N

N

Vectorized algorithms for regular tessellations of
d-orthotopes and their faces

Francois Cuvelier, Gilles Scarella

» To cite this version:

Frangois Cuvelier, Gilles Scarella. Vectorized algorithms for regular tessellations of d-orthotopes and
their faces. 2018. hal-01638329v2

HAL Id: hal-01638329
https://hal.science/hal-01638329v2

Preprint submitted on 17 Apr 2018

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-01638329v2
https://hal.archives-ouvertes.fr

Vectorized algorithms for regular tessellations of
d-orthotopes and their faces

Francois Cuvelier® Gilles Scarella |

2018/01/14

Abstract

Tessellation of hypercubes or orthotopes and all their faces in any di-
mension is a nice challenge. The purpose of this paper is to describe
efficient vectorized algorithms to obtain regular tessellations made up by
simplices or orthotopes. These vectorized algorithms have been imple-
mented in array programming languages such as Matlab/Octave, Python.

Contents
[1_Definitions and notations| 3
|1.1 d-orthotope and d-hypercubel 3
a plex| o 5

|2 Tessellation with d-orthotopes| 6
2.1 The unit hypercube vertices| 6
2.2 Cartesian grid|. L 7

8
9

12.2.1 Points of the cartesian grad|
2.2.2 Connectivity array of a cartesian grid|

2.3 umbering of the m-faces of the unit d-hypercubel 12
2.4 m-faces tessellations of a cartesian grid|. 13
241 Casem=20J. 14
242 Casem >0 14
[2.5 Tessellation of a d-orthotope with d-orthotopes| 16

-6 m-faces tessellations of a d-orthotope| 18
[3__Tessellation with d-simplices| 18

3.1 Kuhn’s decomposition of a d-hypercube] 18
3.2 artesian grid tesselation with simplices| 21
3.3 m-faces tessellations of a cartesian grid|. 23
3.4 d-orthotope tessellation with d-simplices | 25
13.5 m-taces tessellations of a d-orthotope with d-simplices| 25

*Université Paris 13, Sorbonne Paris Cité, LAGA, CNRS UMR 7539, 99 Avenue J-B Clé-
ment, F-93430 Villetaneuse, France, cuvelier@math.univ-paris13.fr
TUniversité Cote d’Azur, CNRS, LJAD, F-06108 Nice, France, gilles.scarella@unice.fr.
This work was supported by the ANR project DEDALES under grant ANR-14-CE23-
0005.

[4 _Efficiency of the algorithms|
1 Classobject OrthMesh] v v it

4.2 Memory consuming|.o e
4.3 Computational times| 0oL,

[5__Conclusion|

|A Vectorized algorithmic language|

[A.1 Common operators and functions|

|C Computational costs|

C.1 'lessellation with orthotopes|

.2 'lessellation with d-simplices|.

25
26
28
29

30

31
31
31

31

There are many tools for generating conformal meshes in 2 or 3 dimension
such as GMSH , Open CASCADE, ... They can be used, for example, to solve
boundary value problems in 2D or 3D by finite element methods. In [9], vec-
torized algorithms are proposed to calculate some assembly matrices obtained
by the P;-Lagrange finite element method. These algorithms are written in
any dimension and they have been implemented in Matlab/Octave, Python,
C++, CUDA. Subsequently, complete codes were written to solve boundary
value problems (B.V.P.) in any space dimension ([6] for Matlab, [7] for Octave
and [§] for python). To test these codes for dimensions greater than 3 we need
simplicial meshes in dimension 4, 5, ... To our knowledge, mesh generation tools
in dimensions greater than 3 are not available so we decided to write one for
the simplest geometry: an d-orthotope (also called hyperrectangle or a box).

The objective of this paper is therefore to propose vectorized algorithms to
build regular tessellations of a d-orthotope made up by orthotopes in section
and by simplicials in section [3| To solve BVP we also need to know precisely
all the meshes of the faces that are part of the d-orthotope. That is why we
will develop, in each section, techniques to recover all the meshes associated to
the m-faces of the d-orthotope, 0 < m < d. In section 4} the performances of
these vectorized algorithms are measured with Matlab 2017a, Octave 4.2.1 and
Python 3.6.3 to validate their efficiency. But first of all, we recall some usual
notations and definitions.

1 Definitions and notations

In this part, we characterize the basic geometric elements that will be used
later on. Some of their properties are recalled. But before we specify notations
commonly used in this paper to define set of integers:

[i’jﬂd;‘{i’“"j}v Hihj[[d:e‘{iv"'uj_l}a
Hi7jﬂd;‘{i+1""7j}’ ﬂi)j[[":e‘{i_Fl’...’j_l}_

1.1 d-orthotope and d-hypercube
We first recall the definitions of a d-orthotope and a d-hypercube given in [2].

Definition 1 In geometry, a d-orthotope (also called a hyperrectangle or a
box) is the generalization of a rectangle for higher dimensions, formally defined
as the Cartesian product of intervals.

Definition 2 A d-orthotope with all edges of the same length is a d-hypercube.
A d-orthotope with all edges of length one is a unit d-hypercube.
The hypercube [0,1]? is called the unit reference d-hypercube.

The m-orthotopes on the boundary of a d-orthotope, 0 < m < d, are called
the m-faces of the d-orthotope.
The number of m-faces of a d-orthotope is

e (f) e (st 0

For example, the 2-faces of the unit 3-hypercube [0, 1]? are the sets

{0} x [0,1] x [0, 1],
[0,1] x {0} x [0,1],
[0,1] x [0,1] x {0},

Its 1-faces are

and its 0-faces are

{0} < {0} x [0,1],
{1} x {0} < [0,1],
{0} > [0,1] x {0},
{1} x [0,1] x {0},
[0,1] x {0} x {0},
[0,1] > {1} x {0},

{0} x {0} x {0},
{0} x {1} x {0},
{13 < {1} x {0},
{0} < {1} x {1},

)

{

1],
1,
1}

{1} x [0,1] x [0
[0,1] x {1} x [0
[0,1] x [0,1] x

{0} > {1} > [0,1],
{1} x {1} < [0, 1],
{0} > [0,1] x {1},
{1} < [0,1] x {1},
[0, 1] > {0} x {1},
[0, 1] > {1} x {1},

{1} x {0} x {0},
{0} x {0} x {13},
{1} {0} x {1},
{1} < {1} > {1}.

We represent in Figure [[] all the m-faces of a 3D hypercube.

A

#r,
#r,
>,
*r,
Pry

® Prg
e 7r,
e 7ry

Figure 1: m-faces of a 3D hypercube : 0-faces (upper left), 1-faces (upper right)

and 2-faces (bottom)

In Table [1}is given the number of m-faces for m € [0,d] and d € [0, 6].

m | 0o | 1 | 2 [3 [4] 5 | 6 |

d Names 0-face | 1-face | 2-face | 3-face | 4-face | 5-face | 6-face
0 Point 1

1| Segment 2 1

2 Square 4 4 1

3 Cube 8 12 6 1

4 | Tesseract 16 32 24 8 1

5 | Penteract 32 80 80 40 10 1

6 | Hezxeract 64 192 240 160 60 12 1

Table 1: Number of m-faces of a d-hypercube

The identification/numbering of the m-faces is given in section2.3]

1.2 d-simplex

Definition 3 In geometry, a simplex (plural: simplexes or simplices) is a gen-
eralization of the notion of a triangle or tetrahedron to arbitrary dimensions.
Specifically, a d-simplex is a d-dimensional polytope which is the convex hull of
its d + 1 vertices. More formally, suppose the d + 1 points q°,...,q% € R? are
affinely independent, which means q* —q°,...,q% —q° are linearly independent.
Then, the simplex determined by them is the set of points

d
C={00q" + +04q70; 0,0 <i<d, Y 0 =1}
i=0

For example, a 2-simplex is a triangle, a 3-simplex is a tetrahedron, and a 4-
simplex is a 5-cell. A single point may be considered as a 0-simplex and a line
segment may be considered as a 1-simplex. A simplex may be defined as the
smallest convex set which contain the given vertices.

Definition 4 Let q°,...,q% € R? be the d + 1 vertices of a d-simplex K and
Dx be the (d + 1)-by-(d + 1) matriz defined by

|
I
|
|
t
!

The d-simplex K s
e degenerated if detDg = 0,
e positive oriented if detDg > 0,

e negative oriented if det Dk < 0.

The m-simplices on the boundary of a d-simplex, 0 < m < d, are called
the m-faces of the d-simplex. If a d-simplex is nondegenerate, its number of
m-faces, denoted by S, 4, is given by

Sm,d:<d+1) @)

m+1

We give in Table [2]this number for d € [0,6] and 0 < m < d.

.l m [o [t [2 [3 [4] 5 | 6 |
d Names O-face | 1-face | 2-face | 3-face | 4-face | 5-face | 6-face
0 Point 1

1 Segment 2 1

2 triangle 3 3 1

3 | tetrahedron 4 6 1

4 | 4-simplex 5 10 10 5 1

5| b-simplex 6 15 20 15 6 1

6 | G-simplex 7 21 35 35 21 7 1

Table 2: Number of m-faces of a nondegenerate d-simplex

2 Tessellation with d-orthotopes

2.1 The unit hypercube vertices

The unit d-dimensional hypercube H= [0,1]? has n = 2% vertices. Each vertex
can be identified by a d-tuple ¢+ = (21,22, -+ ,24) € [0,1]¢ and we denote by
zt = (2%,...,2%)° € R? the vertex defined by

x; =, Vie[ld].

Let £ be the function that mapping all the d-tuples s € [0, 1]¢ into [1, 2¢] defined
by

d
La)=1+ Z 217 1q. (3)
=1

We can note that £(z) — 1 has for binary representation (1424_1---21)2. Let q
be the d-by-2¢ array containing all the vertices of H and defined by

at:,j) ¥z, vje 1,29

where q(:, j) denotes the j-th column of the array q.
For example, with d = 3, the array q is given by

def

qs

o O O
OO =
o = O
O~

01 0
0 0 1
1 11

—= =

This array can be obtained from the more general function CARTESIANGRID-
PoinTs , introduced in section and described in Appendix [B] by using

q < CaRrTESIANGRIDPOINTS(ONES(1, d))

In Figure [2 the numbering of the vertices is represented in 2 and 3 dimensions.

Figure 2: Vertices of the unit hypercube [0,1]¢, d = 2 (left) and d = 3 (right)
with their indices in the array q

2.2 Cartesian grid

Definition 5 A cartesian grid in R? is a tessellation where elements are unit
d-hypercubes and vertices are integer lattices.

Let N = (Ny,..., Ng) € (IN*)4. We denote by Oy the cartesian grid of [0, N;] x
-+ x [0, Ng]. The cartesian grid Oy is composed of ng grid points and 1y unit
d-hypercubes where

d d
Ny = H(Nl +1) and npe = ll_[Nl. (4)
=1

=1

The objective of this section is to describe the construction of the vertices
(or points) array q (section [2.2.1) and the connectivity array me associated with
this cartesian grid (section [2.2.2]). More precisely,

e q(v,j) is the v-th coordinate of the j-th vertex, v € {1,...,d}, j €
{1,...,nq}. The j-th vertex will be also denoted by @’ = q(:, j).

e me(3, k) is the storage index of the S-th vertex of the k-th element (unit
hypercube), in the array ¢, for 8 € {1,...,2%} and k € {1,...,7mc}. So
q(:,me(S,k)) represents the coordinates of the g-th vertex in the k-th
cartesian grid element.

We represent in Figure [3] two cartesian grids with the numbering of the
Nme unit d-hypercubes. For example, on the left figure (d = 2), the 5-th unit
hypercube is given by the vertices of numbers 6,7,10,11 and so me(:,5) =
(6,7,10,11). On the right figure (d = 3), for the 9-th hypercube, we have me(:
,9) = (16,17, 19,20, 28,29, 31, 32).

Figure 3: In blue, vertices of cartesian Grid in R? with their indices in q array,
d=2and Ny =3, Ny =4 (left), d = 3 and (N1, N2, N3) = (2, 3,3) (right). The
red numbers are the indices of unit hypercubes in the array me.

2.2.1 Points of the cartesian grid

The grid points may be identified by a d-tuple s = (i1, 42, - ,iq) € [0, N1]x---x
[0, N4] and the corresponding grid point denoted by #* with integer coordinates
is given by

d
z = Z Z'lel:l:l = (i17i2a U 7id)t =1 (5)
=1

where {e[l], . ,e[d]} denotes the standard basis of R<.
We want to store all the grid points in a 2D-array q of size d-by-nq. To define
an order of storage in the array q, we will use the mapping function G

d
Ga) =1+ Y B =1+G,B), Vac[0,N]x--x[0,Ng] (6)

=1
where 8 = (B1,...,84) € N* and

-1

Br=[]@;+1), vie[1d]. (7)

Jj=1

The G function maps the tuple points set [0, N1] x --- x [0, N4] to the global
points index set [1, nq]. From this function, we define the vertex array q as

q(:,G()) =x* =1, Yae[0,N1] x --- x [0, N4] (8)

According to the numbering choice G, we give in Algorithm [I] the vectorized
function CARTESIANGRIDPOINTS which returns the array q. In Appendix [B] we
explain how this function was written

Algorithm 1 Function CARTESIANGRIDPOINTS : computes the d-by-n, array
q which contains all the points of the cartesian grid Oy (vectorized version)

Input

N : array of d integers, N (i) = N;.
Output

q : array of d-by-n, integers.

Function q « CarresiaANGripPoiNTs (N)
B — CGBETA(N)
for r <~ 1 to d do
A < ResnAPE(REPTILE([0 : N(r)],B(r),1),1,(N(r) + 1)B(r))
q(r,:) < RepTiLe(A,1,Proo(N(r +1:d) + 1))
end for
end Function

The function CGBETA used in previous algorithm computes the 3;, VI € [1,d],
by using . This function is given in Algorithm

Algorithm 2 Function CGseta : Computes 3;, VI € [1,d], defined in
Input
N : array of d integers, N (i) = N;.

Output
B . array of d integers such that 8(I) = 3, defined in

Function 8 « CGgrra (N)
B(1) <1
for [— 2 to d do
B(l) < Bl—1)x (N(—-1)+1)
end for
end Function

From the array q defined in , we can now construct the tessellation of the
cartesian grid On with unit d-hypercubes.

2.2.2 Connectivity array of a cartesian grid

The d-dimensional cartesian grid On can be partitioned in ny, unit d-hypercubes
which have as vertices the cartesian grid points. All these unit hypercubes can
be uniquely identified by their vertex of minimal coordinates.

Let 2 € [0, N1[x -+ x [0, N4[. We denote by H, the unit hypercube defined
by its 2¢ vertices
P Vpe [0,1]%

We want to build the connectivity array me of dimensions 2%-by-n.,. such that
me(l, k) is the index in array q of the I-th vertex of the k-th hypercube : this
vertex is q(:,me(l, k)). To define an order of storage of the hypercubes in the
array me, we will use the function H defined by

d -1
H@) =1+ Y i [[Ny, 2€[0,Na[x-- x [0, Ng] (9)
=1 j=1

This bijective function maps the tuple points set [0, Ni[x - x [0, Ng[to the
global points index set [1,nye] such that k = #H(a).

The inverse function H! can easily be built. Indeed, if we define the d-by-
Nme array Hinv by

Hinv — CarrESIANGRIDPOINTS(N — 1).
then by construction we have
H (k) =Hinv(:, k), Yk e [1,nme]

Let k € [1,nme] and 2 = H*(k). The k-th hypercube is H, and «* is its vertex
of minimal coordinates. By construction of array q we have

' =q(;,9())

From vector B defined in (7)), we have G(1) = 1 + (1, 8) . Using matricial opera-
tions we can define the 1-by-n,,. array iBase by

iBase — 3" « Hinv + 1

such that
G(1) = GoH (k) = iBase(k). (10)

Let 2 € O, N1[x --- x [0, Ny[and k = H(2). We choose vertices local num-
bering in the k-th hypercube to be identical with that described ine section [2.1
That is why we take

a(sme(l, 1) = a' +4(. 1) = oA
where q is defined in section So we obtain
me(l, k) =G +q(:,1)) (11)
Lemma 6 Let1e Qn and p € Z¢, such that 1+ p € Qn. We have
Ge+p)=60)+@B) (12)
where B is defined in .

10

Proof: We have

o From Lemma |§| and definition of 8 in , we obtain

d
G +a(,0) =G0) + Y dls,0s = G@) + @, 1), 8

s=1

From (1), we have
me(l, k) — iBase(k) + (q(:,1),B8), Vle[1,d]
or in a vectorized form
me(l,:) < iBase + (q(:,1),8)

So we can easily write the function CGTessHyp in Algorithm [3|which computes
the q and me arrays.

Algorithm 3 Function CGTEssHYP : computes the vertices array q and the
connectivity array me obtained from a tesselation of the cartesian grid On with
unit hypercube.

Input
N : array of d integers, N (i) = N;.
Output
q 1 vertices array of d-by-nq integers.
me : connectivity array of 2¢-by-Nj, integers. me(l, k) is the

index in array q of the [-th vertex of the k-th hypercube : this
vertex is q(:, me(l, k)).

Function [q,me] — CGTrssHyp (N)
q < CARTESIANGRIDPOINTS(N)
Hinv < CARTESIANGRIDPOINTS(N — 1)
q < CaArTESIANGRIDPOINTS(ONES(1, d))
B «— CGBETA(N)
iBase — 3" « Hinv + 1
for [< 1 to 2¢ do
me(l,:) — iBase + (8,q(:,1))
end for
end Function

11

2.3 Numbering of the m-faces of the unit d-hypercube

Let m € [0,d]. As introduced in section |1} the m-faces of the unit d-hypercube
[0,1]¢ are unit m-hypercubes in R¢ defined by the product of d intervals where
d—m intervals are reduced to the singleton {0} or {1} (called reduced dimension)

We have n, = (s;) possible choices to select the index of the d —m reduced

dimensions (combination of d elements taken d — m at a time) and for each
selected dimension 2 choices : {0} or {1}.
So if | € [1,d] is the index of a reduced dimension then vertices z*(= @ =
(41,...,1q)) is such that 4; = 0 (minimum value) or 4; = 1 (maximum value).
Let LI%™] be the n.-by-(d — m) array given by

L[dvm] «— COMBS([[la dﬂ’ d— m)

Then each row of LI%™ contains the index of the d — m reduced dimensions
of an m-face sorted by lexicographical order (see Comss function description in

Appendix
Let S[f@”] be the (

sli=ml CarresianGriDPOINTS(ONES(1,d — m)).

d — m)-by-29=™ array given by

This array contains all the possible choices of the constants for the d—m reduced
dimensions (2 choices per dimension) : values are 0 for constant minimal value
or 1 for maximal value.

Definition 7 Let [€ [1,n.], r € [1,297™] and k = 29" (1 — 1) + r. The k-th
m-faces of the unit reference d-hypercube is defined by

{.’z: € [0,1]¢ such that z(LI4™ (1, s)) = Sl=m)(s,), Vs e [1,d — mﬂ}
or in a vectorized form
{:1: € [0,1]% such that z(LI4™(1,2)) = s[d—ml(;m)} (13)

For example, to obtain the ordered 2-faces of the unit 3-hypercube we com-
pute

1
LB2 = 2| and s =(0 1)
3

and then we have

2-face number Set

1 x € [0,1]3 such that z; = 0

2 gx € [0,1]3 such that x; =1

3 {z € [0,1]® such that 2, = 0}

4 z € [0,1]3 such that x5 =

5 z €[0,1]3 such that x3 =

6 z € [0,1]3 such that x5 = 1

To obtain the ordered 1-faces of the unit 3-hypercube we compute
1 2
LBY={1 3] and SP = <0 L0 1)

9 3 0 0 1 1

12

and then we have

1-face number

Set

1 {z €[0,1]? such that z; = 0, 25 = 0}
2 z € [0,1]3 such that &y =1, 22 =0
3 z € [0,1]3 such that x; =0, x5 =1
4 x €[0,1]3 such that 71 = 1, 25 =1
5 x € [0,1]3 such that 2y =0, 23 =0
6 {z €[0,1]3 such that 2y = 1, z3 = 0}
7 z € [0,1]3 such that x; =0, 23 =1
8 x €[0,1]3 such that 71 = 1, 23 =1
9 x € [0,1]3 such that 2 =0, 23 =0
10 {z €[0,1]% such that 2o =1, z3 =0
11 z € [0,1]3 such that 25, =0, 23 =1
12 %m € [0,1]? such that 2o = 1, 23 = 1%

To obtain the ordered O-faces of the unit 3-hypercube we compute

01010101
LB =1 2 3) and SBI={0 0 1 1 0 0 1 1
00 0 0 1 1 11
and then we have
1-face number Set
1 {.’L‘ € [0,1]? such that ;1 =0, 22 =0, x3 = 0}
2 {.'1: € [0,1]? such that z; = 1, 25 =0, x3 = 0}
3 z € [0,1]3 such that 21 =0, 2o =1, 23 =0
4 z €[0,1]3 such that 77 =1, 25 =1, 23 =0
5 z €[0,1]3 such that 71 =0, 29 =0, 23 =1
6 {z €[0,1]% such that 2y =1, z =0, x3 =1
7 {z €[0,1]? such that zy =0, x2 =1, z3 = 1}
8 {z €[0,1]? such that z; =1, wp =1, z3 = 1}

2.4 m-faces tessellations of a cartesian grid

Let On be the d-dimensional cartesian grid defined in section So as not to
confuse notations, we denote by On.q and Qy.me respectively the vertices and
connectivity arrays of the tessellation with unit hypercubes of the cartesian grid

ON.

Let m € [0,d[and k € [1, E,, q]. We want to determine O (k) the tessel-
lation obtained from the restriction of the cartesian grid Oy to its k-th m-face
where the numbering of the m-faces is specified in section 2.3] We denote by

e O (k).q, the (local) vertex array

o Oy (k).me, the (local) connectivity array

o OF(k).toGlobal, the global indices such that

13

ox (k).q = On.q(:, OF (k).toGlobal).

By construction, O (k) is the tessellation of an m-hypercube in R? with unit
m-hypercubes .

Let l € [1,n.], 7 € [1,2¢7™] and k = 24~ (1—1)+7. The cartesian grid point
x = (21,...,2q) is on the k-th m-face Q' (k) if and only if for all s € [1,d — m]
and with j = LI4™](l, 5) we have

S { 0 if Sld=ml(s, 1) == 0 (minimum value)
;=

N; otherwise (Sl9=™l(s,7) == 1), (maximum value)

So we obtain
z; = Nj x Sld=m (s 7)

or, in a vectorized form using element-wise multiplication operator .%:

x(L[d’m] (1,) = N(L[dvm] (1,:)) .* S[d_m](:, T). (14)

Definition 8 Let [e [1,n.], r € [1,297™] and k = 297 (1 — 1) + r. Then, the
k-th m-faces of the cartesian grid ON is defined as the set

{:1: € O such that z(LI4™)(1,2)) = N (L™ (1, .)) » sld*”ﬂ(;,r)} (15)

2.4.1 Case m = 0.

If m = 0, the m-faces are the 2¢ corner points of the cartesian grid. Then we
have L% = [1,d] and SI¥ is an d-by-2¢ array.
From ([5)), we obtain that Vk € [1,2¢] the k-th O-face of Qy is reduced to
the point
=N xS0 k)

and it is also the k-th column of the array @ of dimensions d-by-2? given by

N, 0O 0

Q— 0 Ny . : gld]
S . . 0
0 0 Ny

So we obtain
R (k).a=Q(: k)
O (k).me = 1
X (k).toGlobal = (B, Q(:, k)) + 1
2.4.2 Casem >0

Let [€ [1,n.], r € [1,2¢7™] and k = 2¢=™(I — 1) + r. To construct O (k) we
first set a tessellation without the m constant dimensions given in ide = L(l,:)
(i.e. only with nonconstant dimensions in idne = [1, d]\ide):

[q*,me"] «— CGTEessHyP(N (idnc))

14

The dimension of the array qv is m—by—nf:1 where n,l31 = H (N; + 1). Then the

i€idnc
nonconstant rows are

Of (k).a(idne(i),) — q"(i,:), Vie [1,m]
and the constants rows
OF (k).q(ide(i), :) « N(ide(i)) * SI=™)(4,7) » Oxes(1,n)), Vie[l,d—m]
In a vectorized way, we have

oy (k).q(idne, :) — q"
o (k).q(ide, :) (N(idc)t a4 Sl r)) + Ones(1,nl)

We immediately have the connectivity array
Ox (k).me = me".

There still remains to compute O (k).toGlobal. For that we use the mapping
function G defined in section and more particularly (). Indeed, for all
je€ [[1,1121]], we can identify the point O (k).q(:,7) by the d-tuple 2 and use it
with the mapping function G to obtain the index in array On.q of the point
oy (k).a(:, 7). So we have

1= Q% (k).q(:,5) = Ona(:,G(2))

and then
O (k).toGlobal(j) = G(Qx (k)-a(:, 7))

In a vectorized way, we set
O (k).toGlobal « 1 + 8° + OF (k).q

with the vector B defined in (7).

One can also compute the connectivity array of O (k) associated with global
vertices array On.q which is given by O (k).toGlobal(me™).

We give in Algorithm the function CGTEssFaces which computes O (k),
Yk e [1,297mn,].

15

Algorithm 4 Function CGTrssFaces : computes all m-faces tessellations of
the cartesian grid QN with unit m-hypercubes.

Input :
N : 1-by-d array of integers, N (i) = N;.
m : integer, 0 < m <d
Output
ON : array of tessellations of all m-faces of the cartesian grid On.
. dem [@
Its length is E,, g = 2 (m) .

Function sQn <« CGTEessFaces (N, m)
B — CGBETA(N)
if m == 0 then
Q < D1ag(N) # CArTESIANGRIDPOINTS(ONES(1, d))
for k — 1 to 2¢ do
O (k). < QG)
Of (k) me — 1
O (k).toGlobal «— 1 +(B,Q(:, k))

end for
else
d
Ne «—
m

L — Cowmss([1,d],d —m)
S « CARrESIANGRIDPOINTS(ONES(1, d — m))
k<1
for | — 1 to n. do
ide < L(I,:)
idnc — [1,d]\ide
[q*,me™] « CGTessHyr(N (idnc))
nl — [T, (N (idnc(s)) + 1) > or length of q*
for r — 1 to 297 do
O (k).q(idne,) — q
ou(k).q(ide,:) < (N(ide)® .x S(:,r)) » Oxes(1, nl,)
o (k) me «— me"
Or(k).toGlobal < 1 + 8° « OR (k).q
ke—k+1
end for
end for
end if
end Function

2.5 Tessellation of a d-orthotope with d-orthotopes

Let O4 be the d-orthotope [a1,b1] X - - - X [ag, bq]- To construct a regular grid on
04 with N; +1 points in el?! direction, i € [1, d]), we use an affine transformation
of the cartesian grid On = [0, N1] x - -+ x [0, Ng] to Oq4. Let a = (aq,...,aq),
b= (by,...,bq) and h = (hq,...,hyq) with h; = (b; — a;)/N; be three vectors of
R?. Let He M4(R) be the diagonal matrix with h as diagonal. Then the affine

16

transformation is given by

A O — Oy
T — y=a+Hz

Let N < [Ny,..., Ny]. The tessellation of the cartesian grid Oy is obtained by
[q,me] < CGTEssHyYP(N)

To obtain the tessellation of the orthotope Oy4 we only have to apply the affine
transformation A4 to array q. In a vectorized form, one can write for all ¢ € 1, d]

q(i,:) —a(i) + (b(i) — a(i))/N (i) = q(i,:)

This operation is done by the function BoxMappriNG given in Algorithm

Algorithm 5 Function BoxMappiNG : mapping points of the cartesian grid
ON to the d-orthotope [a1,b1] X -+ X [ag, bd]

Input
N : array of d integers, N(i) = N;.
q : d-by-nq array of integer obtained from
[q,me] < CGTEssHyYP(N)
a,b : arrays of d reals, a(i) = a;, b(i) = b; with a; < b;
Output
q : vertices array of d-by-nq reals.

Function q « BoxMarrinG (q,a,b,N)
for i — 1 to d do
b (b() — a(i))/N (i)
q(?,:) —a(i) + h=q(i,:)
end for
end Function

The function OrraTessOrra , which returns the arrays q and me corre-
sponding to the regular tessellation of O4 with d-orthotopes, is presented in
Algorithm [6]

Algorithm 6 Function OrruTressOrrH : d-orthotope regular tessellation with
orthotopes

Input

N : array of d integers, N(i) = N;.

a,b : arrays of d reals, a(i) = a;, b(i) = b; with a; < b;
Output

q : array of d-by-nq reals.

me : array of 2%-by-n,,. integers.

Function [q,me] < OrruTessOrra (N, a,b)
[q,me] — CGTEessHYP(N)
q < BoxMarriNG(q, a,b)

end Function

17

2.6 m-faces tessellations of a d-orthotope

As seen in section [2.5] we only have to apply the function BoxMapPING to each
array Oy (k).q of the tessellations of the m-faces of the cartesian grid On. This
is the object of the function OrruTEssFaces given in Algorithm [7]

Algorithm 7 Function OrraTEssFaces : computes the conforming tessella-
tions of all the m-faces of the d-orthotope [a1,b1] X -+ X [a4, b4]

Input
N : array of d integers, N(i) = N;.
a,b : arrays of d reals, a(i) = a;, b(i) = b;
m : integer, 0 < m < d
Output
sOp : array of the tessellations of each m-faces of the orthotope.
. d—m [@
Its length is E,, g = 2 (m) .

Function sOp, < OrruTEssFaces (N,a,b, m)
sOp, «— CGTessFaces(N,m)
for k — 1 to LeEx(sOp) do
sOp(k).q < BoxMaprprING(sOp(k).q,a,b,N)
end for
end Function

3 Tessellation with d-simplices

The goal of this section is to obtain a conforming triangulation or tessellation
of a d-orthotope named Oy with d-simplices.

The basic principle selected here is to start from a tesselation of a cartesian
grid with unit hypercubes as obtained in section Then by using the Kuhn’s
decomposition of an hypercube in simplices, we build in section a tesselation
of a cartesian grid with simplices and we explain how to obtain all its m-faces
in section [3.3] Finally, ...

3.1 Kuhn’s decomposition of a d-hypercube

Kuhn’s subdivision (see [I], 11l [12]) is a good way to divide a d-hypercube into
d-simplices (d = 2). We recall that a d-simplex is made of (d + 1) vertices.

Definition 9 Let H = [0,1]¢ be the unit d-hypercube in RY. Let el ... el be
the standard unit basis vectors of R? and denote by Sy the permutation group
of [1,d]. For all w € Sy, the simplex K, has for vertices {xLO], .. ,mﬁrd]} defined
by

2l = (0,...,0), 2l =zl 4 701 vje 1,4 (16)

e

The set IK(H) defined by
KH) ={K, | meSi} (17)

is called the Kuhn’s subdivision of H and its cardinality is d!.

18

For example, we give in Figure [] the Kuhn’subdivision of an d-hypercube
with d = 2 and d = 3. We choose the positive orientation for all the d
simplices. The corresponding vertex array q and the connectivity array me are
given by (préciser comment me est ordonné):

e for d = 2,
q_(0101>me_§;
0 0 1 1 14
e for d = 3,
01 010101 L 88118
5 3 5 3 2 2
q=(0 0 1 1 0 0 1 1], me=
00001111 TT 6464
8 1 1 8 8 1
@ Iry
i k

Figure 4: Kuhn’s subdivision

Let Ko be the base simplex or reference simplexr with vertices denoted by
{2l .. 2!} and such that
% = (0,...,0), 2Vl =gl=1 1 el vje[1,d]. (18)

Let 7 € S,, and 7(z) indicate the application of permutation 7 to the coordinates
of vertex . The vertices of the simplex K defined in (16 can be derived from
the reference simplex K¢ by

2U! = 7(zly, vje o, d]. (19)

Let w(Ker) denote the application of permutation to each vertex of Kyef. Then
we have

m(Kref) = Ki (20)

Lemma 10 ([1], Lemma 4.1) The Kuhn’s subdivision IC(H) of the unit d-
hypercube H has the following properties:

19

1. 0% and 1% are common vertices of all elements K, € KC(H).
2. K(H) is a consistent/conforming triangulation of H.

8. K(H) is compatible with translation, i.e., for each vector v € [0,1]¢ the
union of K(H) and K(v + H) is a consistent/conforming triangulation of
the set Hu (v + H).

4. For any affine transformation F, the Kuhn's triangulation of F(H) is
defined by K(F(H)) ¥ F(K(H)).

To explicitly obtain a Kuhn’s triangulation JC(H) of the unit d-hypercube H
we must build the connectivity array, denoted by me, associated with the vertex
array q. The dimension of the array me is (d + 1)-by-d!.

Let q** be the d-by-(d+ 1) array of vertex coordinates of reference d-simplex
}(mf:

011 . o1

i i i |

S PGP C B B B
00 ... 0 1

Let P be the d-by-d! array of all permutations of the set [1,d] and © = P(:, k)
the k-th permutation. The array P is obtained by using the function PErwms
defined in Appendix We use and to build the vertices of K. So
the j-th vertex of K is given by

mgrj_l] - qrEf(P(:’ k)vj)

To find which column in array q corresponds to :I}LJ 1 we use the mapping

function £ defined in and we set

20
me(j, k) < L(q" (P(:, k).])) = < S R 4 k)7j))> +1
2d71

If the k-th d-simplex has a negative orientation, one can permute the index
of the first and the last points to obtain a positive orientation:

me(1l, k) < me(d + 1, k).

In Algorithm [§] we give the function KuaNTriaNnGuLATION which returns the
points array q and the connectivity array me where all the d-simplices have a
positive orientation.

20

Algorithm 8 Kuhn’s triangulation of the unit d-hypercube [0, 1] with d! sim-
plices (positive orientation)

Input
d : space dimension
Output
q : vertices array of d-by-2¢ integers.
me : connectivity array of (d + 1)-by-d! integers

1: Function [q,me] « KunNTrIANGULATION (d)
2: g < CARTESIANGRIDPOINTS(ONES(1, d))

0 i 1 1
ref 1 0

3 Q™ — ! > a d-by-(d + 1) array
010 ... 0 1

4: P <« perMs(1 : d) > see Appendix

5: me < Ogy1.a1

6: a<« [2021 ... 2472 2d-1]

7. for k<1 tod do

8 for j—1 tod+1do

9 me(j, k) — por(a,q (P(;, k), 7)) + 1

10: end for

11: if pet([q(:,me(:, k)); onES(1,d 4+ 1)]) < 0 then

12: t < me(1,k), me(1,k) «— me(d + 1,k), me(d + 1,k) < ¢

13: end if

14: end for
15: end Function

From this tesselation of the unit reference d-hypercube, we will see how to
get a regular tessellation of a cartesian grid with simplices.

3.2 Cartesian grid tesselation with simplices

Let On be the d-dimensional cartesian grid defined in section As before,
so as not to confuse notations, we denote by On.q and Oy.me respectively
the vertices and connectivity arrays of the cartesian grid Qn. There are Nj, =
1%, N; unit hypercubes in this tessellation.

Let Z = [0, N1[x ... x [0, Ng[. We have

on = JH
1€l

where H, is the unit hypercube with z* =2 vertex of minimal coordinates.
From Lemma [10] the triangulation

731 = U K:(Hz)

€l

is a conforming triangulation of On with nye = d! x Ny d-simplices and by
construction the vertices of Ty are the vertices of On:

TNg=9N4q.

21

It thus remains to calculate the connectivity array me of 7y also denoted by
Tn-me. This is a (d + 1)-by-nye array. For a given hypercube H, we store
consecutively in the array me, the d! simplices given by IC(H,)

The Kuhn’s triangulation for the reference hypercube [0, 1]¢ can be obtained
from the function KUHNTRIANGULATION :

[dy, mex] < KUHNTRIANGULATION(d)

Let 2 € Z and k = H(2) where H is defined by (9). Let [€ [1,d!]. We choose
to store the [-th simplex of K(H,) in me(:,d!(k — 1) +1).

Let j € [1,d + 1]. The j-th vertex of the I-th simplex of K(H,) is stored in
q(:,me(j,d!(k — 1) + 1)) and its coordinates are given by

x'l. + qK(:ameK(j7 l)) =1+ qK(:’meK(ja l))
So we want to determine the index me(j, d!(k — 1) +). From (), we obtain
me(j,dl(k—1) +1) = G(» + q, (:,mex(j,1))).
By using Lemma [6] we deduce that
me(j,d!(k —1) + 1) = G2) +{qy (- mex (4, 1)), B)

Then, with , the array me is given by: VI € [1,d!], Vj € [1,d + 1], Vk €
[LNh]]a

me(j, d!(k — 1) + 1) = iBase(k) + (qx (:, mex (5,1)), B) -
This formula can be vectorized in k: with Idx « d![0 : N, — 1] + 1 then
me(j, Idx) — iBase + (qy (:, mex (5,1)),) -

We give in Algorithm [J] the function CGTrianGuLATION which computes the
triangulation of the cartesian grid On.

22

Algorithm 9 Function CGTRIANGULATION : computes the triangulation of the
cartesian grid On
Input

N : array of d integers, N (i) = N;.

Output
q : vertices array of the triangulation of O.
d-by-nq array of reals (integer in fact) where ng = ngl(Ni +1).
me : connectivity array of the triangulation of On.

. d
(d + 1)-by-nme array of integers where nme = d!'[[;_; N;. .

Function [q,me] «— CGTrianguLATION (N)
q — CARTESIANGRIDPOINTS(N)
Hinv « CARTESIANGRIDPOINTS(N — 1)
[a ; mey | < KUHNTRIANGULATION(d)
B — CGBETA(N)
iBase < ° * Hinv + 1
Idx — d!'=[0: (N, — 1)]
for | — 1 to d! do
Idx « Idx + 1
for j—1tod+1do
me(j, dx) « iBase + (a, (-, mey (j, 1)), B)
end for
end for
end Function

3.3 m-faces tessellations of a cartesian grid

Let On be the d-dimensional cartesian grid defined in section As before,
we denote by Tn.q and Ty.me respectively the vertices and connectivity ar-
rays of the tessellation of the cartesian grid Oy with d-simplices obtained from
CGTrianGuLATION function and described in Algorithm [9]

Let m € [0,d] and k € [1, E,, 4] where E,, 4 is the number of m-faces
defined in (I). We want to determine T (k), the tessellation obtained from
the restriction of 7 to its k-th m-face where the numbering of the m-faces is
specified in section We denote by

o TN'(k).q, the (local) vertex array
o Tx'(k).me, the (local) connectivity array
o T (k).toGlobal, the global indices such that

T (k).q = Tn-a(:, T (k).toGlobal).

By construction, 75 (k) is the triangulation by m-simplices of an m-hypercube
in R<.

The only difference with the construction of Qg (k) given in section [2.4] is
on the me" array. For O (k), we had

[q“, me"] — CGTessHyr(N (idnc))

23

whereas for 73 (k) we must have instead
[q¥,me"] « CGTriancuLAaTION(N (idnc))

So only one line changes in the Algorithm [to obtain the new one given in
Algorithm [10{ where the function CGTriFaces computes To(k), Vk € 2¢7™n,..

Algorithm 10 Function CGTriFaces : computes all m-faces tessellations of
the cartesian grid On with m-simplices

Input :
N : array of d integers, N (i) = N;.
m : integer, 0 <m <d
Output :
Ty ¢ array of triangulations of all m-faces comming from

the cartesian grid triangulation Ty .

The length of T is Eyy g = 297 (;i) (number of m-faces).

Function 73 <« CGTriFaces (N, m)
B — CGBETA(N)
if m == 0 then
Q < DiaG(N) * CarTESIANGRIDPOINTS(ONES(1, d))
for k < 1 to 2¢ do
T (k).a — Q.)
Ty (k) me — 1
T (k).toGlobal «— 1+ (8,Q(:,k))

end for
else
d
Ne «—
m

L — Cowmss([1,d],d —m)
S «— CaRTESIANGRIDPOINTS(ONES(1,d — m))
k1
for | — 1 to n. do
ide < L(Z,:)
idnc < [1, d]\ide
[q*,me"] « CGTriaNcuLATION(N (idnc))
nl — [T., (N (idnc(s)) + 1) > or length of q¥
for r < 1 to 2¢7™ do

end for
end for
end if

end Function

24

3.4 d-orthotope tessellation with d-simplices

Let Oq4 be the d-orthotope [a1,b1] X -+ X [aq, bd]-
The mechanism is similar to that seen in section [2.5| while taking as a starting
point the cartesian grid triangulation.

Algorithm 11 Function ORTHTRIANGULATION : regular tessellation with sim-
plices of a d-orthotope

Input
N : array of d integers, N (i) = N;.
a,b : arrays of d reals, a(i) = a;, b(i) = b;
Output
q 1 vertices array with d-by-nq reals.
me : connectivity array with (d + 1)-by-nm,. integers.

Function [q,me] « OrraTriaNGULATION (N, a,b)
[q, me] « CGTriancuULATION(N)
q < BoxMarriNG(q,a,b,N)

end Function

3.5 m-faces tessellations of a d-orthotope with d-simplices

As seen in section we only have to apply the function BoxMarpinG to each
vertices array Tp'(k).q corresponding to the k-th m-faces tessellations of the
cartesian grid On. This is the object of the function OrruTrRIFACES given in

Algorithm

Algorithm 12 Function OrruaTriFAces : computes the conforming tessella-
tions with simplices of all m-faces of the d-orthotope [a1,b1] X - -+ X [ag, bd]

Input
N : array of d integers, N (i) = N;.
a,b : arrays of d reals, a(i) = a;, b(i) = b;
m : integer, 0 < m <d
Output
Ty ¢ array of the tessellations with simplices of all m-faces of the orthotope.
. d—m [@
Its length is Fp, g = 2 <m) .

Function 73 < OrruTrIFACES (N,a,b,m)
TN' < CGTriFaces(N,m)
for k — 1 to Lex(7y") do
Tn' (k).q < BoxMarpiNG(TN' (K).q,a,b,N)
end for
end Function

4 Efficiency of the algorithms

Based on previous algorithms, a Matlab toolbox [3], an Octave package [4] and a
python package [5] were developed. They contain a simple class object OrthMesh

25

from which can be obtained, in any dimension d > 1 a simplicial or orthotope
mesh with all its m-faces, 0 < m < d. It is also possible with the method
function plot of the class object OrthMesh to represent a mesh or its m-faces
for d < 3.

In the folowing section, the class object OrthMesh is presented. Thereafter
some warning statements on the memory used by these objects in high dimen-
sion are given. Finally computation times for orthotope meshes and simplicial
meshes are given in dimension d € [1, 5].

4.1 Class object OrthMesh

The aim of the class object OrthMesh is to use previous algorithms to create an
object which contains a mesh of a d-orthotope and all its m-face meshes. An
elementary mesh class object E1tMesh is used to store only one mesh, the main
mesh as well as any of the m-face meshes. The class E1tMesh also simplifies
writing code. Its fields are the following:

e d, space dimension

e m, kind of mesh (m = d for the main mesh and m < d for m-faces mesh)
e type, 0 for simplicial mesh or 1 for orthotope mesh

e ng, number of vertices

e q, vertices array of dimension d-by-nq

® Ne, number of mesh elements

e me, connectivity array of dimension (d + 1)-by-n,. for simplices elements
or 2%-by-nye for orthotopes elements

e toGlobal, index array linking local array q to the one of the main mesh
e label, name/number of this elementary mesh
e color, color of this elementary mesh (for plotting purpose)

Let the d-orthotope be defined by [a1,b1] x -+ x [ag,bq]. The class object
OrthMesh corresponding to this d-orthotope contains the main mesh and all its
m-face meshes, 0 < m < d. Its fields are the following

e d: space dimension
e type: string ’simplicial’ or ’orthotope’ mesh
e Mesh: main mesh as an E1tMesh object

e Faces: list of arrays of EltMesh objects such that Faces(1) is an array
of all the (d — 1)-face meshes, Faces(2) is an array of all the (d — 2)-face
meshes, and so on

e box: a d-by-2 array such that box(i,1) = a; and box(7,2) = b;.

26

The OrthMesh constructor is
Oh < OrruMesu(d, N, < box >, < type >)

where N is either a 1-by-d array such that N(¢) + 1 is the number of grid points
discretising [a;, b;] or either an integer if the the number of discretization is the
same in all space directions. The optional parameter box previously described
as for default value a; = 0 and b; = 1. The default value for optional parameter
type is ’simplicial’, otherwise ’orthotope’ can be used.

In Listing [1} an OrthMesh object is built under Octave for the orthotope
[—1,1] x [0,1] x [0,2] with simplicial elements and N = (10, 5,10). The main
mesh and all the m-face meshes of the resulting object are plotted. In Listing[2]
similar operations are done under Python with orthotope elements.

““ﬂ‘
DI

ﬂ“‘ﬂ‘\

V%
g
?
Eﬁ
g)

Listing 1: 3D simplicial OrthMesh object with Matlab 2017a, main mesh (upper left), 2-face meshes (upper
right), 1-face meshes (bottom left) and 0-face meshes (bottom right)

. Oh=OrthMesh (3 ,[10,5,10], ’box’ ,[—1,1;0,1;0,2])

2 % plot the main mesh

s figure (1)

Oh.plotmesh (?legend’ ,true)

axis equal;xlabel(’x?);ylabel(y?);zlabel(’z?)

% plot the 2—face meshes

figure (2)

Oh.plotmesh(’m’,2,%legend’ ,truc)

axis equal;xlabel(?x?);ylabel(’y?);zlabel(’z?)

1w % plot the 1—face meshes

1 figure (3)

12 Oh.plotmesh(’m? ,2,%color’ ,[0.8,0.8,0.8],’EdgeAlpha’ ,0.2, ’FaceColor’, ’none’)
13 hold on
1a Oh.plotmesh(’m? ,1,’Linewidth’,2,’legend’,true)

15 axis equaljaxis off

16 % plot the 0—face meshes

17 figure (4)

18 Oh.plotmesh(’m?,1,%color’,’k?)
19 hold on

20 Oh.plotmesh(’m?,0,%legend? ,true)
21 axis equaljaxis off

27

AY
NNAN

AN

<]
Z]
2!
Z]

\ARK

— o —on
—_— o arg

o3 = aly
—— Oy ey
— .
—< o .

o o
g 3
o0

%0.75
050025

-1.00

0.00
x 0025

Listing 2: 3D orthotope OrthMesh object with Python 3.6.3, main mesh (upper left), 2-face meshes (upper
right), 1-face meshes (bottom left) and 0-face meshes (bottom right)

import matplotlib.pyplot as plt
from fc_hypermesh import OrthMesh

0Th=OrthMesh (3 ,[10,5,10],type=’orthotope’, box=[[—1,1],[0,1],[0,2]])
plot the main mesh

plt.ion ()

plt. figure (1)

plt.clf ()

oTh. plotmesh (legend=True)

plot the 2—face meshes

plt.figure (2)

plt.clf ()

oTh. plotmesh (m=2,legend=True, edgecolor =[0,0,0])

plot the I—face meshes

plt. figure (3)

plt.clf ()

oTh. plotmesh (m=2,edgecolor =[0.9,0.9,0.9], facecolor=None)
oTh. plotmesh (m=1,legend=True, linewidth=2)

plot the O—face meshes

plt.figure (4)

plt.clf ()

oTh. plotmesh (m=1,color="black?’)

oTh.plotmesh (m=0,legend=True ,s=>55)

Beware when using theses codes of memory consuming : the number of points nq
and the number of elements quickly increase according to the space dimension

Of course, the plotmesh method doesn’t work in dimension d > 3!

4.2 Memory consuming

d. If (N + 1) points are taken in each space direction, we have

ng = (N +1)%, for both tessellation and triangulation

and

Nme = N9, for tessellation by orthotopes
Nme = dIN?% for tessellation by simplices.

28

If the array q is stored as double (8 bytes) then
mem. size of q = d x ng x 8 bytes
and if the array me as int (4 bytes) then

2¢ % npme % 4 bytes (tessellation by orthotopes)

mem. size of me = { (d+1) X nme x 4 bytes (tessellation by simplices)

For N = 10 and d € [1, 8], the values of nq and ny are given in Table
The memory usage for the corresponding array q and array me is available in
Table [l

d ng=(N+1)7 ny.= N (orthotopes) nm,e = d'N? (simplices)

1 11 10 10
2 121 100 200
3 1 331 1 000 6 000
4 14 641 10 000 240 000
5 161 051 100 000 12 000 000
6 1 771 561 1 000 000 720 000 000
7 19 487 171 10 000 000 50 400 000 000
8 214 358 881 100 000 000 4 032 000 000 000

Table 3: Number of vertices ny and number of elements ny,. for the tessellation
of an orthotope by orthotopes and by simplices according to the space dimension
d and with N = 10.

d q me (orthotopes) me (simplices)
1 88 B 80 B 80 B
2 1 KB 1 KB 2 KB
3 31 KB 32 KB 96 KB
4 468 KB 640 KB 4 MB
) 6 MB 12 MB 288 MB
6 85 MB 256 MB 20 GB
7 1 GB 5 GB 1 612 GB
8 13 GB 102 GB 145 152 GB

Table 4: Memory usage of the array q and the array me for the tessellation of
an orthotope by orthotopes and by simplices according to the space dimension
d and with N = 10.

In the following pages, computational costs of the OrthMesh constructor will
be presented.

4.3 Computational times

For all the following tables, the computational costs of the OrthMesh constructor
are given for the orthotope [—1,1]? under Matlab R2017a, Octave 4.2.1 and
Python 3.6.0. The computations were done on a laptop with Core i7-4800MQ
processor and 16Go of RAM under Ubuntu 14.04 LTS (64bits).

29

In Table [5] some computational costs of the OrthMesh constructor

are given for d € [2,5]. Computational costs for tessellations with simplices are
presented in Table [] for d € [2,5]. In Appendix [C] more detailed tables are

Oh «— OrruMesu(d, N, [—1;1]¢, >orthotope?)

given.
d N Ng Nme Python Matlab Octave
2 4000 16 008 001 16 000 000 1.307 (s) 0.388 (s) 1.473 (s)
3 250 15 813 251 15 625 000 1.896 (s) 0.718 (s) 2.782 (s)
4 62 15 752 961 14 776 336 2.804 (s) 1.321(s) 5.403 (s)
5 27 17 210 368 14 348 907 4.485(s) 2511 (s) 10.781 (s)

Table 5: Tessellation of [—1,1]% by orthotopes with approximatively 15 millions
elements. Computational times in seconds for Python 3.6.3, Matlab 2017a and
Octave 4.2.1.

d N Ng Nme Python Matlab Octave
2 5000 25 010 001 50 000 000 4.362 (s) 2.000 (s) 4.148 (s)
3 180 5 929 741 34 992 000 3.517 (s) 2.202 (s) 4.098 (s)
4 40 2 825 761 61 440 000 4.175(s) 4.204 (s) 9.798 (s)
5 12 371 293 29 859 840 2.394 (s) 2.788 (s) 8.119 (s)

Table 6: Tessellation of [—1,1]¢ with tens of millions of simplices. Computa-
tional times in seconds for Python 3.6.3, Matlab 2017a and Octave 4.2.1.

5 Conclusion

In [9], vectorized algorithms are proposed to compute some assembly matri-
ces obtained by the P;-Lagrange finite element method and this in any space
dimension. Furthermore, complete codes were written to solve boundary value
problems (B.V.P.) in any space dimension ([6] for Matlab, [7] for Octave and [§]
for python). To test these codes for dimensions greater than 3 we need simplicial
meshes in dimension 4, 5, ... Meshing softwares, as GMSH or Open CASCADE,
do not provide tools to generate kind of meshes. So we have developed vec-
torized algorithms for the simplest geometry: a d-orthotope. These algorithms
are proved to be particularly efficient as they make possible to obtain meshes
with tens of millions of elements in a few seconds with either Matlab, Octave
or Python. The least performance of Octave are probably due to non-optimal
choices during compilation. We work on this point by following several tracks:
use of the Intel MKL library, ...

The codes in Matlab, Octave and Python, referenced as fc_hypermesh, can
be obtained on

http://www.math.univ-paris13.fr/"cuvelier/software/

The Python package fc_hypermesh is also available on PyPT [10].

30

http://www.math.univ-paris13.fr/~cuvelier/software/
https://pypi.python.org/pypi/fc-hypermesh

A Vectorized algorithmic language

A.1 Common operators and functions

We also provide below some common functions and operators of the vectorized
algorithmic language used in this article which generalize the operations on
scalars to higher dimensional arrays, matrices and vectors:

A<B Assignment

A=B matrix multiplication,

A.xB element-wise multiplication,

A./B element-wise division,

A(:) all the elements of A, regarded as a single column.
[,] Horizontal concatenation,

= Vertical concatenation,

A, J) J-th column of A,

A(l,:) I-th row of A,

Sum(A, dim) sums along dimension dim,

Probo(A, dim) product along dimension dim,

I, n-by-n identity matrix,

Lpxn (or 1,,) m-by-n (or n-by-n) matrix or sparse matrix of ones,
O.xn (or Oy) m-by-n (or n-by-n) matrix or sparse matrix of zeros,
Ones(m,n) m-by-n array/matrix of ones,

Zeros(m,n) m-by-n array/matrix of zeros,

RePTILE(A,m,n) tiles the p-by-g array/matrix A to produce the (m x p)-
by-(n x ¢) array composed of copies of A,

REesHAPE(A,m,n) returns the m-by-n array/matrix whose elements are
taken columnwise from A.

A.2 Combinatorial functions

Perms(V) where V' is an array of length n. Returns a n!-by-n array
containing all permutations of V' elements.
The lexicographical order is chosen.

Comss(V, k) where V' is an array of length n and & € [1, n].
Returns a ﬁikﬂ—by—k array containing all combina-

tions of)))
n elements taken k at a time. The lexicographical order

is chosen.

B Fl.lIlCtiOIl CARTESIANGRIDPOINTS

The objective is to explain how to obtain the vectorized function CARTESIAN-
GripPoinTs given in Algorithm [I section [2.2.1] This function returns the
vertex array q of the cartesian grid On. The dimension of q is d-by-n, with
nq = [Ty (Ni +1).

According to the numbering choice described in section [2:2.1] the Algo-
rithm [I3] gives the most simple presentation of q computated column by column.

31

Algorithm 13 Building q the d-by-n, array of cartesian grid points
k<1
for iy — 0 to N do
for i4_1 < 0 to Ng_q do

for i5 «— 0 to Ny do
for i; «<— 0 to N7 do

v [i1,02,. .., 04—1,%4]
q(s k) < = By construction k = G(2)
k—k+1
end for
end for
end for
end for

To vectorize this algorithm we need to rewrite it with computed line by line.
For that we write this algorithm, with an explicit for loop on the coordinates:
it is given by Algorithm

Algorithm 14 Building q the d-by-nq array of cartesian grid points
k1
for iy — 0 to N, do
for ig_1 <— 0to Ny_1 do

for i3 — 0 to Ny do
for i1 — 0 to N; do
for r — 1 to d do
q(r, k) < i,
end for
k—k+1
end for
end for

end for
end for

Let r € [1,d]. From Algorithm we deduce Algorithm [15| which only
computes the component r of the cartesian grid point Oy (i-e. the values q(r, k),
Yk € [1, nq])

32

Algorithm 15 Computes component r € [1,d] of cartesian grid points in the
d-by-nq array q.

Let r € [1,d]

k<1

for iy — 0 to N, do

for i, — 0 to N, do
for i,_y < 0to N,_; do

for i; «<— 0 to N7 do
q(rvk)‘*ir
k—k+1

end for

end for
end for

end for

One can replace the for loops i; to i,_; by a for loop in j with number
of iterations equal to (N; + 1) x -+ x (N,_1 + 1) = B,_1. This is done in
Algorithm [16]

Algorithm 16 Computes component 7 € [1,d] of cartesian grid points in the
d-by-nq array q.

Let r € [1,d]

k<1

for iy — 0 to N do

for i, «— 0 to N, do
for j — 1 to . do
q(r, k) < i,
k—k+1
end for
end for

end for

We can replace the for loops in i, and j by a call to the function Bui.bPA
given in Algorithm [I7) which returns the array containing the 3, values stored
in array q by these two loops. The modified code using this function is given in

Algorithm

33

Algorithm 17 Computes the array containing
the 3,41 values stored in array q by the for
loops in 7, and j.

Input :
N array of d integers, N (i) = N;.
r re[1,d]
Output :
A array of 8,41 = (N, + 1)5, integers.

Function A < BuiLpPA (N, r)

r—1
Br < H(N(l) + 1)7 k1,
=1

s—1
for i — 0 to N, do
for j — 1 to 3, do
A(s) « i
s—s+1
end for
end for
end Function

Algorithm 18 Computes component r €
[1,d] of cartesian grid points in the d-by-nq
array q.

Let r € [1,d]
IT—1:841
for iq — 0 to N(d) do

for i,41 < 0 to N(r +1) do
q(r,I) < BuiLpPA(N,r)
I—I+84

end for

end for

As we can see, the BuipPA call in Algorithm [18] does not depend on the
for loops 44 to 7,4+ 1. Using this property and replacing the for loops i4 to 7,1 by
a for loop in ¢ with a number of iterations equal to (Ng+ 1) x -+ X (Ny41 + 1)
gives the first writable code in Algorithm [T9]

Algorithm 19 Computes component 7 € [1,d] of cartesian grid points in the

d-by-nq array q

Let r € [1,d]
I—1:p11
A — BuiLpPA(N,r)
for i —1to (N(d)+1) x---
q(r,I) — A
I —I+p54

end for

x (N(r+1)+1)do

We can now write a complete nonvectorized function

34

Algorithm 20 Function CARTESIANGRIDPOINTSVO : computes the d-by-nq
array q which contains all the points of the cartesian grid On. (non vectorized
version)

Input

N . array of d integers, N (i) = N;.
Output

q : array of d-by-nq array of integers.

Function q « CARTESIANGRIDPOINTSVO (N)
B < CGBETA(N)
for r — 1 to d do
I—1:841
A — BuiLbPA(N,r)
fori—1to(Nd)+1)x---x(N(r+1)+1)do
q(r,I) < A
I—TI+p54
end for
end for
end Function

To obtain a vectorized function, we must work on the for 7 loop and on the
construction of the array A.

We first vectorize the computation of array A. Let us define the S3,.-by-
(N, + 1) array

0 1 N(r)

0 1 N(r)
A=1I. . :

6 1 N.(r)

obtained by copying array [0 : N(r)] on each row of A from
A — RepTe([0 : N(7)], B, 1)
So array A can be obtained with the command
A < Resuapre(A, 1, (N(r) + 1)8,)
or directly by
A — Resape(RePTILE([0: N(1)], 57, 1), 1, (N (r) + 1)5;)

We can easily vectorize the for ¢ loop in function CARTESIANGRIDPOINTSV0
by using the RepTiLe function as follows

q(r,:) < RePTILE(A, 1,PrROD(N(r+1:d) + 1))

With these two vectorizations we obtain the function CARTESIANGRIDPOINTS
given in Algorithm [f}

35

C Computational costs

In this section, computational costs of the OrthMesh constructor are presented
for tessellations of the orthotope [—1;1]? with orthotopes and simplices. The
computations were done on a laptop with Core i7-4800MQ processor and 16Go
of RAM under Ubuntu 14.04 LTS (64bits).

C.1 Tessellation with orthotopes

Under Matlab 2017a, Octave 4.2.0 and Python 3.6.3, the computational costs
of the OrthMesh constructor

Oh « OrruMesHu(d, N,[—1;1]%, >orthotope’?)

are given in tables [§] to respectively for d = 2 to d = 5.

N Ng Nme Python Matlab Octave
1000 1 002 001 1 000 000 0.146 (s) 0.311 (s) 0.186 (s

))
2000 4 004 001 4 000 000 0.339 (s) 0.14 (s) 0.381 (s)
3000 9 006 001 9 000 000 0.755 (s) 0.255 (s) 0.893 (s)
4000 16 008 001 16 000 000 1.307 (s) 0.388 (s) 1.473 (s)
5000 25 010 001 25 000 000 2.018 (s) 0.58 (s) 2.254 (s)

Table 8: Tessellation of [—1,1]? with orthotopes. Computational times in sec-
onds for Python 3.6.3, Matlab 2017a and Octave 4.2.1.

N Ng Nme Python Matlab Octave

50 132 651 125 000 0.158 (s) 0.353 (s) 0.274 (s)
100 1 030 301 1 000 000 0.229 (s) (s) (s)
150 3 442 951 3 375 000 0.454 (s) (s) (s)
200 8 120 601 8 000 000 1.061 (s) (s) (s)
250 15 813 251 15 625 000 1.896 (s) 0.718 (s) 2.782 (s)

(s) (s) (s)

(s) (s) (s)

300 27 270 901 27 000 000 3.166
350 43 243 551 42 875 000 4.892

Table 9: Tessellation of [—1,1]® with orthotopes. Computational times in sec-
onds for Python 3.6.3, Matlab 2017a and Octave 4.2.1.

N Ng Nme Python Matlab Octave

10 14 641 10 000 0.238 (s)))
20 194 481 160 000 0.243 (s) (s) (s)
30 923 521 810 000 0.325 (s) (s) (s)
40 2825 761 2 560 000 0.546 (s) 0.321 (s) 1.323 (s)
(s) (s) (s)
(s) (s) (s)

50 6 765 201 6 250 000 1.424
62 15 752 961 14 776 336 2.804

Table 10: Tessellation of [—1,1]* with orthotopes. Computational times in
seconds for Python 3.6.3, Matlab 2017a and Octave 4.2.1.

36

N Ng Nme Python Matlab Octave

5 7 776 3126 0.385 (s) 0.513 (s)

10 161 051 100 000 0.400 (s) (s) (s)

15 1 048 576 769 375 0.594 (s) (s) (s)

20 4 084 101 3 200 000 1.213 (s) 0.765 (s) 3.722 (s)
(s) (s) (s)
(s) (s) (s)

25 11 881 376 9 765 625 4.750
27 17 210 368 14 348 907 4.485

Table 11: Tessellation of [—1,1]® with orthotopes. Computational times in
seconds for Python 3.6.3, Matlab 2017a and Octave 4.2.1.

C.2 Tessellation with d-simplices

Under Matlab 2017a, Octave 4.2.0 and Python 3.6.3, the computational costs
of the OrthMesh constructor

Oh «— OrraMeEsu(d, N, [~1;1]¢, *simplicial’)

are given in tables [I2] to [I5] respectively for d = 2 to d = 5.

N Ng Nme Python Matlab Octave

1000 1 002 001 2 000 000 0.190 (s) 0.381 (s) 0.269 (s)
2000 4 004 001 8 000 000 0.522 (s) (s) 0.687 (s)
3000 9 006 001 18 000 000 1.145 (s) (s) 1.619 (s)
4000 16 008 001 32 000 000 1.944 (s) 1.305 (s) 2.701 (s)

(s) (s) (s)

5000 25 010 001 50 000 000 4.362 4.148 (s

Table 12: Tessellation of [—1,1]? with simplices. Computational times in sec-
onds for Python 3.6.3, Matlab 2017aand Octave 4.2.1.

N Ng Nme Python Matlab Octave
40 68 921 384 000 0.165 (s) 0.393 (s) 0.295 (s)
60 226 981 1 296 000 0.203 (s) 0.143 (s) 0.406 (s)
80 531 441 3 072 000 0.285 (s) 0.226 (s) 0.598 (s)
100 1 030 301 6 000 000 0.396 (s) 0.370 (s) 0.847 (s)
120 1 771 561 10 368 000 0.592 (s) 0.618 (s) 1.282 (s)
140 2 803 221 16 464 000 0.871 (s) 0.940 (s) 1.838 (s)
160 4 173 281 24 576 000 1.266 (s) 1.341 (s) 2.677 (s)
180 5 929 741 34 992 000 3.517 (s) 2.202 (s) 4.098 (s)

Table 13: Tessellation of [—1,1]® with simplices. Computational times in sec-
onds for Python 3.6.3, Matlab 2017a and Octave 4.2.1.

37

Table 14: Tessellation of [—1,1]* with simplices.

N Ng Nme Python Matlab Octave
10 14 641 240 000 0.250 (s) 0.461 (s) 0.609 (s)
20 194 481 3 840 000 0.462 (s) 0.333 (s) 1.068 (s)
25 456 976 9 375 000 0.794 (s) 0.689 (s) 1.804 (s)
30 923 521 19 440 000 1.471(s) 1.353 (s) 3.335 (s)
35 1679 616 36 015 000 2.524 (s) 4.104 (s) 6.017 ()

onds for Python 3.6.3, Matlab 2017a and Octave 4.2.1.

Table 15: Tessellation of [—1,1]° with simplices.

N Ng Nme Python Matlab Octave
2 243 3 840 0.365 (s) 0.557 (s) 1.456 (s)
4 3 125 122 880 0.372 (s) 0.227 (s) 1.420 (s)
6 16 807 933 120 0.496 (s) 0.310 (s) 1.653 (s)
8 59 049 3 932 160 0.617 (s) 0.517 (s) 2.163 (s)
10 161 051 12 000 000 1.048 (s) 1.156 (s) 3.400 (s)
12 371 293 29 859 840 2.394 (s) 2.788 (s) 8.119 (s)

onds for Python 3.6.3, Matlab 2017a and Octave 4.2.1.

List of algorithms

Computational times in sec-

Computational times in sec-

11 Function CarresiaNGRIDPOINTS : computes the d-by-n, array q

which contains all the points of the cartesian grid On (vectorized
VEISION) | . v v v v vt e e 9
2 Function CGeeta : Computes 5, VI € [1,d[[, definedin (7] . . . 9
[3 Function CGTEssHyYP : computes the vertices array q and the |
| connectivity array me obtained from a tesselation ot the cartesian |
| grid On with unit hypercube. | o000 11
2! Function CGTEssFAaceEs : computes all m-taces tessellations of |
| the cartesian grid On with unit m-hypercubes.| 16
5] Function BoxXMaPPING : mapping points of the cartesian grid On |
[tothe d-orthotope [a1,bi] x --- x [ag,bal| - - 17
[6 Function OrRTHTESSORTH : d-orthotope regular tessellation with |
| orthotopes| 17
|7 Function OrRTHTESSFACES : computes the conforming tessella- |
| tions of all the m-faces of the d-orthotope [a1,b1] x --- x |ag,bq]] 18
[8 Kuhn’s triangulation of the unit d-hypercube [0, 1]¢ with d! sim- |
[plices (positive orientation) [. L. 21
O Function CGTRIANGULATION : computes the triangulation of the |
[cartesian grid On | oL 23
[T0 Function CGTRIFACES : computes all m-faces tessellations of the |
| cartesian grid On with m-simplices| 24
11 Function OrTHTRIANGULATION : regular tessellation with sim- |
| plices of a d-orthotope |. L. 25
112 Function ORTHTRIFACES : computes the contforming tessellations |

with simplices of all m-faces of the d-orthotope |ay, b1 |x---x|ag, bgl| 25

38

(13 Building q the d-by-nq array of cartesian grid points| 32
[[4 Building q the d-by-n, array of cartesian grid points| 32
15 Computes component r € [1,d] of cartesian grid points in the
| d-by-ng array q.. 33
|16 Computes component r € [1,d] of cartesian grid points in the
d-by-ng array q.f. o oo 33
|17 Computes the array containing the [, ; values stored in array q |
| by the for loopsin s, and 7.| 34
[18 Computes component r € [1,d] of cartesian grid points in the |
| d-by-ngarray q.f. o 00000000 34
[19 Computes component r € [1,d] of cartesian grid points in the |
| d-by-ngarray q L oL o 34
|20 Function CARTESIANGRIDPOINTSVO : computes the d-by-n, array
q which contains all the points of the cartesian grid On. (non
vectorized version) |o 35
List of Tables
I Number of m-faces of a d-hypercube| 5
12 Number of m-taces of a nondegenerate d-stmplex| 6
|3 Number of vertices ny and number of elements n,,. for the tessel-
lation of an orthotope by orthotopes and by simplices according
to the space dimension d and with N =10.|. 29
21 Memory usage of the array q and the array me for the tessellation |
| of an orthotope by orthotopes and by simplices according to the |
| space dimension d and with N =10.]. 29
[> Tessellation of [—1,1]% by orthotopes with approximatively 15
millions elements. Computational times in seconds tor Python 3.6.3,
[Maflab 20i7aand Ocfave £2.1]. 30
[6 Tessellation of [—1,1]? with tens of millions of simplices. Com-
| putational times in seconds for Python 3.6.3, Matlab 2017a and
[Octave 4.2 1. 1. o . o e e 30
[Tessellation of [—1, 1]* with orthotopes. Computational times in |
[seconds for Python 3.6.3, Matlab 2017a and Octave 4.2.1.|. . . . 36
[9° Tessellation of [—1,1]° with orthotopes. Computational times in |
[seconds for Python 3.6.3, Matlab 2017a and Octave 42.1.]. . . . 36
[0 Tessellation of [—1,1]* with orthotopes. Computational times in |
[seconds for Python 3.6.3, Matlab 2017a and Octave 4.2.1.|. . . . 36
[1T Tessellation of [—1,1]° with orthotopes. Computational times in |
[seconds for Python 3.6.3, Matlab 2017a and Octave 4.2.1. |. . . . 37
[12 Tessellation of [—1,1]* with simplices. Computational times in |
[seconds for Python 3.6.3, Matlab 2017aand Octave 4.2.1. | 37
[13 Tessellation of [—1,1]° with simplices. Computational times in |
| seconds for Python 3.6.3, Matlab 2017a and Octave 4.2.1. |. . . . 37
[14 Tessellation of [—1,1]* with simplices. Computational times in |
[seconds for Python 3.6.3, Matlab 2017a and Octave 4.2.1. |. . . . 38
[15 Tessellation of [—1,1]° with simplices. Computational times in |
[seconds for Python 3.6.3, Matlab 2017a and Octave 4.2.1. |. . . . 38

39

References

[1]

2]

3]

[4]

[5]

[6]

[7]

18]

[9]

[10]
[11]

[12]

Jiirgen Bey. Simplicial grid refinement: on freudenthal’s algorithm and the
optimal number of congruence classes. Numerische Mathematik, 85(1):1—
29, 2000.

H.S.M. Coxeter. Regular Polytopes. Dover books on advanced mathematics.
Dover Publications, 1973.

F. Cuvelier. fc_hypermesh: a object-oriented Matlab toolbox to mesh any
d-orthotopes (hyperrectangle in dimension d) and their m-faces with sim-
plices or orthotopes. http://www.math.univ-parisl13.fr/“cuvelier/
software/, 2017. User’s Guidel

F. Cuvelier. fc_hypermesh: a object-oriented Octave package to mesh any
d-orthotopes (hyperrectangle in dimension d) and their m-faces with sim-
plices or orthotopes. http://www.math.univ-parisi3.fr/"“cuvelier/
software/, 2017. User’s Guide.

F. Cuvelier. fc_hypermesh: a object-oriented Python package to mesh any
d-orthotopes (hyperrectangle in dimension d) and their m-faces with sim-
plices or orthotopes. http://www.math.univ-parisl13.fr/“cuvelier/
software/, 2017. User’s Guide.

F. Cuvelier. fc_vfemP;: a object-oriented Matlab toolbox to solve scalar
and vector boundary value problems by P;-lagrange finite element method
in any space dimension. http://www.math.univ-paris13.fr/“cuvelier/
software/, 2017. User’s Guide.

F. Cuvelier. fc_vfemP;: a object-oriented Octave package to solve scalar
and vector boundary value problems by P;-lagrange finite element method
in any space dimension. http://www.math.univ-paris13.fr/“cuvelier/
software/, 2017. User’s Guide.

F. Cuvelier. fc_vfemP;: a object-oriented Python package to solve scalar
and vector boundary value problems by P;-lagrange finite element method
in any space dimension. http://www.math.univ-parisi3.fr/“cuvelier/
software/|, 2017. User’s Guidel

Francois Cuvelier, Caroline Japhet, and Gilles Scarella. An efficient way
to assemble finite element matrices in vector languages. BIT Numerical
Mathematics, 56(3):833-864, dec 2015.

Python Software Foundation. Pypi, the python package index, 2003.

H. W. Kuhn. Some combinatorial lemmas in topology. IBM Journal of
Research and Development, 4:518-524, 1960.

K. Weiss. Diamond-Based Models for Scientific Visualization. PhD thesis,
University of Maryland, 2011.

40

http://www.math.univ-paris13.fr/~cuvelier/software/
http://www.math.univ-paris13.fr/~cuvelier/software/
http://www.math.univ-paris13.fr/~cuvelier/software/codes/fc-hypermesh/0.0.2/fc-hypermesh-MATLAB2015b.pdf
http://www.math.univ-paris13.fr/~cuvelier/software/
http://www.math.univ-paris13.fr/~cuvelier/software/
http://www.math.univ-paris13.fr/~cuvelier/software/codes/fc-hypermesh/0.0.2/fc-hypermesh-OCTAVE4.2.0.pdf
http://www.math.univ-paris13.fr/~cuvelier/software/
http://www.math.univ-paris13.fr/~cuvelier/software/
http://www.math.univ-paris13.fr/~cuvelier/software/codes/fc-hypermesh/fc_hypermesh-0.0.9.pdf
http://www.math.univ-paris13.fr/~cuvelier/software/
http://www.math.univ-paris13.fr/~cuvelier/software/
http://www.math.univ-paris13.fr/~cuvelier/software/codes/fc-vfemp1/0.0.5/mfc-vfemp1-0.0.5.pdf
http://www.math.univ-paris13.fr/~cuvelier/software/
http://www.math.univ-paris13.fr/~cuvelier/software/
http://www.math.univ-paris13.fr/~cuvelier/software/codes/fc-vfemp1/0.0.5/ofc-vfemp1-0.0.5.pdf
http://www.math.univ-paris13.fr/~cuvelier/software/
http://www.math.univ-paris13.fr/~cuvelier/software/
http://www.math.univ-paris13.fr/~cuvelier/software/codes/Python/fc-vfemp1/fc-vfemp1.pdf

	Definitions and notations
	d-orthotope and d-hypercube
	d-simplex

	Tessellation with d-orthotopes
	The unit hypercube vertices
	Cartesian grid
	Points of the cartesian grid
	Connectivity array of a cartesian grid

	Numbering of the m-faces of the unit d-hypercube
	m-faces tessellations of a cartesian grid
	Case m=0.
	Case m>0

	Tessellation of a d-orthotope with d-orthotopes
	m-faces tessellations of a d-orthotope

	Tessellation with d-simplices
	Kuhn's decomposition of a d-hypercube
	Cartesian grid tesselation with simplices
	m-faces tessellations of a cartesian grid
	d-orthotope tessellation with d-simplices
	m-faces tessellations of a d-orthotope with d-simplices

	Efficiency of the algorithms
	Class object OrthMesh
	Memory consuming
	Computational times

	Conclusion
	Vectorized algorithmic language
	Common operators and functions
	Combinatorial functions

	Function darkredCartesianGridPoints
	Computational costs
	Tessellation with orthotopes
	Tessellation with d-simplices

