x 2 " 1,

x 3 " 1 ( 8 x x x P r0, 1s 3 such that x 1 " 1, x 2 " 1, x 3 " 1 ( 2.4
m-faces tessellations of a cartesian grid Let Q N N N be the d-dimensional cartesian grid dened in section 2.2. So as not to confuse notations, we denote by Q N N N .q q q and Q N N N .me me me respectively the vertices and connectivity arrays of the tessellation with unit hypercubes of the cartesian grid

Q N N N .
Let m P v0, dv and k P v1, E m,d w. We want to determine Q m N N N pkq the tessellation obtained from the restriction of the cartesian grid Q N N N to its k-th m-face where the numbering of the m-faces is specied in section 2.3. We denote by ' Q m N N N pkq.q q q, the (local) vertex array

' Q m N N N pkq.me me me, the (local) connectivity array ' Q m N N N pkq.toGlobal, the global indices such that Q m N N N pkq.q q q " Q N N N .q q qp:, Q m N N N pkq.toGlobalq.
By construction, Q m N N N pkq is the tessellation of an m-hypercube in R d with unit m-hypercubes .

Let l P v1, n c w, r P v1, 2 d´m w and k " 2 d´m pl´1q`r. The cartesian grid point x x x " px 1 , . . . , x d q is on the k-th m-face Q m N N N pkq if and only if for all s P v1, d ´mw and with j " L rd,ms pl, sq we have x j " " 0 if S rd´ms ps, rq "" 0, (minimum value) N j otherwise pS rd´ms ps, rq "" 1q, (maximum value) So we obtain

x j " N j ˆSrd´ms ps, rq or, in a vectorized form using element-wise multiplication operator .. . ˚:

x x xpL rd,ms pl, :qq " N N N pL rd,ms pl, :qq .. . ˚Srd´ms p:, rq.

Denition 8 Let l P v1, n c w, r P v1, 2 d´m w and k " 2 d´m pl ´1q `r. Then, the k-th m-faces of the cartesian grid Q N N N is dened as the set 

S rds

So we obtain

Q 0 N N N pkq.q q q " Qp:, kq Q 0 N N N pkq.me me me " 1 Q 0 N N N pkq.toGlobal " xβ β β, Qp:, kqy `1 2.4.2 Case m ą 0
Let l P v1, n c w, r P v1, 2 d´m w and k " 2 d´m pl ´1q `r. To construct Q m N N N pkq we rst set a tessellation without the m constant dimensions given in idc idc idc " Lpl, :q (i.e. only with nonconstant dimensions in idnc idnc idnc " v1, dwzidc idc idc): rq q q w , me me me w s Ð CGTessHyppN N N pidnc idnc idncqq

The dimension of the array q q q w is m-by-n l q where n l q " ź iPidnc idnc idnc pN i `1q. Then the nonconstant rows are Q m N N N pkq.q q qpidnc idnc idncpiq, :q Ð q q q w pi, :q, @i P v1, mw and the constants rows Q m N N N pkq.q q qpidc idc idcpiq, :q Ð N N N pidc idc idcpiqq ˚Srd´ms pi, rq ˚Onesp1, n l q q, @i P v1, d ´mw

In a vectorized way, we have Q m N N N pkq.q q qpidnc idnc idnc, :q Ð q q q w Q m N N N pkq.q q qpidc idc idc, :q Ð ´N N N pidc idc idcq t .. . ˚Srd´ms p:, rq ¯˚Onesp1, n l q q

We immediately have the connectivity array Q m N N N pkq.me me me " me me me w .

There still remains to compute Q m N N N pkq.toGlobal. For that we use the mapping function G dened in section 2.2.1 and more particularly [START_REF] Cuvelier | fc_vfemP 1 : a object-oriented Python package to solve scalar and vector boundary[END_REF]. Indeed, for all j P v1, n l q w, we can identify the point Q m N N N pkq.q q qp:, jq by the d-tuple ı ı ı and use it with the mapping function G to obtain the index in array Q N N N .q q q of the point Q m N N N pkq.q q qp:, jq. So we have ı ı ı " Q m N N N pkq.q q qp:, jq " Q N N N .q q qp:, Gpı ı ıqq and then Q m N N N pkq.toGlobalpjq " GpQ m N N N pkq.q q qp:, jqq. In a vectorized way, we set

Q m N N N pkq.toGlobal Ð 1 `β β β t ˚Qm N N N pkq.q q q
with the vector β β β dened in [START_REF] Cuvelier | fc_vfemP 1 : a object-oriented Octave package to solve scalar and vector boundary[END_REF]. One can also compute the connectivity array of Q m N N N pkq associated with global vertices array Q N N N .q q q which is given by Q m N N N pkq.toGlobalpme me me w q. We give in Algorithm 4 the function CGTessFaces which computes Q m N N N pkq, @k P v1, 2 d´m n c w.

Algorithm 4 Function CGTessFaces : computes all m-faces tessellations of the cartesian grid Q N N N with unit m-hypercubes.

Input :

N N N : 1-by-d array of integers, N N N piq " N i . m : integer, 0 ď m ă d Output : Q m N N N
: array of tessellations of all m-faces of the cartesian grid

Q N N N . Its length is E m,d " 2 d´m ˆd m ˙. Function sQ N N N Ð CGTessFaces (N N N , m) β β β Ð CGbetapN N N q if m "" 0 then Q Ð DiagpN N N q ˚CartesianGridPointspOnesp1, dqq for k Ð 1 to 2 d do Q m N N N pkq.q q q Ð Qp:, kq Q m N N N pkq.me me me Ð 1 Q m N N N pkq.toGlobal Ð 1 `xβ β β, Qp:, kqy end for else n c Ð ˆd m L Ð Combspv1, dw, d ´mq S Ð CartesianGridPointspOnesp1, d ´mqq k Ð 1
for l Ð 1 to n c do idc idc idc Ð Lpl, :q idnc idnc idnc Ð v1, dwzidc idc idc rq q q w , me me me w s Ð CGTessHyppN N N pidnc idnc idncqq n l q Ð ś m s"1 pN N N pidnc idnc idncpsqq `1q Ź or length of q q q w for r Ð 1 to 2 d´m do Q m N N N pkq.q q qpidnc idnc idnc, :q Ð q q q w Q m N N N pkq.q q qpidc idc idc, :q Ð `N N N pidc idc idcq t .. . ˚Sp:, rq ˘˚Onesp1,

n l q q Q m N N N pkq.me me me Ð me me me w Q m N N N pkq.toGlobal Ð 1 `β β β t ˚Qm N N N pkq.q q q k Ð k `1
end for end for end if end Function To construct a regular grid on O d with N i `1 points in e e e ris direction, i P v1, dw, we use an ane transformation of the cartesian grid Q N N N " v0, N 1 w ˆ¨¨¨ˆv0, N d w to O d . Let a a a " pa 1 , . . . , a d q, b b b " pb 1 , . . . , b d q and h h h " ph 1 , . . . , h d q with h i " pb i ´ai q{N i be three vectors of R d . Let H P M d pRq be the diagonal matrix with h h h as diagonal. Then the ane transformation is given by

A : Q N N N ÝÑ O d x x x Þ ÝÑ y y y " a a a `Hx x x
Let N N N Ð rN 1 , . . . , N d s. The tessellation of the cartesian grid Q N N N is obtained by rq q q, me me mes

Ð CGTessHyppN N N q
To obtain the tessellation of the orthotope O d we only have to apply the ane transformation A to array q q q. In a vectorized form, one can write for all i P v1, dw q q qpi, :q Ð a a apiq `pb b bpiq ´a a apiqq{N N N piq ˚q q qpi, :q

This operation is done by the function boxMapping given in Algorithm 5.

Algorithm 5 Function boxMapping : mapping points of the cartesian grid

Q N N N to the d-orthotope ra 1 , b 1 s ˆ¨¨¨ˆra d , b d s
Input :

N N N : array of d integers, N N N piq " N i . q q q : d-by-n q array of integer obtained from rq q q, me me mes Ð CGTessHyppN N N q a a a, b b b : arrays of d reals, a a apiq " a i , b b bpiq " b i with a i ă b i Output : q q q : vertices array of d-by-n q reals. Function q q q Ð boxMapping (q q q, a a a, b b b, N N N ) for i Ð 1 to d do h Ð pb b bpiq ´a a apiqq{N N N piq q q qpi, :q Ð a a apiq `h ˚q q qpi, :q end for end Function

The function OrthTessOrth , which returns the arrays q q q and me me me corresponding to the regular tessellation of O d with d-orthotopes, is presented in Algorithm 6. q q q : array of d-by-n q reals. me me me : array of 2 d -by-n me integers.

Algorithm 6 Function

Function rq q q, me me mes Ð OrthTessOrth (N N N , a a a, b b b) rq q q, me me mes Ð CGTessHyppN N N q q q q Ð boxMappingpq q q, a a a, b b bq end Function

m-faces tessellations of a d-orthotope

As seen in section 2.5, we only have to apply the function boxMapping to each array Q m N N N pkq.q q q of the tessellations of the m-faces of the cartesian grid Q N N N . This is the object of the function OrthTessFaces given in Algorithm 7. Function

sO h h h Ð OrthTessFaces (N N N , a a a, b b b, m) sO h h h Ð CGTessFacespN N N , mq
for k Ð 1 to lenpsO h h h q do sO h h h pkq.q q q Ð boxMappingpsO h h h pkq.q q q, a a a, b b b, N N N q end for end Function

Tessellation with d-simplices

The goal of this section is to obtain a conforming triangulation or tessellation of a d-orthotope named O d with d-simplices. The basic principle selected here is to start from a tesselation of a cartesian grid with unit hypercubes as obtained in section 2.2. Then by using the Kuhn's decomposition of an hypercube in simplices, we build in section 3.2 a tesselation of a cartesian grid with simplices and we explain how to obtain all its m-faces in section 3.3. Finally, ...

Kuhn's decomposition of a d-hypercube

Kuhn's subdivision (see [START_REF] Bey | Simplicial grid renement: on freudenthal's algorithm and the optimal number of congruence classes[END_REF][START_REF] Kuhn | Some combinatorial lemmas in topology[END_REF][START_REF] Weiss | Diamond-Based Models for Scientic Visualization[END_REF]) is a good way to divide a d-hypercube into d-simplices (d ě 2). We recall that a d-simplex is made of pd `1q vertices. Denition 9 Let H " r0, 1s d be the unit d-hypercube in R d . Let e e e r1s , . . . , e e e rds be the standard unit basis vectors of R d and denote by S d the permutation group of v1, dw. For all π P S d , the simplex K π has for vertices tx x x r0s π , . . . , x x x rds π u dened by x x x r0s π " p0, . . . , 0q t , x x x rjs π " x x x rj´1s π `e e e rπpjqs , @j P v1, dw.

The set KpHq dened by

KpHq " tK π | π P S d u (17) 
is called the Kuhn's subdivision of H and its cardinality is d!.

For example, we give in Figure 4 the Kuhn'subdivision of an d-hypercube with d " 2 and d " 3. We choose the positive orientation for all the d simplices. The corresponding vertex array q q q and the connectivity array me me me are given by (préciser comment me me me est ordonné): Let K ref be the base simplex or reference simplex with vertices denoted by tx x x r0s , . . . , x x x rds u and such that x x x r0s " p0, . . . , 0q t , x x x rjs " x x x rj´1s `e e e rjs , @j P v1, dw.

' for d " 2, q q q " ˆ0 1 0 1 0 0 1 1 ˙, me me me " ¨4 1 3 2 1 4 ' ' for d " 3, q q q " ¨0 1 0 1 0 1 0 1 0 0 1 1 0 0 1 1 0 0 0 0 1 1 1 1 ', me me me " ¨1 8 
(18)

Let π P S n and πpx x xq indicate the application of permutation π to the coordinates of vertex x x x. The vertices of the simplex K π dened in (16) can be derived from the reference simplex K ref by

x x x rjs π " πpx x x rjs q, @j P v0, dw. 1. 0 d and 1 d are common vertices of all elements K π P KpHq.

2.

KpHq is a consistent/conforming triangulation of H.

3.

KpHq is compatible with translation, i.e., for each vector v v v P v0, 1w d the union of KpHq and Kpv v v `Hq is a consistent/conforming triangulation of the set H Y pv v v `Hq.

4. For any ane transformation F, the Kuhn's triangulation of FpHq is dened by KpFpHqq def " FpKpHqq.

To explicitly obtain a Kuhn's triangulation KpHq of the unit d-hypercube H we must build the connectivity array, denoted by me me me, associated with the vertex array q q q. The dimension of the array me me me is pd `1q-by-d!.

Let q q q ref be the d-by-pd`1q array of vertex coordinates of reference d-simplex K ref : q q q ref " ¨x x x r0s x x x r1s . . . . . . x x x rds '" Let P P P be the d-by-d! array of all permutations of the set v1, dw and π " P P Pp:, kq the k-th permutation. The array P P P is obtained by using the function Perms dened in Appendix A.2. We use ( 19) and (20) to build the vertices of K π . So the j-th vertex of K π is given by x x x rj´1s π Ð q q q ref pP P Pp:, kq, jq To nd which column in array q q q corresponds to x x x rj´1s π we use the mapping function L dened in (3) and we set me me mepj, kq Ð Lpq q q ref pP p:, kq, jqq " C ¨20 . . .

d´1

‹ ', q q q ref pP P Pp:, kq, jqq G `1

If the k-th d-simplex has a negative orientation, one can permute the index of the rst and the last points to obtain a positive orientation: me me mep1, kq Ø me me mepd `1, kq.

In Algorithm 8, we give the function KuhnTriangulation which returns the points array q q q and the connectivity array me me me where all the d-simplices have a positive orientation. q q q : vertices array of d-by-2 d integers. me me me : connectivity array of pd `1q-by-d! integers 1: Function rq q q, me me mes Ð KuhnTriangulation (d) 2:

q q q Ð CartesianGridPointspOnesp1, dqq 3: me me mepj, kq Ð dotpa a a, q q q ref pP P Pp:, kq, jqq `1 From this tesselation of the unit reference d-hypercube, we will see how to get a regular tessellation of a cartesian grid with simplices.

q q q ref Ð ¨0 1 . . . .

3.2

Cartesian grid tesselation with simplices Let Q N N N be the d-dimensional cartesian grid dened in section 2.2. As before, so as not to confuse notations, we denote by Q N N N .q q q and Q N N N .me me me respectively the vertices and connectivity arrays of the cartesian grid Q N N N . There are N h " ś d i"1 N i unit hypercubes in this tessellation. Let I " v0, N 1 vˆ. . . ˆv0, N d v. We have

Q N N N " ď ı ı ıPI H ı ı ı
where H ı ı ı is the unit hypercube with x x x ı ı ı " ı ı ı vertex of minimal coordinates. From Lemma 10, the triangulation

T N N N " ď ı ı ıPI KpH ı ı ı q
is a conforming triangulation of Q N N N with n me " d! ˆNh d-simplices and by construction the vertices of T N N N are the vertices of Q N N N :

T N N N .q q q " Q N N N .q q q.

It thus remains to calculate the connectivity array me me me of T N N N also denoted by T N N N .me me me. This is a pd `1q-by-n me array. For a given hypercube H ı ı ı we store consecutively in the array me me me, the d! simplices given by KpH ı ı ı q The Kuhn's triangulation for the reference hypercube r0, 1s d can be obtained from the function KuhnTriangulation : rq q q K , me me me K s Ð KuhnTriangulationpdq Let ı ı ı P I and k " Hpı ı ıq where H is dened by [START_REF] Cuvelier | An ecient way to assemble nite element matrices in vector languages[END_REF]. Let l P v1, d!w. We choose to store the l-th simplex of KpH ı ı ı q in me me mep:, d!pk ´1q `lq.

Let j P v1, d `1w. The j-th vertex of the l-th simplex of KpH ı ı ı q is stored in q q qp:, me me mepj, d!pk ´1q `lqq and its coordinates are given by x x x ı ı ı `q q q K p:, me me me K pj, lqq " ı ı ı `q q q K p:, me me me K pj, lqq So we want to determine the index me me mepj, d!pk ´1q `lq. From ( 8), we obtain me me mepj, d!pk ´1q `lq " Gpı ı ı `q q q K p:, me me me K pj, lqqq.

By using Lemma 6, we deduce that me me mepj, d!pk ´1q `lq " Gpı ı ıq `xq q q K p:, me me me K pj, lqq, β β βy Then, with [START_REF]Pypi, the python package index[END_REF], the array me me me is given by: @l P v1, d!w, @j P v1, d `1w, @k P v1, N h w, me me mepj, d!pk ´1q `lq " iBase iBase iBasepkq `xq q q K p:, me me me K pj, lqq, β β βy .

This formula can be vectorized in k: with Idx Idx Idx Ð d!r0 : N h ´1s `l then me me mepj, Idx Idx Idxq Ð iBase iBase iBase `xq q q K p:, me me me K pj, lqq, β β βy .

We give in Algorithm 9 the function CGTriangulation which computes the triangulation of the cartesian grid Q N N N . whereas for T m N N N pkq we must have instead rq q q w , me me me w s Ð CGTriangulationpN N N pidnc idnc idncqq The length of

T m N N N is E m,d " 2 d´m ˆd m ˙(number of m-faces). Function T m N N N Ð CGTriFaces (N N N , m) β β β Ð CGbetapN N N q if m "" 0 then Q Ð DiagpN N N q ˚CartesianGridPointspOnesp1, dqq for k Ð 1 to 2 d do T m N N N pkq.q q q Ð Qp:, kq T m N N N pkq.me me me Ð 1 T m N N N pkq.toGlobal Ð 1 `xβ β β, Qp:, kqy end for else n c Ð ˆd m L Ð Combspv1, dw, d ´mq S Ð CartesianGridPointspOnesp1, d ´mqq k Ð 1
for l Ð 1 to n c do idc idc idc Ð Lpl, :q idnc idnc idnc Ð v1, dwzidc idc idc rq q q w , me me me w s Ð CGTriangulationpN N N pidnc idnc idncqq n l q Ð ś m s"1 pN N N pidnc idnc idncpsqq `1q Ź or length of q q q w for r Ð 1 to 2 d´m do T m N N N pkq.q q qpidnc idnc idnc, :q Ð q q q w T m N N N pkq.q q qpidc idc idc, :q Ð `N N N pidc idc idcq t .. . ˚Sp:, rq ˘˚Onesp1,

n l q q T m N N N pkq.me me me Ð me me me w T m N N N pkq.toGlobal Ð 1 `β β β t ˚T m N N N pkq.q q q k Ð k `1
end for end for end if end Function The mechanism is similar to that seen in section 2.5 while taking as a starting point the cartesian grid triangulation. q q q : vertices array with d-by-n q reals. me me me : connectivity array with pd `1q-by-n me integers.

Function rq q q, me me mes Ð OrthTriangulation (N N N , a a a, b b b) rq q q, me me mes Ð CGTriangulationpN N N q q q q Ð boxMappingpq q q, a a a, b b b, N N N q end Function 3.5

m-faces tessellations of a d-orthotope with d-simplices

As seen in section 2.5, we only have to apply the function boxMapping to each vertices array T m N N N pkq.q q q corresponding to the k-th m-faces tessellations of the cartesian grid Q N N N . This is the object of the function OrthTriFaces given in Algorithm 12. : array of the tessellations with simplices of all m-faces of the orthotope.

Algorithm 12 Function

Its length is E m,d " 2 d´m ˆd m ˙. Function T m N N N Ð OrthTriFaces (N N N , a a a, b b b, m) T m N N N Ð CGTriFacespN N N , mq for k Ð 1 to lenpT m N N N q do
T m N N N pkq.q q q Ð boxMappingpT m N N N pkq.q q q, a a a, b b b, N N N q end for end Function

Eciency of the algorithms

Based on previous algorithms, a Matlab toolbox [START_REF] Cuvelier | fc_hypermesh: a object-oriented Matlab toolbox to mesh any d-orthotopes (hyperrectangle in dimension d) and their m-faces with simplices or orthotopes[END_REF], an Octave package [START_REF] Cuvelier | fc_hypermesh: a object-oriented Octave package to mesh any d-orthotopes (hyperrectangle in dimension d) and their m-faces with simplices or orthotopes[END_REF] and a python package [START_REF] Cuvelier | fc_hypermesh: a object-oriented Python package to mesh any d-orthotopes (hyperrectangle in dimension d) and their m-faces with simplices or orthotopes[END_REF] were developed. They contain a simple class object OrthMesh from which can be obtained, in any dimension d ě 1 a simplicial or orthotope mesh with all its m-faces, 0 ď m ă d. It is also possible with the method function plot of the class object OrthMesh to represent a mesh or its m-faces for d ď 3.

In the folowing section, the class object OrthMesh is presented. Thereafter some warning statements on the memory used by these objects in high dimension are given. Finally computation times for orthotope meshes and simplicial meshes are given in dimension d P v1, 5w.

4.1

Class object OrthMesh

The aim of the class object OrthMesh is to use previous algorithms to create an object which contains a mesh of a d-orthotope and all its m-face meshes. An elementary mesh class object EltMesh is used to store only one mesh, the main mesh as well as any of the m-face meshes. The class EltMesh also simplies writing code. Its elds are the following:

' d, space dimension
' m, kind of mesh (m " d for the main mesh and m ă d for m-faces mesh) ' type, 0 for simplicial mesh or 1 for orthotope mesh ' n q , number of vertices ' q q q, vertices array of dimension d-by-n q ' n me , number of mesh elements ' me me me, connectivity array of dimension pd `1q-by-n me for simplices elements or 2 d -by-n me for orthotopes elements ' toGlobal, index array linking local array q q q to the one of the main mesh ' label, name/number of this elementary mesh ' color, color of this elementary mesh (for plotting purpose)

Let the d-orthotope be dened by ra 1 , b 1 s ˆ¨¨¨ˆra d , b d s. The class object OrthMesh corresponding to this d-orthotope contains the main mesh and all its m-face meshes, 0 ď m ă d. Its elds are the following ' d: space dimension ' type: string 'simplicial' or 'orthotope' mesh ' Mesh: main mesh as an EltMesh object ' Faces: list of arrays of EltMesh objects such that Facesp1q is an array of all the pd ´1q-face meshes, Facesp2q is an array of all the pd ´2q-face meshes, and so on ' box: a d-by-2 array such that boxpi, 1q " a i and boxpi, 2q " b i .

The OrthMesh constructor is

Oh Ð OrthMeshpd, N N N, ă box ą, ă type ąq
where N N N is either a 1-by-d array such that N N Npiq `1 is the number of grid points discretising ra i , b i s or either an integer if the the number of discretization is the same in all space directions. The optional parameter box previously described as for default value a i " 0 and b i " 1. The default value for optional parameter type is 'simplicial', otherwise 'orthotope' can be used.

In Listing 1, an OrthMesh object is built under Octave for the orthotope r´1, 1s ˆr0, 1s ˆr0, 2s with simplicial elements and N N N " p10, 5, 10q. The main mesh and all the m-face meshes of the resulting object are plotted. In Listing 2, similar operations are done under Python with orthotope elements. plt . c l f () 17 oTh . plotmesh (m=2, edgecolor =[0.9 ,0.9 ,0.9] , facecolor=None) 18 oTh . plotmesh (m=1,legend=True , linewidth =2) 19 # plot the 0´face meshes 20 plt . figure [START_REF] Cuvelier | fc_hypermesh: a object-oriented Octave package to mesh any d-orthotopes (hyperrectangle in dimension d) and their m-faces with simplices or orthotopes[END_REF] 21 plt . c l f () 22 oTh . plotmesh (m=1, color='black') 23 oTh . plotmesh (m=0,legend=True , s=55) Of course, the plotmesh method doesn't work in dimension d ą 3!

Memory consuming

Beware when using theses codes of memory consuming : the number of points n q and the number of elements quickly increase according to the space dimension d. If pN `1q points are taken in each space direction, we have n q " pN `1q d , for both tessellation and triangulation and n me " N d , for tessellation by orthotopes n me " d!N d , for tessellation by simplices.

If the array q q q is stored as double (8 bytes) then mem. size of q q q " d ˆnq ˆ8 bytes and if the array me me me as int (4 bytes) then mem. size of me me me " " 2 d ˆnme ˆ4 bytes (tessellation by orthotopes) pd `1q ˆnme ˆ4 bytes (tessellation by simplices)

For N " 10 and d P v1, 8w, the values of n q and n me are given in Table 3. The memory usage for the corresponding array q q q and array me me me is available in Table 4. 4: Memory usage of the array q q q and the array me me me for the tessellation of an orthotope by orthotopes and by simplices according to the space dimension d and with N " 10.

d n q " pN `1q d n me " N d (orthotopes) n me " d!N d (
In the following pages, computational costs of the OrthMesh constructor will be presented.

Computational times

For all the following tables, the computational costs of the OrthMesh constructor are given for the orthotope r´1, 1s d under Matlab R2017a, Octave 4.2.1 and Python 3.6.0. The computations were done on a laptop with Core i7-4800MQ processor and 16Go of RAM under Ubuntu 14.04 LTS (64bits).

In Table 5, some computational costs of the OrthMesh constructor Oh Ð OrthMeshpd, N, r´1; 1s d , 'orthotope'q are given for d P v2, 5w. Computational costs for tessellations with simplices are presented in 

Conclusion

In [START_REF] Cuvelier | An ecient way to assemble nite element matrices in vector languages[END_REF], vectorized algorithms are proposed to compute some assembly matrices obtained by the P 1 -Lagrange nite element method and this in any space dimension. Furthermore, complete codes were written to solve boundary value problems (B.V.P.) in any space dimension ( [6] for Matlab, [START_REF] Cuvelier | fc_vfemP 1 : a object-oriented Octave package to solve scalar and vector boundary[END_REF] for Octave and [START_REF] Cuvelier | fc_vfemP 1 : a object-oriented Python package to solve scalar and vector boundary[END_REF] for python). To test these codes for dimensions greater than 3 we need simplicial meshes in dimension 4, 5, ... Meshing softwares, as GMSH or Open CASCADE, do not provide tools to generate kind of meshes. So we have developed vectorized algorithms for the simplest geometry: a d-orthotope. These algorithms are proved to be particularly ecient as they make possible to obtain meshes with tens of millions of elements in a few seconds with either Matlab, Octave or Python. The least performance of Octave are probably due to non-optimal choices during compilation. We work on this point by following several tracks: use of the Intel MKL library, ... The codes in Matlab, Octave and Python, referenced as fc_hypermesh, can be obtained on http://www.math.univ-paris13.fr/~cuvelier/software/ The Python package fc_hypermesh is also available on PyPI [START_REF]Pypi, the python package index[END_REF].

Algorithm 13 Building q q q the d-by-n q array of cartesian grid points

k Ð 1 for i d Ð 0 to N d do for i d´1 Ð 0 to N d´1 do . . . for i 2 Ð 0 to N 2 do for i 1 Ð 0 to N 1 do ı ı ı Ð ri 1 , i 2 , . . . , i d´1 , i d s q q qp:, kq Ð ı ı ı Ź By construction k " Gpı ı ıq k Ð k `1
end for end for . . .

end for end for

To vectorize this algorithm we need to rewrite it with computed line by line. For that we write this algorithm, with an explicit for loop on the coordinates: it is given by Algorithm 14. Algorithm 14 Building q q q the d-by-n q array of cartesian grid points

k Ð 1 for i d Ð 0 to N d do for i d´1 Ð 0 to N d´1 do . . .
for i 2 Ð 0 to N 2 do for i 1 Ð 0 to N 1 do for r Ð 1 to d do q q qpr, kq Ð i r end for

k Ð k `1
end for end for . . .

end for end for

Let r P v1, dw. From Algorithm 14, we deduce Algorithm 15 which only computes the component r of the cartesian grid point Q N N N (i.e. the values q q qpr, kq, @k P v1, n q w) Algorithm 15 Computes component r P v1, dw of cartesian grid points in the d-by-n q array q q q. Let r P v1, dw k Ð 1

for i d Ð 0 to N d do . . . for i r Ð 0 to N r do for i r´1 Ð 0 to N r´1 do . . . for i 1 Ð 0 to N 1 do q q qpr, kq Ð i r k Ð k `1 end for . . .
end for end for . . .

end for

One can replace the for loops i 1 to i r´1 by a for loop in j with number of iterations equal to pN 1 `1q ˆ¨¨¨ˆpN r´1 `1q " β r´1 . This is done in Algorithm 16.

Algorithm 16 Computes component r P v1, dw of cartesian grid points in the d-by-n q array q q q. Let r P v1, dw k Ð 1

for i d Ð 0 to N d do . . . for i r Ð 0 to N r do for j Ð 1 to β r do q q qpr, kq Ð i r k Ð k `1
end for end for . . .

end for

We can replace the for loops in i r and j by a call to the function BuildPA given in Algorithm 17 which returns the array containing the β r`1 values stored in array q q q by these two loops. The modied code using this function is given in Algorithm 18.

Algorithm 17 Computes the array containing the β r`1 values stored in array q q q by the for loops in i r and j.

Input :

N N N : array of d integers, N N N piq " N i . r : r P v1, dw

Output :

A A A : array of β r`1 " pN r `1qβ r integers.

Function A A A Ð BuildPA (N N N , r) β r Ð r´1 ź l"1 pN N N plq `1q, k Ð 1, s Ð 1 for i Ð 0 to N r do for j Ð 1 to β r do A A Apsq Ð i s Ð s `1
end for end for end Function Algorithm 18 Computes component r P v1, dw of cartesian grid points in the d-by-n q array q q q. Let r P v1, dw I I I Ð 1 : β r`1 

for i d Ð 0 to N N N pdq do . . .

end for

As we can see, the BuildPA call in Algorithm 18 does not depend on the for loops i d to i r`1 . Using this property and replacing the for loops i d to i r`1 by a for loop in i with a number of iterations equal to pN d `1q ˆ¨¨¨ˆpN r`1 `1q gives the rst writable code in Algorithm 19.

Algorithm 19 Computes component r P v1, dw of cartesian grid points in the d-by-n q array q q q Let r P v1, dw I I I Ð 1 : β r`1 A A A Ð BuildPApN N N , rq for i Ð 1 to pN N N pdq `1q ˆ¨¨¨ˆpN N N pr `1q `1q do q q qpr, I I Iq Ð A A A I I I Ð I I I `βr`1

end for

We can now write a complete nonvectorized function Algorithm 20 Function CartesianGridPointsv0 : computes the d-by-n q array q q q which contains all the points of the cartesian grid Q N N N . (non vectorized version)

Input :

N N N : array of d integers, N N N piq " N i .

Output : q q q : array of d-by-n q array of integers.

Function q q q Ð CartesianGridPointsv0 (N N N ) or directly by

β β β Ð CGbetapN N N q for r Ð 1 to d do I I I Ð 1 : β r`1 A A A Ð BuildPApN N N , rq
A A A Ð ReshapepRepTilepr0 : N N N prqs, β r , 1q, 1, pN N N prq `1qβ r q
We can easily vectorize the for i loop in function CartesianGridPointsv0 by using the RepTile function as follows q q qpr, :q Ð RepTilepA A A, 1, ProdpN N N pr `1 : dq `1qq

With these two vectorizations we obtain the function CartesianGridPoints given in Algorithm 1. 

N

List of algorithms 1

Function CartesianGridPoints : computes the d-by-n q array q q q which contains all the points of the cartesian grid Q N N N (vectorized version) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2

Function CGbeta : Computes β l , @l P v1, dw, dened in [START_REF] Cuvelier | fc_vfemP 1 : a object-oriented Octave package to solve scalar and vector boundary[END_REF] . . . 9 3

Function CGTessHyp : computes the vertices array q q q and the connectivity array me me me obtained from a tesselation of the cartesian grid Q 13 Building q q q the d-by-n q array of cartesian grid points . . . . . . . 14 Building q q q the d-by-n q array of cartesian grid points . . . . . . . 15 Computes component r P v1, dw of cartesian grid points in the d-by-n q array q q q. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Computes component r P v1, dw of cartesian grid points in the d-by-n q array q q q. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Computes the array containing the β r`1 values stored in array q q q by the for loops in i r and j. . . . . . . . . . . . . . . . . . . . . . 18 Computes component r P v1, dw of cartesian grid points in the d-by-n q array q q q. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Computes component r P v1, dw of cartesian grid points in the d-by-n q array q q q . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Function CartesianGridPointsv0 : computes the d-by-n q array q q q which contains all the points of the cartesian grid Q Memory usage of the array q q q and the array me me me for the tessellation of an orthotope by orthotopes and by simplices according to the space dimension d and with N " 10. . . . 

Figure 1 :

 1 Figure 1: m-faces of a 3D hypercube : 0-faces (upper left), 1-faces (upper right) and 2-faces (bottom)

  The m-simplices on the boundary of a d-simplex, 0 ď m ď d, are called the m-faces of the d-simplex. If a d-simplex is nondegenerate, its number of m-faces, denoted by S m,d , is given by

Figure 2 :

 2 Figure 2: Vertices of the unit hypercube r0, 1s d , d " 2 (left) and d " 3 (right) with their indices in the array p q q q

2 . 3

 23 Numbering of the m-faces of the unit d-hypercube Let m P v0, dw. As introduced in section 1, the m-faces of the unit d-hypercube r0, 1s d are unit m-hypercubes in R d dened by the product of d intervals where d´m intervals are reduced to the singleton t0u or t1u (called reduced dimension) We have n c " ˆd m ˙possible choices to select the index of the d ´m reduced dimensions (combination of d elements taken d ´m at a time) and for each selected dimension 2 choices : t0u or t1u.

!

  x x x P Q N N N such that x x xpL rd,ms pl, :qq " N N N pL rd,ms pl, :qq .. . ˚Srd´ms p:, rq) (15) 2.4.1 Case m " 0.If m " 0, the m-faces are the 2 d corner points of the cartesian grid. Then we have L rd,0s " v1, dw and S rds is an d-by-2 d array.From (15), we obtain that @k P v1, 2 d w the k-th 0-face of Q N N N is reduced to the point x x x " N N N .. . ˚Srds p:, kq t and it is also the k-th column of the array Q of dimensions d-by-2 d given by Q Ð ¨N1 0 . . . . . .

2 . 5

 25 Tessellation of a d-orthotope with d-orthotopes Let O d be the d-orthotope ra 1 , b 1 s ˆ¨¨¨ˆra d , b d s.

  OrthTessOrth : d-orthotope regular tessellation with orthotopes Input : N N N : array of d integers, N N N piq " N i . a a a, b b b : arrays of d reals, a a apiq " a i , b b bpiq " b i with a i ă b i Output :

Algorithm 7 Function

 7 OrthTessFaces : computes the conforming tessellations of all the m-faces of the d-orthotope ra 1 , b 1 s ˆ¨¨¨ˆra d , b d s Input : N N N : array of d integers, N N N piq " N i . a a a, b b b : arrays of d reals, a a apiq " a i , b b bpiq " b i m : integer, 0 ď m ă d Output : sO h h h : array of the tessellations of each m-faces of the orthotope.Its length is E m,d " 2 d´m ˆd m ˙.

6 Figure 4 :

 64 Figure 4: Kuhn's subdivision

( 19 )

 19 Let πpK ref q denote the application of permutation to each vertex of K ref . Then we have πpK ref q " K π (20) Lemma 10 ([1], Lemma 4.1) The Kuhn's subdivision KpHq of the unit dhypercube H has the following properties:

¨0 1 .

 1 

Algorithm 8

 8 Kuhn's triangulation of the unit d-hypercube r0, 1s d with d! sim-

  So only one line changes in the Algorithm 4 to obtain the new one given in Algorithm 10 where the function CGTriFaces computes T m N N N pkq, @k P 2 d´m n c . Algorithm 10 Function CGTriFaces : computes all m-faces tessellations of the cartesian grid Q N N N with m-simplices Input : N N N : array of d integers, N N N piq " N i . m : integer, 0 ď m ă d Output : T m N N N : array of triangulations of all m-faces comming from the cartesian grid triangulation T N N N .

3 . 4 d

 34 -orthotope tessellation with d-simplices Let O d be the d-orthotope ra 1 , b 1 s ˆ¨¨¨ˆra d , b d s.

Algorithm 11 Function

 11 OrthTriangulation : regular tessellation with simplices of a d-orthotope Input : N N N : array of d integers, N N N piq " N i . a a a, b b b : arrays of d reals, a a apiq " a i , b b bpiq " b i Output :

  OrthTriFaces : computes the conforming tessellations with simplices of all m-faces of the d-orthotope ra 1 , b 1 s ˆ¨¨¨ˆra d , b d s Input : N N N : array of d integers, N N N piq " N i . a a a, b b b : arrays of d reals, a a apiq " a i , b b bpiq " b i m : integer, 0 ď m ă dOutput :

Listing 1 :

 1 figure (1) 4 Oh. plotmesh ('legend' , true ) 5 axis equal ; xlabel ('x') ; ylabel ('y') ; zlabel ('z') 6 % plot the 2´face meshes 7 figure (2) 8 Oh. plotmesh ('m' ,2 , ' legend ' , true ) 9 axis equal ; xlabel ('x') ; ylabel ('y') ; zlabel ('z') 10 % plot the 1´face meshes 11 figure (3) 12 Oh. plotmesh ('m' ,2 , ' color ' , [ 0 . 8 , 0 . 8 , 0 . 8 ] , ' EdgeAlpha ' ,0.2 , ' FaceColor ' , 'none ' ) 13 hold on 14 Oh. plotmesh ('m' ,1 , ' Linewidth ' ,2 , ' legend ' , true ) 15 axis equal ; axis o f f 16 % plot the 0´face meshes 17 figure (4) 18 Oh. plotmesh ('m' ,1 , ' color ' , 'k ' ) 19 hold on 20 Oh. plotmesh ('m' ,0 , ' legend ' , true ) 21 axis equal ; axis o f f

for i r` 1 Ð

 1 0 to N N N pr `1q do q q qpr, I I Iq Ð BuildPApN N N , rq I I I Ð I I I `βr`1 end for . . .

for i Ð 1

 1 to pN N N pdq `1q ˆ¨¨¨ˆpN N N pr `1q `1q do q q qpr, I I Iq Ð A A A I I I Ð I I I `βr`1 end for end for end Function To obtain a vectorized function, we must work on the for i loop and on the construction of the array A A A. We rst vectorize the computation of array A A A. Let us dene the β r -by-pN r `1q array A " ¨0 1 . . . N N N prq 0 1 . . . N N N prq . array r0 : N N N prqs on each row of A from A Ð RepTilepr0 : N N N prqs, β r , 1q So array A A A can be obtained with the command A A A Ð ReshapepA, 1, pN N N prq `1qβ r q

  N N N with unit hypercube. . . . . . . . . . . . . . . . . . . . 11 4 Function CGTessFaces : computes all m-faces tessellations of the cartesian grid Q N N N with unit m-hypercubes. . . . . . . . . . . 16 5 Function boxMapping : mapping points of the cartesian grid Q N N N to the d-orthotope ra 1 , b 1 s ˆ¨¨¨ˆra d , b d s . . . . . . . . . . . . . 17 6 Function OrthTessOrth : d-orthotope regular tessellation with orthotopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 7 Function OrthTessFaces : computes the conforming tessellations of all the m-faces of the d-orthotope ra 1 , b 1 s ˆ¨¨¨ˆra d , b d s 18 8 Kuhn's triangulation of the unit d-hypercube r0, 1s d with d! simplices (positive orientation) . . . . . . . . . . . . . . . . . . . . . 21 9 Function CGTriangulation : computes the triangulation of the cartesian grid Q N N N . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Function CGTriFaces : computes all m-faces tessellations of the cartesian grid Q N N N with m-simplices . . . . . . . . . . . . . . . . . 24 Function OrthTriangulation : regular tessellation with simplices of a d-orthotope . . . . . . . . . . . . . . . . . . . . . . . . 25 Function OrthTriFaces : computes the conforming tessellations with simplices of all m-faces of the d-orthotope ra 1 , b 1 sˆ¨¨¨ˆra d , b d s 25 38

  N N N . (non vectorized version) . . . . . . . . . . . . . . . . . . . . . . . . . . List of Tables 1 Number of m-faces of a d-hypercube . . . . . . . . . . . . . . . . 2 Number of m-faces of a nondegenerate d-simplex . . . . . . . . . 3 Number of vertices n q and number of elements n me for the tessellation of an orthotope by orthotopes and by simplices according to the space dimension d and with N " 10. . . . . . . . . . . . . 4

Table 1 :

 1 Number of m-faces of a d-hypercube

			1					
	1	Segment	2	1				
	2	Square	4	4	1			
	3	Cube	8	12	6	1		
	4 Tesseract	16	32	24	8	1	
	5 Penteract	32	80	80	40	10	1
	6 Hexeract	64	192	240	160	60	12	1

Table 2 :

 2 Table 2 this number for d P v0, 6w and 0 ď m ď d.

		m	0	1	2	3	4	5	6
	d	Names	0-face 1-face 2-face 3-face 4-face 5-face 6-face
	0	Point	1						
	1	Segment	2	1					
	2	triangle	3	3	1				
	3 tetrahedron	4	6	4	1			
	4	4-simplex	5	10	10	5	1		
	5	5-simplex	6	15	20	15	6	1	
	6	6-simplex	7	21	35	35	21	7	1
	2.1	The unit hypercube vertices				

Number of m-faces of a nondegenerate d-simplex 2 Tessellation with d-orthotopes

Table 3 :

 3 Number of vertices n q and number of elements n me for the tessellation of an orthotope by orthotopes and by simplices according to the space dimension d and with N " 10.

	d	q q q me me me (orthotopes) me me me (simplices)
	1	88 B	80 B	80 B
	2	1 KB	1 KB	2 KB
	3	31 KB	32 KB	96 KB
	4 468 KB	640 KB	4 MB
	5	6 MB	12 MB	288 MB
	6	85 MB	256 MB	20 GB
	7	1 GB	5 GB	1 612 GB
	8	13 GB	102 GB	145 152 GB
	Table			

Table 6

 6 

			for d P v2, 5w. In Appendix C, more detailed tables are
	given.						
	d	N	n q	n me	Python	Matlab	Octave
	2 4000 16 008 001 16 000 000 1.307 (s) 0.388 (s)	1.473 (s)
	3	250 15 813 251 15 625 000 1.896 (s) 0.718 (s)	2.782 (s)
	4	62 15 752 961 14 776 336 2.804 (s) 1.321 (s)	5.403 (s)
	5	27 17 210 368 14 348 907 4.485 (s) 2.511 (s) 10.781 (s)

Table 5 :

 5 Tessellation of r´1, 1s d by orthotopes with approximatively 15 millions elements. Computational times in seconds for Python 3.6.3, Matlab 2017a and Octave 4.2.1.

	d	N	n q	n me	Python	Matlab	Octave
	2 5000 25 010 001 50 000 000 4.362 (s) 2.000 (s) 4.148 (s)
	3	180	5 929 741 34 992 000 3.517 (s) 2.202 (s) 4.098 (s)
	4	40	2 825 761 61 440 000 4.175 (s) 4.204 (s) 9.798 (s)
	5	12	371 293 29 859 840 2.394 (s) 2.788 (s) 8.119 (s)

Table 6 :

 6 Tessellation of r´1, 1s d with tens of millions of simplices. Computational times in seconds for Python 3.6.3, Matlab 2017a and Octave 4.2.1.

Table 14 :

 14 Tessellation of r´1, 1s 4 with simplices. Computational times in seconds for Python 3.6.3, Matlab 2017a and Octave 4.2.1.

		n q	n me	Python	Matlab	Octave
	10	14 641	240 000 0.250 (s) 0.461 (s) 0.609 (s)
	20	194 481	3 840 000 0.462 (s) 0.333 (s) 1.068 (s)
	25	456 976	9 375 000 0.794 (s) 0.689 (s) 1.804 (s)
	30	923 521 19 440 000 1.471 (s) 1.353 (s) 3.335 (s)
	35 1 679 616 36 015 000 2.524 (s) 4.104 (s) 6.017 (s)
	N	n q	n me	Python	Matlab	Octave
	2	243	3 840 0.365 (s) 0.557 (s) 1.456 (s)
	4	3 125	122 880 0.372 (s) 0.227 (s) 1.420 (s)
	6	16 807	933 120 0.496 (s) 0.310 (s) 1.653 (s)
	8	59 049	3 932 160 0.617 (s) 0.517 (s) 2.163 (s)
	10 161 051 12 000 000 1.048 (s) 1.156 (s) 3.400 (s)
	12 371 293 29 859 840 2.394 (s) 2.788 (s) 8.119 (s)

Table 15 :

 15 Tessellation of r´1, 1s 5 with simplices. Computational times in seconds for Python 3.6.3, Matlab 2017a and Octave 4.2.1.

  . . . . . . . . . . . . . 5 Tessellation of r´1, 1s d by orthotopes with approximatively 15 millions elements. Computational times in seconds for Python 3.6.3, Matlab 2017a and Octave 4.2.1. . . . . . . . . . . . . . . . . . . . 6 Tessellation of r´1, 1s d with tens of millions of simplices. Computational times in seconds for Python 3.6.3, Matlab 2017a and Octave 4.2.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Tessellation of r´1, 1s 2 with orthotopes. Computational times in seconds for Python 3.6.3, Matlab 2017a and Octave 4.2.1. . . . . 9 Tessellation of r´1, 1s 3 with orthotopes. Computational times in seconds for Python 3.6.3, Matlab 2017a and Octave 4.2.1. . . . . 10 Tessellation of r´1, 1s 4 with orthotopes. Computational times in seconds for Python 3.6.3, Matlab 2017a and Octave 4.2.1. . . . . 11 Tessellation of r´1, 1s 5 with orthotopes. Computational times in seconds for Python 3.6.3, Matlab 2017a and Octave 4.2.1. . . . . 12 Tessellation of r´1, 1s 2 with simplices. Computational times in seconds for Python 3.6.3, Matlab 2017aand Octave 4.2.1. . . . . 13 Tessellation of r´1, 1s 3 with simplices. Computational times in seconds for Python 3.6.3, Matlab 2017a and Octave 4.2.1. . . . . 14 Tessellation of r´1, 1s 4 with simplices. Computational times in seconds for Python 3.6.3, Matlab 2017a and Octave 4.2.1. . . . . 15 Tessellation of r´1, 1s 5 with simplices. Computational times in seconds for Python 3.6.3, Matlab 2017a and Octave 4.2.1. . . . .

This work was supported by the ANR project DEDALES under grant ANR-14-CE23-0005.

Output : q q q : vertices array of the triangulation of Q N N N . d-by-n q array of reals (integer in fact) where n q " ś d i"1 pN i `1q. me me me : connectivity array of the triangulation of Q N N N .

pd `1q-by-n me array of integers where n me " d! ś d i"1 N i . .

Function rq q q, me me mes Ð CGTriangulation (N N N ) q q q Ð CartesianGridPointspN N N q Hinv Ð CartesianGridPointspN N N ´1q rq q q K , me me me K s Ð KuhnTriangulationpdq β β β Ð CGbetapN N N q iBase iBase iBase Ð β β β t ˚Hinv Hinv Hinv `1 

m-faces tessellations of a cartesian grid

Let Q N N N be the d-dimensional cartesian grid dened in section 2.2. As before, we denote by T N N N .q q q and T N N N .me me me respectively the vertices and connectivity arrays of the tessellation of the cartesian grid Q N N N with d-simplices obtained from CGTriangulation function and described in Algorithm 9.

Let m P v0, dv and k P v1, E m,d w where E m,d is the number of m-faces dened in [START_REF] Bey | Simplicial grid renement: on freudenthal's algorithm and the optimal number of congruence classes[END_REF]. We want to determine T m N N N pkq, the tessellation obtained from the restriction of T N N N to its k-th m-face where the numbering of the m-faces is specied in section 2.3. We denote by ' T m N N N pkq.q q q, the (local) vertex array ' T m N N N pkq.me me me, the (local) connectivity array ' T m N N N pkq.toGlobal, the global indices such that T m N N N pkq.q q q " T N N N .q q qp:, T m N N N pkq.toGlobalq.

By construction, T m N N N pkq is the triangulation by m-simplices of an m-hypercube in R d .

The only dierence with the construction of Q m N N N pkq given in section 2.4 is on the me me me w array. For Q m N N N pkq, we had rq q q w , me me me w s Ð CGTessHyppN N N pidnc idnc idncqq

A Vectorized algorithmic language

A.1

Common operators and functions

We also provide below some common functions and operators of the vectorized algorithmic language used in this article which generalize the operations on scalars to higher dimensional arrays, matrices and vectors: tiles the p-by-q array/matrix A to produce the pm ˆpqby-pn ˆqq array composed of copies of A, ReshapepA, m, nq returns the m-by-n array/matrix whose elements are taken columnwise from A.

A.2 Combinatorial functions

PermspV V V q where V V V is an array of length n. Returns a n!-by-n array containing all permutations of V V V elements. The lexicographical order is chosen. CombspV V V , kq where V V V is an array of length n and k P v1, nw.

Returns a

n! k!pn´kq! -by-k array containing all combinations of n elements taken k at a time. The lexicographical order is chosen.

B Function CartesianGridPoints

The objective is to explain how to obtain the vectorized function Cartesian-GridPoints given in Algorithm 1, section 2.2.1. This function returns the vertex array q q q of the cartesian grid Q N N N . The dimension of q q q is d-by-n q with n q " ś d i"1 pN i `1q. According to the numbering choice described in section 2.2.1 the Algorithm 13 gives the most simple presentation of q q q computated column by column.

C Computational costs

In this section, computational costs of the OrthMesh constructor are presented for tessellations of the orthotope r´1; 1s d with orthotopes and simplices. The computations were done on a laptop with Core i7-4800MQ processor and 16Go of RAM under Ubuntu 14.04 LTS (64bits).